The Cusp as a VLF Saucer Source: First Rocket Observations of Long-Duration VLF Saucers on the Dayside

Chrystal Moser¹, James LaBelle¹, Spencer Mark Hatch², Jøran I. Moen³, Andres Spicher⁴, Toru Takahashi⁵, Craig A. Kletzing⁶, Scott Randolph Bounds⁶, Kjellmar Oksavik⁷, Fred Sigernes⁸, and Tim Yeoman⁹

¹Dartmouth College
²Birkeland Centre for Space Science
³Arctic Geophysics, University Centre in Svalbard, N-9171 Longyearbyen, Norway
⁴University of Oslo
⁵National Institute of Polar Research
⁶University of Iowa
⁷University of Bergen
⁸University Centre on Svalbard
⁹University of Leicester, UK

November 21, 2022

Abstract

Auroral whistler mode radio emissions called saucers are of fundamental interest because they require an unusually stationary emission process in the dynamic auroral environment, and it is a mystery how that can happen in this or similar conditions elsewhere in geospace. The Cusp Alfven and Plasma Electrodynamics Rocket (CAPER-2), launched into the polar cusp and obtained the first rocket measurements of a large-scale, multiple-armed dayside saucers, similar to those recently observed by the the DEMETER satellite, with the addition of in situ particle measurements and simultaneous conjugate ground-based measurements. For 300 s prior to cusp entry, CAPER-2 detected ~15 truncated saucer arms lasting 5–50 s. Directional analysis using waveforms, combined with ground-based data, suggests that these originate within the cusp. Ray-tracing analysis indicates source altitudes ~2500 km. On-board particle instruments show dispersed electron bursts in the cusp, presumed Alfvenically accelerated, corresponding to approximately the same source heights as the saucers.

Supporting Information for "The Cusp as a VLF Saucer Source: First Rocket Observations of Long-Duration VLF Saucers on the Dayside"

C. Moser¹, J. LaBelle¹, S. Hatch², J.I. Moen^{3,4}, A. Spicher³, T. Takahashi³,

C.A. Kletzing⁵, S. Bounds⁵, K. Oksavik^{2,4}, F. Sigernes⁴, T.K. Yeoman⁶

to be submitted to Geophysical Research Letters

 $^{1}\mathrm{Department}$ of Physics and Astronomy, Dartmouth College, Hanover

²Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen, Norway

³Department of Physics, University of Oslo, Oslo, Norway

⁴Department of Arctic Geophysics, University Centre in Svalbard, Longyearbyen, Norway

 $^5\mathrm{Department}$ of Physics and Astronomy, University of Iowa, Iowa City

 $^{6}\mathrm{University}$ of Leicester School of Physics and Astronomy, Leicester

Contents of this file

- 1. Table S1 $\,$
- 2. Captions for table S1

Introduction A table with time of closet approach, t_0 , separation distances, x_0 and source heights, h, to saucer sources labeled in Figure 2b of paper for both the straight line approximation and using ray tracing.

May 4, 2020, 11:39am

X - 2

Table S1. Best-fit t_0 , x_0 and h values for each event labeled in Figure 2b using the straight line approximation for the source location, and for the ray tracing approximation of the source location, which assumes $x_0 = 0$.

:

Event	t_0 [sec]	x_0 [km]	h [km]	h [km]
			straight	trace
1	234	120	1210	2500
2	293	170	1740	2600
3	286	90	1210	2300
4	377	100	1390	1500
5	313	140	1980	2800
6	406	150	2560	2500
7	356	210	3140	4700
8	429	10	2340	1900
9	515	40	3980	3100
10	461	0	2900	2100
11	459	10	2700	2000
12	449	20	2290	1700

May 4, 2020, 11:39am