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Abstract

Fluvial bedrock incision is driven by the impact of moving bedload particles. Mechanistic, sediment-flux-dependent incision

models have been proposed, but the stream power incision model (SPIM) is frequently used to model landscape evolution over

large spatial and temporal scales. This disconnect between the mechanistic understanding of fluvial bedrock incision on the

process scale, and the way it is modelled on long time scales presents one of the current challenges in quantitative geomorphology.

Here, a mechanistic model of fluvial bedrock incision that is rooted in current process understanding is explicitly upscaled to

long time scales by integrating over the distribution of discharge. The model predicts a channel long profile form equivalent

to the one yielded by the SPIM, but explicitly resolves the effects of channel width, cross-sectional shape, bedrock erodibility

and discharge variability. The channel long profile chiefly depends on the mechanics of bedload transport, rather than bedrock

incision. In addition to the imposed boundary conditions specifying the upstream supply of water and sediment and the incision

rate, the model includes four free parameters, describing the at-a-station hydraulic geometry of channel width, the dependence

of bedload transport capacity on channel width, the threshold discharge of bedload motion, and reach-scale cover dynamics.

For certain parameter combinations, no solutions exist. However, by adjusting the free parameters, one or several solutions can

usually be found. The controls on and the feedbacks between the free parameters have so far been little studied, but may exert

an important control on bedrock channel morphology and dynamics.
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Abstract 16 

Fluvial bedrock incision is driven by the impact of moving bedload particles. Mechanistic, 17 

sediment-flux-dependent incision models have been proposed, but the stream power incision 18 

model (SPIM) is frequently used to model landscape evolution over large spatial and temporal 19 

scales. This disconnect between the mechanistic understanding of fluvial bedrock incision on the 20 

process scale, and the way it is modelled on long time scales presents one of the current 21 

challenges in quantitative geomorphology. Here, a mechanistic model of fluvial bedrock incision 22 

that is rooted in current process understanding is explicitly upscaled to long time scales by 23 

integrating over the distribution of discharge. The model predicts a channel long profile form 24 

equivalent to the one yielded by the SPIM, but explicitly resolves the effects of channel width, 25 

cross-sectional shape, bedrock erodibility and discharge variability. The channel long profile 26 

chiefly depends on the mechanics of bedload transport, rather than bedrock incision. In addition 27 

to the imposed boundary conditions specifying the upstream supply of water and sediment and 28 

the incision rate, the model includes four free parameters, describing the at-a-station hydraulic 29 

geometry of channel width, the dependence of bedload transport capacity on channel width, the 30 

threshold discharge of bedload motion, and reach-scale cover dynamics. For certain parameter 31 

combinations, no solutions exist. However, by adjusting the free parameters, one or several 32 

solutions can usually be found. The controls on and the feedbacks between the free parameters 33 

have so far been little studied, but may exert an important control on bedrock channel 34 

morphology and dynamics.  35 

Plain Language Summary 36 

Bedrock erosion by rivers is driven by the impact of moving bedload particles, chipping away 37 

tiny pieces of rocks in their passage. Bedload transport occurs infrequently, during floods. Over 38 

thousands of years, this slow process shapes the river, sometimes leading to the creation of 39 

spectacular landforms such as gorges. Mechanistic models of fluvial bedrock erosion explicitly 40 

take into account the effects of moving bedload particles, while models used for long time scale 41 

do not. Here, the connection between mechanistic and long-term models is made explicit by 42 

integrating a mechanistic model over the entire distribution of floods, yielding solutions for the 43 

long-term erosion rate and the channel bed slope. Some of these solutions are similar to those 44 

used previously, but other solutions are also possible, showing the rich dynamic behavior that 45 

rivers can exhibit. The solutions also make explicit the role of lithology, channel width, and 46 

discharge variability, which where previously hidden in a single lumped calibration parameter. 47 

1 Introduction 48 

River processes are driven by flowing water. Water discharge varies over time, according the spatial and temporal 49 

patterns of precipitation in the catchment, its size and its hydrological properties (e.g., Deal et al., 2018). While 50 

rivers may respond to this variability by visibly changing their shape over the course of a single flood event, over 51 

long time scales, it is thought that fluvial incision rates and average river morphology depend on some characteristic 52 

statistics of the distribution of discharge (e.g., Blom et al., 2017; DiBiase and Whipple, 2011; Lague et al., 2005; 53 

Molnar, 2001; Molnar et al., 2006; Scherler et al., 2017; Tucker, 2004). Describing the relationship between short-54 

term mechanistic processes active in rivers and the long-term evolution of river morphology is a central problem in 55 

fluvial morphology, both for operational challenges such as river training and management, and for the 56 

understanding of the evolution of landforms over geological timescales. 57 

Bedrock rivers are a key component of erosional landscapes such as active mountain belts. On the process scale, 58 

fluvial bedrock incision is thought to be driven by the impact of moving bedload particles. Numerous observations 59 

in laboratory experiments and in natural streams have by now been reported, demonstrating that bedload transport 60 

exerts a dominant control on the patterns and rates of erosion (e.g., Beer et al., 2017; Finnegan et al., 2007; Mishra 61 
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et al., 2018; Shepherd, 1972; Wohl and Ikeda, 1997). A number of sediment-related effects have been identified, two 62 

of which seem to be most important. The tools effect arises because fluvial bedrock erosion is driven by the impacts 63 

of moving bedload particles, implying that an increasing number of moving particles leads to an increasing number 64 

of impacts and therefore higher erosion rates (e.g., Beer and Turowski, 2015; Cook et al., 2013; Foley, 1980; Inoue 65 

et al., 2014). The cover effect arises because sediment residing on the bed can shield the bedrock from impacts, 66 

thereby decreasing erosion rates (e.g., Chatanantavet and Parker, 2008; Mishra and Inoue, 2020; Turowski et al., 67 

2008). Yet, in landscape evolution models designed for long timescales, fluvial bedrock erosion is commonly 68 

described by the stream power incision model (SPIM), in which incision rate is a power function of water discharge 69 

and channel bed slope (e.g., Barnhart et al., 2020, Seidl and Dietrich, 1992). The SPIM is unable to account for the 70 

tools and cover effects on the process to decadal time scales, but it remains popular because of its simple form, and 71 

because it reproduces the widely observed power law scaling between channel bed slope and drainage area, and 72 

spatial patterns of knickpoint migration speeds (see Lague, 2014, for a summary of field evidence in the context of 73 

the SPIM). 74 

The gap between mechanistic processes understanding on short timescales, and the popularity of the SPIM on long 75 

timescales currently represents a central challenge in the study of bedrock channel morphodynamics (Venditti et al., 76 

2019). Diverse temporal scales can be theoretically connected by explicit upscaling, integrating instantaneous 77 

process descriptions over the distributions of forcing variables (e.g., Blom et al., 2017; Lague et al., 2005). Attempts 78 

to upscale sediment-flux-dependent incision models in this way have so far been scarce, because multiple interacting 79 

variables make analytical solutions challenging. Turowski et al. (2007) partitioned sediment-carrying and clean 80 

flows using a method suggested by Sklar and Dietrich (2006) in an analytical model of bedrock channel morphology 81 

including both tools and cover effects. Lague (2010) included the cover effect, but not the tools effect, into a 82 

numerical model of bedrock channel evolution, forced by random time series of daily discharge following an inverse 83 

gamma distribution (Crave and Davy, 2001). None of these attempts captures the entire range of conditions and 84 

dynamic behavior that can be expected for natural bedrock rivers. 85 

Here, I present analytical solutions for the long-term incision rate and steady state channel morphology using a 86 

mechanistic incision law including both tools and cover effects. The solutions demonstrate that the steady state 87 

channel long profile is set by bedload transport rather than bedrock incision processes, and offers insights into the 88 

role of thresholds and channel width, and the river’s adjustment to variable discharge. 89 

2 Theoretical treatment 90 

In this chapter, I develop a description of a steady state bedrock channel, upscaling from a sediment-flux-dependent 91 

erosion law including both tools and cover effects. Several stochastically varying forcing variables, including water 92 

discharge and bedload transport rate, and dependent variables such as bed cover that may exhibit a strong history 93 

dependence, are addressed in turn to explain the assumptions made to make an analytical solution possible. By the 94 

end, solutions for the long-term mean sediment transport rate, bed cover and incision rate are obtained. 95 

2.1 General consideration 96 

In previous treatments, water discharge was assumed to be the only stochastically fluctuating parameter. In this case, 97 

to upscale instantaneous incision laws to long time scales, we need to integrate over the distribution of discharge, 98 

assumed to follow the inverse gamma distribution (e.g., Crave and Davy, 2001; Lague et al., 2005; Molnar et al., 99 

2006) 100 

pdf(𝑄∗) =
𝑘𝑘+1

Γ(𝑘 + 1)
exp {−

𝑘

𝑄∗
} 𝑄∗−

(2+𝑘)
 101 

(1) 102 

Here, Q* is the instantaneous discharge Q normalized by the long-term mean discharge 𝑄̅, the constant k is a 103 

measure of the variability of discharge (note that k decreases with increasing discharge variability), exp{x} denotes 104 

the natural exponential function, and Γ(x) denotes the gamma function, defined by 105 

Γ(𝑥) = ∫ exp{−𝑧}𝑧𝑥−1𝑑𝑧
∞

0

 106 

(2) 107 

Here, z is a dummy variable. The long-term mean of a particular discharge-dependent quantity X of interest can be 108 

obtained by integrating over the distribution 109 
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𝑋̅ = ∫ 𝑋(𝑄∗)pdf(𝑄∗)𝑑𝑄∗
𝑄𝑚𝑎𝑥

𝑄𝑚𝑖𝑛

 110 

(3) 111 

Here, Qmin and Qmax denote the minimum and maximum discharge considered to be relevant for setting X, and the 112 

overbar denotes the long-term mean of a parameter, as obtained by the integral in eq. (3). For the analysis in the 113 

paper, I assume that Qmax is sufficiently high such that the distribution of discharge is adequately captured by the 114 

right-hand power law tail of the can be integrated to infinity (see Lague et al., 2005, for a detailed discussion of the 115 

effects of this assumption). Then, eq. (3) becomes 116 

𝑋̅ =
𝑘𝑘+1

Γ(𝑘 + 1)
∫ 𝑋(𝑄∗)exp {−

𝑘

𝑄∗
} 𝑄∗−

(2+𝑘)𝑑𝑄∗
∞

𝑄𝑚𝑖𝑛

 117 

(4) 118 

When dealing with sediment-flux-dependent incision laws, the bedload transport rate is another driving variable 119 

affecting incision rates directly via the tools affect and indirectly via the cover effect. Bedload transport rates can 120 

fluctuate strongly, and measured rates can scatter over several orders of magnitude for a given discharge (e.g., 121 

Turowski, 2010). In addition, the amount of sediment residing on the bed, which determines bed cover, is a history-122 

dependent state variable. Integrating explicitly over the temporal variation of these variables would prevent an 123 

analytical treatment and necessitate a numerical solution. To deal with this problem, I introduce an intermediate 124 

timescale. At this timescale, the short-term fluctuations of bedload transport rates and sediment cover are averaged 125 

out, and the average can be treated as a deterministic function of discharge. To clearly distinguish the quantities at 126 

the two timescales, I use the term ‘average’ and square brackets for the intermediate timescale, and the term ‘mean’ 127 

and an overbar for the geological timescale. 128 

2.2 Treatment of channel width 129 

A fully dynamic model of bedrock channel width in a sediment-flux-dependent setting is currently not available. 130 

Commonly, channel width is assumed to depend on discharge according to a power law, using standard downstream 131 

and at-a-station hydraulic geometry relationships of the form 132 

 〈𝑊〉 = 𝑘𝑊𝑄̅
𝜔𝑑 133 

(5) 134 

 𝑊 = 〈𝑊〉𝑄∗𝜔𝑎  135 
(6) 136 

Here, 〈𝑊〉 is the channel width corresponding to the long-term average discharge at a particular station, W is the 137 

instantaneous width varying locally with discharge, and ωd and ωa are dimensionless exponents. Within the present 138 

treatment, I replace eq. (5) with the steady state width equation obtained from the model of Turowski (2018)  139 

〈𝑊〉 = (𝑘𝑒𝑑
𝑄𝑠̅̅ ̅

𝐼 ̅
)

1
2

 140 

(7) 141 

Here, ke is a measure of the bedrock erodibility, Qs is the bedload transport rate and I the incision rate, and the 142 

sideward deflection distance d is the distance by which bedload particles can be deflected in the cross-channel 143 

direction (Turowski, 2018). Here, it is treated as a constant, which can be viewed as a general scaling factor with 144 

unit of length within the context of long-term channel morphology. 145 

2.3 Upscaling bedload transport 146 

Bedload transport rate can fluctuate strongly even if hydraulic conditions stay constant over time (e.g., Turowski, 147 

2010). However, at a given discharge, there exists a well-defined mean transport rate that scales with discharge. At 148 

the intermediate timescale, I assume short-term fluctuations of transport rates can be neglected, and average bedload 149 

supply at a given discharge is a function of discharge and slope of the form (e.g., Smith & Bretherton, 1972; 150 

Rickenmann, 2001) 151 

 152 

〈𝑄𝑠〉 = 𝑘𝐵𝐿(𝑄
𝑚 − 𝑄𝑐𝑡

𝑚)𝑊𝑞𝑆𝑛 153 

(8) 154 

Here, kBL is a dimensional constant, S is the channel bed slope, Qct is the critical discharge for the onset of bedload 155 

transport m, n, and q are dimensionless exponents, and the square brackets denote an average quantity at a given 156 
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discharge. Many standard sediment transport formulas can be expressed in the form of equation (8). The power 157 

function of channel width W is included to make possible the modeling of the varying scaling of sediment flux with 158 

channel width (Carson and Griffith, 1987; Cook et al., 2020), depending on the sediment transport and flow velocity 159 

equations that are used (Fig. 1, Appendix A). Note that, depending on the choice of bedload transport equation, m, n, 160 

and q are not independent of each other (Appendix A). Using the normalized discharge Q*, the bedload transport 161 

rate can be rewritten as 162 

 163 

〈𝑄𝑠〉 = 𝑘𝐵𝐿𝑄̅
𝑚(𝑄∗𝑚 − 𝑄𝑐𝑡

∗ 𝑚)𝑊𝑞𝑆𝑛 164 
(9) 165 

Combining eq. (9) with eq. (7), we obtain 166 

 167 

〈𝑄𝑠〉 = 𝑘𝐵𝐿 (𝑘𝑒𝑑
𝑄𝑠̅̅ ̅

𝐼 ̅
)

𝑞
2

𝑄∗𝑞𝜔𝑎𝑄̅𝑚(𝑄∗𝑚 − 𝑄𝑐𝑡
∗ 𝑚)𝑆𝑛 168 

(10) 169 

Using eq. (4), the long-term sediment flux is then given by 170 

𝑄𝑠̅̅ ̅ =
𝑘𝑘+1

Γ(𝑘 + 1)
𝑘𝐵𝐿 (𝑘𝑒𝑑

𝑄𝑠̅̅ ̅

𝐼 ̅
)

𝑞
2

𝑄̅𝑚𝑆𝑛∫ exp {−
𝑘

𝑄∗
} (𝑄∗𝑞𝜔𝑎+𝑚−

(2+𝑘) − 𝑄𝑐𝑡
∗ 𝑚𝑄∗𝑞𝜔𝑎−

(2+𝑘))𝑑𝑄∗
∞

𝑄𝑐𝑡
∗

 171 

(11) 172 

The integral evaluates to 173 

𝑄𝑠̅̅ ̅ = 𝐹𝑄𝑠𝑘𝐵𝐿 (𝑘𝑒𝑑
𝑄𝑠̅̅ ̅

𝐼 ̅
)

𝑞
2

𝑄̅𝑚𝑆𝑛 174 

(12) 175 

Here, FQs is function of the form 176 

𝐹𝑄𝑠 =
𝑘𝑞𝜔𝑎

Γ(𝑘 + 1)
[𝑘𝑚 (Γ(𝑘 + 1 − 𝑞𝜔𝑎 −𝑚) − Γ(𝑘 + 1 − 𝑞𝜔𝑎 −𝑚,

𝑘

𝑄𝑐𝑡
∗ ))177 

− 𝑄𝑐𝑡
∗ 𝑚 (Γ(𝑘 + 1 − 𝑞𝜔𝑎) − Γ (𝑘 + 1 − 𝑞𝜔𝑎 ,

𝑘

𝑄𝑐𝑡
∗ ))] 178 

(13) 179 

The upper incomplete gamma function is defined by  180 

Γ(𝑥, 𝑐) = ∫ exp{−𝑧}𝑧𝑥−1𝑑𝑧
∞

𝑐

 181 

(14) 182 
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 183 
Figure 1: Dependence of bedload rate on channel width, calculated using a common shear-stress-dependent bedload 184 

equation (Meyer-Peter and Müller, 1948; Fernandez-Luque and van Beek, 1976) combined with the Manning 185 

roughness equation (solid blue line) and the Darcy-Weissbach roughness equation (dashed blue line) (see Appendix 186 

A). Note that the threshold of motion cuts off the relationship both for large width, because flow depth becomes too 187 

small for transport to occur, and for small width, because shear stress is partitioned from the bed to the channel 188 

walls. The scaling bracketing the relationship for small width, giving q = 5/2 (black line), for intermediate width 189 

using the Darcy-Weissbach friction equation, giving q = 0 (dashed red line), and the Manning equation, giving 190 

q = 1/10 (solid red line), are indicated (see Appendix A). 191 

 192 

2.4 Upscaling bed cover 193 

Bed cover C can vary over short timescales, and is dependent on the history of sediment supply and hydraulic 194 

forcing (e.g., Lague, 2010; Turowski and Hodge, 2017). However, response timescales of bed cover to varying flow 195 

conditions are order of magnitudes smaller than those of the adjustment of channel width and slope (Turowski, 196 

2020). As a result, similar to bedload transport, cover can be treated to be independent of discharge at the 197 

intermediate timescale, following a distribution with a well-defined average for a given discharge. This implies that 198 

instantaneous cover C viewed as independent of discharge, and its long-term mean 〈𝐶〉 systematically varies with 199 

discharge. Here, the relationship between the average cover and discharge is modelled by a power law function with 200 

a scaling exponent α (Turowski et al., 2013), from hereon called the cover exponent (Fig. 2). The bed changes from 201 

fully to partially covered at a characteristic dimensionless discharge  𝑄∗𝑐𝑐 . When α > 0, bed cover increases with 202 

increasing discharge, and the bedrock is exposed during small flows, for  𝑄∗ < 𝑄∗𝑐𝑐. This is the flood-depositing 203 

case, for which the cover function is given by 204 

〈𝐶〉 =

{
 
 

 
 1 for 𝑄∗ ≥ 𝑄∗

𝑐𝑐

(
𝑄∗

𝑄∗
𝑐𝑐

)

𝛼

for 0 < 𝑄∗ < 𝑄∗𝑐𝑐

0 otherwise

 205 

(15) 206 

When α < 0, bed cover decreases with increasing discharge, and bedrock is exposed during large flows, for  𝑄∗ >207 

𝑄∗𝑐𝑐 . This is the flood-cleaning case, for which the cover function is given by  208 
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〈𝐶〉 =

{
 
 

 
 1 for 0 < 𝑄∗ ≤ 𝑄∗

𝑐𝑐

(
𝑄∗

𝑄∗𝑐𝑐
)

𝛼

for 𝑄∗ > 𝑄∗
𝑐𝑐

0 otherwise

 209 

(16) 210 
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Figure 2: Illustration of the scaling relationship of cover with discharge and the definitions of flood-cleaning and 213 

flood-depositing channels (adapted from Turowski et al., 2013). For the flood-depositing case, where α > 0, the 214 

covered fraction of the bed increases with increasing discharge, implying that the bed is partially covered at 215 

discharge smaller than the characteristic discharge 𝑄∗𝑐𝑐 and fully covered at discharges above it. Bedrock erosion 216 

occurs at low and intermediate discharges. For the flood-cleaning case, where α < 0, the covered fraction of the bed 217 

decreases with increasing discharge, implying that the bed is partially covered at discharge larger than the 218 

characteristic discharge 𝑄∗𝑐𝑐 and fully covered at discharges below it. Bedrock erosion occurs during floods. 219 

 220 

For convenience, the cover threshold can be written as a multiple b of the threshold discharge 𝑄𝑐𝑡
∗  for the onset of 221 

bedload transport 222 

𝑄𝑐𝑐
∗ = 𝑏𝑄𝑐𝑡

∗  223 

(17) 224 

With the assumptions made so far, the system features two discharge thresholds, one for the onset of bedload motion 225 

and therefore the activity of the tools effect, the other for the change of fully to partially covered bed. Together with 226 

the two types of cover behavior of the channel (Fig. 2), flood-depositing (α > 0, eq. 15) and flood-cleaning (α < 0, 227 

eq. 16), we can distinguish four cases, yielding different integrative limits and solutions for the long-term results 228 

(Table 1). In the flood-cleaning case, when  𝑄𝑐𝑡
∗  ≤ 𝑄∗𝑐𝑐 (b > 1), erosion occurs for all discharges greater than 𝑄∗𝑐𝑐 . 229 

In the flood-cleaning case, when  𝑄𝑐𝑡
∗ > 𝑄∗

𝑐𝑐
 (b < 1), erosion occurs for all discharges greater than 𝑄∗

𝑐𝑡
. In the 230 

flood-depositing case, when  𝑄𝑐𝑡
∗  ≤ 𝑄∗

𝑐𝑐
 (b > 1), erosion occurs for all discharges greater than 𝑄∗

𝑐𝑡
 and smaller than 231 

𝑄∗
𝑐𝑐

.  In the flood-depositing case, when  𝑄𝑐𝑡
∗ > 𝑄∗

𝑐𝑐
 (b < 1), no erosion occurs, because bedload moves and tools 232 

are only available at discharges when the bed is fully covered. For the three cases in which erosion occurs at some 233 

discharges, equation (4) can be applied to calculate the long-term mean cover. The solutions have the general form  234 

𝐶̅ = 𝐹𝐶(𝑘, 𝑄
∗
𝑐𝑡 , 𝑄

∗
𝑐𝑐 ,𝑚, 𝛼) 235 

(18) 236 

Here, FC is a dimensionless function. Full solutions for FC are given in Appendix B. 237 
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 238 

Table 1: The ranges of Q* for which erosion is possible in the four cases 239 

Cover behavior 𝑄𝑐𝑡
∗  ≤ 𝑄∗𝑐𝑐  𝑄𝑐𝑡

∗ > 𝑄∗𝑐𝑐 

Flood-cleaning α < 0 𝑄∗  ≥ 𝑄∗𝑐𝑐 𝑄∗  ≥ 𝑄∗𝑐𝑡  

Flood-depositing α > 0 𝑄∗𝑐𝑐 ≥ 𝑄
∗  ≥ 𝑄∗𝑐𝑡 No erosion possible1. 

1 Bedload transport occurs and tools are available only at large discharges, when the bed is fully covered. 240 

 241 

 242 

2.5 Upscaling sediment-flux-dependent incision 243 

A sediment-flux-dependent erosion law, including tools and cover effects, can be given by (Auel et al., 2017; 244 

Turowski, 2018) 245 

𝐼 = 𝑘𝑒
𝑄𝑠
𝑊
(1 − 𝐶) 246 

(19) 247 

The dimensional constant ke depends on rock, sediment, and fluid properties, given by Auel et al. (2017) as 248 

𝑘𝑒 =
𝑔𝑌

230𝑘𝑣𝜎𝑇
2
(
𝜌𝑠
𝜌
− 1) 249 

(20) 250 

Here, g is the acceleration due to gravity, Y is Young’s modulus of the bedrock, σT its tensile strength, kv is the 251 

dimensionless rock resistance coefficient, and ρs and ρ are the sediment and fluid density, respectively. At the 252 

intermediate timescale, equation (19) can be rewritten as  253 

𝐼 = 𝑘𝑒
〈𝑄𝑠〉

𝑊
(1 − 〈𝐶〉) 254 

(21) 255 

Combining equations (4), (6), (7), (10), (12), (13), (17), (18), and (21), the long-term incision rate can be evaluated 256 

by the integral 257 

𝐼 ̅ =
𝑘𝑘+1

Γ(𝑘 + 1)
𝑘𝑒𝑘𝐵𝐿 (𝑘𝑒𝑑

𝑄𝑠̅̅ ̅

𝐼 ̅
)

𝑞−1
2

𝑄̅𝑚𝑆𝑛∫ 𝑄∗
(𝑞−1)𝜔𝑎(𝑄∗𝑚 − 𝑄𝑐𝑡

∗ 𝑚) (1 − (
𝑄∗

𝑄∗𝑐𝑐
)

𝛼

) exp {−
𝑘

𝑄∗
} 𝑄∗−

(2+𝑘)𝑑𝑄∗
𝑄∗𝑚𝑎𝑥

𝑄∗𝑚𝑖𝑛

 258 

(22) 259 

Here, the limits of integration 𝑄∗𝑚𝑖𝑛  and 𝑄∗𝑚𝑎𝑥  depend on the values of α and b (see Table 1). The full solutions for 260 

all three cases are given in Appendix C, and take the general form 261 

𝐼 ̅ = 𝑘𝑒𝑘𝐵𝐿 (𝑘𝑒𝑑
𝑄𝑠̅̅ ̅

𝐼 ̅
)

𝑞−1
2

𝑄̅𝑚𝑆𝑛𝐹𝐼(𝑘, 𝑄
∗
𝑐𝑡 , 𝑄

∗
𝑐𝑐 , 𝑚, 𝑞, 𝜔𝑎, 𝛼) 262 

(23) 263 

Here, 𝐹𝐼(𝑘, 𝑄
∗
𝑐𝑡 , 𝑄

∗
𝑐𝑐 ,𝑚, 𝑞, 𝜔𝑎 , 𝛼) is a dimensionless function depending on the values of α and b (Appendix C). 264 

3 Results 265 

In general, there are four unknown variables, channel bed slope S, the long-term cover fraction 𝐶̅ (eq. 18; see also 266 

Appendix B, eqs. B3, B6, and B9), the long term bedload sediment supply 𝑄𝑠̅̅ ̅ (eq. 12), and the ratio between the 267 

cover threshold and the threshold of bedload motion b (eq. 16). The solutions provide three equations. The long-268 

term incision rate 𝐼 ̅(eq. 23) can be treated as an independent variable that is determined by the long-term uplift or 269 

baselevel lowering rate. Another equation can be obtained from the conditions for steady state, when the long-term 270 

bedload supply is related to the long-term incision rate by 271 

𝑄𝑠̅̅ ̅ = 𝛽̅ 𝐴𝐼 ̅272 
(24) 273 

Here, 𝛽̅  is the long-term mean fraction of sediment that is transported as bedload, and A is the drainage area. I 274 

further substitute discharge with a simple hydrologic relation 275 

𝑄̅ = 𝑅𝐴 276 
(25) 277 
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Here, R is the long-term mean runoff. To illustrate the dependence of channel morphology and of the adjustment 278 

time scales on control and channel morphology parameters, I used parameter values oriented on Lushui at the Liwu 279 

River, Taiwan (Table 2; see Turowski et al., 2007 and Turowski, 2020). The values of reach parameters were either 280 

measured in the field or estimated using literature data.  281 

 282 

Table 2: Parameter values used for the example calculations, following estimates for the Liwu River, at Lushui, 283 

Taiwan (Turowski et al., 2007; Turowski, 2020). 284 

Parameter Symbol Value 

Material properties   

Density of water (kg/m3) ρ 1000 

Density of sediment (kg/m3) ρs 2650 

Young’s modulus (MPa) Y 5×104 

Rock tensile strength (MPa) σT 10 

Rock resistance coefficient kυ 106 

Constants in the equations   

Acceleration due to gravity (m/s2) g 9.81 

Flow velocity friction coefficient kV 10 

Bedload discharge exponent m 1 

Bedload slope exponent n 2 

Bedload coefficient (kg/m3) Kbl 11000 

Critical Shields stress θc 0.045 

Channel reach parameters   

Channel bed slope S 0.02 

Channel width (m) W 40 

At-a-station width exponent ωa 0.4 

Scaling length (deflection length scale) (m) d 0.1 

Median grain size (m) D 0.04 

Daily average water discharge (m3/s) Q 36 

Dimensionless threshold discharge of motion 𝑄∗𝑐𝑡  0.15 

Discharge variability parameter k 3 

Sediment supply (kg/s) Qs 200 

Long-term bedload fraction 𝛽̅ 0.3 

Long-term incision rate (mm/yr) 𝐼 ̅ 1 

 285 

3.1 Steady state channel long profile 286 

Both long-term bedload supply (eq. 12) and long-term incision rate (eq. 23) show the same dependence on channel 287 

bed slope, while long-term mean cover is independent of slope (Appendix B). As a result, channel bed slope S can 288 

be calculated from the equation for long-term bedload supply (eq. 12), which is independent of the cover threshold 289 

and of long-term cover. Inverting eq. (12) for S and substituting eqs. (24) and (25) yields 290 

𝑆 = 𝐹𝑄𝑠
−
1
𝑛 (

𝐼 ̅

𝑘𝐵𝐿
)

1
𝑛

(𝑘𝑒𝑑)
−
𝑞
2𝑛𝛽̅

2−𝑞
2𝑛 𝑅−

𝑚
𝑛𝐴

2−2𝑚−𝑞
2𝑛  291 

(26) 292 

For certain combinations of the parameter values, the function FQs may be negative or not give a solution at all. In 293 

these cases, eq. (26) does not yield a valid solution for the channel bed slope. Parameter combinations without 294 

solutions occur mainly for high discharge variability, with 0 < k < 1.5 (Fig. 3).  295 
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Figure 3: Space of valid solutions of slope (eq. 26) are shown in grey, for a thresholds of motion 𝑄∗𝑐𝑡 = 1. The 297 

choice of other threshold only slightly alters the results. 298 

 299 

3.2 Scaling with discharge variability 300 

The controls on channel morphology by discharge variability k are complicated (Fig. 4), and depend both on the 301 

cover scaling exponent α and the width scaling exponent q. For the same discharge variability k, multiple possible 302 

solutions are available for most of the parameter space. The solution for the channel bed slope S is independent of α, 303 

but strongly dependent on q (Fig. 4A). For small values of k, S increases with increasing k, for intermediate values 304 

of k, no solutions are available (see also Fig. 3), and for large values of k, S decreases with increasing k (Fig. 4A). 305 

The ratio of cover threshold to threshold of motion b (eq. 17), and the long-term mean cover can increase or 306 

decrease with increasing discharge variability k, depending on the values of q and α (Fig. 4 B, C). 307 

0 1 2 3 4 5

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

1E-5

1E-4

1E-3

0.01

0.1

T
h

re
s
h

o
ld

 r
a

ti
o
 b

Discharge variability k

 a=-2,q=0

 a=-2,q=1

 a=-2,q=2.5

 a=2,q=0

 a=2,q=1

 a=2,q=2.5

L
o

n
g

-t
e

rm
 m

e
a

n
 c

o
v
e

r 
C

Discharge variability k

C
h

a
n

n
e

l 
b

e
d

 s
lo

p
e

 S

Discharge variability k

 q=0

 q=1

 q=5/2

 308 
Figure 4: (A) Scaling of slope S (eq. 26), (B) the ratio of cover threshold to threshold of motion b (eq. 17), and (C) of 309 

the long-term mean cover 𝐶̅ with the discharge variability parameter k. Lines for α = -2 (flood-cleaning), crosses for 310 

α = 2 (flood-depositing). Black for q = 0, blue for q = 1, and red for q = 2.5. Note that channel bed slope is 311 

independent of α (eq. 26). For many conditions, there are two solutions available, corresponding to the solutions for 312 

b smaller (dashed) or larger than one (solid) (see Table 1; Appendices B and C). 313 
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 314 

3.3 Control of reach-scale cover behavior 315 

The ratio of cover threshold to threshold of motion b (eq. 17), and the long-term mean cover, depends on reach-scale 316 

cover behaviour, i.e., whether the channel behaves as flood-cleaning (when the cover scaling exponent α < 0) or 317 

flood-depositing (α > 0). For flood-cleaning channels, b is close to zero or to one, for flood-depositing channels, it is 318 

larger than one and evaluates to about seven for the example case (Fig. 5A). The long-term mean cover increases for 319 

increasing α for flood-cleaning channels, and decreases for increasing α for flood-depositing channels (Fig. 5B).  320 
 321 
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Figure 5: (A) Scaling of the ratio of cover threshold to threshold of motion b (eq. 17), and (B) of the long-term mean 323 

cover with the cover scaling exponent alpha (see eqs. 15 and 16). For flood-cleaning streams (α < 0) (cf. Fig. 2, 324 

Table 1), separate solutions are shown for b > 1 (dashed line) and b < 1 (solid line). 325 

 326 

4 Discussion 327 

4.1 Steady state channel long profile 328 

Empirically, the channel long profile of bedrock rivers is often described by a power law function, as has been 329 

observed in many natural settings (e.g., Whipple, 2004; Whitbread et al., 2015): 330 

𝑆 = 𝑘𝑠𝐴
−𝜃 331 

(27) 332 

Here, ks is known as the steepness index and θ is known as the concavity index. The upscaled model yields a similar 333 

slope-area scaling (eq. 26), in which the steady state channel long-profile is controlled by the mechanics of bedload 334 

transport, rather than the mechanics of bedrock incision. This notion is consistent with field observations of Johnson 335 

et al. (2009). Assuming that the long-term average bedload fraction 𝛽̅  scales with drainage area A according to  336 

𝛽̅~𝐴−𝐵 337 
(28) 338 

The concavity index θ is then given by 339 

𝜃 =
2𝑚 − 𝐵(2 − 𝑞)

2𝑛
 340 

(29) 341 

The bedload fraction typically decreases with increasing drainage when different river catchments are compared 342 

(Turowski et al., 2010). Based on field observations in the Himalayas, Dingle et al. (2017) suggested that the 343 

bedload transport rate in actively eroding rivers is constant along a river, despite increasing drainage area, implying 344 

B = 1 for a steady state catchment (cf. eq. 24). In the following, I will discuss the endmember cases of B = 1 345 

(bedload transport rate independent of drainage area) and B = 0 (bedload fraction independent of drainage area). In 346 

the latter case, the concavity index is equal to the ratio of the discharge and slope exponents in the bedload transport 347 

equation (8), m/n, independent of the value of q. In the former case, a wide range of values can be obtained for 348 

concavity index, depending on the choices for m, n, and q. In natural rivers, θ is usual within the range between 0.4 349 

and 0.7 (Lague, 2014; Whipple, 2004). A value of θ = 5/8 = 0.625 is obtained for m = 1 and n = 2, as in the bedload 350 
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transport equation of Rickenmann (2001) (see also the discussion of Turowski, 2018), and q = 5/2, corresponding to 351 

the limit behaviour for narrow channels (Appendix A). Smaller values of q decrease the concavity. A value of 352 

θ = 0.5, a standard choice in many modelling exercises, is obtained for q = 1.5. 353 

  354 

The lack of valid solutions for channel bed slope for certain parameter combinations (Fig. 4), which occurs when the 355 

sum of four terms including the gamma or incomplete gamma functions in eq. (13) are equal to or smaller than zero. 356 

The values of the four terms depend on discharge variability k, the discharge exponent m in the bedload transport 357 

equation (eq. 8), and the product of the width exponent q (eq. 8) and the at-a-station hydraulic geometry exponent 358 

for width, ωa (eq. 6). This suggests that the river needs to adjust its absolute width (which changes q) and its at-a-359 

station hydraulic geometry for width (i.e., the cross-sectional shape, which changes ωa) to achieve a channel long-360 

profile that is consistent with the condition of grade, in which sediment deposition and entrainment are balanced. 361 

The results underline the importance of channel width for understanding bedrock channel dynamics. 362 

4.2 Cover and thresholds 363 

According to the model, long-term channel dynamics are controlled by at least two discharge thresholds, the critical 364 

discharge for the onset of bedload motion, and the discharge at which the channel switches from a fully to a partially 365 

covered bed. The relationship between these two threshold discharges, quantified in their ratio b, depends strongly 366 

both on the reach-scale cover behavior (quantified by the cover scaling exponent α; see Fig. 5a) and discharge 367 

variability k (Fig. 5b). Often multiple solutions are available. Turowski et al. (2013) showed that both flood-cleaning 368 

(α < 0) and flood-depositing (α > 0) bedrock channels exist in nature, and sometimes reaches behaving one way or 369 

the other alternate in a single stream (e.g., Heritage et al., 2004). It is unclear what controls the cover scaling 370 

exponent α, and correspondingly, why a particular reach or stream behaves flood-cleaning or flood-depositing. It can 371 

be expected that both hillslope processes and in-channel processes contribute to this control (cf. Turowski et al., 372 

2013). For example, precipitation amounts and intensity control hillslope sediment supply to the channel by 373 

landsliding or surface wash, but also the in-channel sediment transport capacity via their relationship to discharge. 374 

Channel discharge, in turn, affects upstream sediment supply to a given reach, as well as bank and bed erosion rates. 375 

The cover scaling exponent α could be related to or depend on other parameters such as discharge variability k, and 376 

the cross-sectional shape, quantified by the at-a-station hydraulic geometry exponent for width, ωa, and q. All four 377 

of these parameters are treated as independent variables in the model, but may adjust their values through yet 378 

unknown feedback mechanisms. These topics provide starting points for future research. 379 

 380 

The combination of a flood-depositing channel with a threshold discharge for the onset of bedload motion that is 381 

higher than the discharge at which the bed becomes fully alluviated allows for a solution in which no incision 382 

occurs. Bedrock channels may evolve to this state when tectonic activity of a mountain belt ceases and uplift stops, 383 

rather than turning into an alluvial channel. 384 

4.3 Using the stream-power incision model on long time scales? 385 

The upscaled SPIM (Appendix D; Lague et al., 2005) is able to capture the non-linear dependence of incision rates 386 

on discharge variability observed in the Himalaya (DiBiase and Whipple, 2011; Scherler et al., 2017). The results 387 

obtained from sediment-flux-dependent incision models give similar relationships for flood-cleaning channels and a 388 

ratio of cover threshold to threshold of motion b that is smaller than one (Fig. 6). However, they yield several other 389 

potential solutions, indicating a larger flexibility of the channel to deal with different climatic situations. 390 

 391 
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Figure 6: Comparison of the dependence of incision rate on discharge variability k obtained from the stream power 393 

incision model (SPIM, solid line; see Appendix D) and the sediment-flux-dependent model used herein (see 394 

Appendix C). Calculations were made for q = 0 (A) and q = 5/2 (see Appendix A), and a thresholds of motion 395 

𝑄∗
𝑐𝑡
= 1. 396 

 397 

The model presented in the present paper is rooted in sediment-flux-dependent bedrock incision models rooted in 398 

current mechanistic understanding of fluvial bedrock incision. As such, it connects reach-scale to landscape-scale 399 

approaches in modelling bedrock river dynamics, addressing what Venditti et al. (2019) called a current grand 400 

challenge of geomorphology. The channel long profile predicted by the model yields a power-law dependence of 401 

channel bed slope on incision rate and drainage area similar to the one obtained from the stream-power incision 402 

model (SPIM) (eq. 26). The SPIM has been claimed to provide a description of bedrock channel dynamics on long 403 

time scales (e.g., Venditti et al., 2019), even though its mechanistic assumption – a direct scaling between erosion 404 

rate and stream power (Seidl and Dietrich, 1992) – has been falsified on the process time scale (e.g., Beer and 405 

Turowski, 2015; Sklar and Dietrich, 2001). Whipple and Tucker (2002) already recognized that a wide range of 406 

incision models yield similar or even identical predictions for the channel long profile, and concluded that 407 

observations of transient dynamics need to be used to assess model efficacy. However, studies that have attempted 408 

this arrive at conflicting results. For example, van der Beek and Bishop (2003) found that all of the tested models 409 

could be parameterized to explain their observations, while Tomkin et al. (2003) concluded that none of the tested 410 

models could be fit to their data with physically meaningful parameter values. Valla et al. (2000) found that a 411 

transport-limited model better described their data, while Attal et al. (2011) argued that a SPIM yielded the best fit, 412 

provided a threshold of erosion was included. Even though it is limited to steady state channels, the model 413 

developed herein yields multiple possible solution for a given set of boundary conditions. It has previously been 414 

shown that sediment-flux-dependent incision models can yield transient behavior that mimics either transport- or 415 

detachment-limited conditions or a mixture of both (e.g., Gasparini et al., 2007; Davy and Lague, 2009; Whipple 416 

and Tucker, 2002). This suggests that sediment-flux-dependent incision models as used here can yield the rich 417 

transient behavior inferred from observations in natural bedrock channels (cf. Lague, 2014). 418 

 419 

The long-term incision rate (eq. 26) is explicitly dependent on bedrock erodibility, channel width, and discharge 420 

variability, as well as the free parameters determining reach-scale cover behavior and cross-sectional shape. All of 421 

these effects have previously been argued to be important factors in setting incision rates (e.g., Bursztyn et al., 2015, 422 

Cook et al., 2013, Lague et al., 2005, Whitbread et al., 2015). However, within the SPIM, they are lumped in a 423 

single calibration parameter. The new formulation makes it possible to separate all of these effects. This offers rich 424 

new possibilities for testing the model using data from natural streams. 425 

5 Conclusions 426 

Bedrock channels are thought to evolve towards a steady state in which the long-term incision rate is equal to the 427 

long-term baselevel-lowering rate (e.g., Lague et al., 2005, Whipple, 2004), but also have the need to transport the 428 

supplied sediment load (e.g., Turowski, 2020). Upscaling a sediment-flux-dependent incision model rooted in 429 

current mechanistic understanding of fluvial bedrock incision processes yields several solutions that are consistent 430 

with the requirements for the long-term steady state, but differ in their short time dynamics, for example in the 431 

relationship of bed cover and discharge, or transport capacity and channel width. Some of these solutions are similar 432 

to the behavior expected in the stream power paradigm, but other solutions are also possible. In the stream-power 433 

incision model, both in its instantaneous and in its upscaled form, the effects of channel width, of sediment supply 434 
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and transport, and of bedrock erodibility are lumped together in a single calibration parameter, usually called the 435 

erodibility. In contrast, the model presented here makes the relationship of the long-term incision rate and of channel 436 

geometry with these effects explicit. It thus advances a more detailed picture into the long-term behavior of bedrock 437 

channels and offers a wider range of testable predictions and assumptions.  438 

 439 

For certain parameter combinations, the model does not yield a solution for channel bed slope. However, it is in 440 

most cases possible to find a solution by adjusting the dependence of the bedload transport capacity on channel 441 

width (via the exponent q), the cross-sectional geometry (via the at-a-station hydraulic geometry exponent for width, 442 

ωa), or the reach-scale cover dynamics (via the exponent α). It is unclear what controls these parameters in nature 443 

and whether they interdepend on each other. Still, the model results suggest that the long-term dynamic behavior of 444 

bedrock channels is richer than previously thought, and that there are controls and feedbacks that have been little 445 

explored so far. 446 

  447 
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Appendix A: Width dependence of bedload transport rate 448 

A commonly used equation for bedload transport has the form (e.g., Meyer-Peter and Müller, 1948; Fernandez-449 

Luque and van Beek, 1976) 450 

𝑄𝑠 = 𝛾𝑊 (𝑔 (
𝜌𝑠
𝜌
− 1)𝐷3)

1
2
(𝜏∗ − 𝜏∗𝑐)

3
2 451 

(A1) 452 

Here, γ is a dimensionless coefficient, and D is a representative grain size. The reach-averaged Shields stress 𝜏∗ is 453 

defined by 454 

𝜏∗ =
𝜏

(𝜌𝑠 − 𝜌)𝑔𝐷
 455 

(A2) 456 

Here, τ is the shear stress, given by the DuBoys equation  457 

𝜏 = 𝜌𝑔𝑅ℎ𝑆 458 
(A3) 459 

Here, Rh is the hydraulic radius. The continuity equation for water flow is 460 

𝑄 = 𝐴𝑐𝑉 461 

(A4)  462 

Here, Ac is the cross-sectional area. For a rectangular channel, hydraulic radius and cross-sectional area are given by  463 

𝐴𝑐 = 𝑊𝐻 464 

(A5)  465 

𝑅ℎ =
𝑊𝐻

𝑊 + 2𝐻
 466 

(A6)  467 

Here, H is the flow depth. A generic form for the cross-section averaged flow velocity can be written as  468 

𝑉 = 𝑘𝑉𝑅ℎ
𝛿𝑆

1
2 469 

(A7)  470 

Here, kV is a friction coefficient and δ takes the value of 1/2 for the Darcy-Weissbach equation and 2/3 for the 471 

Manning equation. Eliminating H, Rh, Ac and V by combining equations (A3) to (A7), we obtain  472 

2𝑄 (
𝜏

𝜌𝑔
) = 𝑄𝑆𝑊 − 𝑘𝑉𝑊

2𝑆
1
2
−𝛿 (

𝜏

𝜌𝑔
)
1+𝛿

 473 

(A8)  474 

Equation (A8) does not permit a closed-form solution for τ. However, we can make some statements on scaling. If 475 

width is small, the quadratic term in width can be neglected. Then, shear stress τ is independent of discharge (m = 0), 476 

and proportional to both slope and width, and n = 3/2 and q = 5/2. For intermediate width, the term independent of 477 

width on the left-hand side can be neglected, and scales as  478 

𝜏~𝑊−
1
1+𝛿  479 

(A9)  480 

For the Darcy-Weissbach equation, when δ = 1/2, this results in m = n = 1 and q = 0, while for the Manning 481 

equation, when δ = 2/3, this results in m = 9/10, n = 21/20 and q = 1/10. Note that Rickenmann (2001) showed that 482 

n = 2 gives a better description of field data than the theoretical values given above. He suggested that this deviation 483 

results from the decreasing importance of macro-roughness elements such as stationary boulders when moving 484 

downstream. 485 

Appendix B: Solutions for long-term average cover 486 

For the flood-cleaning case (α < 0) with 𝑄𝑐𝑡
∗ < 𝑄∗𝑐𝑐  (b > 1) we obtain 487 

〈𝐶〉 = {

1 𝑓𝑜𝑟 0 < 𝑄∗ < 𝑄∗𝑐𝑐

(
𝑄∗

𝑄∗𝑐𝑐
)

𝛼

𝑓𝑜𝑟 𝑄∗
𝑐𝑐
≤ 𝑄∗

 488 

(B1) 489 

Combining with equation (4), the integral becomes 490 
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𝐶̅ =
𝑘𝑘+1

Γ(𝑘 + 1)
(∫ exp {−

𝑘

𝑄∗
} 𝑄∗−

(2+𝑘)𝑑𝑄∗
𝑄∗𝑐𝑐

0

+∫ exp {−
𝑘

𝑄∗
} (

𝑄∗

𝑄∗
𝑐𝑐

)

𝛼

𝑄∗−
(2+𝑘)𝑑𝑄∗

∞

𝑄∗𝑐𝑐

) 491 

(B2) 492 

The integral evaluates to 493 

𝐶̅ =
1

Γ(𝑘 + 1)
[Γ (𝑘 + 1,

𝑘

𝑏𝑄𝑐𝑡
∗ ) + 𝑘

𝛼𝑏−𝛼𝑄𝑐𝑡
∗ −𝛼 (Γ(𝑘 + 1 − 𝛼) − Γ (𝑘 + 1 − 𝛼,

𝑘

𝑏𝑄𝑐𝑡
∗ ))] 494 

(B3) 495 

For the flood-cleaning case (α < 0) with 𝑄𝑐𝑡
∗ > 𝑄∗𝑐𝑐  (b < 1) we obtain  496 

〈𝐶〉 =

{
 
 

 
 (

𝑄∗

𝑄∗𝑐𝑐
)

𝛼

𝑓𝑜𝑟 𝑄∗
𝑐𝑡
≤ 𝑄∗

(
𝑄∗

𝑐𝑡

𝑄∗𝑐𝑐
)

𝛼

𝑓𝑜𝑟 0 <
𝑄∗

𝑄∗𝑐𝑡
< 1

 497 

(B4) 498 

The integral becomes 499 

𝐶̅ =
𝑘𝑘+1

Γ(𝑘 + 1)
(∫ (

𝑄∗𝑐𝑡
𝑄∗𝑐𝑐

)

𝛼

exp {−
𝑘

𝑄∗
} 𝑄∗−

(2+𝑘)𝑑𝑄∗
𝑄∗𝑐𝑡

0

+∫ (
𝑄∗

𝑄∗𝑐𝑐
)

𝛼

exp {−
𝑘

𝑄∗
} 𝑄∗−

(2+𝑘)𝑑𝑄∗
∞

𝑄∗𝑐𝑡

) 500 

(B5) 501 

Evaluating 502 

𝐶̅ =
1

Γ(𝑘 + 1)
[𝑏−𝛼Γ (𝑘 + 1,

𝑘

𝑄∗𝑐𝑡
) + 𝑘𝛼𝑏−𝛼𝑄𝑐𝑡

∗ −𝛼 (Γ(𝑘 + 1 − 𝛼) − Γ (𝑘 + 1 − 𝛼,
𝑘

𝑄∗𝑐𝑡
))] 503 

(B6) 504 

For the flood-depositing case (α > 0) with 𝑄𝑐𝑡
∗ < 𝑄∗𝑐𝑐  (b > 1) we obtain  505 

〈𝐶〉 =

{
 
 

 
 (

𝑄𝑐𝑡
∗

𝑄∗𝑐𝑐
)

𝛼

𝑓𝑜𝑟 0 < 𝑄∗ < 𝑄𝑐𝑡
∗

(
𝑄∗

𝑄∗
𝑐𝑐

)

𝛼

𝑓𝑜𝑟 𝑄𝑐𝑡
∗ < 𝑄∗ < 𝑄∗𝑐𝑐

1 𝑓𝑜𝑟 𝑄∗𝑐𝑐 ≤ 𝑄
∗

 506 

(B7) 507 

The integral becomes 508 

 509 

𝐶̅ =
𝑘𝑘+1

Γ(𝑘 + 1)
(∫ (

𝑄∗𝑐𝑡
𝑄∗𝑐𝑐

)

𝛼

exp {−
𝑘

𝑄∗
} 𝑄∗−

(2+𝑘)𝑑𝑄∗
𝑄∗𝑐𝑡

0

+∫ (
𝑄∗

𝑄∗𝑐𝑐
)

𝛼

exp {−
𝑘

𝑄∗
} 𝑄∗−

(2+𝑘)𝑑𝑄∗
𝑄∗𝑐𝑐

𝑄∗𝑐𝑡

510 

+∫ exp {−
𝑘

𝑄∗
} 𝑄∗−

(2+𝑘)𝑑𝑄∗
∞

𝑄∗𝑐𝑐

) 511 

(B8) 512 

Evaluating 513 

𝐶̅ =
1

Γ(𝑘 + 1)
[𝑏−𝛼Γ(𝑘 + 1,

𝑘

𝑄∗𝑐𝑡
) + 𝑘𝛼𝑏−𝛼𝑄𝑐𝑡

∗ −𝛼 (Γ (𝑘 + 1 − 𝛼,
𝑘

𝑏𝑄𝑐𝑡
∗ ) − Γ(𝑘 + 1 − 𝛼,

𝑘

𝑄∗𝑐𝑡
))514 

+ (Γ(𝑘 + 1) − Γ(𝑘 + 1,
𝑘

𝑏𝑄𝑐𝑡
∗ ))] 515 

(B9) 516 
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Appendix C: Solutions for the long-term incision rate 517 

For the flood-cleaning case (α < 0) with 𝑄𝑐𝑡
∗ < 𝑄∗𝑐𝑐  (b > 1) we obtain 518 

𝐼 ̅ = 𝑘𝑒𝑘𝐵𝐿 (𝑘𝑒𝑑
𝑄𝑠̅̅ ̅

𝐼 ̅
)

𝑞−1
2

𝑄̅𝑚𝑆𝑛
𝑘(𝑞−1)𝜔𝑎

Γ(𝑘 + 1)
[𝑘𝑚 (Γ(𝑘 + 1 − 𝑚 − (𝑞 − 1)𝜔𝑎) − Γ(𝑘 + 1 − 𝑚 − (𝑞 − 1)𝜔𝑎,

𝑘

𝑏𝑄𝑐𝑡
∗ ))519 

− 𝑄𝑐𝑡
∗ 𝑚 (Γ(𝑘 + 1 − (𝑞 − 1)𝜔𝑎) − Γ (𝑘 + 1 − (𝑞 − 1)𝜔𝑎,

𝑘

𝑏𝑄𝑐𝑡
∗ ))520 

− 𝑘𝑚+𝛼𝑏−𝛼𝑄𝑐𝑡
∗ −𝛼 (Γ(𝑘 + 1 −𝑚 − (𝑞 − 1)𝜔𝑎 − 𝛼) − Γ (𝑘 + 1 − 𝑚 − (𝑞 − 1)𝜔𝑎 − 𝛼,

𝑘

𝑏𝑄𝑐𝑡
∗ ))521 

+ 𝑘𝛼𝑏−𝛼𝑄𝑐𝑡
∗ 𝑚−𝛼 (Γ(𝑘 + 1 − (𝑞 − 1)𝜔𝑎 − 𝛼) − Γ (𝑘 + 1 − (𝑞 − 1)𝜔𝑎 − 𝛼,

𝑘

𝑏𝑄𝑐𝑡
∗ ))] 522 

(C1) 523 

For the flood-cleaning case (α < 0) with 𝑄𝑐𝑡
∗ > 𝑄∗𝑐𝑐  (b < 1) we obtain  524 

𝐼 ̅ = 𝑘𝑒𝑘𝐵𝐿 (𝑘𝑒𝑑
𝑄𝑠̅̅ ̅

𝐼 ̅
)

𝑞−1
2

𝑄̅𝑚𝑆𝑛
𝑘(𝑞−1)𝜔𝑎

Γ(𝑘 + 1)
[𝑘𝑚 (Γ(𝑘 + 1 − 𝑚 − (𝑞 − 1)𝜔𝑎) − Γ (𝑘 + 1 −𝑚 − (𝑞 − 1)𝜔𝑎 ,

𝑘

𝑄𝑐𝑡
))525 

− 𝑄𝑐𝑡
∗ 𝑚 (Γ(𝑘 + 1 − (𝑞 − 1)𝜔𝑎) − Γ (𝑘 + 1 − (𝑞 − 1)𝜔𝑎 ,

𝑘

𝑄𝑐𝑡
))526 

− 𝑘𝑚+𝛼𝑏−𝛼𝑄𝑐𝑡
∗ −𝛼 (Γ(𝑘 + 1 −𝑚 − (𝑞 − 1)𝜔𝑎 − 𝛼) − Γ (𝑘 + 1 − 𝑚 − (𝑞 − 1)𝜔𝑎 − 𝛼,

𝑘

𝑄𝑐𝑡
))527 

+ 𝑘𝛼𝑏−𝛼𝑄𝑐𝑡
∗ 𝑚−𝛼 (Γ(𝑘 + 1 − (𝑞 − 1)𝜔𝑎 − 𝛼) − Γ (𝑘 + 1 − (𝑞 − 1)𝜔𝑎 − 𝛼,

𝑘

𝑄𝑐𝑡
))] 528 

(C2) 529 

For the flood-depositing case (α > 0) with 𝑄𝑐𝑡
∗ < 𝑄∗𝑐𝑐  (b > 1) we obtain  530 

𝐼 ̅ = 𝑘𝑒𝑘𝐵𝐿 (𝑘𝑒𝑑
𝑄𝑠̅̅ ̅

𝐼 ̅
)

𝑞−1
2

𝑄̅𝑚𝑆𝑛
𝑘(𝑞−1)𝜔𝑎

Γ(𝑘 + 1)
[𝑘𝑚 (Γ(𝑘 + 1 − 𝑚 − (𝑞 − 1)𝜔𝑎,

𝑘

𝑏𝑄𝑐𝑡
∗ )531 

− Γ(𝑘 + 1 − 𝑚 − (𝑞 − 1)𝜔𝑎 ,
𝑘

𝑄∗𝑐𝑡
))532 

− 𝑄𝑐𝑡
∗ 𝑚 (Γ(𝑘 + 1 − (𝑞 − 1)𝜔𝑎 ,

𝑘

𝑏𝑄𝑐𝑡
∗ ) − Γ (𝑘 + 1 − (𝑞 − 1)𝜔𝑎 ,

𝑘

𝑄∗𝑐𝑡
))533 

− 𝑘𝑚+𝛼𝑏−𝛼𝑄𝑐𝑡
∗ −𝛼 (Γ(𝑘 + 1 − 𝑚 − (𝑞 − 1)𝜔𝑎 − 𝛼,

𝑘

𝑏𝑄𝑐𝑡
∗ )534 

− Γ(𝑘 + 1 − 𝑚 − (𝑞 − 1)𝜔𝑎 − 𝛼,
𝑘

𝑄∗𝑐𝑡
))535 

+ 𝑘𝛼𝑏−𝛼𝑄𝑐𝑡
∗ 𝑚−𝛼 (Γ(𝑘 + 1 − (𝑞 − 1)𝜔𝑎 − 𝛼,

𝑘

𝑏𝑄𝑐𝑡
∗ ) − Γ(𝑘 + 1 − (𝑞 − 1)𝜔𝑎 − 𝛼,

𝑘

𝑄∗
𝑐𝑡

))] 536 

(C3) 537 

Appendix D: Upscaling the stream power incision model 538 

Lague et al. (2005) gave a comprehensive discussion of the upscaled stream power incision model (SPIM). The 539 

bedrock incision rate in the SPIM is given by 540 

𝐼 = 𝑘𝑆𝑃𝐼𝑀𝑄̅
𝑚′
𝑆𝑛

′
(𝑄∗𝑚

′
− 𝑄𝑐𝑒

∗ 𝑚′
) 541 

(D1) 542 

The integral is given by 543 
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𝐼 ̅ =
𝑘𝑘+1

Γ(𝑘 + 1)
𝑘𝑆𝑃𝐼𝑀𝑄̅

𝑚′
𝑆𝑛

′
∫ exp {−

𝑘

𝑄∗
} (𝑄∗𝑚

′−(2+𝑘) − 𝑄𝑐𝑒
∗ 𝑚′

𝑄∗−
(2+𝑘)) 𝑑𝑄∗

∞

𝑄𝑐𝑒
∗

 544 

(D2) 545 

The long-term incision rate is then given by 546 

𝐼 ̅ = 𝑄̅𝑚
′
𝑆𝑛

′ 𝑘𝑆𝑃𝐼𝑀
Γ(𝑘 + 1)

[𝑘𝑚
′
(Γ(𝑘 + 1 −𝑚′) − Γ (𝑘 + 1 − 𝑚′,

𝑘

𝑄𝑐𝑒
∗
)) − 𝑄𝑐𝑒

∗ 𝑚′
(Γ(𝑘 + 1) − Γ (𝑘 + 1,

𝑘

𝑄𝑐𝑒
∗
))] 547 

(D3) 548 

 549 

  550 
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Notation 551 

Functions 552 

exp{x}  natural exponential function of x 553 

FC  Discharge variability-dependent function for the long-term mean bed cover. 554 

FI  Discharge variability-dependent function for the long-term mean incision rate. 555 

FQs  Discharge variability-dependent function for the long-term mean sediment transport rate. 556 

pdf(Q*)  probability density function of the dimensionless discharge Q* (eq. 1) 557 

Γ(x)  gamma function of x (eq. 2)  558 

Γ(x,c)  upper incomplete gamma function of x (eq. 14) 559 

 560 

Variables 561 

A  Drainage area [m2]. 562 

Ac  Cross-sectional area of the flow [m2]. 563 

a  Scaling exponent, C-Q*. 564 

B  Scaling exponent, β-A. 565 

b  Coefficient of proportionality, Q*
ct and Q*

cc. 566 

C  Fraction of covered bed.  567 

〈𝐶〉  Average cover at a given discharge.  568 

𝐶̅  Long-term mean cover.  569 

D  Representative grain size [m]. 570 

d  Sideward deflection length scale, reach [m].  571 

g  Acceleration due to gravity [m/s2].  572 

H  Water depth [m]. 573 

I  Instantaneous incision rate [m/s]. 574 

𝐼 ̅  Long-term mean incision rate [m/s]. 575 

k  Discharge variability parameter  576 

kbl  Bedload transport efficiency [kg m-3m-qsm-1].  577 

ke  Bedrock erodibility [m2/s]. 578 

kSPIM Erodibility in stream power model [m1-3m’s1-m’].  579 

ks Steepness index [m2θ].  580 

KV Flow velocity coefficient [m1-δ/s]. 581 

kW Prefactor, downstream hydraulic geometry for width  582 

kv Rock erodibility coefficient. 583 

m Discharge exponent in bedload equation.  584 

m' Discharge exponent in the stream power model.  585 

n  Slope exponent in bedload equation.  586 

n'  Slope exponent in the stream power model.  587 

Q  Water discharge [m3/s].  588 

Qmax  Maximum water discharge at which erosion occurs [m3/s].  589 

Qmin  Minimum water discharge at which erosion occurs [m3/s].  590 

𝑄̅  Long-term mean water discharge [m3/s].  591 

Q*  Dimensionless water discharge, normalized by the long term mean discharge  592 

Q*
ce  Critical discharge for the onset of erosion in the SPIM [m3/s].  593 

Q*
ct  Critical discharge for the onset of bedload motion [m3/s].  594 

Q*
cc  Critical discharge for the change between a fully and partially covered bed [m3/s].  595 

Qs  Upstream sediment mass supply [kg/s].  596 

𝑄̅𝑠  Long-term mean bedload supply [kg/s].  597 
〈𝑄𝑠〉  Bedload supply at a given discharge [kg/s].  598 

Qt  Mass sediment transport capacity [kg/s].  599 

q  Width dependence of transport rate, scaling exponent, Qs-W. 600 

R  Runoff [m/s].  601 

Rh  Hydraulic radius [m].  602 

S  Channel bed slope.  603 

V  Water flow velocity [m/s].  604 
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W  Instantaneous channel width [m].  605 

〈𝑊〉  Channel width at the mean discharge [m].  606 

Y  Young’s modulus of the bedrock [kg m-1s-2]. 607 

α  Scaling exponent, C-Q*.  608 

β  Fraction of sediment transported as bedload.  609 

𝛽̅  Long-term mean of the fraction of sediment transported as bedload. 610 

γ  Dimensionless bedload transport coefficient. 611 

δ  Scaling exponent, flow velocity V-Rh. 612 

ρ  Density of water [kg/m3].  613 

ρs  Density of sediment [kg/m3].  614 

σT  Rock tensile strength [kg m-1s-2].  615 

θ  Concavity index, scaling exponent, S-A.  616 

τ  Bed shear stress [N/m2].  617 

τ*  Shields stress.  618 

τc
*  Critical Shields stress at the onset of bedload motion. 619 

ωd  Downstream hydraulic geometry exponent for width, scaling exponent 〈𝑊〉-𝑄̅ 620 

ωa  At-a-station hydraulic geometry exponent for width, scaling exponent W-Q* 621 

  622 
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Figure 1: Dependence of bedload rate on channel width, calculated using a common shear-stress-dependent bedload 767 

equation (Meyer-Peter and Müller, 1948; Fernandez-Luque and van Beek, 1976) combined with the Manning 768 

roughness equation (solid blue line) and the Darcy-Weissbach roughness equation (dashed blue line) (see Appendix 769 

A). Note that the threshold of motion cuts off the relationship both for large width, because flow depth becomes too 770 

small for transport to occur, and for small width, because shear stress is partitioned from the bed to the channel 771 

walls. The scaling bracketing the relationship for small width, giving q = 5/2 (black line), for intermediate width 772 

using the Darcy-Weissbach friction equation, giving q = 0 (dashed red line), and the Manning equation, giving 773 

q = 1/10 (solid red line), are indicated (see Appendix A). 774 

 775 
Figure 2: Illustration of the scaling relationship of cover with discharge and the definitions of flood-cleaning and 776 

flood-depositing channels (adapted from Turowski et al., 2013). For the flood-depositing case, where α > 0, the 777 

covered fraction of the bed increases with increasing discharge, implying that the bed is partially covered at 778 

discharge smaller than the characteristic discharge 𝑄∗𝑐𝑐 and fully covered at discharges above it. Bedrock erosion 779 

occurs at low and intermediate discharges. For the flood-cleaning case, where α < 0, the covered fraction of the bed 780 

decreases with increasing discharge, implying that the bed is partially covered at discharge larger than the 781 

characteristic discharge 𝑄∗
𝑐𝑐

 and fully covered at discharges below it. Bedrock erosion occurs during floods. 782 

 783 

Figure 3: Space of valid solutions of slope (eq. 26) are shown in grey, for a thresholds of motion 𝑄∗𝑐𝑡 = 1. The 784 

choice of other threshold only slightly alters the results. 785 

 786 
Figure 4: (A) Scaling of slope S (eq. 26), (B) the ratio of cover threshold to threshold of motion b (eq. 17), and (C) of 787 

the long-term mean cover 𝐶̅ with the discharge variability parameter k. Lines for α = -2 (flood-cleaning), crosses for 788 

α = 2 (flood-depositing). Black for q = 0, blue for q = 1, and red for q = 2.5. Note that channel bed slope is 789 

independent of α (eq. 26). For many conditions, there are two solutions available, corresponding to the solutions for 790 

b smaller (dashed) or larger than one (solid) (see Table 1; Appendices B and C). 791 

 792 
Figure 5: (A) Scaling of the ratio of cover threshold to threshold of motion b (eq. 17), and (B) of the long-term 793 

mean cover with the cover scaling exponent alpha (see eqs. 15 and 16). For flood-cleaning streams (α < 0) (cf. Fig. 794 

2, Table 1), separate solutions are shown for b > 1 (dashed line) and b < 1 (solid line). 795 

 796 
Figure 6: Comparison of the dependence of incision rate on discharge variability k obtained from the stream power 797 

incision model (SPIM, solid line; see Appendix D) and the sediment-flux-dependent model used herein (see 798 

Appendix C). Calculations were made for q = 0 (A) and q = 5/2 (see Appendix A), and a thresholds of motion 799 

𝑄∗𝑐𝑡 = 1. 800 

 801 
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Table 1: The ranges of Q* for which erosion is possible in the four cases 803 

Cover behavior 𝑄𝑐𝑡
∗  ≤ 𝑄∗𝑐𝑐  𝑄𝑐𝑡

∗ > 𝑄∗𝑐𝑐 

Flood-cleaning α < 0 𝑄∗  ≥ 𝑄∗𝑐𝑐 𝑄∗  ≥ 𝑄∗𝑐𝑡  

Flood-depositing α > 0 𝑄∗𝑐𝑐 ≥ 𝑄
∗  ≥ 𝑄∗𝑐𝑡 No erosion possible1. 

 804 

 805 
Table 2: Parameter values used for the example calculations, following estimates for the Liwu River, at Lushui, 806 

Taiwan (Turowski et al., 2007; Turowski, 2020). 807 

Parameter Symbol Value 

Material properties   

Density of water (kg/m3) ρ 1000 

Density of sediment (kg/m3) ρs 2650 

Young’s modulus (MPa) Y 5×104 

Rock tensile strength (MPa) σT 10 

Rock resistance coefficient kυ 106 

Constants in the equations   

Acceleration due to gravity (m/s2) g 9.81 

Flow velocity friction coefficient kV 10 

Bedload discharge exponent m 1 

Bedload slope exponent n 2 

Bedload coefficient (kg/m3) Kbl 11000 

Critical Shields stress θc 0.045 

Channel reach parameters   

Channel bed slope S 0.02 

Channel width (m) W 40 

At-a-station width exponent ωa 0.4 

Scaling length (deflection length scale) (m) d 0.1 

Median grain size (m) D 0.04 

Daily average water discharge (m3/s) Q 36 

Dimensionless threshold discharge of motion 𝑄∗𝑐𝑡  0.15 

Discharge variability parameter k 3 

Sediment supply (kg/s) Qs 200 

Long-term bedload fraction 𝛽̅ 0.3 

Long-term incision rate (mm/yr) 𝐼 ̅ 1 
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