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Abstract

Infiltration processes in fractured-porous media remain a crucial, yet not very well understood component of recharge and

vulnerability assessment. Under partially-saturated conditions flows in fractures, percolating fracture networks and fault zones

contribute to the fastest spectrum of infiltration velocities via preferential pathways. Specifically, the partitioning dynamics at

fracture intersections determine the magnitude of flow fragmentation into vertical and horizontal components and hence the bulk

flow velocity and dispersion of fracture networks. In this work we derive an analytical solution for the partitioning processes

based on smoothed particle hydrodynamics simulations and laboratory studies. The developed transfer function allows to

efficiently simulate flow through arbitrary long wide aperture fracture networks with simple cubic structure via linear response

theory and convolution of a given input signal. We derive a non-dimensional bulk flow velocity ($\widetilde{v}$) and dispersion

coefficient ($\widetilde{D}$) to characterize the system in terms of dimensionless horizontal and vertical time scales $\tau m$
and $\tau 0$. The dispersion coefficient is shown to strongly depend on the horizontal time scale and converges towards a

constant value of $0.08$ within reasonable ranges for the fluid and geometrical parameters, while the non-dimensional velocity

exhibits a characteristic $\widetilde{v} \sim \tau mˆ{-1/2}$ scaling. Given that hydraulic information is often only available at

limited places within (fractured-porous) aquifer system, such as boreholes or springs, our study intends to provide a rudimentary

analytical concept to potentially reconstruct internal fracture network geometries from external boundary information, e.g., the

dispersive properties of discharge (groundwater level fluctuations).
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Abstract17

Infiltration processes in fractured-porous media remain a crucial, yet not very well un-18

derstood component of recharge and vulnerability assessment. Under partially-saturated19

conditions flows in fractures, percolating fracture networks, and fault zones contribute20

to the fastest spectrum of infiltration velocities via preferential pathways. Specifically,21

the partitioning dynamics at fracture intersections determine the magnitude of flow frag-22

mentation into vertical and horizontal components and hence the bulk flow velocity and23

dispersion of fracture networks. In this work, we derive an approximate analytical so-24

lution for the partitioning process and validate it using smoothed particle hydrodynam-25

ics simulations and laboratory studies. The developed transfer function allows to effi-26

ciently simulate flow through fracture networks with simple cubic structure and arbitrary27

number of fractures and aperture sizes via linear response theory and convolution of a28

given input signal. We derive a non-dimensional bulk flow velocity (ṽ) and dispersion29

coefficient (D̃) to characterize fracture networks in terms of dimensionless horizontal and30

vertical time scales τm and τ0. The dispersion coefficient is shown to strongly depend31

on the horizontal time scale and converges towards a constant value of 0.08 within rea-32

sonable fluid and geometrical parameter ranges, while the non-dimensional velocity ex-33

hibits a characteristic ṽ ∼ τ−1/2
m scaling. Given that hydraulic information is often only34

available at limited places within (fractured-porous) aquifer system, such as boreholes35

or springs, our study intends to provide a rudimentary analytical concept to potentially36

reconstruct internal fracture network geometries from external boundary information,37

e.g., the dispersive properties of discharge (groundwater level fluctuations).38

1 Introduction39

Estimation of infiltration and recharge remains one of the most important challenges40

in modern hydrogeology (Scanlon & Cook, 2002; Scanlon et al., 2006) and is directly re-41

lated to important topics such as integrated water resources management (Engelhardt42

et al., 2013; Alkhatib et al., 2019), safety of nuclear waste repositories (Bodvarsson et43

al., 1997; Tsang et al., 2015), and storage, release and degradation of nitrate and other44

agrochemical products (Ascott et al., 2016, 2017; Kurtzman et al., 2013; Wang et al.,45

2013). In contrast to the long-prevailing opinion that fractures (or, generally speaking,46

highly permeable heterogeneities embedded in porous media) do not transmit water un-47

der non-equilibrium conditions due to the strong capillary forces in the adjacent matrix48
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(Singhal & Gupta, 2010), arrival times recorded in field and laboratory experiments strongly49

suggest the existence of rapid preferential flow along fractures, fracture networks, and50

fault zones (Zhou et al., 2006; Dahan et al., 2000; Weisbrod et al., 2000). The dynamic51

activation of preferential flow domains within the vadose zone controls the short- and52

long term hydraulic response of the groundwater to precipitation signals (Nimmo & Perkins,53

2018) and hence affects the magnitude and temporal distribution of recharge. This is even54

more critical given the current predictions of climate-change-induced erratic and poten-55

tially extreme precipitation patterns (Black, 2009) that require precise estimation and56

management of limited recharge volumes, even more so in systems with thick vadose zones57

(Dvory et al., 2016; El-Hakim & Bakalowicz, 2007).58

Despite the importance of the vadose zone for infiltration processes, both with re-59

spect to volumetric extent and share of the total aquifer volume, modeling approaches60

often do not (and can not due to missing information) consider the complexity of fractured-61

porous media to model the delay in arrival times and hence dispersion of an input sig-62

nal. The complexity arises from geological heterogeneities that provide continuous path-63

ways on various scales for rapid percolation and transport within fractures. In karst sys-64

tems, precipitation is commonly partitioned into diffuse and preferential components,65

where the latter is commonly linked to direct infiltration in the surrounding area of sur-66

face depressions, dry valleys and dolines (Kordilla et al., 2012; Williams, 2008; Sauter,67

1992; Gunn, 1981). Fault zones may cut across several geological units and provide catch-68

ment scale preferential flow paths in the form of strongly connected clusters of fractures69

(Bodvarsson et al., 1997; Flint et al., 2001; H. H. Liu et al., 2004). Tectonically induced70

stress fields and stress field changes generally promote the formation of local disconti-71

nuities, such as fractures, joints and fault zones in consolidated porous rocks (Ford &72

Williams, 2013; Neslon, 2001). What sets such features apart from typical pore space73

geometries is their strong anisotropic character, i.e., their length or spatial extent is or-74

ders of magnitude larger than their aperture. When fractures are connected, they can75

form percolating clusters (Berkowitz & Scher, 1995; Adler et al., 2013) that can reach76

length scales far beyond the thickness of individual geological layers/units and poten-77

tially extend across the entire vadose zone. Similar features can be observed in soil sys-78

tems, a type of material the heterogeneity is commonly associated with macropores (worm-79

holes), which can also form percolating clusters (Jarvis, 1998; Hussain et al., 2019; Nimmo,80

2010).81
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Assessing recharge dynamics in fractured-porous systems on the field scale is dif-82

ficult (Scanlon & Cook, 2002). Phreatic zone techniques assess recharge at the water ta-83

ble or at springs (e.g., tracers, water table fluctuations, Cook & Solomon, 1997; Nimmo84

& Perkins, 2018), hence, the estimates can potentially reflect catchment scale dynam-85

ics or at least sub-catchment recharge processes within the hydraulic influence area of86

the measurement point. In contrast, vadose zone techniques rely on measurements above87

the groundwater table, (e.g., lysimeters, Darcy’s law, tracers, Heppner et al., 2007; Ross-88

man et al., 2014; Chambers et al., 2019). They allow a rather localized quantification89

of recharge or water content and only integrate a limited volume above the point of mea-90

surement as infiltration commonly occurs nearly vertical. As most of these methods rely91

on rather simple assumptions about the internal systems geometry and percolation pro-92

cesses, the predictive power and temporal resolution is often limited (Scanlon & Cook,93

2002).94

In order to shed light on the complex infiltration processes, laboratory scale exper-95

iments have been a promising addition to the former investigation methods as they al-96

low to isolate important processes under well controlled conditions that are often impos-97

sible to observe in-situ. Small-scale laboratory experiments for gravity-driven partially-98

saturated flow often exhibit erratic or chaotic flow dynamics (Su et al., 2001; Dragila &99

Weisbrod, 2004; Nicholl & Glass, 2005; T. Wood & Huang, 2015). In general, flow modes100

on the wall of wide fractures evolve with increasing flow rates from thin adsorbed films101

to droplets and rivulets to wavy surface films (Jones et al., 2017; Dippenaar & Van Rooy,102

2016; Dragila & Wheatcraft, 2001; Ghezzehei, 2004). Different flow modes may also co-103

exist. Consequently, experimental results are difficult to cast into meaningful frameworks.104

This especially concerns the complex flow dynamics at fracture intersections, which act105

as critical relay points controlling: (1) the overall connectivity of fracture networks (Adler106

et al., 2013); (2) the flow partitioning dynamics between connected fracture elements (Xue107

et al., 2020; Yang et al., 2019; Dragila & Weisbrod, 2004); and, ultimately, (3) the dis-108

tribution of flow modes on fracture surfaces (Dippenaar & Van Rooy, 2016; Jones et al.,109

2017; Shigorina et al., 2019), which, in turn, can affect the interaction between porous110

matrix and fracture (Tokunaga & Wan, 1997; Tokunaga, 2009). Here, the term “parti-111

tioning” refers to the process of fluid redistribution at a fracture intersection, which de-112

pends on the relation between capillary, inertial, and viscous forces (Nicholl & Glass, 2005)113
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and complexities such as velocity-dependent contact angles (Xue et al., 2020; Yang et114

al., 2019).115

In terms of fracture aperture, numerical and laboratory studies of unsaturated flow116

in fractures have covered various length scales, from sub-millimeter scales (Glass et al.,117

2003; Ji et al., 2004, 2006; Nicholl & Glass, 2005), over ranges close to the capillary-inertial118

transition around 0.7mm (T. R. Wood et al., 2002, 2005), to apertures well within the119

inertial-dominated regime (Tokunaga & Wan, 1997, 2001; Dragila & Weisbrod, 2004; Tar-120

takovsky & Meakin, 2005a, 2005b; Huang et al., 2005; M. Liu et al., 2007). Studies of121

free surface flow on a fracture plane without an intersection have been conducted by Shigorina122

et al. (2019); Kordilla et al. (2013); Hayden et al. (2012); Ghezzehei (2004).123

Depending on the experimental setup, studies have focused either on the partition-124

ing process at fracture intersections (Dragila & Weisbrod, 2004) or the (long-term) bulk125

system response (Ebel & Nimmo, 2013; Nimmo, 2010), which both form an integral part126

of understanding preferential flow dynamics through fractured systems. For the former127

case, a single fracture intersection of a horizontal and a vertical fracture is often “con-128

structed”, for example, by breaking glass plates, which results in a quasi-two-dimensional129

setup (Ji et al., 2006). Modifications to this setup include experiments with a slight off-130

set at the fracture intersection or T-shaped intersections at various degrees of rotation131

(T. R. Wood et al., 2005; Xue et al., 2020; Yang et al., 2019). Intersections resembling132

an inverted Y-structure have been studied for example by Dragila and Weisbrod (2004),133

M. Liu et al. (2007) and Tartakovsky and Meakin (2005a). The combination of several,134

commonly cross-shaped, fracture intersections allows to study flow convergence, i.e., the135

deviation from classical volume-effective diffusive flow dynamics, typical for non-fracture136

porous media. Studies of this kind have been conducted by T. R. Wood et al. (2002, 2005);137

T. Wood and Huang (2015); Glass et al. (2003); LaViolette et al. (2003), often reach-138

ing timescales of several minutes or days. In the study by Glass et al. (2003), fractures139

are embedded into an impermeable matrix, while the other authors constructed their frac-140

ture networks from geological materials. Incorporation of the porous matrix can be con-141

sidered another important classification parameter of fracture-scale studies. For large-142

aperture fractures, i.e., inertial-dominated flow systems that limit the contact time be-143

tween fracture flow and matrix flow and/or a low-permeable matrix, the effect of ma-144

trix storage may be neglected. This can be observed in fractured karst systems, where145

fractures are often enlarged by dissolution (Dijk et al., 2002; Benson, 2001) or fractured146
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crystalline rocks with extremely low matrix porosity and a severely limited advective po-147

tential.148

Despite these research efforts the gap between small-scale process understanding149

and larger-scale application is still limited. In our recent work (Noffz et al., 2018), we150

demonstrated how to model breakthrough behavior in terms of discharge at the bottom151

of arbitrary long stacks of sugar-cube fracture arrays (Barenblatt et al., 1960) via lin-152

ear response theory and convolution of input signals, whereas the transfer function has153

been obtained empirically for a given setup of a wide aperture vertical surface intersected154

by a horizontal one. However, it is desirable to obtain the form of the transfer function155

a priori using information about the internal geometry as well as fluid properties and fluid-156

solid interaction characteristics. Therefore, in this work, we provide an analytical solu-157

tion for the transfer function and validate it using numerical simulations. The analyt-158

ical solution describes the horizontal fracture infiltration until critical pressure thresh-159

olds trigger the breakthrough and dynamics are governed by Washburn-type flows and160

is conceptually based on the numerical studies and former laboratory studies (Noffz et161

al., 2018). Vertical flows are approximated by a film flow model. Finally, we employ lin-162

ear response theory to model flow through arbitrary numbers of fracture intersections163

with explicit geometry and derive non-dimensional dispersion and velocity parameters164

(D̃,ṽ) that depend on the dimensionless horizontal and vertical fracture time scales (τm,τ0).165

Flows are shown to converge to a near-constant dispersion coefficient with increasing τm,166

while non-dimensional velocities scale as ṽ ∼ τ−1/2
m within feasible critical Reynolds num-167

ber ranges.168

2 SPH model for simulating flow in fracture networks169

We use a two-dimensional SPH model to analyze complex flow partitioning at frac-170

ture intersections. SPH is a Lagrangian meshless method able to simulate complex flows171

with highly dynamic interfaces and is especially suited for the simulation of free-surface172

(pseudo-multiphase) liquid flows with continuous gas phase, effects of surface tension,173

and static/dynamic contact angles. We use a two-dimensional version of the massively174

parallel three-dimensional code of (Kordilla et al., 2017) that has been extended with175

an alternative formulation of the no-slip boundary condition. A detailed description of176

the SPH free flow model and its implementation in a parallel code, the reader is referred177

–6–
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to Kordilla et al. (2017) and references therein. The SPH equations are summarized in178

Appendix A.179

Here, we validate the SPH code for two classical static and dynamic flow cases that180

are related to the processes encountered in our application of flow in fractures, Poiseuille181

flow in a parallel plate system and capillary rise in a vertical tube.182

2.1 Poiseuille Flow183

In this section we demonstrate that for sufficiently large values of the friction co-

efficient β in the SPH momentum conservation equations (A3) and (A6), the SPH method

recovers the solution of the NS equations subject to no-slip boundary condition at the

fluid-solid boundary. Specifically, we use the SPH code with β ranging from 1× 10−1

to 1× 102 kg m2s−1 to simulate a two-dimensional Poiseuille flow problem and validate

the SPH solutions for velocity against the analytical solution for the no-slip boundary

condition (Sigalotti et al., 2003)

vx(y, t) =
g

2ν
(y2 − d2) +

∞∑
0

16(−1)nd2g

νπ3(2n+ 1)3
cos

[
(2n+ 1)πy

2d

]
exp

[
− (2n+ 1)2π2νt

4d2

]
, (1)

where the center is located at y = 0, d = L/2 such that the solid boundaries are lo-184

cated at y = ±d.185

Flow is simulated using the following parameter set: The inter-particle spacing is186

∆x = 2× 10−5 m, L = 200∆x = 5× 10−5 m, ρ = 1000 kg m−3, µ = 1.25× 10−3 kg m−1 s−1
187

and a body force of g = 1.25× 10−5 m s−2 is applied parallel to the x-direction. Five188

layers of boundary particles are placed at y = 0 and y = L to ensure kernel consis-189

tency. For the given parameter set this yields a Reynolds number of Re =
v∞x Lρ
µ = 1.0,190

where v∞x is the maximum steady-state velocity.191

Results indicate that the SPH solution converges to the exact no-slip solution for192

β > 10 (which corresponds to the artificial slip length λ < L/100 ) with an error on193

the order of 1.5% or lower. This holds for all time steps during the initial acceleration194

of the fluid within the capillary.195
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Figure 1. Comparison of the SPH model with the time-dependent solution for Poiseuille flow

in a parallel plate system. The right figure shows the absolute percentage error which is below

≈1.5% for sufficiently large β (> 10), i.e., proper no-slip conditions.

2.2 Capillary Rise in a Tube196

Here we simulate capillary rise in tubes of varying radius and compare the equi-197

librium fluid column height to the classical theory of Jurin (1718) and extended theo-198

ries of Legait and de Gennes (1984) and Barozzi and Angeli (2014).199

The classical theory of capillary rise is based on the parallel plate concept:

dh

dt
=

∆P

h(t)

(2r)2

12µ
(2)

Here r is the radius of the fracture, and h the height of the triple contact line from the200

water surface. The total pressure in a two-dimensional systems consists of the capillary201

pressure and the pressure due to the weight of the water column202

P 2D
c =

σcos(θ0)

r
Ph = ∆Pgh(t) (3)

Plugging the total pressure ∆P = ∆P 2D
c − Ph into Eq. 2 and for dh/dt = 0 the max-

imum rise becomes:

∆h =
σcos(θ0)

rρg
(4)
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As the curvature of the meniscus slightly depends on h a common extension of Eq. 4 is

given by (Legait & de Gennes, 1984) as:

∆h =
1− κ2r20.175

κ2r
κ =

(
ρg

σcos(θ0)

)1/2

(5)

Barozzi and Angeli (2014) extend the solution by adding a correction term that accounts

for the additional fluid volume over the apex of the meniscus

∆h =
σcos(θ0)

rρg
− r

3cos(θ)
(6)

The SPH simulations are run with an inter-particle spacing of ∆x = 5× 10−5 m,203

a density of ρ = 1000 kg m−3 and a body force of g = 9.81 m s−2 applied in normal204

direction to the bottom boundary. The viscosity is µ = 0.001 kg m−1s−1 and the no-205

slip condition is enforced with β = 25. The speed of sound is set to c0 = 3 m s−1. In-206

teraction forces are set to ssf = 0.015 and sff = 0.02, which yields a surface tension207

of σ = 0.0742 kg s−2 and a static contact angle of θ0 = 69◦. The domain has a width208

of Lx = 800∆x = 4.0 cm. The height of the capillary is Ly = 340∆x = 1.7 cm and is209

placed ∆Ly = 60∆x = 3 mm above the bottom boundary. Mirror boundaries are ap-210

plied in x-direction. All solid boundaries are five particles thick to ensure kernel consis-211

tency. Simulation are initiated with a flat fluid surface covering the domain with an ini-212

tial height of 145∆x = 7.25 mm. The aperture of the capillary is varied in a range of213

1.5 mm to 3.5 mm.214

Simulations are run until an equilibrium is established and the maximum height215

is reached within the capillary. In order to measure ∆h we determine the minimum height216

hmin of the fluid as the average of the water height 20∆x away from the left and right217

mirror boundary (see Fig. 2). The maximum height hmax of the fluid column is measured218

at the outer part of the capillary meniscus and hence we obtain ∆h = hmax − hmin.219

The contact angles at equilibrium are obtained from a circle fit using the Pratt method220

(Pratt, 1987)(Fig. 3, left).221

Results of the SPH simulations and theoretical results are shown in Fig. 3. Numer-222

ical results are in good agreement with the theoretical predictions and lie in between the223

predictions of Jurin (1718), Legait and de Gennes (1984) and Barozzi and Angeli (2014).224
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Figure 2. 2D simulations of capillary rise shown at steady-state conditions. The insets show

the upper fluid front. The height of the capillary is Lc = 1.7 cm, the width of the domain is

Lw = 4.0 cm with periodic boundary conditions in the x-direction.
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Figure 3. (Left) Fluid-air interfaces for all capillary sizes and the respective circle fit using

the Pratt method. (Right) Theoretical predictions of the capillary rise hc are plotted using the

average contact angle of all simulations.
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3 Results and Discussion225

In the following subsections we (1) conceptualize the flow partitioning at a T-type226

fracture intersection, (2) derive an analytical transfer function for the partitioning in-227

cluding fluid movement on the vertical surfaces, (3) provide an upscaling solution via con-228

volution and linear response theory, and finally (4) derive expression for arrival times229

and bulk dispersion that are then (5) analyzed in non-dimensional form to provide a com-230

prehensive picture of the larger scale infiltration dynamics and its relation to the inter-231

nal geometry.232

3.1 Rivulet flow partitioning at a fracture intersection233

In this section we derive a solution for the partitioning dynamics of rivulet flow down234

a vertical plane intersected by a horizontal smooth fracture (see Fig. 4) and compare it235

to our SPH model results. We consider the threshold at which critical capillary pressures236

within the horizontal fracture are high enough to route flow further down onto the ver-237

tical surface. At this point flow in the horizontal fracture transitions from a linear plug-238

flow type into a Washburn-type flow regime.239

The flow rate Qh(t) (m2s−1) in the horizontal fracture is approximately given by

the Darcy law:

Qh(t) =
k(Pin(t)− Pf )

µl(t)
, (7)

where t is time from the moment water entered the horizontal fracture, k = a2/12 (m2),240

a is the aperture (m), µ is the viscosity, Pf and Pin(t) are the pressures at the invad-241

ing front (point 1 in Fig. 4(1)) and the horizontal fracture entrance (point 2 in Fig. 4(1)),242

respectively, and l(t) is the distance from the front to the fracture entrance.243

From the Young-Laplace law, the pressure at the invading front is

Pf = Pair −
σ

R
= Pair − σ

2 cos(θ)

a
, (8)

where σ is the surface water-air surface tension, Pair is the air pressure, and R = a
2 cos θ244

is the front curvature, and θ is the contact angle.245

Initially, all flow in the vertical fracture is diverted to (imbibed into) the horizon-

tal fracture, i.e., Qh(t) = Q0, as shown in Fig. 4(1). Later, flow partitions, i.e., flow is

both penetrating the horizontal fracture and flowing down the wall of the vertical frac-

ture segment, as depicted in Fig. 4(2). When flow is partitioned, Pin(t) = Pair (point

–11–



manuscript submitted to Water Resources Research

log(l)

log(t)

l
c

t
c

l
max

t
max

l ~ t -0.5l ~ t l = l
max

1 2

l
c
(t

c
)

θ
0

1

a=2r 1
2

P
in

 = P
air

l
c
(t

c
)l

max
(t

max
)

2

3

Figure 4. Conceptual model for the partitioning process at a fracture intersection. Flows on

the vertical surfaces are bounded by one fracture wall only assuming wide aperture conditions.

Breakthrough occurs at time tc after which the horizontal imbibition scales as l ∼ t0.5.

3 in Fig. 4(2)). In the following analysis, we assume that partitioning occurs instanta-

neously at time t = tc. Then, Eq. 7 can be rewritten as

Qh(t) =

 Q0, t ≤ tc,
2kσ cos(θ)
aµl(t) , t > tc.

(9)

The front position in the horizontal fracture at the time of partitioning, is obtained by

setting

Q0 =
2kσ cos(θ)

aµlc
. (10)

Thus, we obtain

lc =
2kσcos(θ)

aµQ0
. (11)

The velocity of the displacing fluid for t < tc is equal to Q0/a. At times tc, the pen-

etration depth is given by Q0tc/a = lc and thus we obtain for tc

tc =
lca

Q0
=

2kσcos(θ)

µQ2
0

. (12)
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manuscript submitted to Water Resources Research

The penetration depth l(t) ∼ t increases linearly with time for t < tc and according

to l(t) ∼
√
t for t > tc, see Appendix B. Thus, we approximate the penetration depth

by matching the linear and square root behaviors at tc as follows,

l(t) =


Q0t
a , t ≤ tc,

lc
√
t/tc, t > tc.

(13)

Figure 5 shows lc and tc, computed from Eq. 11 and Eq. 12 and direct SPH sim-246

ulations, as a function of the flow rate Qin for three horizontal apertures (2.5, 3, and 3.5247

mm). SPH simulations for the fracture aperture 2.5 mm and three different flow rates248

and shown in Fig. 6. In SPH simulations, we use an inter-particle spacing of ∆x = 5× 10−5 m,249

a density of ρ = 1000 kg m−3, and a body force of g = 9.81 m s−2 applied normal to250

the horizontal fracture plane. The surface tension is σ = 0.0742 kg s−2 with the inter-251

action parameters sff = 0.015 and ssf = 0.0125 and speed of sound c0 = 3 m s−1.252

The viscosity is slightly increased to µ = 0.005 kg m−1s−1 to limit the required length253

of the horizontal fracture (and hence computation time), which was set to L = 0.25 m.254

The no-slip boundary condition is enforced with β = 25 (see Fig. 1). For the flow rates255

between Q0 = 3× 10−5 m2 s−1 and 8× 10−5 m2 s−1 and fracture apertures between a =256

2.5 mm and 3.5 mm, the critical penetration length can be observed within the chosen257

fracture length. In order to avoid erratic partitioning behavior at the fracture intersec-258

tions (i.e., bypassing droplets) we initiate the simulations with a rivulet on the upper259

vertical surface which is already in contact with the horizontal fracture aperture at the260

start of the simulation. While under certain conditions this may prevent other partition-261

ing patterns (e.g. droplets, snapping rivulets) at the intersection, Noffz et al. (2018) demon-262

strated with laboratory experiments that this behavior is to be expected at consecutive263

fracture intersections. Independent of the initial flow mode (rivulets, droplet), they found264

that after the first fracture intersection the flow on vertical walls was dominated by rivulets.265

Figure 5 demonstrates that our SPH simulations are in good agreement with the ana-266

lytical predictions of Eq. 11 and Eq. 12 for small fracture apertures (2.5 and 3 mm) and267

larger Q0 but slightly deviate for larger apertures (3.5 mm) and smaller Q0, resulting268

in the maximum error of ∼ 12%. We partially attribute this to the fact that contact an-269

gles θ changes during the water penetration into the horizontal fracture (e.g., (Popescu270

et al., 2008)). In our analytical model, we disregard dynamic variations in the contact271

angle and compute θ as an average of the contact angles right after the onset of fracture272
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Figure 5. Critical transition times tc and critical length lc of the SPH model and the respec-

tive analytical solutions (black lines, Eq. 11 and 12). Contact angles are taken as averages of the

angle at initial fracture penetration and the angle at tc.

penetration and close to tc. Yet, Fig. 5 demonstrates that our analytical solutions pro-273

vide an overall good approximation of the partitioning dynamics.274

3.2 Analytical solution for the transfer function275

We now derive analytical solutions for the l(t), the front position (or the depth of276

penetration) in the horizontal fracture and Q(t), the outflow rate below the horizontal277

fracture junction where fluid is discharged.278

Given that the inflow consists of (1) a linear penetration phase and (2) a Washburn-

type penetration period, we obtain an analytical solution as follows

dl

dt
= vf (t) =

Q0

a

 1, t ≤ tc,
1
2

(
t
tc

)−1/2

, tc < t < tmax.
(14)

vf (t) is the Washburn-type flow velocity after the critical time tc and tmax the time at279

which the horizontal fracture is fully saturated and all fluid is channeled further down280

into the vertical fracture segment.281

Figure 7 shows l(t) and dl(t)/dt obtained from Eq. 14 and the SPH simulations shown282

in Fig. 6 for an aperture a = 2.5 mm and an inflow rate of Q = 5× 10−5 m2 s−1. The283

early time behavior is characterized by a plug-flow regime and hence l(t) ∼ t, whereas284

after the critical time tc = 5.54 s the inflow scales as l(t) ∼
√
t (grey lines show both285

scaling regimes). The analytical solution for the penetration velocity dl/dt can describe286
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both regimes (before and after the critical time tc) and is in very good agreement with287

the numerical result. A slight deviation can be observed right after the onset of the Wash-288

burn behavior at time tc, where the channeling into the lower vertical fracture is initi-289

ated. Here, a very brief build up of fluid at the fracture intersection occurs until a crit-290

ical contact angle is reached and fluid flow downwards. Figure 6 shows three partition-291

ing types, which ultimately depend on the critical time tc. For smaller tc, the breakthrough292

process is a rather fast process (”full partitioning”), while for larger tc, the build up of293

fluid on the vertical surface (see Fig. 6, left row, middle) slightly disperses the breakthrough,294

yet a clear sequential progression of plug flow followed by Washburn flow in the horizon-295

tal fracture can be observed. The process of fluid build up is not explicitly considered296

in our solution and is likely to induce the small temporary drop of the inflow velocity297

right after tc. However, at later times the velocity correctly converges towards the l(t) ∼298

t0.5 scaling. The cutoff at tmax is not shown here as the simulations are stopped when299

flow reaches the end of the horizontal fracture such that dl/dt = 0. It should be noted300

that for very small tc or large Q0, flow may not exhibit the clear dynamics of sequen-301

tial partitioning and a breakthrough can occur right away even before the theoretical time302

tc due to effects of inertia, which we do not consider. Yet, for the covered range of flow303

rates our model is in very good agreement with the theoretical solution.304

In order to model the response of the system to a constant input signal Q0 we ob-

tain the outflow rate Q leaving the system:

Q = Q0 − vf (t)a . (15)

Thus, the dimensionless flow rate is

F (t) =
Q(t)

Q0
= H(t− tc)−

1

2

(
t

tc

)−1/2

I(tc < t < tmax). (16)

Next, we define the normalized transfer function as

ϕ(t) =
dF (t)

dt
. (17)

The transfer function for a plug flow type regime followed by a Washburn type behav-

ior has the form

ϕpw(t) =
dF

dt
= δ(t− tc) +

1

2

(
t

tc

)−1/2

[δ(t− tmax)− δ(t− tc)]

+
1

4tc

(
t

tc

)−3/2

, I(tc < t < tmax) (18)
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Sequential partitioning
(Q = 7e-5 m2/s)

Delayed partitioning
(Q = 1e-4 m2/s)

Full partitioning
(Q = 3e-4 m2/s)

t = 2.16 s

t = 6.08 s

t = 7.85 s

t = 1.88 s

t = 2.39 s

t = 7.85 s

t = 0.70 s

t = 0.98 s

t = 1.57 s

Figure 6. Partitioning regimes at the horizontal fracture intersection (shown for an aperture

of a = 2.5 mm) for three different flow rates (increasing from left to right) and at three time

steps. Three regimes can be distinguished: (1) Sequential partitioning, (2) delayed partitioning

and (3) full partitioning. A detailed description of the regimes can be found in the text. The in-

sets show the detailed view of the fluid-air interface at the invading fluid front and at the fracture

intersection.
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Figure 7. SPH simulations (a = 2.5 mm, Q0 = 5 × 10−5 m2 s−1) correctly recover the linear

(plug-flow) and Washburn behavior. The inflow velocity dl/dt and the analytical solution (Eq. 14)

are in very good agreement. Note that the fluid front did not fully penetrate the horizontal

fracture in the simulations, hence the cutoff at tmax (l = const., dl/dt = 0) is not visible here.

where δ is the Dirac delta function. In order to numerically integrate the transfer func-

tion we replace the Dirac delta function in Eq. 18 by

δ ≈ δn(t) =


1

∆t , −
∆t
2 < t < ∆t

2

0, otherwise

(19)

where ∆t = 0.1. Figure 8 shows the normalized outflow rate Q/Q0 (exact and approx-305

imate solution) and its derivative, the normalized transfer function ϕ = Q−1
0 dQ/dt. The306

outflow Q/Q0 is zero at first (all fluid is filling the horizontal fracture) until the criti-307

cal time tc, where partitioning sets in and inflow is characterized by a Washburn behav-308

ior. Finally, when the horizontal fracture is fully saturated at tmax, the outflow Q/Q0309

reaches its maximum value, i.e., Q = Q0 and Q/Q0 = 1.310

3.3 Extension of the transfer function311

In the previous section, we focused on the process of horizontal fracture inflow and312

partitioning, however, we did not consider the effect of additional vertical surfaces above313

or below the fracture intersection, which affect the system response and hence the trans-314

fer function. In the following, we extend the transfer function based on classical Nus-315

selt film flow approximations (Nusselt, 1916), which assume a constant film thickness.316
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Figure 8. Normalized outflow rate and transfer function ϕ(t) = Q−1
0 dQ/dt for a system with

a = 2.5 mm and Q0 = 5 × 10−5 m2/s. The approximate solution for the outflow rate employs an

replacement function for the Dirac function (Eq. 19).

The velocity profile of flow down an inclined plane in the x direction is governed

by

d2vx
dy2

= −ρgsin(α)

µ
, (20)

where y is the direction normal to the surface and α is the inclination angle from the hor-

izontal. The boundary conditions are established via a no-slip condition at y = 0, i.e.,

vx(0) = 0, and the normal viscous stress being zero at the free surface y = h,

dvx
dy

∣∣∣∣
y=h

= 0. (21)

The solution of this problem is

vx(y) =
ρgsin(α)

2µ
y(2h− y). (22)

The volumetric flux down the plane is then calculated as

Q =

∫ h

0

vxdy =
ρgsin(α)h3

3µ
(23)

and, hence, the maximum film height for a given Q is

h =

(
3µQ

ρgsin(α)

)1/3

. (24)

The depth-averaged velocity can be obtained as

v̄ =
Q

h
=

∫ h

0

vxdy . (25)
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The effect of the upper vertical surfaces is simply a delay in the first arrival, i.e., a pos-

itive shift in the transfer function by ∆tvup, given that Q = Q0. Using Eq. 25 we can

then simply compute ∆tvup as

∆tvup = Lvup
h

Q0
=
Lvup
v̄up

(26)

where Lvup is the total length of the upper vertical surface. On the lower vertical surface

a similar shift in the transfer function is induced, however, here the outflow rate is ini-

tially Qc = Q(tc). It should be noted that here tc is the critical time since the begin-

ning of the fracture penetration. For the sake of simplicity, we neglect the increase in

Q after the breakthrough at tc and assume that the flow velocity on the lower vertical

surface depends on the breakthrough flow rate Qc. The flow rate at the critical break-

through is obtained via Eqs. 14 and 15 as

Qc = Q0 − vca, (27)

where vc = limε→0 vf (t = tc + ε). We then obtain the time ∆tvlow as

∆tvlow = Lvlow
h

Qc
=
Lvlow
v̄low

(28)

and define the total shift induced by the upper and lower vertical surfaces as

∆T = ∆tvup + ∆tvlow . (29)

The cutoff at time tmax, when the horizontal fracture is fully saturated can be computed

by setting l(tmax) = lmax, which gives

tmax = tc(lmax/lc)
2 (30)

The flow rate at the cutoff time tmax can be evaluated using Eq. 14 with vmax(t = tmax−

limx→∞
1
x ) yielding the flow rate

Qmax = Q0 − vmaxa. (31)

We are now able to compute the full transfer function including the residence times on317

the upper and lower vertical surfaces as well as the cutoff at full fracture saturation. In318

the next chapter, we extend this analysis to model discharge through arbitrary large stacks319

of fracture intersections via linear response theory.320

3.4 Analytical percolation model for fracture cascades321

Following Noffz et al. (2018), we employ the transfer function in the context of lin-

ear response theory (Jury et al., 1986) to model the outflow rate Qn(t) at the bottom
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of the vertical surface intersected by n horizontal fractures. The considered geometry

and its properties with respect to the transformation of an input signal Q0 serves as a

proxy for consecutive routing through further fracture intersections of similar geometry.

The outflow rate can be found as a convolution of the input signal

Qn(t) = Q0

∫ t

0

dt1ϕpw(t− t1)

∫ t1

0

dt2ϕpw(t1 − t2)· · ·
∫ tn−1

0

dtnϕpw(tn), (32)

or

Qn(t) =

∫ t

0

ϕpw(t− t′)Qn−1(t′)dt′ (33)

Note that for n = 1, the outflow rate Q1 = Q is given by Eq. 15.322

Figure 9 shows an example for the computed outflow rates Qn(t) for a system of323

n = 1, 25 and 50 fractures employing Eq. 32 and the transfer function Eq. 18, i.e. tmax >324

tc, with the Dirac delta approximation Eq. 19. Here, the maximum horizontal fracture325

length is Lmax = 0.3 m, the aperture a = 2.5 mm, the static contact angle θ0 = 69.0◦,326

the density ρ = 1000 kg m−3, the surface tension σ = 0.0742 kg s−2, viscosity µ = 0.005 kg m−1s−1
327

and the inflow rate Q0 = 5× 10−5 m2 s−1. The upper and lower vertical surface have328

a length of Lvup = Lvlow = 0.2 m. Figure 10 shows the outflow rate for a system with329

Lmax = 0.05 m where flow is dominated by a plug flow behavior, i.e. tmax > tc. As330

expected, the mean breakthrough velocity is higher and the maximum outflow rate Q0331

is reached faster due to the stronger dispersive effect of deeper horizontal fractures.332

3.5 Arrival times and dispersion333

The distribution of residence times after n horizontal fractures is defined by

fn(t) =
1

Q0

dQn(t)

dt
=

∫ t

0

dt1ϕpw,p(t− t′)
∫ t1

0

dt2ϕpw,p(t1 − t2) . . .∫ tn−2

0

dtn−1ϕpw,p(tn−2 − tn−1)ϕpw,p(tn−1) (34)

and its Laplace transform is given by

f∗n(λ) = ϕ∗pm,p(λ)n. (35)

The first and second moments of the travel time are given by

mj = (−1)j
djf∗n(λ)

dλj

∣∣∣∣
λ=0

(36)
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Figure 9. Application of the transfer function Eq. 18 with Eq. 19 and the convolution Eq. 32

to a system of n = 1, 25 and 50 fractures and Lmax = 0.3 m where tmax > tc (further parameters,

see text). The solution takes into account the shift in time of ∆tvup and ∆tvlow
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Figure 10. Application of the transfer function Eq. 18 with Eq. 19 and the convolution Eq. 32

to a system of n =1, 25, 50 and 100 fractures and Lmax = 0.05 m where tmax < tc (further

parameters, see text). The solution takes into account the shift in time of ∆tvup and ∆tvlow.

–21–



manuscript submitted to Water Resources Research

for j = 1, 2, or

m1 = − nϕ∗(λ)n−1 dϕ
∗(λ)

dλ

∣∣∣∣
λ=0

(37)

m2 = nϕ∗(λ)n−1 d
2ϕ∗(λ)

dλ2

∣∣∣∣
λ=0

+ n(n− 1)ϕ∗(λ)n−2

[
dϕ∗(λ)

dλ

]2
∣∣∣∣∣
λ=0

. (38)

Thus, for the mean and the variance of residence time we obtain

m1 = − n
dϕ∗(λ)

dλ

∣∣∣∣
λ=0

σ2 = n
d2ϕ∗(λ)

dλ2

∣∣∣∣
λ=0

− n

[
dϕ∗(λ)

dλ

]2
∣∣∣∣∣
λ=0

. (39)

This means that the first moment and the variance are given by

m1 = nh1, σ2 = n(h2 − h2
1), (40)

where h1 and h2 are the first and second moments of the residence time for a single frac-

ture. They are given by (see Appendix C)

h1 = tc

(
tmax
tc

)3/2

(41)

h2 = t2c

[
1

3
+

(
tmax
tc

)3/2
]
. (42)

In order to determine the fluid arrival times after n fractures, we add a constant

time shift ∆T to the residence time in a single horizontal fracture. Thus, the quantities

h1 and h2 are modified as

h1T = h1 + ∆T (43)

h2T = h2 + 2h1∆T + ∆T 2. (44)

We non-dimensionalize time with respect to the critical time tc such that

h̃1 =
h1

tc
= τ1/2

m (45)

h̃2 =
h2

t2c
=

1

3
+

2

3
τ3/2
m , (46)

where τm = tmax/tc is found from Eq. 30 as

τm = (lmax/lc)
2. (47)

The arrival time moments are non-dimensionalized accordingly as

h̃1T = τ1/2
m + τ0 (48)

h̃2T =
1

3
+

2

3
τ3/2
m + 2τ1/2

m τ0 + τ2
0 . (49)
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where the dimensionless τ0 = ∆T/tc (Eq. 12 and 29) is given by

τ0 =
∆z

2

[3µQ0/ρg sin(α)]1/36µQ0

a3σ cos(θ)
(1 + 22/3). (50)

The equivalent flow velocity and dispersion coefficients are given in terms of the

mean m1 and variance σ2 of the arrival times at a plane at z = n∆z, where ∆z is the

spacing between horizontal fractures,

v =
n∆z

m1
(51)

D =
v3σ2

2n∆z
. (52)

We non-dimensionalize lengths by ∆z and obtain

ṽ =
1

h̃1T

=
1

τ
1/2
m + τ0

(53)

D̃ =
1

2h̃3
1T

(
h̃2T − h̃2

1T

)
=

1
3 + 2

3τ
3/2
m − τm

2
(
τ

1/2
m + τ0

)3 . (54)

In the following, we study the behavior of the non-dimensional dispersion coefficient D̃334

and the flow velocity ṽ as functions of the non-dimensional times τm and τ0.335

3.6 Dimensionless analysis of flow through a fracture network336

To investigate the effect of non-dimensional times τm and τ0 on the dimensionless

flow velocity ṽ and dispersion coefficient D̃ (Eq. 53 and Eq. 54), we conduct a multi-parameter

study. The minimum and maximum values of τm and τ0 are computed for all parame-

ter combinations of Q0, lmax, θ0, a, and ∆z. We vary Q0 in the range of 1× 10−6 to 1× 10−2 m2 s−1,

which yields a maximum film thickness on the vertical surfaces of 1.5 mm according to

Eq. 24. The horizontal fracture depth lmax ranges from 0.01 to 4 m with an aperture a

of 0.5 to 10 mm. The static contact angle θ0 is chosen to vary from 5◦ to 85◦, i.e., cor-

responds to a wetting regime. Finally, the vertical fracture spacing ∆z ranges from 0.1

to 25 m. For the given parameter ranges, τm can take values between 8.1× 10−6 and 1.4× 105,

and τm between 3.2× 10−15 and 6.46. While the above chosen parameters are within

feasible ranges, we further limit the relevant range of τm and τ0 by constraining the Reynolds

numbers within the horizontal fracture. Here we calculate the critical Reynolds numbers

as

Rec =
ρvca

µ
(55)
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where the characteristic velocity vc is computed from the critical length and time

vc =
lc
lt

(56)

We chose a maximum value of Rec = 150 to stay within the steady non-linear lami-337

nar flow regime as for example studied by Dybbs and Edwards (1984).338

Figures 11 and 12 show the non-dimensional dispersion D̃ and flow velocity ṽ plot-339

ted versus the dimensionless times τm and τ0 over the whole chosen parameter space.340

The color-coded circles represent the critical Reynolds number Rec for each parameter341

combination scaled from 0.1 to 150, where blue corresponds to lower values. Recall, that342

τm encodes the timescale related to the imbibition process in the horizontal fractures,343

and τ0 the timescale for flow on the vertical fracture. Figure 11 (left) shows the depen-344

dence of the non-dimensional dispersion coefficient D̃ on the horizontal fracture timescale345

τm for several values of the vertical fracture timescale τ0. In general, D̃ is increasing with346

higher values of τm and approaches a constant maximum of D̃ = 0.08 for τm > 105.347

Within the maximum ranges defined for the Reynolds number, only values of τ0 < 1348

are close to reaching this constant maximum, while for τ0 > 1, the dispersion is increas-349

ing for the considered range of τm. The smaller initial gradient of ∆D̃/∆τm (e.g., τ0 =350

7.5) is caused by the non-linear Washburn dynamics within the horizontal fracture. For351

smaller values of τm, the initial rapid (potentially plug-flow type when tmax < tc) in-352

filtration dominates the bulk flow, while for higher values of τm, the classical
√
t scal-353

ing comes into effect and causes stronger dispersion of the breakthrough signal. Further,354

this example demonstrates how the ratio of τm and τ0 affects the non-dimensional dis-355

persion coefficient. Increasing the ratio of τ0/τm strengthens the dominance of the ver-356

tical flow paths and hence decreases the overall dispersion, which in our model entirely357

stems from the horizontal fracture imbibition. However, it should be noted that this ef-358

fect is negligible for values of τ0 < 10−5 (Rec restricted) and already vanishes for τ0 <359

0.1. This is similar to the behavior displayed by the dimensional example (Figs. 9 and360

10), where the number of fractures and, hence, the magnitude of horizontal imbibition361

(inversely related to the fracture spacing ∆z) is positively correlated with the dispersion362

and for plug-flow-regime dynamics, no dispersion occurs (tmax > tc, equivalent to a very363

high ratio of τ0/τm or low values of τm).364

Figure 11 (right) demonstrates the dependence of the dimensionless flow velocity365

ṽ on the horizontal fracture timescale τm for a range of τ0 between 0 and 7.5. Two regimes366
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can be observed. For low values of τm, the velocity converges towards a constant value,367

while for higher τm the non-dimensional velocity scales as ṽ ∼ τ−1/2
m in accordance with368

Eq. 53. This transition occurs at the time τm that increases with τ0/τm due to the in-369

creased impact of vertical film flow dynamics and plug-flow type dynamics in the hor-370

izontal fracture. For τ0 ≤ 0.01 the velocity scales as ṽ ∼ τ
−1/2
m over nearly the whole371

range of feasible τm values, i.e., the average breakthrough velocities decline with increas-372

ing magnitude of the horizontal fracture imbibition (e.g., deeper or wider fractures, higher373

static contact angles). For even lower values of τ0 < 10−5 in the Rec-restricted range,374

a perfect ṽ ∼ τ
−1/2
m scaling governs the functional relation between non-dimensional375

velocity and horizontal fracture imbibition timescale, and no regime transition occurs.376

Next we discuss the dependence of D̃ and ṽ on the vertical fracture timescale τ0.377

Figure 12 (left) demonstrates the limited influence of the vertical fracture timescale τ0378

on the non-dimensional dispersion. Only for extreme end-members of the parameter range379

beyond τ0 ≈ 1, the effect of vertical fracture flow is strong enough to counteract the380

dispersive action of the horizontal fracture and introduces a reduction in dispersion. Yet,381

within critical Rec ranges D̃ is only a function of τm. For values of about τm > 103 it382

converges towards the constant value of D̃ ≈ 0.08.383

Similarly, the non-dimensional velocity is independent of the vertical fracture flow384

timescale τ0 within critical Rec ranges, and is only dependent on the flow dynamics within385

the horizontal fracture encoded by τm with a ṽ ∼ τ−1/2
m scaling behavior. It should be386

noted that this scaling holds for values of τm < 1 (see Fig. 11, right), however, here the387

non-dimensional dispersion is D̃ = 0 and flow is entirely governed by plug-flow in the388

horizontal fracture and film flow on the vertical surfaces.389

–25–



manuscript submitted to Water Resources Research

10
0

10
1

10
2

10
3

10
4

10
5

m
 (-)

0

0.02

0.04

0.06

0.08

0.1

0
 = 7.5

0
 = 1

0
 < 0.1

10
-5

10
0

10
5

m
 (-)

10
-2

10
-1

10
0

10
1

10
2

10
3

0
 = 7.5

0
 = 1

0
 = 0.1

0
 = 0.01

0
 < 0.01

Figure 11. Non-dimensional dispersion coefficient D̃ and flow velocity ṽ vs. the dimensionless

horizontal fracture timescale τm. Colored circles represent critical Reynolds numbers Rec scaled

from 0.1 (blue) to 150 (yellow). Note that τm ≥ 1 for the left plot as the the strict analytical

solution for the pure plug-flow regime (tmax < tc, tmax/tc < 1), does not cause any type of
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Figure 12. Non-dimensional dispersion coefficient D̃ and flow velocity ṽ vs. the dimensionless

vertical fracture timescale τ0. Colored circles represent critical Reynolds numbers Rec scaled from

0.1 (blue) to 150 (yellow).
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4 Conclusion and outlook390

In this work, we developed an analytical solution for partially saturated flow through391

an arbitrary large sugar-cube type fracture network consisting of wide aperture horizon-392

tal fractures intersected by a vertical fracture. Based on numerical observations using393

an SPH code and former laboratory studies, we treat the partitioning dynamics at the394

fracture intersection as a sequential process whereby the fluid is channeled from the up-395

per vertical surface into the horizontal fracture and finally onto the lower vertical frac-396

ture surface. Flow within the horizontal fracture is shown to follow plug-flow theory un-397

til critical pressure thresholds are exceeded. After the breakthrough, horizontal infiltra-398

tion is governed by a Washburn-type scaling until the maximum horizontal fracture depth399

is reached and the outflow at the bottom of the system equals the inflow rate at the top.400

In order to model flow through arbitrary large networks of the same internal structure,401

we capture this process with an analytical transfer function and carry out a convolution402

of the constant input signal following linear response theory. Given the complex param-403

eter space of fluid and geometric properties, we analyze the outflow dynamics in terms404

of non-dimensional values of τm and τ0, that encode the timescales of flow in the hor-405

izontal and vertical fractures, and relate them to the non-dimensional dispersion coef-406

ficient D̃ and velocity ṽ. It is shown that within the feasible Reynolds number range, the407

dimensionless dispersion coefficient converges to the values of D̃ ≈ 0.8 with increasing408

τm and is nearly independent of τ0, i.e., the flow in the vertical fracture does not have409

impact on the dispersion coefficient. Furthermore, the bulk flow velocities are charac-410

terized by a ṽ ∼ τ
−1/2
m scaling that holds for all relevant values of τm and is indepen-411

dent of τ0 within critical Rec ranges.412

Our work demonstrates the importance of horizontal fractures as drivers for the413

(lateral) dispersive action within a mainly vertically-oriented flow field. This conclusion414

clearly deviates from the classical piston-flow dynamics that is often assumed in the field(continuum)-415

scale flow models in fractured-porous systems (Lange et al., 2010; Arbel et al., 2010).416

Furthermore, our work sheds light on the relation between integral signals at outlet bound-417

aries (e.g., water table fluctuations within boreholes) and the internal system geometry418

that transforms input signals (precipitation, recharge) and mainly contributes to its dis-419

persion and bulk velocity within the vadose zone.420
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In our analysis, we simplify the infiltration process in terms of the fracture-network421

geometry as well as the partitioning process and flow mode occurrence. Our study as-422

sumes film flow on all vertical surfaces. This assumption is often made in studies related423

to preferential flow in soil systems and the respective macropore structure (Nimmo &424

Perkins, 2018; Nimmo, 2010, 2012; Germann et al., 2007; Bogner & Germann, 2019). How-425

ever, other flow modes such as flow rate-dependent droplets (slugs) and rivulets are likely426

to occur on fracture surfaces (Jones et al., 2017; Dippenaar & Van Rooy, 2016; Ghezze-427

hei & Or, 2005; Dragila & Weisbrod, 2003, 2004) and are known to affect partitioning428

at intersections (Xue et al., 2020; Kordilla et al., 2017; T. R. Wood et al., 2005). While429

droplets are more likely to bypass intersections due to their extended height (as com-430

pared to films) and hence gravitational impact (Kordilla et al., 2017), we have also demon-431

strated that consecutive routing of droplet flows through arrays of horizontal fractures432

will nearly always facilitate the formation of film (rivulet) flows on the vertical wide aper-433

ture surfaces after the first partitioning (Noffz et al., 2018). Subsequently, flow is mostly434

channeled into horizontal fractures without bypass, supporting the assumption of sequen-435

tial flow dynamics made in this study.436

As our study is limited to a two-dimensional fracture network, the observed depen-437

dence of the non-dimensional dispersion D̃ and velocity ṽ on the vertical and horizon-438

tal fracture flow timescales must be interpreted with care. For stable infiltration fronts,439

the infiltration dynamics of three-dimensional systems can be accurately recovered with440

two-dimensional models (e.g., Kordilla et al., 2017) using homogenization over the third441

dimension. However, flow on vertical fracture surfaces tends to develop instabilities even442

when these surfaces are perfectly smooth (Shigorina et al., 2019). Such front instabil-443

ities can contribute to fracture-specific channeling and additional dispersion. Front in-444

stabilities can develop in horizontal fractures as well, even though here the formation of445

instabilities is not caused by gravitational pull but is mainly a result of viscous forces446

and velocity variations due to changes in fracture aperture (roughness) and variations447

of the capillary radius (Nicholl & Glass, 2005).448

In contrast to other studies, we focus on the case of vertical fractures with wide449

apertures. Here, the term “wide” should be interpreted with respect to the probability450

of fluid wetting opposing sites of the vertical fracture. For contact angles in the range451

of 25◦ to 75◦ droplet heights (neglecting the dynamic flattening due to movement) would452

be on the order of 0.75 mm to 2.4 mm, hence, setting a lower limit where one-sided flow453
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would persist. Studies focusing on “narrow” vertical fractures often observe a slightly454

wider range of partitioning patterns that stem from the erratic uptake and emittance455

of potentially chaotic droplet patterns from T-type (Yang et al., 2019; Xue et al., 2020)456

and X-type intersections, (e.g., T. R. Wood et al., 2005; T. Wood & Huang, 2015; Glass457

et al., 2003). While the majority of fractures under common geological conditions will458

belong to the “narrow” category, wide aperture fractures are more likely to be found in459

the vadose zone where overburden pressure is limited and especially in karstic environ-460

ments where fractures can be affected by dissolution (Dahan et al., 2000, 1999). As most461

studies are still focusing on individual intersections dynamics a unified theory for a broad462

range of apertures and partitioning dynamics is still to be developed.463

Upscaling of individual processes, such as the intersection uptake and partition-464

ing dynamics, remains one of the most challenging aspects in the current state of infil-465

tration dynamics in fractured-porous media. In this work, we demonstrated how to bridge466

the gap between small-scale process and larger-scale bulk application by a simple con-467

volution and the analytical derivation of (non-dimensional) dispersion and velocity pa-468

rameters. In its current form, the model assumes that convolution occurs over an arbi-469

trary number of equally structured intersections. In principle, this could be extended to470

sequences of intersections with dynamic properties by introducing parameter distribu-471

tions that reflect changes in the transfer function ϕpw and hence outflow Qn(t) over the472

range of encountered fractures n (Eq. 32). However, while this would enhance the ap-473

plicability to natural geological systems, analytical forms of D̃ and ṽ would be more dif-474

ficult to derive. Inclusion of more complex partitioning of different flow mode dynam-475

ics, (e.g., droplets Xue et al., 2020; Yang et al., 2019) would be an interesting, yet highly476

challenging extension as the uptake and release of such flows at intersections introduces477

a highly erratic and chaotic component.478

As our models assumes impermeable fracture walls, we can not model effects of porous479

matrix storage. This is justified for low-permeable porous systems, e.g. granites, or im-480

permeable limestone surfaces and/or sufficiently small time scales. When considering the481

porous matrix, both the vertical fracture walls as well as the horizontal walls will retard482

the movement within the fracture, (e.g., Buscheck et al., 1991) and could be introduced483

via suitable storage (sink) terms into the transfer function.484
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In order to derive consistent and process-based infiltration functions for fractured-485

porous media, it is crucial to unify the various observed patterns for partitioning dynam-486

ics across the scientific community. This will require further studies on laboratory and487

field scales to elucidate the shortcomings of each approach and obtain a suitable array488

of methods adjusted for the respective study setting and data availability. Given the strong489

impacts of climate-change-induced transformation of precipitation patterns (Black, 2009),490

water resources management, specifically in arid and semi-arid regions, requires enhanced491

models for recharge prediction that take into account the rapid preferential flow com-492

ponent that may substantially contribute to groundwater replenishment under high evap-493

otranspiration and short but extreme rainfall conditions (Pachauri et al., 2014).494

5 Data availability statement495

All experimental data can be downloaded from https://data.goettingen-research496

-online.de/dataset.xhtml?persistentId=doi:10.25625/77DVJA497

Acknowledgments498

A. Tartakovsky was supported by the U.S. Department of Energy (DOE) Office of Sci-499

ence, Office of Advanced Scientific Computing Research as part of the New Dimension500

Reduction Methods and Scalable Algorithms for Nonlinear Phenomena project.501

Appendix A Smoothed Particle Hydrodynamics Model502

We employ the SPH method to model free surface flow of water described by the

Navier-Stokes (NS) equations, including the momentum and conservation equations

dv

dt
= −∇P

ρ
+
µ

ρ
∇2v + g ∇ · v = 0, (A1)

respectively, subject to the Young boundary condition at the fluid-air-solid interface, the503

Young-Laplace boundary condition at the water-air interface and the no-slip boundary504

condition at the fluid-solid interface (Kordilla et al., 2017; Tartakovsky & Panchenko,505

2016; Tartakovsky & Meakin, 2005a). Here, v is the velocity, P the pressure, ρ the den-506

sity, µ the viscosity and g the gravitational acceleration.507

To simplify the solution of the incompressible NS equations (A1), we employ the508

weakly compressible formulation where the continuity equation is replaced with its com-509
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pressible form dρ/dt = −ρ∇ · v , and the equation of state is used to close the result-510

ing compressible NS equations:511

P (ρ) = c20
ρ0

7

([
ρ

ρ0

]7

− 1

)
+ P0 , (A2)

where ρ0 is the reference water density, P0 is a background pressure. The speed of sound512

c0 is chosen such that |δρ|/ρ ≤ 0.03, where |δρ| is the maximum absolute change in den-513

sity. This condition is sufficient for fluid to behave as an incompressible fluid and to ob-514

tain an accurate pressure field (Morris et al., 1997).515

The SPH discretization of the weakly-compressible NS-equation is:

dvi
dt

=
∑
j∈s+f

mj

(
Pi
ρ2
i

+
Pj
ρ2
j

)
êij

∂W (rij , h)

∂rij
+
∑
j∈f

mj
µi + µj
ρiρj

vij
rij

∂W (rij , h)

∂rij

+
∑
j∈s+f

1

mj
FIij +

∑
k∈s

FBik + g ,

(A3)

and

dρi
dt

=

N∑
j=1

mjvij · êij
∂W (rij , h)

∂rij
, (A4)

where êij = rij/rij is the unit vector pointing from particle i to particle j and sum-

mations are over all fluid (f) and/or solid (s) particles and W is a two-dimensional Wend-

land kernel (Wendland, 1995) that establishes a smoothed interaction over the range h

between particles. In order to simulate surface tension a additional pair-wise interaction

term (Tartakovsky & Meakin, 2005a) is employed that consists of two overlapping cu-

bic spline function W1 and W2 with a short-range repulsive and long-range attractive

component controlled by coefficients A and B (Kordilla et al., 2013, 2017):

FIij = s [AW1(rij , h1)−BW2(rij , h2)] êij . (A5)

The magnitude of the interaction force depends on the factor s which assumes values of516

ssf for solid-fluid interactions and sff for fluid-fluid interactions. For values of ssf >517

sff wetting conditions are enforced, while otherwise non-wetting fluids can be simulated.518

No-slip conditions are enforced via a Robin-type volumetric force term following

(Pan et al., 2014)

FBik = βvi
mk

ρiρk
(ni + nk) · êij

∂W (rik, h)

∂rik
(A6)

where ni is the normal unit vector (see the definition in (Pan et al., 2014)), β = µ/λ519

is the friction coefficient and λ is the artificial slip length. For most fluids, the real slip520
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length is on the order of several nanometers, and using such a small λ would result in521

a prohibitively small time step in the SPH method. We demonstrate in Section 2.1, that522

the no-slip boundary condition can be accurately modeled by setting λ to be 100 times523

smaller than the domain size. We note that in Eq. A3, the summation of the viscosity524

term is only over fluid particles, while the no-slip condition is entirely enforced via Eq. A6.525

The highly non-linear form of the equation of state A2 generates sufficiently high pres-526

sure (in addition to the repulsive part of the interaction force) to prevent fluid particles527

from penetrating solid surfaces.528

To integrate Eq. A3 a modified Velocity Verlet time-stepping scheme is employed

and time steps are constraint as follows (Kordilla et al., 2017; Pan et al., 2014; Tartakovsky

& Meakin, 2005c):

∆t ≤ δ h
c
, ∆t ≤ δmin

√
h|ai| , ∆t ≤ δmin

ρih
2

µi
, ∆t ≤ δmin

h(ρi + ρj)

2β
(A7)

where δ = 0.1.529

Appendix B Spontaneous Imbibition530

The volumetric flow rate through a fracture conceptualized as a parallel plate is531

governed by:532

dV

dt
=

∆P

∆l

a3

12µ
W (B1)

,where l is the penetration depth (the length over which the pressure gradient ∆P acts),533

a is the aperture and W is the fracture (unit) width. The change in volume over time534

can be rewritten in terms of the penetration depth into the fracture535

dV

dt
= aW

dl

dt
(B2)

Plugging this into Eq. B1 we obtain536

dl

dt
=

∆P

∆l

a2

12µ
(B3)

The capillary pressure according to Youngs law in the case of a parallel plate is

∆P 2D
c =

σcos(θ0)

r
(B4)
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, where r is the radius of the fracture. Here we neglect the second principal radius which

would otherwise yield, e.g. in the case of a tube geometry,

∆P 3D
c = σcos(θ0)

(
1

r1
+

1

r2

)
(B5)

Plugging this into Eq. B3 we obtain537

dl

dt
=
σcos(θ0)a2

rl(t)12µ
=
σcos(θ0)(2r)2

rl(t)12µ
=
σcos(θ0)r

l(t)3µ
(B6)

Separating the variables and integration yields∫ l

l(t0)

l(t)dl =

∫ t

t0

σcos(θ0)r

3µ
dt (B7)

and

1

2
l(t)2 =

σcos(θ0)r

3µ
t+ C (B8)

such that the time-dependent penetration length becomes

l(t) =

(
2σcos(θ0)r

3µ
t

)1/2

(B9)

Appendix C Moments538

In order to calculate the moments of ϕpw(t) it is advantageous to write it as fol-

lows,

ϕpw(t) =
dF

dt
= δ(t− tc) +W (t) [δ(t− tmax)− δ(t− tc)]

−W ′(t)I(tc < t < tmax) (C1)

where we set

W =
1

2

(
t

tc

)−1/2

(C2)

W ′ = − 1

4tc

(
t

tc

)−3/2

(C3)

The zeroth moment is
∞∫

0

dtϕ(t) = 1 + [W (tmax)−W (tc)]− [W (tmax)−W (tc)] = 1. (C4)

Now we determine the first moment:
∞∫

0

dttϕ(t) = tc + [tmaxW (tmax)− tcW (tc)] +

√
tc

4

tmax∫
tc

dtt−1/2 (C5)

= tc + [tmaxW (tmax)− tcW (tc)] +

√
tc

2
(
√
tmax −

√
tc) (C6)

= tc
√
tmax/tc (C7)
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Now we determine the second moment:

∞∫
0

dtt2ϕ(t) = t2c + [t2maxW (tmax)− t2cW (tc)] +

√
tc

4

tmax∫
tc

dtt1/2 (C8)

= t2c + [t2maxW (tmax)− t2cW (tc)] +

√
tc

6
(t3/2max − t3/2c ) (C9)

= t2c

[
1

3
+

2

3
(tmax/tc)

3/2

]
(C10)
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