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Abstract

Most tree species predominantly associate with a single type of mycorrhizal fungi, which can differentially affect plant nutrient

acquisition and biogeochemical cycling. Here, we address for the first time the impact of mycorrhizal distributions on global

carbon and nutrient cycling. Using the state-of-the-art carbon-nitrogen economics within the Community Land Model version

5 (CLM5) we found Net Primary Productivity (NPP) increased throughout the 21st century by 20%; however, as soil nitrogen

has progressively become limiting, the costs to NPP for nitrogen acquisition — i.e., to mycorrhizae — have increased at a faster

rate by 60%. This suggests that nutrient acquisition will increasingly demand a higher portion of assimilated carbon to support

the same productivity. Uncertainties in mycorrhizal distributions are non-trivial, however, with uncertainties in NPP by up to

345 Tg C yr-1, depending on which published distribution is used. Remote sensing capabilities for mycorrhizal detection show

promise for refining these estimates further.
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Key Points: 27 

• Global plant demand for N has increased 25% from 1850 to 2010, while the C cost 28 

associated with it has increased 60% in the same period. 29 

• NPP has increased by 20% from 1850 to 2010, but the NPP fraction used for nitrogen 30 

acquisition increased from ~1/4 to ~1/3. 31 

• Areas of savannas and forest-grasslands transition zones present a higher risk of nitrogen 32 

limitation to plant growth.  33 

 34 

Keywords:  35 

• Biogeochemistry, carbon cycling, climate change, Earth System modeling, mycorrhizae, 36 

nutrient cycling  37 
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Abstract 38 

Most tree species predominantly associate with a single type of mycorrhizal fungi, which can 39 

differentially affect plant nutrient acquisition and biogeochemical cycling. Here, we address for 40 

the first time the impact of mycorrhizal distributions on global carbon and nutrient cycling. 41 

Using the state-of-the-art carbon-nitrogen economics within the Community Land Model version 42 

5 (CLM5) we found Net Primary Productivity (NPP) increased throughout the 21st century by 43 

20%; however, as soil nitrogen has progressively become limiting, the costs to NPP for nitrogen 44 

acquisition — i.e., to mycorrhizae — have increased at a faster rate by 60%. This suggests that 45 

nutrient acquisition will increasingly demand a higher portion of assimilated carbon to support 46 

the same productivity. Uncertainties in mycorrhizal distributions are non-trivial, however, with 47 

uncertainties in NPP by up to 345 Tg C yr-1, depending on which published distribution is used. 48 

Remote sensing capabilities for mycorrhizal detection show promise for refining these estimates 49 

further. 50 

 51 

Plain Language Summary 52 

The majority of plants often join forces with specific types of fungi to improve their nutrient 53 

acquisition capacity, which ultimately impact global photosynthesis. This is the first study to 54 

explore the impacts of different types of fungi-root distributions on global carbon and nutrient 55 

cycling. Using the land component of a state-of-the-art Earth System model we found that global 56 

net carbon uptake increased throughout the 21st century by 20%, while the carbon spent on 57 

nitrogen acquisition has increased at a faster rate by 60%. This study suggests that nutrient 58 

acquisition by plants will increasingly demand a larger portion of net carbon to support the same 59 

photosynthesis. 60 

 61 

 62 

 63 
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1 Introduction 64 

Terrestrial ecosystems have been a persistent post-industrial carbon sink, absorbing 65 

almost a third of anthropogenic carbon emissions (Ciais et al., 2013; Schimel et al., 2015; 66 

Friedlingstein et al., 2019). Studies suggest that terrestrial ecosystem productivity has increased 67 

due to elevated CO2 concentration (Keenan et al., 2016; Zhu et al., 2016; Chen et al., 2019), but 68 

it remains unclear whether this will translate to increases in the terrestrial carbon sink in the 69 

future (Friedlingstein et al., 2006, 2014; Zhang et al., 2019). It is widely expected that limiting 70 

factors such as water (Trenberth et al., 2014; Kolus et al., 2019) and nutrients availability 71 

(Zaehle et al., 2010; Fleischer et al., 2019; Terrer et al., 2019; Wieder et al., 2015, 2019) might 72 

mediate the responses of terrestrial ecosystems to climate change. Disentangling these 73 

mechanisms and exploring the consequences of atmospheric CO2 increase requires assessment of 74 

such mechanisms through Earth System models (ESMs), which allow comprehensive and 75 

spatially explicit assessment of the impacts of future climate on biogeochemical cycles in 76 

terrestrial ecosystems. 77 

It has been estimated that a large part of plant nitrogen and phosphorus is provided by 78 

fungal root symbionts (van der Heijden et al., 2015), thus it is likely that mycorrhizal 79 

associations explain a large fraction of the variance in plant response to elevated CO2 (Drake et 80 

al., 2011; Orwin et al., 2011; Kivlin et al., 2013; Sulman et al., 2017; Terrer et al., 2016, 2018). 81 

However, the global spatial distributions of these mechanisms as well as their potential impacts 82 

are still uncertain (Norby et al., 2017; Sulman et al., 2019). Only a handful of ESMs consider 83 

mycorrhizal nutrient acquisition when calculating carbon assimilation and allocation (Wang et 84 

al., 2010; Zaehle et al., 2015; Goll et al., 2017). The Community Land Model version 5 (CLM5) 85 

within the Community Earth System Model (CESM) currently enables an explicit representation 86 

of the functional differences between different types of plant symbiotic associations (Fisher et 87 

al., 2010; Brzostek et al., 2014; Shi et al., 2016; Fisher et al., 2019; Lawrence et al., 2019). 88 

However, until recently, one of the major challenges in generating global estimates of nutrient 89 

limitation on the global carbon cycle is related to a lack of understanding of the spatial 90 

distribution of nutrient-acquiring plant-microbe symbioses. Despite the availability of regional 91 

maps of present and past plant symbiotic status (Menzel et al., 2016; Swaty et al., 2016; 92 

Brundrett, 2017; Jo et al., 2019), scientists have only recently begun to develop  explicit global 93 

data about mycorrhizal and nitrogen fixing associations (Davies-Barnard et al., 2020).  94 
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Recently, scientists developed methods for extrapolating spatially sparse measurements 95 

into large-scale, spatially explicit maps suitable for applications within ESMs (Shi et al., 2016; 96 

Soudzilovskaia et al., 2019; Steidinger et al., 2019; Sulman et al., 2019). These developments for 97 

the first time enable examining how mycorrhizal distributions are related to the global carbon 98 

and nitrogen cycles. In this study, we seek a better understanding of mycorrhizas on global 99 

carbon and nitrogen cycles through incorporating multiple state-of-the-art spatial distributions of 100 

mycorrhizal associations in a global ecosystem model. We first compare four existing global data 101 

products of global spatial distributions of mycorrhizal associations. Second, we perform transient 102 

global runs of CLM5 with increasing CO2 concentration through the 20th and 21st centuries in 103 

order to understand the impact of the CO2 fertilization effect combined with different spatially 104 

variable mycorrhizal representations. Finally, we evaluate the possible feedback effects that 105 

changes in spatial mycorrhizal association due to climate change (Steidinger et al., 2019) may 106 

have on the global carbon cycle. 107 

2 Materials and Methods 108 

2.1 Land Surface Model description: CLM5 109 

CLM5 includes the Fixation and Uptake of Nitrogen (FUN) module calculating the 110 

carbon costs for each pathway of plant nitrogen uptake - symbiotic nitrogen fixation, direct and 111 

mycorrhizal uptake of soil nitrogen, and nitrogen retranslocation from leaves (Fisher et al., 2010; 112 

Brzostek et al., 2014; Shi et al., 2016; Allen et al., 2020). Plants shift uptake pathways to 113 

minimize the carbon costs of nitrogen uptake. FUN simulates uptake from the two major types of 114 

fungi that plants associate with: arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi. 115 

Explicit representation of mycorrhizal associations improved the dynamic predictions of the 116 

nitrogen retranslocated from leaves and taken up from the soil in previous ecosystem-scale 117 

studies (Brzostek et al., 2014).   118 

In order to generate the trade-offs between AM, ECM, and non-mycorrhizal root uptake, 119 

FUN within CLM5 uses an estimate of the percentage of aboveground biomass per grid cell that 120 

associates with each mycorrhizal type (Brzostek et al., 2014; Shi et al., 2016).  121 



Manuscript submitted to Geophysical Research Letters 

 6 

2.2 Coupling mycorrhizae spatial distribution into CLM5 122 

Plant Functional Types (PFTs) are used to classify plants according to their physical, 123 

phylogenetic, and phenological characteristics. The value of each parameter is determined or 124 

inferred from observable characteristics. A spatial data product can be added as a 2D variable 125 

varying as function of latitude and longitude, but because land surface models also work with the 126 

concept of PFTs, adding a third dimension (i.e., latitude, longitude, and PFT) into the spatial 127 

distribution can improve accuracy of processes and reduce model uncertainty (Braghiere et al., 128 

2019). Here, given new datasets of spatial distributions of mycorrhizal associations based on 129 

observations at different spatial resolutions, we modified CLM5 and added mycorrhizal 130 

association types per PFT within a gridcell (latitude and longitude) to also consider landscape 131 

heterogeneity within a model grid cell. 132 

Four global maps of mycorrhizal association based on different assumptions and spatial 133 

resolutions were used to provide the percentage of ECM association (relative to AM) data for 134 

CLM5: Map A (Shi et al., 2016); Map B (Sulman et al., 2019), Map C (Steidinger et al., 2019), 135 

and Map D (Soudzilovskaia et al., 2019) (see Fig. 1 and Supplementary information for 136 

details). 137 

2.3 Simulation protocols  138 

First, for each ECM map, initial ecosystem carbon and nitrogen stocks for 1850 were 139 

generated using a spin-up approach using 1850 concentrations of CO2 (284.7 ppm) and the 140 

model’s standard climate forcing dataset from the Global Soil Wetness Project Phase 3 version 1 141 

(GSWP3v1) (Kim, 2017) at 1.9x2.5 spatial resolution. The Model for Scale Adaptive River 142 

Transport (MOSART) was turned on and ice evolution on land was turned off. Model runs were 143 

performed with biogeochemistry mode on without crops for 200 years in ‘accelerated 144 

decomposition’ mode (see  Lawrence et al. (2019) for details) by cycling through the 1901–1920 145 

climate forcing dataset and then for 400 years in regular spin-up mode until soil and plant carbon 146 

and nitrogen stocks achieved steady state. Historical simulation was performed from 1850 to 147 

2010 using transient GSWP3 climate, nitrogen deposition, and variable atmospheric CO2 148 

concentration.  149 
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Second, in order to illustrate the model sensitivity to changes in global spatial patterns of 150 

plant symbiosis due to climate change, we used a projected map of plant symbiotic status for 151 

2070 using a relative concentration pathway (RCP) of 8.5 W.m-2 from Steidinger et al. (2019) 152 

versus the original map with present climate (Steidinger et al., 2019). We performed future runs 153 

(2015-2070) with the biogeochemistry mode on following the Shared Socio-Economic Pathway 154 

(SSP) number 5 (Kriegler et al., 2017). SSP5 scenarios are the only ones resulting in a radiative 155 

forcing pathway as high as the highest RCP8.5 used by Steidinger et al. (2019).  156 

 The SSP5 scenario includes extreme levels of fossil fuel use, up to a doubling of global 157 

food demand, and up to a tripling of energy demand and greenhouse gas emissions over the 158 

course of the century, marking the upper end of the scenario literature in several dimensions. We 159 

used future climatological forcing from the CESM2 simulation for the CMIP6 (Lawrence et al., 160 

2016; O’Neill et al., 2016). We used the LMWG diagnostics package from NCAR 161 

(http://github.com/NCAR/CESM_postprocessing) and Python scripts to evaluate the differences 162 

between each model run with CLM5.  163 

2.4 Calculating nitrogen limitation 164 

The risk of nitrogen limitation (NL) can be determined  by evaluating if the growth rate 165 

of NPP used for nitrogen uptake with time is larger than the growth rate of total NPP with time. 166 

If the amount of NPP used for nitrogen uptake increases at a higher rate than the total NPP for a 167 

particular grid cell, that grid cell is considered to be at risk of spending too much carbon on 168 

nitrogen acquisition, and therefore, NL is closer to 1. On the contrary, if the amount of NPP used 169 

for nitrogen uptake increases at a lower rate than the total NPP for a particular grid cell, that area 170 

is not considered to be at risk of spending too much carbon on nitrogen acquisition. NL is 171 

calculate as: 172 

𝑁𝐿 = 1. − 
∝1(𝑖,𝑗)

∝2(𝑖,𝑗)
                                                         (1.0) 173 

where 1 is the slope of the linear regression of NPP used for Nitrogen uptake per gridcell 174 

(NPP_NUPTAKE(i,j)) with time and  2 is the slope of the linear regression of NPP (NPP(i,j)) 175 

plus NPP_NUPTAKE(i,j) with time. Areas in red indicate higher risk of nitrogen limitation on 176 

NPP based on the period from 1850 to 2010. 177 

http://github.com/NCAR/CESM_postprocessing
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3 Results and Discussion 178 

3.1 Different estimates of plant symbiotic status and impacts on nitrogen uptake 179 

pathways  180 

 To better visualize the differences from maps presented in Fig.1, the standard deviation 181 

of the averaged difference between ECM fraction (%) of each one of the new maps and the 182 

default CLM5 map is shown in Fig. 1e. All three data products agree that the default map in 183 

CLM5 overestimates ECM fraction in the boreal regions, as well as drier areas of the world, such 184 

as the Atacama, Namibian, Somalian, Mongolian, Sonoran, and Australian deserts. Map C  185 

resembles the default CLM5 map A, indicating an alignment of the assumptions that climate 186 

variables are the main drivers of global biogeography of forest-tree symbioses and the 187 

proposition that fixed values of mycorrhizal associations can be prescribed following PFTs 188 

spatial distributions. The three maps disagree in the eastern USA, where map B indicates map A 189 

overestimates ECM fraction, map C indicates the opposite, and map D shows small differences. 190 

Over eastern Asia, the maps also disagree in the sign of changes of ECM fraction with respect to 191 

map A. Map B shows no particular differences in Northeast China, map C indicates that map A 192 

underestimates ECM fraction, while map D indicates the opposite. In central Europe, map C 193 

strongly (+40%) revises the default CLM5 ECM fraction upwards, while maps B and D show a 194 

much smaller positive difference in comparison to map A, except for parts of the Alps and parts 195 

of the Iberic peninsula. Given that the map A is based on PFT values, the biases in particular 196 

PFTs are presented in Supplementary Fig. S1. 197 

Although all four maps agree in approximately 60% of the world area, some areas present 198 

large standard deviation values (> 30%), e.g., northern North America, throughout northern and 199 

eastern Asia, as well as parts of the tropical forests, i.e., northwest Amazon, the central part of 200 

the Congo Basin, and parts of the maritime continent. These areas would benefit from more field 201 

measurements of mycorrhizal association and further analysis.  202 

Throughout all runs, the ECM-associated (NECM) and AM-associated (NAM) vegetation 203 

nitrogen uptake fluxes were the most impacted biogeochemical variables when including 204 

spatially explicit mycorrhizal status in CLM5, though the other nitrogen uptake pathways and 205 

their associated carbon costs were also impacted. There are four different representations of 206 

nitrogen acquisition pathways within CLM5: mycorrhizal uptake (NMYC), nitrogen fixation 207 
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(NFIX), nitrogen retranslocation from leaves (NRETRANS), and the non-mycorrhizal or direct 208 

nitrogen uptake (NNONMYC). The sum of all different nitrogen acquisition pathways is the total 209 

acquired nitrogen (TOTALN). Table S2 shows the average carbon cost per unit of nitrogen 210 

(gN.kgC-1) in the period 2000-2010 for each different nitrogen uptake pathway as predicted by 211 

CLM5. 212 

On average for the period 2000-2010, the updated carbon cost per unit of nitrogen 213 

according to the three observation based maps (B,C, and D) increases 2.2%. The main areas 214 

where carbon costs of nitrogen uptake became higher are: (i) eastern North America, Europe, 215 

southeast Asia, and the tropics for mycorrhizal uptake; tropical and boreal forests for nitrogen 216 

fixation; and the tropics for nitrogen retranslocation (see Supplementary material). Changes in 217 

carbon costs of nitrogen acquisition via mycorrhizae uptake are 4.1% higher globally. 218 

3.2 The effect of climate change and CO2 fertilization on nitrogen limitation 219 

To determine the climate change effect of nitrogen limitation on plant growth, Fig. 2 220 

shows the global total NPP (PgC.yr-1), global total carbon cost of nitrogen uptake 221 

(NPP_NUPTAKE, PgC.yr-1), global plant nitrogen demand (PLANT_NDEMAND, TgN.yr-1), 222 

and the global total nitrogen uptake (NUPTAKE, TgN.yr-1). Nitrogen demand is calculated as the 223 

total nitrogen that would be required if all assimilated carbon was allocated according to 224 

idealized stoichiometric ratios. The CO2 fertilization effect, with nitrogen deposition, and climate 225 

change increased photosynthetic rates across the globe, represented by an increase in NPP from 226 

40 PgCyr-1 in 1850 to 47.5 PgCyr-1 in 2010, an increase of about 20%. In turn, to support 227 

elevated productivity, plants require more nitrogen, leading to an increase in plant nitrogen 228 

demand from ~1600 TgN.yr-1 in 1850 to 2000 TgN.yr-1 in 2010, an increase of about 25%.  229 

Although the rates of nitrogen uptake systematically increase in response to a higher 230 

nitrogen demand, i.e., NUPTAKE of 800 TgN.yr-1 in 1850 to 1000 TgN.yr-1 in 2010, the 231 

associated carbon cost of nitrogen acquisition increased at a faster rate, growing roughly 60% 232 

more expensive in 2010 (17.5 PgCyr-1) than it was in 1850 (11.2 PgCyr-1). In terms of the 233 

percentage of NPP spent in nitrogen acquisition, the values increased from about ~27.5% of NPP 234 

in 1850 to ~32.5% of NPP in 2010. By 2075, it is projected that the NPP used for nitrogen 235 

acquisition will reach 35% of total NPP (~22.5 PgCyr-1), suggesting ecosystems will have much 236 

less carbon available for allocation and plant growth, possibly becoming more susceptible to 237 
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extreme events that require extra carbon for re-growth, such as droughts, fires, and insect 238 

outbreaks. 239 

All transient runs from 1850 to 2010 with the new maps indicated a stronger effect of 240 

climate and CO2 fertilization on nitrogen limitation compared to map A. These findings highlight 241 

that as estimated by CLM5, not only has plant demand for nitrogen increased at a faster rate than 242 

actual nitrogen uptake, but that the carbon costs associated with nitrogen acquisition have 243 

increased at a faster rate than the extra carbon gained through the CO2 fertilization effect, i.e., 244 

plants need to invest more carbon per unit of nitrogen uptaken. This pattern is projected to 245 

continue in the future, which means that it is unlikely current plant growth rates will be sustained 246 

globally. 247 

Fig. 3a shows the risk of nitrogen limitation (NL) calculated as described in Eq. 1. 248 

According to the transient runs from 1850 to 2010 using the default CLM5 map A, tropical 249 

forests have a medium to low risk of being further limited by nitrogen, which is in agreement to 250 

some studies indicating that intact ancient tropical forests tend to accumulate and recycle large 251 

quantities of nitrogen relative to temperate forests (Hedin et al., 2009).  252 

A part of South America, Africa, and Australia, associated with savannas and forest-253 

grassland transition zones present a higher risk of nitrogen limitation to plant growth. Parts of the 254 

temperate forests in North America, Europe, and Asia, as well as northern areas of the planet in 255 

the presence of boreal forests present a medium to high risk of nitrogen limitation. 256 

3.3 The feedback impacts of mycorrhizal changes due to climate change  257 

Recent evidence suggests that anthropogenic influences, primarily nitrogen deposition 258 

and fire suppression, as well as climate change have increased AM tree dominance during the 259 

past three decades in the eastern United States (Jo et al., 2019). Globally, Steidinger et al. (2019) 260 

presented a study using the same environment-mycorrhizae relationships for current climate to 261 

project potential changes in the symbiotic status of forests in the future, suggesting that projected 262 

climate for 2070 reduces the abundance of ECM trees by as much as 10%, with major changes in 263 

ECM abundance along the boreal–temperate transition zone (Fig. 3b).  264 

Although the magnitude of the time lag between climate change and ecosystem responses 265 

is unknown, the predicted decline in ECM trees aligns with previous simulated warming 266 
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experiments, which have demonstrated that some important ECM hosts decline at the boreal–267 

temperate zones under future climate conditions (Reich et al., 2015), and that ECM fungi 268 

demonstrated increased responses of mycorrhizal fungal biomass under eCO2 compared to AM 269 

fungi (Dong et al., 2018), as the simulated response in the tropics (Fig. 3b). 270 

Although it has been previously reported that climate change should impact forest 271 

symbiosis, no study has ever evaluated the potential feedback of climate change effects on 272 

mycorrhizal distribution onto nitrogen and carbon cycles. The difference in NPP for the period of 273 

2016-2075 between the simulations using the future maps of ECM fraction and the simulations 274 

using the present-day map C (Steidinger et al., 2019) are shown in Fig. 3c.  275 

Large parts of South America, especially areas associated with savannas, present the 276 

largest negative feedback effects on NPP due to future climate change impacts on mycorrhizal 277 

association, followed by areas with boreal forests. The impact over tropical forests and areas in 278 

China seem to benefit from a change in plant symbiotic status in the future. Although, these 279 

results should be interpreted carefully due to the limitation of the original forest plot training data 280 

in those areas of the globe used in Steidinger et al. (2019), machine learning algorithms indicate 281 

more ECM fungi in the tropics in the future, possibly due to the effect eCO2 on the tropical 282 

climate.  283 

In the SSP5-RCP8.5 runs from 2016 to 2075 with present-day plant symbiotic status, the 284 

growth rate of nitrogen uptake was 4.8 TgN.yr-2. In terms of carbon costs, NPP is projected to 285 

increase at a rate of 265.5 TgC.yr-2, while the carbon cost of nitrogen acquisition is projected to 286 

increase at a rate of 130.4 TgC.yr-2, an extra 135.2 TgC.yr-1. The feedback effect of climate 287 

change on the spatial distribution of plant symbiotic status decreases NPP globally (from 58.3 288 

PgC.yr-1 to 58.2 PgC.yr-1), a negative impact of -23.1 TgC.yr-1. The projected NPP increase rate 289 

with the future plant symbiotic status map is 266.2 TgC.yr-2, 0.7 TgC.yr-2 faster than the 290 

projected NPP without changes in mycorrhizae associations. However, the carbon cost of 291 

nitrogen acquisition is projected to increase at a rate of 129.1 TgC.yr-2, versus 130.0 TgC.yr-2 in 292 

the simulations without changes in the spatial distribution of plant symbiotic status. In terms of 293 

total NPP globally, these changes are predicted to increase carbon costs of nitrogen acquisition 294 

by 582.5 TgC.yr-1, which significantly amplifies the effect of nutrient limitation on plant growth 295 

worldwide.  296 
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4 Conclusions 297 

To overcome the lack of global spatial representations of mycorrhizal associations, a few 298 

studies (Soudzilovskaia et al., 2019; Steidinger et al., 2019; Sulman et al., 2019) have combined 299 

a comprehensive quantitative evaluation of mycorrhizae distribution across biomes and 300 

continents, and assembled high-resolution digital maps of the global distribution of biomass 301 

fractions of different types of mycorrhizae associations.  302 

In our analysis, we show that differences between data products have impacts upon the 303 

nitrogen and carbon cycles in CLM5. Nonetheless, this comparison did not aim to determine 304 

which map is the most realistic. Rather, we assessed the impact of different mycorrhizal 305 

representations in CLM5 to determine signs of changes in the global nitrogen and carbon cycles. 306 

In this study, we found a negative impact on future NPP due to feedback effects of climate 307 

change and CO2 fertilization on mycorrhizae spatial distribution.  308 

Although the transient runs with different spatial representations of plant symbiotic status 309 

do not agree in terms of total values of nitrogen acquisition through different uptake pathways, or 310 

their relative carbon costs, all experiments using the observation based maps do agree that the 311 

increasing rate of plant nitrogen demand is higher than the rate of nitrogen uptake as previously 312 

reported. Moreover, our simulations found that the carbon costs of nitrogen acquisition also 313 

increase at a higher rate than NPP itself, indicating that plants need to invest more carbon per 314 

unit of nitrogen uptake to sustain growth at current rates globally. To our knowledge, this is the 315 

first study using observation-derived global maps of mycorrhizal association within an ESM to 316 

estimate the impacts of climate change on mycorrhizas and its feedback on the global carbon and 317 

nitrogen cycles. 318 
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 537 

Figure 1. Global spatial distributions of ECM fraction (%). The remaining fraction is assumed to 538 

be AM. a.  Map A (Shi et al., 2016) (look-up table x PFTs in 1.9x2.5); b. Map B (Sulman et al., 539 

2019) (0.17x0.17); c. Map C (Steidinger et al., 2019) (1.0x1.0 unmasked); and d. Map D 540 

(Soudzilovskaia et al., 2019) (0.17x0.17); and e. standard deviation of all the four maps of ECM 541 

fraction. 542 

 543 

Map A (CLM5) Map B
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 544 

Figure 2. Trend in Net Primary Productivity and usage for nitrogen acquisition a. Global total 545 

NPP (PgC.yr-1); b. global total carbon cost of nitrogen uptake (NPP_NUPTAKE, PgC.yr-1); c. 546 

trend in nitrogen uptake and demand a. Global average nitrogen uptake (NUPTAKE, TgN.yr-1); 547 

and d. global average plant nitrogen demand (PLANT_NDEMAND, TgN.yr-1) for the transient 548 

historical run from 1850 to 2010 (continuous) and for the future projection SSP5 with RCP8.5 run 549 

from 2015 to 2070 (dashed) with CLM5. Tropical stands for the area of the globe between 23.5°S 550 

and 23.5°N. Extra-Tropical is the remaining area of the globe (90°S-23.5°S and 23.5°N-90°N).    551 

 552 

 553 

a. b.

c. d.
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 554 

Figure 3. a. Risk of nitrogen limitation. Areas in red indicate higher risk of nitrogen limitation 555 

on NPP, and areas in blue indicate lower risk of nitrogen limitation on NPP; and projected 556 

differences in NPP and mycorrhizae driven by climate change; b. The impact of climate change 557 

on ECM fraction (%) derived from Steidinger et al. (2019) for 2070 following the RCP8.5 with 558 

CMIP5 simulations; c. Difference in NPP (gC.m-2.yr-1) for future simulations (2016-2075) 559 

between projected future map generated for the year of 2070 and the present-day map C 560 

(Steidinger et al., 2019). The projected runs with CLM5 followed the SSP5 scenario in 561 

combination with RCP8.5 climate forcing from CESM, member of CMIP6 simulations. 562 
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Supplementary information 34 

Land Surface model description: the Community Land Model version 5 (CLM5) 35 

CLM5 is the land surface component of the Community Earth System Model 2 (CESM2; 36 

https://www.cesm.ucar.edu/models/cesm2/). CLM5 includes three important changes to the 37 

representation of plant carbon and nitrogen dynamics: i) the Leaf Utilization of Nitrogen for 38 

Assimilation (LUNA) module allows plants to adjust their partitioning of nitrogen among the 39 

maximum rate of carboxylation (Vcmax), the maximum rate of electron transport (Jmax), and other 40 

leaf nitrogen components, to achieve co-limitation of photosynthesis under the prevailing time-41 

averaged environmental drivers (CO2, temperature, humidity, soil moisture, radiation, and day 42 

length) (Xu et al., 2012; Ali et al., 2016; Fisher et al., 2019); ii) the ‘FlexCN’ module allows 43 

plants to alter and optimize their stoichiometry, removing the down-regulation of gross primary 44 

productivity (GPP) that was used in CLM4 and CLM4.5 (Cheng et al., 2019; Ghimire et al., 45 

2016). In the new allocation algorithm, the total nitrogen supply in each timestep is partitioned 46 

among tissues in proportion to their relative ‘demand’ terms. Additional details on how 47 

stoichiometry is optimized can be found in Lawrence et al. (2019) and Fisher et al. (2019); and 48 

finally, iii) the Fixation and Uptake of Nitrogen (FUN) module implements a ‘carbon cost’ for 49 

each source of plant nitrogen uptake (Fisher et al., 2010; Brzostek et al., 2014; Shi et al., 2016; 50 

Allen et al., 2020).  51 

https://www.cesm.ucar.edu/models/cesm2/
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The carbon cost of nitrogen uptake from soil by mycorrhizal or non-mycorrhizal 52 

pathways, for each soil layer 𝑗, is controlled by two uptake parameters that pertain respectively to 53 

the relationship between soil nitrogen and nitrogen uptake, and between fine root carbon density 54 

and nitrogen uptake. For mycorrhizal or non-mycorrhizal nitrogen uptake, the cost functions are 55 

given as: 56 

𝑁𝑐𝑜𝑠𝑡,𝑝𝑎𝑡ℎ𝑤𝑎𝑦,𝑗 =
𝑘𝑛,𝑝𝑎𝑡ℎ𝑤𝑎𝑦

𝑁𝑠𝑚𝑖𝑛,𝑗
+

𝑘𝑐,𝑝𝑎𝑡ℎ𝑤𝑎𝑦

𝑐𝑟𝑜𝑜𝑡,𝑗
                                             (1.0) 57 

where 𝑘𝑛,pathway (kgC.m-2) and 𝑘c,pathway (kgC.m-2) varies according to whether the pathway 58 

considered is referring to a non-mycorrhizal (direct), ECM, or AM uptake. Nsmin,j and croot,j are 59 

the soil nitrogen content (gN.m-3) and fine root carbon density (gC.m-3), respectively. Please 60 

refer to CLM5 technical note and related publications (Fisher et al., 2019; Lawrence et al., 2019; 61 

NCAR, 2019) for the complete set of equations. 62 

Shi et al. (2016) classified the Plant Functional Types (PFTs) in CLM, based upon known 63 

associations between plant species and either arbuscular mycorrhizae (AM) or ectomycorrhizae 64 

(ECM) fungi described in the literature (Read, 1991; Allen et al., 1995; Phillips et al., 2013). 65 

While some PFTs are usually AM-dominated (e.g., grasslands), others are usually ECM-66 

dominated (e.g., boreal forest). PFT symbiont fraction estimates are available as ratios of the 67 

AM-associated and ECM-associated plants of the CLM PFTs as a table in Shi et al. (2016). 68 

These numbers are usually binary, associating one PFT with a single type of mycorrhizae, e.g., 69 

0% or 100%, except for broadleaf deciduous temperate trees, which associates 50% with AM 70 

and 50% with ECM.  71 

Coupling mycorrhizae spatial distribution into CLM5 72 

In CLM5, within each grid cell, the soil area available for vegetation is divided into 73 

patches that correspond to the area fraction of that PFT. For each PFT, a number of key 74 

parameters are defined, such as the target tissue C:N values, stomatal water use efficiency, 75 

maximum hydraulic conductivity and sensitivity to embolism (Kennedy et al., 2019), tissue 76 

allocation fractions (for leaves, fine roots, stem, and coarse roots), tissue turnover times, and the 77 

rate at which litter class (labile, lignin, cellulose) decays and returns nutrients to the soil after 78 

death. Four global maps of mycorrhizal association based on different assumptions and spatial 79 

resolutions were added into CLM5 to provide the percentage of ECM association (relative to 80 
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AM) data for CLM5: Map A (Shi et al., 2016); Map B (Sulman et al., 2019), Map C (Steidinger 81 

et al., 2019), and Map D (Soudzilovskaia et al., 2019) (Fig. 1).  82 

 Map B was derived from Sulman et al. (2019), who assembled empirical AM data points 83 

presenting species number of AM fungi obtained from the MAARJAM database (Öpik et al., 84 

2010), and ECM data points presenting species number of ECM fungi obtained from Tedersoo et 85 

al. (2014). These data were used to define niche models which were used to develop spatial maps 86 

of the relative probability of AM and ECM fungal presence within areal units of 10 arcmin. 87 

These niche models were used to estimate ECM fraction by comparing the relative probability of 88 

AM and ECM presence:  89 

%ECM = 100*p(ECM)/(p(ECM) + p(AM))                                     (2.0) 90 

where p(ECM) and p(AM) are the probabilities of ECM or AM presence, respectively, from the 91 

niche model in each grid cell. 92 

 Map C was derived from Steidinger et al. (2019), who proposed a global map of the 93 

symbiotic status of forests, using a database of over 1 million forest inventory plots containing 94 

more than 28,000 tree species, and 70 global predictor layers: 19 climatic indices (relating to 95 

annual, monthly, and quarterly temperature and precipitation variables), 14 soil chemical indices 96 

(relating to soil nitrogen density, microbial nitrogen, C:N ratios and soil P fractions, pH and 97 

cation exchange capacity), 26 vegetative indices (relating to leaf area index, total stem density, 98 

enhanced vegetation index means and variances), and 5 topographic variables (relating to 99 

elevation and hillshade). Their maps provide quantitative estimates of the distribution of 100 

aboveground biomass fractions among AM, ECM, and N fixers plants within areal units of 0.5° 101 

and 1.0°.  102 

 Map D was proposed by Soudzilovskaia et al. (2019), who assembled a global database 103 

on plant mycorrhizal type associations that included 2,169 studies and 27,736 species-by-site 104 

records for 12,702 plant species and combined it with information about dominant plant species 105 

and their growth form across distinct combinations of Bailey’s with 98 ecoregions (Bailey, 2014) 106 

and European Space Agency (ESA) land cover categories (ESA, 2017) with spatial resolution of 107 

300 m. Their maps provide quantitative estimates of the distribution of aboveground biomass 108 

fractions among AM, ECM, and ericoid mycorrhiza (ERM) plants withins areal units of 10 109 

arcmin.  110 
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The maps D and B are principally different from maps A and C. Consequently, 111 

conversions to unify the data for comparisons have to be applied. Map D shows fractions of 112 

biomass for all plants, not only trees, while the map B shows the likelihood of occurrence of 113 

ECM biomass in a grid cell based on a species distribution model fit to a genomic database. 114 

Sulman et al. (2019) produced a range from very low likelihood of ECM fungal DNA being 115 

present in observations to higher likelihood of ECM presence. In order to compare map B with 116 

other maps, the ECM map was first combined with the AM map and normalized, producing a 117 

spectrum that incorporates both mycorrhizal types. 118 

A regridding process of the maps to CLM5 grid scales was applied by calculating an 119 

average value for ECM in percentage per PFT per gridcell based on the GLC2000 land cover 120 

data (Bartholomé & Belward, 2005) at a spatial resolution of 500 m following a look-up table 121 

(Supplementary Table S1). The average value of ECM percentage was assigned to one of the 122 

16 particular natural vegetation PFTs in CLM5 per gridcell, assuming that AM and ECM trees 123 

do not differ in biomass. In this case, using basal area maps and biomass percentages map 124 

interchangeably is acceptable in tree-dominated areas. In other areas, it is assumed that although 125 

differences in the data products might exist, the nature of the measure is assumed to have little 126 

impact, as long as given in the format of a ratio of ECM over ECM plus AM present in the grid 127 

cells, due to the fact that CLM5 ingests the data as a ECM ratio per PFT. 128 

 129 

 130 

 131 

 132 

Table S1. Look-up table between GLC Global Class and CLM PFTs. 133 

CLM PFT Classification GLC Global Class  

PFT 0  
Bare soil (not 

vegetated) 
( 19 )Bare Areas 

PFT 1 

Needleleaf 

evergreen 

temperate tree 

( 04 )Tree Cover, needle-leaved, evergreen; ( 06 )Tree Cover, 

mixed leaf type; ( 07 )Tree Cover, regularly flooded, fresh  

water (& brackish); ( 08 )Tree Cover, regularly flooded, saline 

water; ( 09 )Mosaic; ( 10 )Tree Cover, burnt; ( 17 )Mosaic;  
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PFT 2 

Needleleaf 

evergreen boreal 

tree 

( 04 )Tree Cover, needle-leaved, evergreen; ( 06 )Tree Cover, 

mixed leaf type; ( 07 )Tree Cover, regularly flooded, fresh  

water (& brackish); ( 08 )Tree Cover, regularly flooded, saline 

water; ( 09 )Mosaic; ( 10 )Tree Cover, burnt; ( 17 )Mosaic;  

PFT 3 

Needleleaf 

deciduous boreal 

tree 

( 05 )Tree Cover, needle-leaved, deciduous; ( 06 )Tree Cover, 

mixed leaf type; ( 07 )Tree Cover, regularly flooded, fresh  

water (& brackish); ( 08 )Tree Cover, regularly flooded, saline 

water; ( 09 )Mosaic; ( 10 )Tree Cover, burnt; ( 17 )Mosaic;  

PFT 4 

Broadleaf 

evergreen 

tropical tree 

( 01 ) Tree Cover, broadleaved, evergreen; ( 06 )Tree Cover, 

mixed leaf type; ( 07 )Tree Cover, regularly flooded, fresh  

water (& brackish); ( 08 )Tree Cover, regularly flooded, saline 

water; ( 09 )Mosaic; ( 10 )Tree Cover, burnt; ( 17 )Mosaic;  

PFT 5 

Broadleaf 

evergreen 

temperate tree 

( 01 ) Tree Cover, broadleaved, evergreen; ( 06 )Tree Cover, 

mixed leaf type; ( 07 )Tree Cover, regularly flooded, fresh  

water (& brackish); ( 08 )Tree Cover, regularly flooded, saline 

water; ( 09 )Mosaic; ( 10 )Tree Cover, burnt; ( 17 )Mosaic;  

PFT 6 

Broadleaf 

deciduous 

tropical tree 

( 02 )Tree Cover, broadleaved, deciduous, closed; ( 06 )Tree 

Cover, mixed leaf type;  ( 07 )Tree Cover, regularly flooded, 

fresh  water (& brackish); ( 08 )Tree Cover, regularly flooded, 

saline water; ( 09 )Mosaic; ( 10 )Tree Cover, burnt; ( 17 

)Mosaic;  

PFT 7 

Broadleaf 

deciduous 

temperate tree 

( 02 )Tree Cover, broadleaved, deciduous, closed; ( 06 )Tree 

Cover, mixed leaf type;  ( 07 )Tree Cover, regularly flooded, 

fresh  water (& brackish); ( 08 )Tree Cover, regularly flooded, 

saline water; ( 09 )Mosaic; ( 10 )Tree Cover, burnt; ( 17 

)Mosaic;  

PFT 8 

Broadleaf 

deciduous boreal 

tree 

( 02 )Tree Cover, broadleaved, deciduous, closed; ( 06 )Tree 

Cover, mixed leaf type;  ( 07 )Tree Cover, regularly flooded, 

fresh  water (& brackish); ( 08 )Tree Cover, regularly flooded, 

saline water; ( 09 )Mosaic; ( 10 )Tree Cover, burnt; ( 17 

)Mosaic;  
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PFT 9 
Broadleaf 

evergreen shrub 

( 01 ) Tree Cover, broadleaved, evergreen; ( 06 )Tree Cover, 

mixed leaf type; ( 09 )Mosaic; ( 11 )Shrub Cover, closed-open, 

evergreen; ( 13 )Herbaceous Cover, closed-open; ( 14 )Sparse 

Herbaceous or sparse Shrub Cover; ( 15 )Regularly flooded 

Shrub and/or Herbaceous Cover; ( 17 )Mosaic; ( 18 )Mosaic 

PFT 10 

Broadleaf 

deciduous 

temperate shrub 

( 03 )Tree Cover, broadleaved, deciduous, open; ( 06 )Tree 

Cover, mixed leaf type; ( 09 )Mosaic; ( 12 )Shrub Cover, 

closed-open, deciduous; ( 13 )Herbaceous Cover, closed-open; 

( 14 )Sparse Herbaceous or sparse Shrub Cover; ( 15 

)Regularly flooded Shrub and/or Herbaceous Cover; ( 17 

)Mosaic; ( 18 )Mosaic 

PFT 11 

Broadleaf 

deciduous boreal 

shrub 

( 03 )Tree Cover, broadleaved, deciduous, open; ( 06 )Tree 

Cover, mixed leaf type; ( 09 )Mosaic; ( 12 )Shrub Cover, 

closed-open, deciduous; ( 13 )Herbaceous Cover, closed-open; 

( 14 )Sparse Herbaceous or sparse Shrub Cover; ( 15 

)Regularly flooded Shrub and/or Herbaceous Cover; ( 17 

)Mosaic; ( 18 )Mosaic 

PFT 12 C3 arctic grass 

( 09 )Mosaic; ( 13 )Herbaceous Cover, closed-open; ( 14 

)Sparse Herbaceous or sparse Shrub Cover; ( 15 )Regularly 

flooded Shrub and/or Herbaceous Cover; ( 17 )Mosaic; ( 18 

)Mosaic 

PFT 13 
C3 nonarctic 

grass 

( 09 )Mosaic; ( 13 )Herbaceous Cover, closed-open; ( 14 

)Sparse Herbaceous or sparse Shrub Cover; ( 15 )Regularly 

flooded Shrub and/or Herbaceous Cover; ( 17 )Mosaic; ( 18 

)Mosaic 

PFT 14 C4 grass 

( 09 )Mosaic; ( 13 )Herbaceous Cover, closed-open; ( 14 

)Sparse Herbaceous or sparse Shrub Cover; ( 15 )Regularly 

flooded Shrub and/or Herbaceous Cover; ( 17 )Mosaic; ( 18 

)Mosaic 

PFT 15 Corn 
( 09 )Mosaic; ( 16 )Cultivated and managed areas; ( 17 

)Mosaic; ( 18 )Mosaic 
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PFT 16 Wheat 
( 09 )Mosaic; ( 16 )Cultivated and managed areas; ( 17 

)Mosaic; ( 18 )Mosaic 

PFT 17 NaN 

( 20 )Water Bodies (natural & artificial); ( 21 )Snow and Ice 

(natural & artificial); ( 22 )Artificial surfaces and associated 

areas; ( 23 )No data 

 134 

*(09) Mosaic: Tree cover / Other natural vegetation; (17) Mosaic: Cropland / Tree Cover / Other 135 

natural vegetation; (18) Mosaic: Cropland / Shrub or Grass Cover. 136 

 137 

Table S2. Average carbon cost values per unit nitrogen (gN.kgC-1) from 2000 to 2010 for each 138 

different pathway and sum for all new maps and the default one in CLM5.  139 

           

Pathway cost Reference TRANSIENT – 2000 – 2010 

(gN.kgC-1) Map A (CLM5) Map B  Map C  Map D 
Average  

(B,C,D) 
Change (%) 

NMYC 1.15 1.15 1.21 1.04 1.13 1.4% 

NFIX 104.00 103.80 105.20 107.60 105.53 -1.5% 

NRETRANS 925.00 924.00 905.00 914.00 914.33 1.2% 

NNONMYC 115.53 115.13 130.00 124.97 123.01 -6.5% 

TOTALN 38.33 38.07 36.62 37.82 37.50 2.2% 

 140 

 141 

Table S3. Average values from 2000 to 2010 of nitrogen uptake for each one of the different 142 

pathways and sum for the spatially distributed PFT based.  143 

  2000-2010       

Pathway Reference TRANSIENT – 2000 – 2010 

(TgNyr-1) 
Map A 

(CLM5) 
Map B  Map C  Map D 

NECM  10.7 10.8 14.8 7.5 

NAM 9.9 9.8 8.7 11.8 

NFIX 52.0 51.9 52.6 53.8 
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NRETRANS 92.5 92.4 90.5 91.4 

NNONMYC 808.7 805.9 793.0 799.8 

TOTALN 973.7 970.8 959.5 964.4 

 144 

 145 

 146 

 147 

 148 

Table S4. Average values from 2000 to 2010 of carbon costs of nitrogen uptake for each one of 149 

the different pathways and sum for the spatially distributed PFT based. The values of CLM4-150 

FUN from Shi et al. (2016) are shown as reference.  151 
 

1995-2004 2000-2010 
   

Pathway Reference Reference TRANSIENT - 2000 - 2010 

(PgCyr-1) CLM4-

FUN 

Map A 

(CLM5) 

Map B  Map C  Map D 

NPP_MYC 1.2 17.9 17.9 19.4 18.6 

NPP_NFIX 0.4 0.5 0.5 0.5 0.5 

NPP_NRETRANS 0.6 0.1 0.1 0.1 0.1 

NPP_TOTAL N 2.4 25.4 25.5 26.2 25.5 

NPP_NPASSIVE 0.0 0.0 0.0 0.0 0.0 

NPP_NDIRECT 0.2 7.0 7.0 6.1 6.4 

 152 
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 153 

Figure S1. PFT global average of ECM fraction in percentage for ref. (Sulman et al., 2019); ref. 154 

(Steidinger et al., 2019) present and future (2071); ref. (Soudzilovskaia et al., 2019) and the base 155 

map in CLM5 as in ref. (Shi et al., 2016). 156 
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157 

Figure S2. Nitrogen uptake through ectomycorrhizal association (NECM) in TgNyr-1 for the 158 

transient run (1850-2010) for ref. (Sulman et al., 2019); ref. (Steidinger et al., 2019); and ref. 159 

(Soudzilovskaia et al., 2019) and the base map in CLM5 as in ref. (Shi et al., 2016) based on 160 

fixed PFT values. 161 

 162 

 163 

 164 

 165 

 166 

 167 

 168 

 169 

 170 

 171 

 172 
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          Sulman et al. (2019)                 Steidinger et al. (2019)          Soudzilovskaia et al. (2019) 173 

   174 

Figure S3. Revised global AM N uptake (gNm-2y-1) spatial distribution between a. Sulman et al. 175 

(2019); b. Steidinger et al. (2019); and c. Soudzilovskaia et al. (2019) and the base map in CLM5 176 

as in Shi et al. (2016) based on PFT values per grid cell.  177 

 178 

                                  Sulman et al. (2019)     Steidinger et al. (2019)  Soudzilovskaia et al. (2019) 179 

NPP_NActive 

   

NPP_NFix 

   

NPP_NRetran

s 

   

NPP_Nuptake 

   

 180 

Figure S4. Revised carbon used for nitrogen uptake (gCm-2y-1) spatial distribution between a. 181 

Sulman et al. (2019); b. Steidinger et al. (2019); and c. Soudzilovskaia et al. (2019) and the base 182 
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map in CLM as in Shi et al. (2016) based on PFT values per gridbox for different pathways: 183 

Mycorrhizal (NPP_NActive), Symbiotic BNF (NPP_NFix), retranslocated N (NPP_NRetrans), 184 

and total (NPP_Nuptake). 185 

           186 

 187 

            Sulman et al. (2019)              Steidinger et al. (2019)          Soudzilovskaia et al. (2019) 188 

  189 

Figure S5. Revised Autotrophic Respiration (gCm-2y-1) spatial distribution between a. Sulman et 190 

al. (2019); b. Steidinger et al. (2019); and c. Soudzilovskaia et al. (2019) and the base map in 191 

CLM as in Shi et al. (2016) based on fixed PFT values (above) and based on PFT values per 192 

gridbox (below).  193 

 194 
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a.                                                                           b. 210 

 211 

      c.                                                                                    d.  212 

 213 

Figure S6. Normalized linear regression slope of a. NPP, b. NPP_NUPTAKE, c. 214 

PLANT_NDEMAND, and d. NUPTAKE with time. 215 

 216 

 217 
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 218 

Figure S7. Global average maximum NPP (PgC.yr-1) for the transient historical runs from 1850 219 

to 2010 with CLM5 for all different ECM maps. 220 

 221 
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