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Abstract

Changes to the Southern Hemisphere (SH) surface westerlies not only affect air temperature, storm tracks and precipitation;

they are also pivotal in controlling global ocean circulation, ocean heat transport, and ocean carbon uptake. Wind-forced ocean

perturbation experiments have commonly applied idealized poleward wind shifts ranging between 0.5 and 10 degrees of latitude,

and wind intensification factors of between 10 and 300%. In addition, changes in winds are often prescribed ad-hoc without

consistently accounting for physical constraints and can neglect important regional and seasonal differences. Here we quantify

historical and future projected SH westerly wind changes based on examination of CMIP5, CMIP6 and reanalysis data. Under

a high emission scenario, we find a projected end of 21st Century annual mean westerly wind increase of ˜10% and a poleward

shift of ˜0.8° latitude, although there are also significant seasonal and regional variations.
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Key points 13 

1. Recent observational record is dominated by internal variability and is not a good 14 

indicator of forced changes in the westerlies 15 

2. With reduced mean state biases compared to CMIP5, CMIP6 models provide a more 16 

credible estimate of past and future changes in surface westerlies.  17 

3. There are significant regional and seasonal differences in wind changes that need to be 18 

considered when simulating past and future trends 19 

 20 

  21 



Abstract 22 

Changes to the Southern Hemisphere (SH) surface westerlies not only affect air 23 

temperature, storm tracks and precipitation; they are also pivotal in controlling global ocean 24 

circulation, ocean heat transport, and ocean carbon uptake. Wind-forced ocean 25 

perturbation experiments have commonly applied idealized poleward wind shifts ranging 26 

between 0.5 and 10 degrees of latitude, and wind intensification factors of between 10 and 27 

300%. In addition, changes in winds are often prescribed ad-hoc without consistently 28 

accounting for physical constraints and can neglect important regional and seasonal 29 

differences. Here we quantify historical and future projected SH westerly wind changes 30 

based on examination of CMIP5, CMIP6 and reanalysis data. Under a high emission scenario, 31 

we find a projected end of 21st Century annual mean westerly wind increase of ~10% and a 32 

poleward shift of ~0.8° latitude, although there are also significant seasonal and regional 33 

variations. 34 

 35 

Plain Language Summary 36 

The westerly winds in the Southern Hemisphere have increased in speed and shifted 37 

towards Antarctica in the last few decades, and these are projected to intensify and move 38 

further poleward in the future. Changes in the westerly winds are of great importance 39 

because they control ocean carbon uptake, ocean circulation and ocean heat transport. To 40 

understand the impacts of changes in the westerlies on the Southern Ocean, ocean model 41 

simulations are often run by artificially increasing and shifting winds towards Antarctica to 42 

approximate future changes in the winds. However, there is no consistency in the way these 43 

changes are incorporated, with large variations in the applied shift and strengthening. In this 44 

study, we quantify recent observed and projected changes in the surface westerlies, aiming 45 



to provide guidance as to what wind perturbations should be applied in ocean models. We 46 

further show that the latest generation of coupled climate models provides a more credible 47 

estimate of past and future changes in the surface westerly winds. 48 

 49 

 50 

 51 

1. Introduction 52 

The Southern Hemisphere (SH) surface westerlies are the strongest time averaged surface 53 

winds on the planet. The surface westerlies affect the distribution of clouds, precipitation 54 

and the position and intensity of storm tracks in the Southern Hemisphere high latitudes 55 

(e.g. Bracegirdle, 2013; Thompson et al., 2011) . Changes in these westerlies also have a 56 

strong imprint on ocean circulation including the Atlantic Meridional Overturning (Hall & 57 

Visbeck, 2002; Toggweiler et al., 2006; Waugh et al., 2013), water mass formation (Oke & 58 

England, 2004), Antarctic sea-ice and ice shelves (Holland et al., 2019) , oceanic uptake of 59 

heat and carbon (Sen Gupta & England, 2006; Lovenduski et al., 2007; Le Quere et al., 2007) 60 

and future changes in the western boundary current extensions (H. Yang et al., 2016) .  61 

 62 

The surface westerlies in the SH mid-latitudes have intensified and shifted poleward over 63 

the past few decades through the combined influence of an increase in greenhouse gases 64 

and stratospheric ozone depletion (Arblaster & Meehl, 2006; Thompson et al., 2011), with 65 

the latter thought to be the dominant driver for the recent poleward intensification (Roscoe 66 

& Haigh, 2007; Drew T Shindell, 2004; Thompson, 2002). While ozone concentrations are 67 

expected to recover in the future, the westerly winds are projected to continue to shift 68 

poleward and intensify based on high emission climate model experiments. Under these 69 



conditions, the effect of greenhouse gases is expected to dominate the opposing influence 70 

of ozone recovery (Thompson et al., 2011).  Hence, understanding the impact of changing 71 

westerly winds on the ocean circulation remains an ongoing focus of research. 72 

 73 

Several studies using ocean and coupled climate models ranging from coarse to eddy 74 

permitting resolutions have been conducted in the past to understand the influence of 75 

projected 21st Century poleward intensification of the surface westerlies on the Southern 76 

Ocean and Antarctica (e.g. Delworth & Zeng, 2008; Frankcombe et al., 2013; Spence et al., 77 

2014). Most of these studies apply an idealized zonally symmetric intensification and/or 78 

poleward shift in the westerly winds in the SH extratropics (generally between 40-60°S). 79 

These prescribed changes cause significant impacts on various features of the SH, including 80 

the distribution of projected sea level rise (Frankcombe et al., 2013), subsurface warming 81 

and circulation changes around the Antarctic continental margin (Spence et al., 2014).  82 

However, the applied wind changes tend to be idealized and ad hoc, with no common 83 

protocol for applying these wind perturbations to ocean models, including the chosen 84 

magnitude of the wind shift and its intensification. 85 

 86 

To examine the effect of future changes in surface westerlies, previous studies have applied 87 

a broad range of poleward shifts and intensifications, with the poleward shift ranging 88 

between 0.5 and 10 degrees latitude and wind intensification factors ranging from 10 up to 89 

300%, and sometimes more. Given the wide range of perturbations that have been applied 90 

in past studies, some guidance regarding a reasonable estimate of the past and projected 91 

changes in the location and strength of the westerly winds in the SH is needed to better 92 

facilitate model intercomparison. 93 



 94 

In this study, we analyze the historical and projected intensification and poleward shift in 95 

the SH surface westerlies across an ensemble of models from the Coupled Model Inter-96 

comparison Project 5 & 6 (CMIP5 and CMIP6) along with reanalysis products. We also 97 

examine the seasonality and regional variations in these wind stress changes. These details 98 

are important for correctly simulating certain aspects of change in the ocean and in 99 

Antarctic sea ice. We also examine whether reanalysis products can be used to provide a 100 

reliable estimate of the forced anthropogenic change in SH surface westerlies over the last 101 

few decades.   102 

 103 

2. Data and Methods 104 

Surface monthly averaged zonal winds (at 10m elevation) from the CMIP5 and CMIP6 105 

archives as well as reanalysis products are used to examine the latitude and strength of the 106 

SH surface westerlies. Ocean model simulations employ surface winds to calculate both the 107 

surface wind stress and air-sea turbulent heat fluxes; both are primary boundary conditions 108 

for ocean models. Surface winds also determine sea-ice advection and wind-driven mixed 109 

layer deepening and are therefore central to ocean-sea-ice model forcing fields.   110 

 111 

Data spanning 1850 through to 2099 from the first ensemble from each of multiple CMIP5 112 

and CMIP6 models are used to provide equal weight to each climate model. Data from pre-113 

industrial control simulations (200-year runs from 27 CMIP5 and 23 CMIP6 models), 114 

historical simulations (1850-2005 for CMIP5 and 1850-2014 for CMIP6) and future 115 

projections (2006-2099 for CMIP5 and 2015-2099 for CMIP6) are used in this study (Table 116 

S1, S2). For the future projections, data from both the intermediate emissions scenario 117 



(Representative Concentration Pathway (RCP) 4.5 for CMIP5 and the Shared Socio-economic 118 

Pathway (SSP) 245 for CMIP6) and the high emissions scenario (RCP8.5 for CMIP5 and 119 

SSP585 for CMIP6) are analyzed. Both SSP585 (SSP245) and RCP8.5 (RCP4.5) scenarios are 120 

designed so that radiative forcing increases by 8.5W/m2 (4.5 W/m2) by 2100 relative to pre-121 

industrial, although the emission rates of various greenhouse gases are different while 122 

achieving the same radiative forcing by 2100 (O’Neill et al., 2016). The differences in high 123 

emissions and moderate emissions scenarios arise because of differences in the projected 124 

concentrations of greenhouse gases, aerosols and stratospheric ozone.  125 

 126 

Reanalysis datasets from 1979-2019 for monthly averaged surface zonal winds (at 10m 127 

elevation) from the European Centre for Medium Range Weather Forecasts (ECMWF) Re-128 

analysis (ERA5, Hersbach et al., 2020), and the Japanese reanalysis (JRA-55, Kobayashi et al., 129 

2015) are also analyzed. Because of sparse measurements over the Southern Ocean before 130 

the satellite era, reanalysis data before the year 1979 are not considered as they do not 131 

provide a reliable estimate of the westerly wind changes over the SH. Even though satellite 132 

measurements of winds only started in the late 1980s, satellite measurements of other 133 

physical quantities help to appreciably improve the quality of the reanalysis products post 134 

1979. Therefore, the reanalysis wind fields from 1979 on are used in this study. Close 135 

agreement was found between ERA-5 and JRA-55 for all analyses presented in this study; 136 

hence for simplicity we only present results from the ERA5 reanalysis. We also considered 137 

the National Centre for Environmental Prediction-National Centre for Atmospheric Research 138 

(NCEP-NCAR) reanalysis (Kalnay et al., 1996), however, in agreement with Marshall (2003), 139 

we found that this dataset contains spuriously large trends in high latitude Southern 140 

Hemisphere winds that are inconsistent with station-based observations. All data are first 141 



mapped to a common 1o x 1o latitude-longitude grid before conducting the analyses shown 142 

below. 143 

 144 

The maximum jet strength is defined as the maximum surface zonal wind at each longitude 145 

in the SH extratropics between 30-70oS (consistent with the definition of Bracegirdle et al., 146 

2013). The position of the westerly jet is then defined as the latitude where the maximum 147 

zonal surface wind speed is located at each longitude between 30-70oS. 148 

 149 

 150 

3. Historical Era 151 

A poleward intensification of the SH surface westerlies is found over the last few decades in 152 

both models and reanalysis (Fig. 1a, 1b). This poleward intensification can be described as a 153 

positive trend in the SAM (Fig. S1) over the last few decades. Based on single forcing 154 

experiments, this change has been attributed primarily to stratospheric ozone depletion, 155 

with greenhouse gases playing a secondary role (Thompson et al., 2011).  156 

 157 

CMIP5 and older generation climate models are known to have a large equatorward bias 158 

(Fig. 1a) in the zonal mean location of the SH surface westerlies (Bracegirdle et al., 2013) 159 

possibly due to biases in the shortwave cloud forcing in the models as compared to 160 

reanalysis (Ceppi et al., 2012). Biases in the shortwave cloud forcing can induce surface 161 

temperature anomalies in the midlatitudes which affect the meridional temperature 162 

gradient, which in turn affects the mean latitude of the westerlies. Negative biases in 163 

shortwave cloud forcing correspond to equatorward biases in the latitude of the westerlies. 164 

There is a notable reduction in the equatorward bias (compared to ERA5) in the zonal mean 165 



location of the maximum SH surface westerlies (see also Bracegirdle et al., 2020) reducing 166 

from 1.3° in CMIP5 models down to 0.3° in the CMIP6 multi-model mean, averaged over 167 

1979 to 2005. While the bias has been reduced, two-thirds of models still have a zonal 168 

maximum situated further north than the reanalysis estimate (Fig. 1a). In contrast, the 169 

CMIP5 multi-model mean (MMM) has an almost identical mean strength for the SH surface 170 

westerlies as compared to ERA5, while the CMIP6 MMM is 4% too strong (see Fig. 1b). 171 

When limiting this inter-generational CMIP comparison to include just the subset of models 172 

that are common to both CMIP5 and CMIP6 (i.e., 12 models; see Table S1, S2), we again find 173 

a significant reduction in the equatorward bias (reduced bias of ~0.7° latitude; Fig. S2a).  In 174 

contrast, we do not find any significant inter-generational difference in the strength of SH 175 

surface westerlies between CMIP5 and CMIP6 (Fig. S2b). 176 

 177 

Studies examining the ocean response to historical changes in surface winds usually rely on 178 

atmospheric reanalyses for their forcing fields. However, changes over the relatively short 179 

reanalysis period may be strongly influenced by internal climate variability and may be a 180 

poor representation of the anthropogenic forced change. To test if the trends in the zonal 181 

mean location and strength in the ERA5 reanalysis lie outside the range of internal climate 182 

variability, a Monte-Carlo analysis was carried out by calculating trends over large numbers 183 

of random 41-year periods from the 200-year pre-industrial control simulations of 50 CMIP 184 

models (27 CMIP5 and 23 CMIP6; Fig. S3). This test assumes that the model variability is 185 

representative of the observed internal climate variability. The trend in the location of the 186 

SH westerlies calculated from the ERA5 reanalysis lies well within the distribution of trends 187 

associated with internal variability. However, the trend in the strength of the westerlies is 188 

unlikely to be explained by internal variability alone (P<0.1). Given the model differences in 189 



the representation of internal variability we repeat the analysis using individual CMIP5 and 190 

CMIP6 models. Similar results are obtained in more than 90% of the models for both the 191 

position and strength of the surface westerlies (Fig. S4-7). A seasonal analysis further finds 192 

that trends in both position and strength and for both model generations are significant in 193 

summer (DJF, Fig. S8, S9). In all other seasons and for both metrics, the reanalysis trends are 194 

within the range expected from internal variability. This is consistent with recent pacemaker 195 

model simulations by Schneider et al. (2015) and Yang et al. (2020), who found that a 196 

substantial component of recent multi-decadal westerly wind variability could be accounted 197 

for in model experiments forced by observed tropical SST variations, independent of 198 

anthropogenic forcing. 199 

 200 

Most previous ocean model studies that have examined the effects of SH wind changes 201 

have done so by prescribing zonally symmetric changes in wind latitude and strength (e.g. 202 

Delworth & Zeng, 2008; Downes et al., 2017; Frankcombe et al., 2013; Hogg et al., 2017; 203 

Spence et al., 2014; Waugh et al., 2019). Zonal differences in the changes in SH westerlies 204 

has only been examined in a few studies (e.g. Bracegirdle et al., 2013; Waugh et al., 2020). 205 

The climatological zonal mean location of the surface westerlies is more poleward in the 206 

Pacific and western Indian Ocean compared to the Atlantic and eastern Indian basins (Fig. 207 

2a). This is also a consistent feature in the climate models. In the ERA5 reanalysis, there is 208 

an 8° meridional difference in the most poleward (~56°S) and equatorward locations (~48°S) 209 

of the climatological mean surface westerlies observed over 2000-2019 (Fig. 2a). The CMIP5 210 

MMM shows an equatorward bias in the latitude of the westerlies at all longitudes (Fig. 2a) 211 

consistent with the zonal average analysis (Fig. 1a). However, consistent with the 212 

improvement in the location of the zonal mean climatological surface westerlies, the CMIP6 213 



MMM shows a better agreement with the ERA5 reanalysis at almost all longitudes 214 

compared to CMIP5 MMM, although biases of up to 0.9° persist in the region centered 215 

south of New Zealand (Fig. 2a).  216 

 217 

We next examine recent regional trends in the ERA5 reanalysis to examine whether they 218 

can be accounted for by intrinsic variability, or whether they can provide a reliable estimate 219 

of the forced signal. To do this, we compute regional trends in the location and strength of 220 

surface westerlies in the ERA5 reanalysis, as well as in CMIP5 and CMIP6 models, for the 221 

modern period (1979-2019). Major regional differences between ERA5 and modelled trends 222 

in the meridional location of the westerlies can be seen (Fig 2b). Regional differences in 223 

trends in the meridional location of westerlies from either model generations are not 224 

consistent with the ERA5 trends. Indeed, even though the MMM averages over a large 225 

component of the internal variability inherent in individual models, we still find no 226 

consistency in the regional pattern of trends between the CMIP5 and CMIP6 MMM (Fig 2b). 227 

For example, in the east Pacific ERA5 shows a strong positive trend, in contrast to the CMIP5 228 

MMM which shows a negative trend and CMIP6 MMM which has almost no trend (Fig. 2b). 229 

We conclude that over the relatively short reanalysis period (i.e. 41 years from 1979-2019), 230 

the regional differences in trends in both the latitude and the strength of westerlies are 231 

likely dominated by natural interannual to decadal climate variability. Indeed, because of 232 

large intermodel differences, presumably linked to each model’s intrinsic variability, the 233 

MMM trends obtained from CMIP5 and CMIP6 are not significant at almost all longitudes 234 

(Fig. 2b, 2c).   235 

 236 



For the models we extend the above analysis to cover the full 20th Century, to see if robust 237 

regional patterns in the trends emerge. Using the longer period for both the CMIP6 and 238 

CMIP5 models, similar regional patterns in MMM trends in the position of westerlies are 239 

found, with significant poleward trends identified everywhere except in the western Pacific, 240 

(Fig. 3b), with spatial correlation coefficient of 0.7 (P<0.05) between CMIP5 and CMIP6 241 

MMM trends. Similar regional patterns are also found in trends in the strength of the 242 

westerlies (spatial correlation coefficient of 0.8 (P<0.05) between CMIP5 and CMIP6 MMM 243 

trends) with strong trends found in the eastern Indian and western Atlantic Oceans basins 244 

(Fig. 3c).  245 

 246 

Changes in the zonal mean position and strength of the westerlies also show consistent 247 

seasonal differences over the historical time period (1900-1999, Fig. S10). While a poleward 248 

shift is found in all four seasons in both CMIP5 and CMIP6 MMM (Fig. S10a), the strongest 249 

trends are found during summer and weakest trends during winter (Fig. S10a). Similar 250 

seasonality is also found in the wind strength trends, with stronger trends in summer 251 

compared to winter (Fig. S10b). 252 

 253 

4. Future Projections 254 

Future changes in the SH surface westerlies are expected to be affected by the competing 255 

effects of increasing greenhouse gases (GHGs) and stratospheric ozone recovery (Thompson 256 

et al., 2011). While both GHGs and ozone have acted in concert in the past, as ozone 257 

recovers it is expected that the two effects will tend to cancel each other out in the future 258 

(e.g. Eyring et al., 2010; Goyal et al., 2019; Newman et al., 2006). After ozone recovery 259 



stabilizes, it is expected that changes in the westerlies will be largely determined by changes 260 

in GHGs.   261 

 262 

Projected 21st Century (2000-2099) changes in the high emissions scenario of CMIP5 and 263 

CMIP6 show a significant poleward shift (by ~1.5°/100yr latitude in CMIP5 & by 0.8°/100yr 264 

in CMIP6 MMM) and intensification (~0.8m/s/100yr in CMIP6 MMM and ~0.7 m/s/100yr in 265 

CMIP5 MMM) in the zonal mean location and strength of SH westerlies (Fig. 1, Table S3). As 266 

with the historical period, there are also major difference in these trends by season (Fig. 4). 267 

In particular, a poleward shift is found in all seasons with the largest shift projected during 268 

autumn and summer (compared to only in summer during the historical era), and a weaker 269 

shift projected for winter and spring (Fig. 4a, Fig. S10a). Strengthening of the westerlies is 270 

also projected in all seasons with the weakest trends in summer, in contrast to the historical 271 

era, when summertime trends were the strongest (Fig. 4b, Fig. S10b). As discussed earlier, 272 

the projected changes in the SH westerlies are expected to be affected by the competing 273 

effects of increasing GHGs and stratospheric ozone recovery. While the effect of GHGs acts 274 

in all seasons, stratospheric ozone primarily affects the SH during summer because of the 275 

breakdown of the stratospheric polar vortex during spring (Arblaster & Meehl, 2006). 276 

Weaker summertime trends in the 21st Century are therefore expected because of the 277 

opposing contributions of GHGs and stratospheric ozone forcing in that season (Fig. 4). This 278 

suggests that the role of GHGs becomes much more important in the future under a high 279 

emission scenario, particularly given the expected recovery of stratospheric ozone. 280 

Consistent results are found for projected changes in both the latitude and the strength of 281 

westerlies in CMIP5 models, although trends are stronger in the CMIP5 MMM (Fig. 4). It is 282 

interesting to note that the projected strengthening of westerlies in the high emission 283 



scenarios of both CMIP5 and CMIP6 models during the 21st Century occurs throughout the 284 

year, but is strongest in winter and spring, whereas the projected shift in westerlies is 285 

considerably larger in summer and autumn compared to winter and spring (Fig. 4). This is 286 

counter to the expectation that the changes in the latitude and strength of westerlies 287 

operates in tandem (Bracegirdle et al., 2013), suggesting that different factors might be 288 

affecting the projected seasonal trends in both the poleward shift and the strengthening of 289 

westerlies in the SH. 290 

 291 

In contrast to the high emission scenario, no significant trends are found in the moderate 292 

emissions scenario in both CMIP6 (SSP245) and CMIP5 (RCP45) MMM for both the latitude 293 

(except during autumn in CMIP5) and strength (except during autumn and spring in CMIP5) 294 

of the surface westerlies. In these cases, greenhouse forcing stabilizes at a much lower level 295 

and stratospheric ozone forcing can largely compensate the increase in greenhouse gases.  296 

 297 

Projected 21st Century trends from CMIP6 models in the latitude of the maximum westerlies 298 

also show large regional differences, with the strongest poleward trends over the Atlantic 299 

and east Pacific Oceans, and somewhat weaker poleward trends in the Indian Ocean (Fig. 300 

3b). Both CMIP5 and CMIP6 show similar regional patterns in the MMM trends in the 301 

meridional location of the westerlies (with a spatial correlation, R=0.83). However, CMIP6 302 

MMM trends in the meridional location are weaker as compared to CMIP5 MMM trends 303 

(Fig. 3b). The weaker poleward shift in CMIP6 MMM as compared to CMIP5 MMM is 304 

consistent with the reduction in the equatorward bias in the meridional location of 305 

westerlies in CMIP6 MMM as compared to CMIP5 MMM, as models with a larger 306 

equatorward bias also tend to show a larger projected poleward shift (Bracegirdle et al., 307 



2013). Significant projected trends in the strength of westerlies under the SSP585 scenario 308 

of CMIP6 are evident at all longitudes, with stronger trends centered south of Australia and 309 

within the Drake Passage (Fig. 3c). Again, consistent regional patterns are found between 310 

both the model generations (R=0.9, Fig. 3c). However, the projected 21st Century trends are 311 

stronger in the CMIP5 MMM as compared to CMIP6 MMM in all regions except for the 312 

Atlantic (Fig. 3c). 313 

 314 

5. Summary and Discussion 315 

In the past a wide range of wind shifts and accelerations have been used to force ocean 316 

models in order to examine the response of the Southern Ocean and the Antarctic margin to 317 

past and projected changes in SH westerlies. Understanding future changes has also been 318 

hampered by the fact that CMIP5 models showed a significant equatorward bias in the 319 

location of the SH westerlies. Previous work has shown that projected wind changes are 320 

sensitive to the model’s mean state. In particular, models with larger equatorward biases 321 

tend to show larger projected poleward wind shifts (Bracegirdle et al., 2013). As such, an 322 

anomalous wind shift based on a climate model projection (or from an ensemble of models) 323 

will retain a signature of the model’s mean state bias (e.g. Duran et al., 2020).  324 

 325 

In this study we found a significant reduction in the equatorward bias in the location of SH 326 

westerlies in CMIP6 models as compared to CMIP5 models, with the location of maximum 327 

surface westerlies in closer agreement with the position of maximum surface westerlies in 328 

the ERA5 reanalysis. Given the sensitivity of model projections to mean state biases, CMIP6 329 

models thus likely offer a more credible estimate of past and future changes in SH 330 

westerlies for forcing ocean model simulations. We also found that the reanalysis time 331 



period (41 years from 1979-2019) is too short to provide an estimate of the forced trends in 332 

the SH westerlies, as the trends over this multi-decadal period appear to be strongly 333 

influenced by internal climate variability (see also Schneider et al., 2015; D. Yang et al., 334 

2020). Moreover, it is likely that any anthropogenic forced component of regional or 335 

seasonal differences in the reanalysis trends is dominated by internal variability. MMM 336 

regional and seasonal trend patterns in both the latitude and strength of the maximum 337 

winds only become consistent between CMIP5 and CMIP6 when considering centennial 338 

time-scale trends.  339 

 340 

Based on the discussion above, we can provide a set of recommendations for forcing ocean 341 

model simulations with past and projected changes in SH surface winds:  1) Recent observed 342 

wind trends over the Southern Ocean likely include a substantial component of internal 343 

decadal variability, and thus should not be assumed to be indicative of forced changes 344 

alone. 2) CMIP6 models should be used instead of CMIP5 models for guiding the forcing 345 

used in ocean model simulations, for both past and future changes in the SH westerlies, 346 

given the much reduced mean state biases. 3) Seasonal variations in trends in both the 347 

location and the strength of the westerlies should be considered for simulations where 348 

seasonal changes are important (e.g., for studies examining seasonal changes in mode water 349 

formation, or Antarctic sea ice variability). 4) As ocean circulation is sensitive to the position 350 

of the wind maximum/wind stress curl, prescribed wind forcing should also include regional 351 

variations in surface wind trends. This is particularly relevant for projections where regional 352 

differences in trends can be as large as 150% for the location and 90% for the strength of 353 

the westerlies (Fig. 3b,3c). 354 

 355 



While we have focused on ensemble average hindcasts and projections for CMIP5 and 356 

CMIP6 simulations, using the multi-model mean to construct zonal-mean wind forcing 357 

anomalies presents some problems. For example, only prescribing a zonal wind anomaly is 358 

not dynamically consistent if no changes are made to the meridional winds.  In addition, the 359 

application of a zonal wind perturbation to daily reanalysis fields will distort the geometry of 360 

storms. Tapering regions by applying wind anomalies over a particular latitude band in the 361 

SH extratropics can also create spurious wind stress curl anomalies (e.g. Maher et al., 2018). 362 

One option to minimize these limitations is to use output from individual models as 363 

boundary forcing (e.g. Naughten et al., 2018), something commonly done for atmospheric 364 

downscaling projects (e.g. Evans et al., 2014) . This is a more viable option now that CMIP6 365 

models have minimal equatorward bias in the SH westerlies as compared to CMIP5. Using 366 

multiple models would also provide a means to estimate uncertainty in the projections.  367 

 368 

Under a high emission scenario, a poleward intensification of the SH surface westerlies is 369 

projected to continue in the future despite the projected recovery of stratospheric ozone, 370 

because greenhouse gas forcing dominates the future trends across all seasons. We have 371 

provided quantitative information on the past and projected future changes in zonal mean 372 

position and strength of the surface westerlies over both annual and seasonal time scales 373 

(Table S3).  This can be used to guide the forcing of idealized ocean model simulations with 374 

zonally averaged past and future changes in the SH westerlies. 375 

 376 

Data Availability Statements 377 

The datasets analyzed in this study are all publicly available. Data for CMIP5 and CMIP6 378 

models can be obtained from the Earth Systems Grid Federation website                                 379 



(CMIP5-https://esgf-node.llnl.gov/projects/cmip5/ and CMIP6- https://esgf-380 

node.llnl.gov/projects/cmip6/). ERA5 data can be downloaded from ECMWF website 381 

(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5). 382 
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 716 

Figure 1 | Position (panel a) and strength (panel b) of maximum Southern Hemisphere 717 

surface westerly winds for CMIP5, CMIP6 models and ERA5. Thick lines represent multi-718 

model mean and the shading indicates the inter-quartile range based on CMIP5 and CMIP6 719 

ensembles. Red dotted line represents 5-year running mean jet latitude and strength from 720 

the ERA-5 reanalysis from 1979-2019.  721 



 722 

Figure 2 | Zonal differences in the wind latitude and strength in CMIP5, CMIP6 and ERA5. 723 

Panel a) shows the mean jet position for 2000-2019. Panel b) and c) respectively show the 724 

1979-2019 trends in westerly jet shift and strength. Solid black and blue lines in panels b) 725 

and c) represent multi-model mean from CMIP5 and CMIP6 respectively and shading 726 

represents the inter-quartile range. White circles represent the regions where trends are 727 

significant.  728 

 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 



 738 

Figure 3 | Past and projected zonal and seasonal differences in wind latitude and strength in 739 

CMIP5 and CMIP6 models. Panel a) shows the multi-model mean jet position during the pre-740 

industrial scenario (1860-1880 average), historical (1980-1999 average) and SSP5-8.5 (2080-741 

2099 average). Panel b) and c) respectively show the trends in latitude and strength of 742 



westerlies during the 20th (1900-1999) and 21st (2000-2099) Century. Solid lines in panels b) 743 

and c) represent multi-model mean and shading represents inter-quartile range from CMIP6 744 

models. White circles show the locations where trends are significant. Black dots on solid 745 

red lines in panels b) and c) represent the locations where trends during the 21st Century are 746 

significantly different from trends during the 20th Century. Panels d) and e) respectively 747 

show trends in maximum zonally averaged zonal wind location and strength calculated over 748 

2000-2099. Colored bars in panels d) and e) represent multi-model mean trends, circles 749 

represent the multi-model median and dashed bars represent the inter-quartile range. 750 
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Figure S1 | Southern Annular Mode (SAM) index in CMIP5, CMIP6 models and reanalysis. 

SAM index is defined as the difference in the normalized zonal mean sea level pressure 

between 40°S and 65°S. Thick grey and black lines respectively represent the SAM index for 

CMIP5 and CMIP6 multi-model mean for historical period (1900-2005 for CMIP5 and 1900-

2014 for CMIP6). Thick light blue and orange lines represent the multi-model mean for RCP4.5 

and RCP8.5 scenarios of CMIP5 respectively. Thick blue and red lines respectively represent 

the multi-model mean for SSP245 and SSP585 scenario of CMIP6. Shading around the multi-

model mean shows the inter-quartile range from multiple CMIP5 and CMIP6 models. Thin 

orange line represents 5-year running mean SAM index calculated from ERA-5 reanalysis. 

 

 

 

 

 



 

Figure S2 | Zonal mean westerly jet location (panel a) and strength (panel b) in models from 

common modelling groups from CMIP5 and CMIP6. Details about the models used is given in 

table S1 and S2. 

 

 

 

 



 

Figure S3 | Histogram represents the probability density function of 41-year annual mean 

trends calculated from pre-industrial control simulations from 28 CMIP5 and 23 CMIP6 

models (200 years for each model). Monte Carlo method is used to calculate the trend over a 

random chunk of 41 years of data from 200-year simulation of each model and the process is 

repeated 10,000 times for each model. All the 41-year trends from each model (10,000 for 

each model) are then concatenated and probability density function is plotted. Dashed blue 

line represents the trend calculated from ERA5 reanalysis over the current observational time 

period (1979-2019). Dotted black lines represent 5
th

 and 95
th

 percentile (i.e. bounds for 90% 

confidence) of the density function. The trends calculated from the reanalysis are significant 

at 90% confidence if the blue dashed line does not fall between the two dotted black lines. 

 

 

 



 

Figure S4 | Histogram represents the probability density function of 41-year annual mean 

trends in the zonal mean location of SH westerlies calculated from the pre-industrial control 

simulations from 27 CMIP5 models (200 years for each model). Monte Carlo method is used 

to calculate the trend over a random chunk of 41 years of data from 200-year simulation of 

each model and the process is repeated 10,000 times for each model. Dashed blue line 

represents the trend calculated from ERA5 reanalysis over the current observational time 

period (1979-2019). Dotted black lines represent 5
th

 and 95
th

 percentile (i.e. bounds for 90% 

confidence) of the density function. The trends calculated from the reanalysis are significant 

at 90% confidence if the blue dashed line does not fall between the two dotted black lines. 

 

 

 

 



 

Figure S5 | Histogram represents the probability density function of 41-year annual mean 

trends in the zonal mean strength of SH westerlies calculated from the pre-industrial control 

simulations from 27 CMIP5 (200 years for each model). Monte Carlo method is used to 

calculate the trend over a random chunk of 41 years of data from 200-year simulation of each 

model and the process is repeated 10,000 times for each model. Dashed blue line represents 

the trend calculated from ERA5 reanalysis over the current observational time period (1979-

2019). Dotted black lines represent 5
th

 and 95
th

 percentile (i.e. bounds for 90% confidence) of 

the density function. The trends calculated from the reanalysis are significant at 90% 

confidence if the blue dashed line does not fall between the two dotted black lines. 

 

 

 

 



 

Figure S6 | Histogram represents the probability density function of 41-year annual mean 

trends in the zonal mean location of SH westerlies calculated from the pre-industrial control 

simulations from 23 CMIP6 models (200 years for each model). Monte Carlo method is used 

to calculate the trend over a random chunk of 41 years of data from 200-year simulation of 

each model and the process is repeated 10,000 times for each model. Dashed blue line 

represents the trend calculated from ERA5 reanalysis over the current observational time 

period (1979-2019). Dotted black lines represent 5
th

 and 95
th

 percentile (i.e. bounds for 90% 

confidence) of the density function. The trends calculated from the reanalysis are significant 

at 90% confidence if the blue dashed line does not fall between the two dotted black lines. 

 

 

 

 



 

Figure S7 | Histogram represents the probability density function of 41-year annual mean 

trends in the zonal mean strength of SH westerlies calculated from the pre-industrial control 

simulations from 23 CMIP6 models (200 years for each model). Monte Carlo method is used 

to calculate the trend over a random chunk of 41 years of data from 200-year simulation of 

each model and the process is repeated 10,000 times for each model. Dashed blue line 

represents the trend calculated from ERA5 reanalysis over the current observational time 

period (1979-2019). Dotted black lines represent 5
th

 and 95
th

 percentile (i.e. bounds for 90% 

confidence) of the density function. The trends calculated from the reanalysis are significant 

at 90% confidence if the blue dashed line does not fall between the two dotted black lines. 

 

 

 

 



 

Figure S8 | Histogram represents the probability density function of 41-year trends in the 

zonal mean location of SH westerlies calculated from pre-industrial control simulations from 

28 CMIP5 and 23 CMIP6 models (200 years for each model) for each season. Monte Carlo 

method is used to calculate the trend over a random chunk of 41 years of data from 200-year 

simulation of each model and the process is repeated 10,000 times for each model. All the 

41-year trends from each model (10,000 for each model) are then concatenated and 

probability density function is plotted. Dashed blue line represents the trend calculated from 

ERA5 reanalysis over the current observational time period (1979-2019). Dotted black lines 

represent 5
th

 and 95
th

 percentile (i.e. bounds for 90% confidence) of the density function. The 

trends calculated from the reanalysis are significant at 90% confidence if the blue dashed line 

does not fall between the two dotted black lines. 

 

 

 

 

 



 

Figure S9 | Histogram represents the probability density function of 41-year trends in the 

zonal mean strength of SH westerlies calculated from pre-industrial control simulations from 

28 CMIP5 and 23 CMIP6 models (200 years for each model) for each season. Monte Carlo 

method is used to calculate the trend over a random chunk of 41 years of data from 200-year 

simulation of each model and the process is repeated 10,000 times for each model. All the 

41-year trends from each model (10,000 for each model) are then concatenated and 

probability density function is plotted. Dashed blue line represents the trend calculated from 

ERA5 reanalysis over the current observational time period (1979-2019). Dotted black lines 

represent 5
th

 and 95
th

 percentile (i.e. bounds for 90% confidence) of the density function. The 

trends calculated from the reanalysis are significant at 90% confidence if the blue dashed line 

does not fall between the two dotted black lines. 

 

 

 

 

 



 

Figure S10 | Historical seasonal trends in position and strength in maximum zonal winds. 

Trends in maximum zonally averaged zonal wind latitude (panel a) strength (panel b) over 

historical (1900-1999) for CMIP5 and CMIP6 models. Colored bars represent multi-model 

mean trends, circles represent the multi-model median and dashed bars represent the inter-

quartile range. 

 

 

 

 

 

 

 

 

 

 



Table S1 | CMIP5 models used in the study. Models marked with asterisk are the models used for comparison between CMIP5 and CMIP models 

Model Modeling Center 

 Scenario  

Ozone dataset reference Main reference Historical RCP4.5 RCP8.5 

CanESM2 Canadian Centre for Climate Modeling and Analysis, 
Canada    (Cionni et al., 2011) (von Salzen et al., 2013) 

CMCC-CESM Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy 
   (Cionni et al., 2011) (Vichi et al., 2013) 

CMCC-CM    (Cionni et al., 2011) (Vichi et al., 2013) 
CMCC-CMS 
    (Cionni et al., 2011) (Vichi et al., 2013) 

CNRM-CM5-2 Centre National de Recherches Meteorologiques, France 
  - - (Cariolle & Teyssèdre, 2007) (Voldoire et al., 2013) 

CNRM-CM5  - - (Cariolle & Teyssèdre, 2007) (Voldoire et al., 2013) 

INMCM4* Russian Institute for Numerical Mathematics, Russia 
   (Cionni et al., 2011) (E M Volodin et al., 2010) 

IPSL-CM5A-LR* Institut Pierre Simon Laplace, France 
   (Szopa et al., 2013) (Dufresne et al., 2013) 

IPSL-CM5A-MR    (Szopa et al., 2013) (Dufresne et al., 2013) 

IPSL-CM5B-LR    (Szopa et al., 2013) (Dufresne et al., 2013) 
MIROC-ESM-
CHEM 

Japan Agency for Marine-Earth Science and Technology, 
Atmosphere and Ocean Research Institute (The University 
of Tokyo), and National Institute for Environmental Studies, 
Japan 

   (Watanabe et al., 2011) (Watanabe et al., 2011) 

MIROC-ESM    (Watanabe et al., 2011) (Watanabe et al., 2011) 

MIROC5*    (Kawase et al., 2011) (Watanabe et al., 2011) 

HadGEM2-CC Met Office Hadley Centre, UK -   (Cionni et al., 2011; Jones et al., 2011) (Martin et al., 2011) 

HadGEM2-ES -  - (Jones et al., 2011; O’Connor et al., 2014) (Collins et al., 2011) 

HadCM3  - - (Cionni et al., 2011; Jones et al., 2011) (Gordon et al., 2000) 
HadGEM2-AO 
    (Cionni et al., 2011; Jones et al., 2011) (Martin et al., 2011) 

MPI-ESM-LR* Max Planck Institute for Meteorology, Germany 
 - - (Cionni et al., 2011; Jones et al., 2011) (Giorgetta et al., 2013) 

MPI-ESM-MR*    (Cionni et al., 2011; Jones et al., 2011) (Giorgetta et al., 2013) 

MPI-ESM-P  - - (Cionni et al., 2011; Jones et al., 2011) (Giorgetta et al., 2013) 

MRI-CGCM3 Meteorological Research Institute, Japan Norwegian 
Climate Centre, Norway    (Cionni et al., 2011) (Yukimoto et al., 2012) 

NorESM1-M*  - - (Lamarque et al., 2010, 2012) (Iversen et al., 2013) 

NorESM1-ME    (Lamarque et al., 2010, 2012) (Iversen et al., 2013) 

MRI-ESM1*  -  (Cionni et al., 2011) (Yukimoto et al., 2012) 



GISS-E2-H-CC* NASA Goddard Institute for Space Studies, USA 
   (Shindell et al., 2013) (Schmidt et al., 2006) 

GISS-E2-H*    (Hansen et al., 2007) (Schmidt et al., 2006) 

GISS-E2-R-CC    (Shindell et al., 2013) (Schmidt et al., 2006) 

GISS-E2-R*    (Hansen et al., 2007) (Schmidt et al., 2006) 

GFDL-CM2p1 NOAA Geophysical Fluid Dynamics Laboratory, USA 
 - - (Austin & Wilson, 2006; Horowitz et al., 

2003) (Donner et al., 2011) 

GFDL-CM3*    (Cionni et al., 2011) (Donner et al., 2011) 

GFDL-ESM2G*    (Cionni et al., 2011) (Dunne et al., 2012) 

GFDL-ESM2M    (Cionni et al., 2011) (Dunne et al., 2012) 

ACCESS1-0 Centre for Australian Weather and Climate Research, 
Australia    (Cionni et al., 2011) (Dix et al., 2013) 

ACCESS1-3    (Cionni et al., 2011) (Dix et al., 2013) 

CSIRO-Mk-3-6-0 
Commonwealth Scientific and Industrial Research 
Organization in collaboration with Queensland Climate 
Change Centre of Excellence, Australia 

   (Cionni et al., 2011) (Rotstayn et al., 2012) 

 

 

 

 

 

 

 

 

 



Table S2 | CMIP6 models used in the study. Models marked with asterisk are the models used for comparison between CMIP5 and CMIP models 

Model Modeling Centre 
Scenario 

Main reference Historical SSP2-4.5 SSP5-8.5 
AWI-CM-1-1-MR Alfred Wegener Institute and Helmholtz Centre for Polar and Marine Research, Germany - 

  
(Semmler et al., 2020) 

BCC-CSM2-MR Beijing Climate Centre, China 
   

(Wu et al., 2019) 

BCC-ESM1 Beijing Climate Centre, China 
 

- - (Wu et al., 2020) 

CAMS-CSM1-0 Chinese Academy of Meteorological Sciences, China 
   

(Rong et al., 2018) 

FGOALS-f3-L Chinese Academy of Sciences, China - 
  

(He et al., 2019) 

CanESM5 Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change 
Canada, Canada    

(Swart et al., 2019) 

CNRM-CM6-1-HR CNRM (Centre National de Recherches Meteorologiques) and CERFACS (Centre Europeen 
de Recherche et de Formation Avancee en Calcul Scientifique), France 

- 
  

(Voldoire et al., 2019) 

CNRM-CM6-1 - 
  

(Voldoire et al., 2019) 

CNRM-ESM2-1 - 
 

 (Séférian et al., 2019) 

MPI-ESM-1-2-HAM ETH Zurich, Switzerland; Max Planck Institut fur Meteorologie, Germany; 
Forschungszentrum Julich, Germany; University of Oxford, UK; Finnish Meteorological 
Institute, Finland; Leibniz Institute for Tropospheric Research, Germany; Center for Climate 
Systems Modeling (C2SM) at ETH Zurich, Switzerland 

   
(Gutjahr et al., 2019) 

INM-CM4-8* Institute for Numerical Mathematics, Russian Academy of Science, Russia 
   

(Evgenii M Volodin et al., 2018) 

INM-CM5-0 
   

(E. Volodin & Gritsun, 2018) 

IPSL-CM6A-LR* Institut Pierre Simon Laplace, France 
    

(Boucher et al., 2020) 

MIROC6* JAMSTEC (Japan Agency for Marine-Earth Science and Technology, Japan), AORI 
(Atmosphere and Ocean Research Institute, The University of Tokyo, Japan), NIES (National 
Institute for Environmental Studies, Japan), and R-CCS (RIKEN Centre for Computational 
Science, Japan) 

   
(Tatebe et al., 2019) 

MPI-ESM1-2-HR* Max Planck Institute for Meteorology, Germany; Deutsches Klimarechenzentrum, 
Germany; Deutscher Wetterdienst, Germany    

(Gutjahr et al., 2019) 

MPI-ESM1-2-LR* Max Planck Institute for Meteorology, Germany and Alfred Wegener Institute and 
Helmholtz Centre for Polar and Marine Research, Germany    

(Mauritsen et al., 2019) 

MRI-ESM2-0* 
 

Meteorological Research Institute, Japan 
  

- (Yukimoto et al., 2019) 

GISS-E2-1-G-CC* NASA-GISS (Goddard Institute for Space Studies), USA 
 

- - (Bauer et al., 2020) 

GISS-E2-1-G* 
 

- - 

GISS-E2-1-H* 
 

- - 



NorCPM1* NorESM Climate modeling Consortium consisting of CICERO (Center for International 
Climate and Environmental Research), MET-Norway (Norwegian Meteorological Institute), 
NERSC (Nansen Environmental and Remote Sensing Center), NILU (Norwegian Institute for 
Air Research), UiB (University of Bergen), UiO (University of Oslo) and UNI (Uni Research), 
Norway 

 
- - (Li et al., 2019) 

KACE-1-0-G National Institute of Meteorological Sciences/Korea Meteorological Administration, 
Climate Research Division, Republic of Korea  

- - (Lee et al., 2020) 

GFDL-CM4* National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory, 
USA    

(Held et al., 2019) 

GFDL-ESM4* 
   

(Krasting et al., 2018) 

NESM3 Nanjing University of Information Science and Technology, China 
   

(Cao et al., 2018) 

MCM-UA-1-0 Department of Geosciences, University of Arizona, USA 
   

(Stouffer, 2019) 

UKESM1-0-LL Met Office Hadley Centre, UK; Natural Environment Research Council, UK; National 
Institute of Meteorological Sciences/Korea Meteorological Administration, Republic of 
Korea; National Institute of Water and Atmospheric Research, New Zealand 

- 
  

(Sellar et al., 2019) 

 

 

 

 

 

 

 

 

 

 



Table S3 | Annual and seasonal trends in the westerly jet shift and strength during the 20th and 21st Century in CMIP5 and CMIP6 models. 

Trends are shown as multi-model mean trend ± one standard deviation. Trends are represented from CMIP5 models (not inside brackets) and 

from CMIP6 models (inside brackets). Trends in red are from 2000-2099 in RCP8.5 (CMIP5) and SSP5-8.5 (CMIP6) and in blue from 2000-2099 in 

RCP4.5 (CMIP5) and SSP2-4.5 (CMIP6). Bold values represent trends which are significant at 95% confidence level. 

 

  Annual DJF MAM JJA SON 

1900-1999 

Shift 
(°latitude) 

-0.47 ± 0.37 
(-0.46 ± 0.36) 

-0.73 ± 0.7 
(-0.73 ± 0.53) 

-0.63 ± 0.55 
(-0.36 ± 0.49) 

-0.12 ± 0.58 
(-0.16 ± 0.47) 

-0.29 ± 0.71 
(-0.54 ± 0.77) 

      

Strength 
(m/s) 

0.17 ± 0.08 
(0.14 ± 0.09) 

0.2 ± 0.15 
(0.18 ± 0.15) 

(0.21 ± 0.14) 
(0.10 ± 0.15) 

0.15 ± 0.16 
0.11 ± 0.13 

0.12 ± 0.21 
(0.18 ± 0.15) 

2000-2099 

Shift 
(°latitude) 

-1.62 ± 0.86 
(-1.54 ± 0.82) 
-0.56 ± 0.89 

(-0.46 ± 0.99) 

-1.9 ± 1.22 
(-1.18 ± 1.02) 
-0.42 ± 1.29 
(0.25 ± 1.85) 

 

-2.24 ± 1.22 
(-1.45 ± 1.25) 
-0.85 ± 0.92 
-0.28 ± 1.38 

-0.7 ± 1.05 
(-0.31 ± 1.17) 
-0.28 ± 0.97 

(-0.16 ± 0.99) 

-0.81 ± 1.2 
-0.07 ± 1.6 

-0.11 ± 1.09 
0.15 ± 1.34 

Strength 
(m/s) 

0.79 ± 0.52 
(0.66 ± 0.46) 
0.24 ± 0.37 

(0.21 ± 0.46) 

0.49 ± 0.56 
(0.47 ± 0.43) 
0.08 ± 0.48 
0.12 ± 0.39 

0.70 ± 0.51 
(0.68 ± 0.43) 
0.25 ± 0.50 

(0.22 ± 0.48) 

0.83 ± 0.6 
(0.74 ± 0.64) 
0.34 ± 0.46 

(0.23 ± 0.62) 

0.82 ± 0.60 
0.74 ± 0.53 
0.24 ± 0.47 
0.27 ± 0.50 
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