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Abstract

We present a new computational fluid dynamics approach to simulating two-phase flow
in hybrid systems containing solid-free regions and deformable porous matrices. Our
approach is based on the derivation of a unique set of volume-averaged partial differen-
tial equations that asymptotically approach the Navier-Stokes Volume-of-Fluid equations
in solid-free-regions and multiphase Biot Theory in porous regions. The resulting equa-
tions extend our recently developed Darcy-Brinkman-Biot framework to multiphase flow.
Through careful consideration of interfacial dynamics (relative permeability and capillary
effects) and extensive benchmarking, we show that the resulting model accurately cap-
tures the strong two-way coupling that is often exhibited between multiple fluids and de-
formable porous media. Thus, it can be used to represent flow-induced material deforma-
tion (swelling, compression) and failure (cracking, fracturing). The model’s open-source
numerical implementation, hybridBiotinterFoam, effectively marks the extension of com-
putational fluid mechanics into modeling multiscale multiphase flow in deformable porous
systems. The versatility of the solver is illustrated through applications related to mate-
rial failure in poroelastic coastal barriers and surface deformation due to fluid injection in
poroplastic systems.

Plain Language Summary

Knowledge of how fluids flow through porous materials has significant implications
for the design and operation of batteries, manufacturing plants, oil rigs, and biomedical
devices. Even though scientists have been successful in creating computer models that
capture fluid flow through rigid porous media, it has been very challenging to create mod-
els that can model flow through deformable porous media. In this paper, we describe a
new model that can predict flow of immiscible fluids (say water and air, or oil and water)
through and around deformable porous media. We derived this model by putting together
separate conventional fluid-flow and solid-deformation models into a single simulation
framework through a technique called volume averaging. The resulting model can capture
complex multiscale, multiphysics phenomena such as hydraulic fracturing in the subsur-
face and its results on surface deformation and subsidence. Given the model’s generality,
successful verification, and open-source implementation, we are confident that this com-
putational model can be used to study important phenomena in the fields of water and
energy resources.

1 Introduction

Multiphase flow in deformable porous media is a ubiquitous phenomenon with im-
portant implications in many energy and environmental technologies including geologic
CO; sequestration, soil bioremediation, water treatment, enhanced biochemical produc-
tion, nuclear waste disposal, and battery technology (Bécher & Gekle, 2019; Bock et al.,
2010; Cunningham et al., 2003; Riss et al., 2018; Towner, 1987). It also underlies iconic
geophysical features at many scales, from coastal, riparian, and volcanic landforms to frac-
tures in subsurface reservoirs, cracks in clay soils, and bubbles in soft sediments. An im-
portant and largely unresolved challenge in the areas outlined above is the difficulty of
describing the inherently multiscale and multiphysics nature of situations where a mixture
of several fluids interacts with a deformable porous material. For example, when modeling
flow through biofilms or membranes it is imperative to understand how fluid flow behaves
inside the microporous medium (in pores with length scales of ~ 107® m) while simulta-
neously understanding how the deformation of this medium affects the overall flow field
(often controlled by much larger flow paths with length scales on the order of ~ 1072 m)
(Bottero et al., 2010). Similarly, the propagation of flow-driven fractures in porous mate-
rials and the propagation of waves in coastal barriers involve feedbacks between flow and
mechanics in systems with characteristics pore widths that differ by three or more orders



of magnitude. In the present study, we develop a framework capable of representing mul-
tiphase flow and solid mechanics in systems with two characteristic pore length scales, as
required to simulate many of the aforementioned phenomena.

The starting point for our study is based on the present ample understanding of
multiphase flow dynamics within and around static porous materials, from viscous and
capillary fingering (Ferer et al., 2004; Lenormand & Zarcone, 1989; Lenormand et al.,
1988) to temperature and surface tension driven flows (Shih & Megaridis, 1996), all the
way to turbulent multiphase flows (Colombo & Fairweather, 2015; Soulaine & Quintard,
2014). This knowledge, in conjunction with numerical techniques such as the Lattice
Boltzmann Method, the Finite Volume Method, Homogenization Theory, and Averag-
ing Theory, forms the basis of fast and accurate models that are routinely applied to help
design and improve hydrocarbon production (Burrus et al., 1991; Mehmani & Tchelepi,
2019), CO, sequestration (Hassan & Jiang, 2012), and even nuclear reactors (Tentner et
al., 2008). However, the study of multiphase flow across different scales remains limited
as shown by the absence of well-established approaches to describe how bubbles or waves
propagate into an unsaturated porous medium or how a multiphase fluid mixture is pushed
out of a porous medium into open space. Understanding such processes would have a di-
rect and immediate impact in the design of batteries, natural gas extraction from shales,
biochemical gas production, fracturing systems, and coastal barriers.

A similar situation pertains with regard to the coupling between fluid flow and solid
mechanics. Theoretical and numerical approaches based on Biot’s Theory of poroelastic-
ity (Biot, 1941), Terzaghi’s effective stress principle (Terzaghi, 1943), and Mixture Theory
(Siddique et al., 2017) have been successful at modeling systems with flow in deformable
porous media including arteries, biofilms, boreholes, hydrocarbon reservoirs, seismic sys-
tems, membranes, soils, swelling clays, and fractures (Auton & MacMinn, 2017; Barry et
al., 1997; Jha & Juanes, 2014; Lo et al., 2005, 2002; MacMinn et al., 2016; Mathias et
al., 2017; Santillan et al., 2017). However, as mentioned above, we still have very little
understanding of how flow-induced deformation of these solid materials affects the macro-
scopic flow around them (and thus their boundary conditions) or how fluid-fluid interfaces
behave when pushed against a soft porous medium and vice-versa.

Three major approaches have been proposed to resolve the challenge posed by fluid
flow in porous media containing both solid-free regions and microporous domains (here-
after referred to as multiscale systems). The most straightforward of these involves per-
forming direct numerical simulations (DNS) throughout the entire multiscale domain, both
within and outside the porous medium (Breugem & Boersma, 2005; Hahn et al., 2002;
Krafczyk et al., 2015). Although rigorous, this technique is impractical in situations with
a large difference in length scales between the largest and smallest pores, where it requires
exceedingly fine grids and tremendous computational resources.

To save time and resources, other studies have relied on hybrid DNS-Darcy ap-
proaches, where fluid and solid mechanics within a porous medium are modeled as av-
eraged quantities through Darcy’s law, pore-network models, or Biot’s theory of poroe-
lasticity (Weishaupt et al., 2019; Ehrhardt, 2010). One such approach relies on the use
of the Beavers-Joseph (BJ) boundary condition to couple fluid flow in solid-free domains
(simulated using the Navier-Stokes Equations) and in microporous domains (simulated us-
ing Darcy’s law) for single phase flow and static porous media (Beavers & Joseph, 1967;
Fetzer et al., 2016). Recent studies have extended this BJ approach to allow multiphase
flow in the solid-free domain (Baber et al., 2016) or to include the effects of poroelastic-
ity within the porous medium (Lacis et al., 2017; Zampogna et al., 2019). However, to
the best of our knowledge, no BJ based technique has yet been developed to couple solid
mechanics with multiphase flow simultaneously within the solid-free and porous domains.

The Darcy-Brinkman (DB) approach presents a well-known alternative to the BJ
interface matching technique. The crux of the DB approach is the use of a spatially de-



pendent penalization term within the Navier-Stokes fluid momentum equation. This term
effectively creates an equation that approximates Navier-Stokes within solid-free domains
and Darcy’s law within microporous domains. Although initially implemented as an em-
pirical approach (Brinkman, 1947), this technique has since been formalized and rigor-
ously derived from first principles through volume averaging theory (Soulaine et al., 2016;
Whitaker, 2013). The resulting so-called “micro-continuum” approach has been exten-
sively used to solve single phase flow through static multiscale porous media, such as flow
in biofilms (Kapellos et al., 2007) and in rocks containing unresolved porosity (Guo et

al., 2018; Kang et al., 2019; Singh, 2019). The approach has proved highly flexible as il-
lustrated by its uses to represent embedded solid boundaries in low permeability media
(Khadra et al., 2000) and the evolution of solid grain morphologies caused by mineral dis-
solution (Soulaine et al., 2017, 2019).

Recently, a study by Carrillo and Bourg (2019) introduced a Darcy-Brinkman-Biot
(DBB) approach capable of accurately representing single phase flow in multiscale de-
formable media including elastic porous membranes and plastic swelling clays. Simultane-
ously, studies by Soulaine et al. (2019) and Carrillo et al. (2020) extensively benchmarked
and released an open source extension of the micro-continuum framework for multiphase
flow in static multiscale porous media. This allowed accurate modeling of complex sys-
tems such as multiphase flow in a fractured microporous medium, methane extraction
from tight porous media, and wave absorption in coastal barriers. In the present paper,
we build upon these previous studies to create the first model representing coupled fluid
and solid mechanics during multiphase flow in multiscale deformable porous media: the
multiphase Darcy-Brinkman-Biot model (Figure 1).

Figure 1. Conceptual representation of the multiphase Darcy-Brinkman-Biot model. The insert represents

an exemplary Representative Elementary Volume (REV) within the microporous domain and ¢ ¢ is the poros-

ity. The model considers wetting properties, interface mechanics, and irreducible saturations when averaging

over the REV. Note that the stated relation between the averaging volume’s length scale Ly, and the porous

length scale L p is required for the creation of a REV, and thus, for the application of this model.



This paper is organized as follows. Section 2 introduces the concept of volume aver-
aging and describes the derivation of the governing equations for coupled fluid and solid
mechanics. Section 3 explains the numerical implementation and algorithm development
for the coupled mass and momentum equations and introduces the resulting open-source
solver “hybridBiotInterFoam”. Section 4 presents five test cases that verify the implemen-
tation of different coupling terms within the model, with an emphasis on fracturing me-
chanics. Section 5 then presents two alternative applications that illustrate the versatility
of the model, namely wave absorption in poroelastic coastal barriers and surface deforma-
tion due to fluid injection in poroplastic geologic formations. Lastly, Section 6 concludes
with a summary of the paper and a discussion on future work.

2 Model Derivation
2.1 Volume Averaging

In this section we introduce the concept of volume averaging. This technique forms
the basis of the micro-continuum equations, as it allows the classical mass and momen-
tum conservation equations to account for the coexistence of solid (s), wetting fluid (w),
and non-wetting fluid (r) within a given control volume. It is well suited for use in con-
junction with the Finite Volume Method (FVM) (Patankar, 1980), as the numerical grid
elements used in the FVM provide an intuitive and straightforward numerical interpreta-
tion of what we will define as the averaging volume (V). In keeping with standard volume
averaging theory, we start by defining the volume averaging operator

— 1
Bi= V/V,-'Bidv

where f; is a function defined in each phase’s respective volume V; (i = w,n,s) . We also
define the phase averaging operator

=i 1
Bi v v Bidv

The volume and phase averaged variables associated with the fluids are intrinsically
related by the porosity (¢y = (Vi +V,,)/V) and saturation fields (@; = Vi/(Vyy + Vi),
such that ,Ei =¢r a/iE- (i = w,n). For solid variables, the analogous relation involves only
the solid fraction ¢, such that ES = qbsﬁi Note that ¢ + ¢s = 1 and @, + @, = 1;
thus, knowledge of one of the ¢; or a; variables implies knowledge of the other. Volume
averaging then allows for the definition of several regions within a multiscale, multiphase
system such as that represented in Figure 1:

1, in solid-free regions
S ) .
10;1[, in porous regions
0, in regions saturated with non wetting fluid
ay =1]0;1[, in unsaturated regions
1, in regions saturated with wetting fluid

The application of an averaging transformation to fluid and solid conservation equa-
tions will result in variables and equations that are weighted differently in each region.
However, the averaging of differential equations is not straightforward, which is why we
introduce the following spatial averaging theorems for volumes containing three distinct
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phases (Howes & Whitaker, 1985; S. Whitaker, 1999)
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VBi = VBi + v Bini jdA + v Bini xdA (6)
A;j Aik
- 1 1
Aij Aik

where A, , represents the interfacial area between phase x and y, n, , is a vector nor-
mal to the interface and oriented toward phase y, and v, , is the velocity of the interface.
These surface integrals are crucial components of the following derivations as they convert
the boundary conditions at the fluid-fluid and fluid-solid interfaces into body forces within
the averaged partial differential equations.

2.2 Derivation of the Fluid Mechanics Equations

We begin the derivation by stating the micro-continuum equations for two immis-
cible incompressible fluids, which arise from applying the volume averaging operators to
the classical Navier-Stokes mass and momentum conservation equations (Carrillo et al.,
2020). This equation set can also be thought of as a modified and expanded version of the
popular Volume-of-Fluid equations (Hirt & Nichols, 1981).
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ot b (10)
+D, +D,+Ds, +D;,+ Dw’n +D,
where S = ur(VUs + (VUy )T) is the averaged single-field viscous stress tensor, g is
gravity, uy is the arithmetic average of each fluid’s viscosity py = ay uyw + @nuy,, and
py is the arithmetic average of each fluid’s density py = a, pw + @,pn. The single-
field expressions for velocity U s, pressure p, and relative velocity U, are defined as the
weighted averages of their respective phase averaged variables.
Us = ¢ |aUny + a,U, (11)
P =awDy + anpy, (12)
Uu.=U.-U, (13)



We note that the single-phase velocity as defined above is equal to the sum of the
Darcy filtration velocities: Uy = U,, +U,. Finally, the D; x = ; /A nii-(=Ipi+8S;)dA
values represent the momentum exchange from phase i to phase k (z k w,n,s). As de-
scribed in Carrillo and Bourg (2019) and Carrillo et al. (2020), these terms can be recast
into the following expression through asymptotic matching to the multiphase Darcy equa-
tions:

. ——$+V o+V-S
Er Py fo) ¢rVp+drprg+V-S

—¢f/1k71 (Uf —ﬁs) +¢ch,1 +¢ch,2

where uk~! is the drag coefficient (a functlon of the fluid viscosities and permeability k),
U, is the averaged solid velocity, ¢ 7 uk™ WU f - U ;) is a solid-fluid momentum exchange
term that accounts for a moving porous medium in an Eulerian frame of reference, and
F . ; represents the forces emanating from fluid-fluid and fluid-solid capillary interactions.
As shown in Carrillo et al. (2020),

F. - —#V - (Ryw.n) Va,  in solid-free regions
—pcVay, in porous regions

Foo = 0 in solid-free regions
2T M My a, - Mya,,) (Vpe + (pw — pn) g) in porous regions

where, p. is the average capillary pressure within a given averaging volume, y is the
fluid-fluid interfacial tension, M; is the mobility of each fluid, and M = M,, + M,, is the
single-field mobility. Lastly, n,, , is the unit normal direction of the fluid-fluid interface
as calculated by the Continuum Surface Force (CSF) formulation (Brackbill et al., 1992).
The equations presented above tend towards the standard Navier-Stokes Volume-of-Fluid
approach in solid-free regions (where the drag term becomes negligible) and towards the
multiphase Darcy equations in microporous regions (where the viscous stress tensor be-
comes negligible under the scale-separation assumption) (Whitaker, 1986; Carrillo et al.,
2020):

(Uf -U, ) =_k (Vp—pfg—FC,] - F.») in porous regions
Eqn. 14 =

apétf+V (,OfoU )=—Vp+V'§+pfg+Fc’1 in solid-free regions

For clarity and conciseness uk~' will be kept in its current form until the end of the
derivation, at which point its full analytical form will be presented.

2.3 Derivation of the Solid Mechanics Equations

We proceed with the derivation of the micro-continuum solid mechanics equations
by starting from the equations presented in Carrillo and Bourg (2019) for solid mass and
momentum conservation in systems with a single solid phase.

a(;p; (¢S ) -

(14)
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-V.-T=¢V-T5 +¢sp,8+ By, + B, (19)

where o is the volume averaged solid elastic (or plastic) stress tensor and 5 =Poon F -

Ip - Ipy,,,; is the Terzaghi stress tensor (a function of confining pressure Py, fluid
pressure p, and swelling or disjoining pressure pe). Here, the By ; = % fA“_ (t+0) ng;dA
values represent the momentum exchange between the solid phase s and fluid phase i

(i = w,n). Just as we did for the fluid equations, we will assume that the sum of the av-
eraged stresses at the solid-fluid interface can be expressed as the sum of two independent
terms: a drag force that captures shear-induced momentum exchange (Bgyqg) and a cap-

illary force originating from capillary pressure jumps across the integrated solid surfaces

within the porous media (Bcqp).

Bdrag + Bcap = Bs,w + Bs,n (20)

We now seek closure of these two coupling terms. By conservation of momentum,
we know that any drag-induced momentum lost by the fluid must be gained by the solid,
thus (Carrillo & Bourg, 2019)

Buarag = 65 uk™! (Uf —ﬁs) 1)

Closure of the capillarity-induced interaction term B, is obtained by combining
the solid and fluid momentum equations within the porous medium at low Reynold num-
bers and low permeability, which yields

_V'E:‘psv"r_s_(pfvp"'(¢Sps+¢fpf)g+¢ch,l+¢ch,2+Bcap (22)

In multiphase porous systems with incompressible grains and no swelling pressure
(i.e. V- 15 = —Vp), Biot Theory states that V - & = Vp — p*g + p.Va,,, where p* =
(¢sps + drpyr) and p. is the capillary pressure (Jha & Juanes, 2014; Kim et al., 2013).
This expression is satisfied by the previous equation in the absence of capillary forces,
where F. 1, F. 2, Bcap, and p. equal zero (Carrillo & Bourg, 2019). In the presence of
capillary forces, however, it imposes the following equality

Beap = (¢ Fc1+¢sFep+pcVay,) (23)

Given that F. | = —p.Va,, in the porous domains (Carrillo et al., 2020), the previ
ous equation can be rearranged to obtain

Bcap = ¢SFC,1 - ¢f Fc,2 24)

Equation 24 gives closure to the last coupling parameter and marks the end of this
derivation. The result is a solid conservation equation that tends towards Biot Theory in
porous regions and towards an infinitely deformable solid with no momentum sources in
solid-free regions.

2.4 Interfacial Conditions between Solid-Free Regions and Porous Regions

One of the most important features within the framework presented above is the ex-
istence of an interface between solid-free and microporous domains. Although the creation
of a rigorous un-averaged description of this interface is still an open question, we approx-



imate a solution to it by guaranteeing its necessary components within our fluid and solid
averaged equations.

An accurate description of fluid behavior at the interface requires three compo-
nents: 1) mass conservation across the interface, 2) continuity of stresses across the inter-
face, and 3) an interfacial wettability condition. Components 1 and 2 are intrinsically ful-
filled by our solver due to its single-field formulation for velocity and pressure within the
fluid conservation equations (Eqns. 8 and 14). As shown in Neale and Nader (1974) and
Carrillo and Bourg (2019) these two components are necessary and sufficient to model
single-phase flow within a multiscale system. Furthermore, these conditions have also
been used for closure when modelling multiphase flow in moving porous media (Lacis
et al., 2017; Zampogna et al., 2019; Carrillo et al., 2020). The required wettability con-
dition at the porous interface (Component 3) is included in our model through the imple-
mentation of a penalized contact angle condition (Eqn. 33) following the steps outlined in
Horgue et al. (2014) and Carrillo et al. (2020).

The complementary solid conditions at the porous interface are very similar: 1)
solid mass conservation across the interface, 2) continuity of fluid-induced stresses across
the interface, and 3) a discontinuity of solid stresses at the interface. Just as before, the
first two conditions are intrinsically fulfilled through the use of a single set of mass and
momentum conservation equations across both domains and have also been used as clo-
sure conditions in previous studies (Lacis et al., 2017; Zampogna et al., 2019). The third
condition is enforced by the use of volume-averaged solid rheology models that tend to-
wards infinitely deformable materials in solid-free regions, as shown in Carrillo and Bourg
(2019). When volume-averaged, the behavior of the solid’s stress tensor is domain depen-
dent (i.e. solid fraction dependent). Thus, in solid regions, the elasticity and viscosity of
the porous medium is determined by standard averaged rheological properties (the elastic
and viscoplastic moduli). Contrastingly, in solid-free regions, the solid fraction tends to
zero and, as such, said properties do as well. The result is a stress-free “ghost" solid that
does not apply resistance to the porous region, creating the required stress discontinuity at
the porous interface.

Although necessary, these conditions represent but an approximation to the complete
description of fluid and solid mechanics at the porous interface. However, to the best of
our knowledge, there does not exist an alternative set of boundary conditions that can or
have been used to model multiphase flow in multiscale porous media.

2.5 Model Summary

The final set of equations in our proposed multiphase DBB framework now fol-
lows. The combination of these solid and fluid conservation equations leads to a model
that tends towards multiphase Navier-Stokes in solid-free regions and towards Biot Theory
in porous regions, as described in Figure 1.

6¢f
0P ray,
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All that is left is stating the closed-form expressions of the multiscale parameters
yk‘l, F.;,and U,, which are defined differently in each region. A full derivation and
discussion of these parameters can be found in Carrillo et al. (2020).

0 in solid-free regions
-1 _
'Uk - k—l (kr,w kr,n -1 H H
0 |\ u_n) in porous regions
-XV. (ny,n) Va, insolid-free regions
F.i=3 %
-pcVay, in porous regions
Foo = 0 in solid-free regions
<2\ Mt My a, - Myay,) (Vpe + (pw — pn) g) in porous regions
= |§Z‘;‘ in solid-free regions
cos (0) nyqy + sin(0) t,,,; at the interface between solid-free porous regions
Cqo max ( |Uf| ‘gg: in solid-free regions
- (M) - Mya,') Vp+
Ur=3 | (owMway! —pwMaa,') g+ . .
1) in porous regions

(M ana;, Ly Mo, a )VpC
(ALVawf__A4nan )pcVQM/

where C, is an interface compression parameter (traditionally set to values between 1

and 4 in the Volume-of-Fluid method), k¢ is the absolute permeability, &k, ; and M; =
koki »/ui are the relative permeability and mobility of each fluid, and M = M,, + M,,.
Lastly, € is the imposed contact angle at the porous wall, and n,,4;; and ¢,,,;; are the nor-
mal and tangential directions relative to said wall, respectively.

Finally, closure of the system of equations requires appropriate constitutive models
describing the averaged behavior of the different phases within the porous regions. For the
purpose of validating our multiphase DBB approach, in the present paper we use the fol-
lowing well established constitutive models: absolute permeability is modeled as isotropic

and porosity-dependent through the well-known Kozeny-Carman relation (kg = 0 = ¢ )2)
relative permeabilities and average capillary pressures within the porous domains are rep-
resented using the Van Genutchen (van Genuchten, 1980) and Brooks-Corey (Brooks &
Corey, 1964) models (Appendix A); plasticity is described through the Herschel-Bulkley
model, were the solid viscously deforms only after local stresses become higher than the
material yield stress (Appendix B1); the solid’s yield stress and plastic viscosity are mod-
eled as solid fraction-dependent based on the Quemada fractal model (Quemada, 1977,
Spearman, 2017) (Appendix B2); finally, elastic solids are modeled as averaged linear-
elastic materials, such that their averaged elastic coefficients scale linearly with respect to
the solid fraction (Appendix B3). The last three choices imply that solid rheological prop-
erties are modeled as isotropic and independent of saturation, a significant simplification
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that is sufficient for the purpose of testing and validating the present framework. For the
reader’s convenience, a full implementation of this framework and its related models are
included in the accompanying simulation “toolbox". If necessary, more complex constitu-
tive models, such as the saturation-depended solid rheology models presented in Wan et
al. (2014), Oldecop and Alonso (2003), Buscarnera and Einav (2012), and Di Donato et
al. (2003) can be readily implemented into our code by virtue of its open-source imple-
mentation.

3 Numerical Implementation
3.1 Numerical Platform

The implementation of the multiphase DBB model was done in OpenFOAM®), a
free, open-source, parallelizable, and widely used computational fluid mechanics platform.
This C++ code uses the Finite Volume Method to discretize and solve partial differential
equations in complex 3-D structured and unstructured grids. Its object-oriented structure
and multitude of supporting libraries allows the user to easily customize each simulation’s
setup with different numerical discretization schemes, time-stepping procedures, matrix-
solution algorithms, and supporting physical models. The implementation described below
represents the natural extension of the multiphase micro-continuum toolkit “hybridinter-
Foam” (Carrillo et al., 2020) to systems with deformable solids. In particular, its solution
algorithm stems directly from that used by “hybridinterFoam” and its precursor “inter-
Foam”.

3.2 Solution Algorithm

The solution of the governing equations is done in a sequential manner, starting with
the fluid mechanics equations and following with the solid mechanics equations for ev-
ery time step. Of particular importance is the handling and modification of the velocity-
pressure coupling required for modeling incompressible fluids in conjunction with a mov-
ing solid matrix. For this step, we based our solution algorithm on the Pressure Implicit
Splitting-Operator (PISO) (Issa, 1986). First, we explicitly solve the fluid saturation equa-
tion (Eqn. 9) for @’} through the Multidimensional Universal Limiter of Explicit So-
lution (MULES) algorithm (Marquez & Fich, 2013). This allows for stable numerical
advection of the saturation field by the application of Flux Corrected Transport Theory
(Rudman, 1997). Then, we update the boundary values of Uy and U, in addition to the

cell-centered values of the permeability k’*!, density p}”, and viscosity u7'*! based on

the newly calculated saturation field o/;"!. The capillary forces F ’C+i1 are also updated ac-

cordingly. After that, a preliminary value of the fluid velocity Uj, ‘is calculated by implic-
itly solving the algebraically discretized form of the fluid momentum equation used in the
Finite Volume Method.

apUs = H (U;) +plg + FIT - Vp! (35)

where H (U;) contains inertial, convective, viscous, and drag source terms originating
from neighboring cells and a,, represents these same terms but at the volume of interest.
Note that the U; field does not follow mass conservation. To account for this, we use the
fluid continuity equation (Eqn. 25) in conjunction with the previous equation (Eqn. 35) to
update the velocity field U ’;C* and calculate a preliminary mass-conservative pressure field
p*. In other words, these fields must satisfy,

1
Uy =— (B (U}) + 0 g+ Fil - vp') (36)
p
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These equations can be recast into a single coupled equation which is then used to
implicitly solve for pressure. This step can be done through several generalized matrix
solvers that are standard in OpenFOAM®).

1 1 ¢y
vV-|— (H(U e+ FIH —vp*)| -V [—Vp*|=- =L
(a,,( (U7) +oi'g + p)) (ap p) a1 38)

After solving for pressure p*, velocity can be re-calculated from Equation 36. This
semi-implicit pressure-velocity correction step is repeated until the desired convergence is
reached. It has been shown that at least two pressure-velocity correction loops are required
to ensure mass conservation (Issa, 1986). At this point Ut;l and p‘+1 are set and used as
input values for updating the drag and pressure source terms present in the solid mechan-
ics momentum equation (Eqn. 29). Then, said equation is discretized in a similar way as
the fluid momentum equation (Eqn. 27) and used to implicitly solve for U.*!. Finally, the
updated solid velocity is used to “advect” the solid fraction field ¢5 by solving the mass
conservation equation (Eqn. 28). At this point the algorithm advances in time according
to the imposed Courant-Friedrichs-Lewy (CFL) number. Further discussion regarding the
discretization techniques and matrix-solution procedures can be found in Carrillo et al.
(2020) and Jasak (1996).

3.3 Open-Source Implementation

The complete set of governing equations and solution algorithms, along with the
necessary rheology, relative permeability, and capillary pressure models (Appendix A and
B) were implemented into a single solver “hybridBiotInterFoam”. This solver, along with
its representative tutorial cases, automated compilation and running procedures, and all
the simulated cases presented in this paper were incorporated into an open-source CFD
package of the same name. OpenFOAM® and our code are free to use under the GNU
general public license and can be found at https://openfoam.org/ and https://
github.com/Franjcf (Carrillo & Bourg, 2020), respectively.

4 Model Validation

Most of the underlying components of the approach described above have been
previously tested and verified. Carrillo and Bourg (2019) validated the momentum ex-
change terms as an effective coupling mechanism between a single fluid phase and a de-
formable plastic or elastic porous medium. The effects of confining and swelling pressures
on porous media were also examined in said study. Then, Carrillo et al. (2020) extensively
validated the extension of the Darcy-Brinkman equation into multiphase flow within and
around sfatic porous media by comparison with reference test cases in a wide range of
flow, permeability, capillarity, and wettability conditions. Therefore, the only thing left to
validate is the ability of the multiphase DBB model to accurately predict the behavior of
multiscale systems that exhibit coupling effects between multiple fluids and a deformable
porous matrix.

To that point, we begin with two validation cases relating to multiphase poroelas-
ticity and the coupling between solid deformation and fluid pressure. Then, we proceed
with two poroplastic cases that validate this framework for multiscale plastic systems. Fi-
nally, we conclude with two additional cases that verify the implementation of the capil-
lary force interaction terms. All of these can be found in the accompanying CFD simula-
tion package.
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Figure 2. One-dimensional Terzaghi consolidation problem. (A) Simulation setup. (B) Analytical (solid

lines) and numerical (symbols) pressure profiles at # = 100 s for different loading pressure values. (C) Time-

dependent pressure profiles for different column porosity values (From top to bottom: ¢; = 0.75, 0.5, 0.25).

4.1 Terzaghi Consolidation Problem

The Terzaghi uniaxial compaction test has been extensively used as a benchmark
for the validation of numerical codes relating to poroelasticity (Terzaghi et al., 1996). Its
main utility is to test the accuracy of the solid-fluid couplings that relate fluid pressure to
solid deformation and vice versa. The problem consists of a constrained saturated elas-
tic porous medium that is abruptly compressed from its upper boundary by a constant
uniaxial load (Figure 2). This creates a sudden increase in pore pressure, which is then
dissipated by flow through the upper boundary (all other boundaries have impermeable
boundary conditions). In the case of a one-dimensional porous medium, the resulting tem-
poral and spatial evolution in fluid pressure can be described by the following simplified
analytical solution (Verruijt, 2013).

where ¢, = (koE (v = 1))/((2v?> + v — 1)) is the consolidation coefficient, kg is per-
meability, £ is Young’s modulus, v is Poisson’s ratio, n is the fluid’s unit weight, % is the
column height, and z is the vertical coordinate. Our equivalent numerical setup is shown
in Figure 2. The values of the relevant parameters in our simulations are 2 = 10 m,

ko = 5% 10! m2, E = 2 MPa, and v = 0.25. To show the accuracy of our model
across different conditions, the loading pressure was varied from 10 to 200 kPa (Figure
2B) and the porosity from 0.25 to 0.75 (Figure 2C). Lastly, the column was partially sat-
urated (a,, = 0.5) with fluids with equal densities (o = 1000 kg/m?), viscosities
(ty = 1 cp), and negligible capillary effects. This last points allowed for testing the va-
lidity of the fluid-solid couplings irrespective of the simulated phases without violating
any of the assumptions present in the analytical solution. Our numerical results show ex-
cellent agreement with Equation 39 for all tested conditions. Further verification of these
terms for an oscillating linear elastic solid with pressure boundary conditions (as opposed
to stress boundary conditions) can be found in the Supporting Information.
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Figure 3. Capillary effects in a poroelastic column. (A) Simulation setup. (B & C) Analytical (solid lines)

and numerical (symbols) effective stress profiles for different capillary pressure values (p. o = 50 to 2000 Pa)

and Van Genuchten coeflicients (m = 0.6 and 0.8).

4.2 Capillary Pressure Effects in a Poroelastic Column

Having verified the two-way coupling between solid deformation and fluid pressure,
we now verify the implementation of the capillary pressure terms within the solid mechan-
ics equation. To do so, we simulate a poroelastic column (1 m tall, 1500 Cells, ¢ = 0.5)
bounded by two non-wetting fluid reservoirs at its upper and lower boundaries. The col-
umn is initialized with a linear saturation profile spanning from a,, = 0 to 1 (see Fig. 3).
Fluid saturation is kept fixed by not solving Equation 26, and the mobilities of both flu-
ids are set to very high values (M; = 1 x 10'° m?/kg.s) to minimize drag-related effects.
Under these conditions, the solid’s effective stress is exclusively controlled by capillary
effects and is described by the following analytical solution:

Effective Stress = ¢5 X @y X pe

We used the Van Genutchen capillary pressure model with m = 0.6 or 0.8 and

Pe.o = 50 to 2000 Pa to calculate the solutions to said problem. The resulting agreement
between the numerical and analytical solutions, shown in Fig. 3, confirms the accuracy
of the fluid-solid capillary pressure coupling implemented in our model. Furthermore, the
transitional behaviour of the effective stress at the macroscopic solid-fluid interface con-
firms the applicability of the interfacial condition described in Section 2.4: as expected,
solid stresses are dictated by standard elasticity theory in the porous region and become
negligible in solid-free regions.

Given that the fluid-solid couplings in a poroelastic solid are now verified, we pro-
ceed to verify said terms for poroplastic materials.

4.3 Fluid Invasion and Fracturing in a Hele-Shaw Cell

The third verification case (and the first poroplastic case) consists in the qualita-
tive replication of a set of fracturing experiments that examined the injection of aqueous
glycerin into dry sand within a 30 by 30 by 2.5 cm Hele-Shaw cell (Huang et al., 2012a,
2012b). These experiments are inherently multiscale, in that the characteristic length scale
of fractures in this system (~ cm) is orders of magnitude larger than that of pores within
the microporous matrix (~ um). They are also multiphysics, as they clearly exemplify the
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drag-controlled transition from Darcy flow within the porous medium to Stokes flow in the
open fractures and the coupling between the hydrodynamics of fluid flow and the mechan-
ics of fracture propagation (Figure 4).

The experimental setup involved the injection of aqueous glycerin at various flow
rates g between 5 and 50 ml/min while also varying the fluid’s viscosity g, between 5
and 176 cp for different experiments. Our numerical simulations were parameterized us-
ing measured values of the glycerin-air surface tension (y = 0.063 kg/s?), the density of
pure glycerin (pg;y, = 1250 kg/m?), the density of air (o4 = 1 kg/m?), the viscosity
of air (ug; = 0.017 cp), and the average radius and density of sand grains (100 um and
2650 kg/m?, respectively). To mimic the sand’s experimental configuration and perme-
ability, the simulated solid fraction field was set to a random initial normal distribution
such that ¢ = 0.64 + 0.05 and the permeability was modelled as a function of the solid
fraction through the Kozeny-Carman relation with kg = 6.7 x 1072 m?. Relative per-
meabilities were calculated through the Van Genutchen model with the Van Genuchten
coeflicient m set to 0.99 (see Appendix A), while capillary pressures were deemed neg-
ligible (as 2yr~! < uk™'U rL). Finally, the porous medium was modeled as a continu-
ous Hershel-Bulkley-Quemada plastic (Appendix B) with yield stress 7p = 16.02 m?/s?
(Quemada, 1977). Plasticity was used as the preferred mode of solid rheology due to its
ability to account for the compressive and irreversible effects caused by fracturing within
these experiments (Ahmed et al., 2007; van Dam et al., 2002).

Numerically speaking, the simulations were carried out in a 30 by 30 cm 2-D grid
(500 by 500 cells) with constant velocity and zero-gradient pressure boundary conditions
at the inlet, zero-gradient velocity and zero pressure boundary conditions at the boundary
walls, and a solid velocity tangential slip condition at all boundaries (i.e. the solid can-
not flow across the boundaries, but the fluids can). Lastly, to enable a closer comparison
between our 2D simulation and the 3D experiment we added an additional drag term to
the fluid momentum equation equal to 12ua=2U #» which accounts for viscous dissipation
through friction with the walls in a Hele-Shaw cell with aperture a (Ferrari et al., 2015).

As shown in Figure 4, a dramatic transition in the mode of fluid invasion is ob-
served with increasing fluid injection velocity and viscosity. At low flow rates and low
viscosity (¢ =5 ml/min, p =5 cp), there is no discernible solid deformation and the
main mode of fluid flow is through uniform invasion of the porous medium (Figure 4A).
At intermediate flow rates and low viscosity (¢ = 25 ml/min to 30 ml/min, u = 5 cp),
we still observe a uniform invasion front, but small fractures begin to appear (Figure 4B,
C). At high viscosity (u = 176 cp), we see clear fracturing patterns preceded by a non-
uniform fluid invasion front (Figure 4H, I).

Figure 4 shows that our simulation predictions are qualitatively consistent with the
experiments presented in Huang et al. (2012a) with regard to both the stability of the cap-
illary displacement front and the observed fracturing transition behavior. As suggested
above, accurate prediction of this transition requires not only proper handling of fluid-
fluid interactions (surface tension and relative permeability effects), but also accurate de-
scriptions of their relationship with solid mechanics (drag) and the proper implementation
of a solid rheological model that can replicate irreversible and unstable fracturing pro-
cesses. We note that in our simulations, fracture initialization and propagation are pre-
dicted based on continuum-scale equations for the rheology and mechanics of the bulk
microporous solid, with no specific treatment of grain-scale mechanics. Grid-level insta-
bilities are brought about by the normally distributed porosity and permeability fields, as
shown in Appendix C. The microstructural differences between the experiments and our
simulations (most clear in Figure 4C, F, and H, K) likely arise at least in part from the
fact that the solid is modelled as a continuum rather than a granular material.

This section demonstrates that the multiphase DBB model can be used to replicate
and predict the main mode of fluid flow and solid deformation within fracturing systems.
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Figure 4. Comparison of experimental (A, B, C, G, H, I) and simulated (D, E, F, J, K, L) fracturing in
a Hele-Shaw cell. The color bar represents the solid fraction within the simulations (where red implies a
pure solid and blue pure fluids) and the black lines represent the advancing glycerin saturation front. The

experiments shown here are part of the results presented in Huang et al. (2012a).

A comprehensive study of the controlling parameters for multiphase fracturing in the pres-
ence of both viscous and capillary stresses will be the focus of an adjacent study.

4.4 Modeling Fracturing Wellbore Pressure

Having shown that our model can qualitatively predict fracturing behavior, we now
aim to determine whether it can do so in a quantitative matter. As depicted in Figure 5,
fluid-induced fracturing of low-permeability rocks proceeds through the following well-
established series of stages: First, fluid pressure increases linearly as fracturing fluid is
injected into the wellbore. Second, as wellbore pressure increases and approaches the
leak-off pressure, a small amount of pressure is propagated by fluid leakage into the rock.
Third, fluid pressure continues to increase until it reaches the breakdown pressure, at
which point it is high enough to fracture the rock. Fourth, a fracture is initiated and prop-
agates; the wellbore pressure slowly decreases. Fifth, injection stops, fracture propagation
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stops, and wellbore pressure rapidly dissipates (Abass et al., 2007; Ahmed et al., 2007;
Huang et al., 2012a; Papanastasiou, 2000; Santilldn et al., 2017).

Figure 5. Conceptual representation of wellbore pressure evolution during fluid-induced fracturing of low

permeability rocks. In this section, we are interested in modeling the behavior between ¢ frac and f5¢0p .-

In this section we aim to numerically replicate the time-dependent fracturing well-
bore pressure during fracture propagation (i.e., the fourth stage outlined above) as de-
scribed by an analytical solution presented in Barros-Galvis et al. (2017).

n( tko;(’ )+0.8ll 41)
¢fﬂrwell

P = po - Hq
well 0 47Tk()h

where ¢ is the time elapsed since fracture initialization, ¢ is the fluid injection rate, py, .
is the wellbore pressure, pg is the minimum pressure required for starting a fracture (a
function of the solid’s yield stress 7p), & is the formation thickness, and r,,¢; is the well-
bore radius. The remaining variables follow the same definitions described earlier.

The general numerical setup is almost identical to the one presented in the previ-
ous section. The key difference is that we now inject aqueous glycerin into a strongly-non
wetting (and thus almost impermeable) porous material. This is done to ensure an accu-
rate replication of the analytical solution and its related assumptions, where fracturing is
the main mode of fluid flow and there is virtually no fluid invasion into the porous ma-
trix. The exact simulation parameters are ¢ = 46 to 110 ml/min, 79 = 0.2 or 2 m?/s?,
ko =6.7x 107" or 6.7 x 10712 m?, yg;, = 5 cp, and m = 0.05. Note that low values of m
indicate that the porous formation is strongly non-wetting to the injected fluid. All other
parameters are as in the previous section.

Lastly, as hinted at before, a notable characteristic of our model is that different
normally-distributed solid fraction field initializations give different fracturing results (Ap-
pendix C). For this reason, we performed four simulations for each parameter set. In Fig-
ure 6, we present the average predicted wellbore pressure evolution with errors bar repre-
senting the 95% confidence interval.

Figure 6 shows that our model can accurately and reliably predict the pressure and
deformation behavior of a variety of fracturing systems, as all curves exhibit excellent
agreement with their respective analytical solution. Note that the length of each curve re-
lates inversely to the injection speed. This is because fractures at higher injection rates
consistently reach the system’s boundary faster than their counterparts, at which point
there is a sharp decrease in pressure and the analytical solution no longer applies. There-
fore, each curve’s cutoff point represents the time at which the fracture effectively be-
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Figure 6. Wellbore pressure as a function of injection rate and time. (A) The initial simulation setup show-
ing the initial wellbore radius r,,.;; = 1.3 cm, as well as the normally distributed solid fraction field. (B) The
fractured system, where the thin black line represents the position of the advancing glycerin saturation front.

C and D show the wellbore pressure as a function of time for different flow rates and different combinations
of solid yield stress and permeability. Solid curves represent analytical solutions, while symbols represent
simulation predictions. The color scheme in A and B is the same as in Figure 4, and p,4 is the maximum

analytically-predicted pressure in each simulation.

comes an open channel between the wellbore and the outer boundary, normalized to the
average value of that time for the slowest-moving fracture (i.e. ¢ = #,4x)-

The successful replication of the analytical pressure profiles in this section verifies
the model components pertaining to the pressure-velocity-deformation coupling and the
two-way momentum transfer between the fluid and solid phases (drag). Therefore, the only
model component left to verify is the implementation of the capillary force terms during
fracturing of a plastic solid.

4.5 Capillary Effects on Fracturing Wellbore Pressure

Our fifth verification systematically varies the capillary entry pressure within non-
wetting fracturing systems to quantify its effects on wellbore pressure. For this, we con-
sider two different complementary cases: one where capillary forces are comparable to
their viscous counterparts, and another where they are significantly larger than them. All
parameters are the same as in the previous experiments (Section 4.4) unless otherwise
specified.

The first set of experiments expands the previous analysis (Section 4.4) into strongly
non-wetting systems with the addition of a constant capillary pressure jump at the frac-
ture interface imposed by a flat capillary pressure curve (p. = pco = 1to 2 kPa, 19 =
2m?/s2, kg = 6.7% 1072 m%, m = 0.05, and ¢ = 78 ml/min ). In this case, all the
assumptions present in the fracturing analytical solution (Eqn. 41) are satisfied. However,
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said solution still does not account for capillarity. For constant flow in non-wetting sys-
tems, the addition of a constant capillary entry pressure jump at the fluid-solid interface
would increase the calculated propagation pressure in Eqn. 41 by said value such that

Doy = Pwell + pc. This effect is exemplified in Figure 7A, where we present the up-

dated analytical results in conjunction with our equivalent numerical results, demonstrating
excellent agreement between them. Note that the predicted linear relationship between
wellbore pressure and capillary entry pressure is not explicitly imposed in the numeri-

cal model. On the contrary, it arises naturally from the balance of viscous, capillary, and
structural forces in Eqns. 25-29.

Figure 7. Effect of capillary entry pressure on fracturing wellbore pressure. (A-B) Wellbore pressure as

a function of time and entry pressure for low and high permeability systems, respectively. In B, curves at
increasingly high pressures were cut off for illustrative purposes and the solid line represents a fitted reference
logarithmic pressure descent curve. (C-H) Time evolution of fractured system with a 1 kPa capillary entry
pressure and high permeability. (C) Initial fluid invasion (¢/t;qx < 0): at early times the wellbore pressure
rises rapidly and becomes larger than the entry capillary pressure. The fluid invades the porous formation
symmetrically. (D) Fracture initiation (¢/t,,4x = 0): The wellbore pressure continues to rise until it is larger
than the breakdown pressure, at which point small fractures start to form. Fluid invasion continues. (E-F)
Fracture propagation (t/tijuax > 0 |Pwenr > Pe,0): the wellbore pressure drops as fractures propagate.
Fluid invasion continues asymmetrically around said fractures. (G) Fluid invasion stops (¢/tmax > 0 |
DPwell ~ Pec,0): As the wellbore pressure keeps dropping, the entry capillary pressure condition at the porous
interface ensures that that wellbore pressure never goes below p.. o, at which point fluid invasion stops. (H)
Fracture reaches the simulation boundary (¢/t;;,4x = 1). The color convention in Figures C-H is the same as in

Figure 4.

The second set of experiments modifies the previous experiments by making the
porous medium significantly more permeable, while still maintaining a constant capillary
pressure jump at the fracture interface (p. = pco = 1 to 3 kPa, 79 = 0.2 m? / s2 ko =
6.7x 107" m?, m = 0.99, and g = 78 ml/min). This results in a set of cases where the
wellbore pressure is increasingly controlled by the capillary pressure drop rather than by
the viscous pressure drop across the fracture and porous formation.
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Figure 7 demonstrates precisely this effect. Our simulations show that the wellbore
pressure always decays towards the capillary entry pressure once viscous effects are dis-
sipated by fracture growth, i.e., we observe a transition between viscous- and capillary-
dominated regimes. At low values of p. o (< 2500 Pa) the entry pressure is not high
enough to prevent fluid flow into the surrounding porous matrix during fracturing (Figure
7B-H). The resulting pressure drop cannot be modeled by the previously presented analyt-
ical solution (as it violates the no leak-off assumption), but still follows a logarithm-type
curve that is characteristic of flow in fracturing systems. With increasing fracture propaga-
tion, the viscous pressure drop decreases until the wellbore pressure equals the entry pres-
sure, which is, by definition, the minimum pressure drop required for fluid flow in highly
permeable non-wetting systems. Finally, we note that in cases where capillary entry pres-
sure is high relative to the pressure required to fracture the solid (i.e., at (p.o > 2.250 Pa
in the conditions simulated in Fig. 7b), fracturing begins before the wellbore pressure can
exceed p.o. This prevents essentially all flow into the porous formation, and the wellbore
pressure is immediately stabilized at ~ p. . For all cases, fractures continue to propagate
until they reach the system boundary, at which point the pressure drops rapidly as noted in
Section 4.4.

In this section we reduced the inherent complexity of the model’s capillary force
terms F.; (Eqns. 31-32) into a simple set of intuitive verifications. The quantitative agree-
ment between these two analytical cases and their corresponding numerical simulations
validate the implementation of the impact of capillary pressure effects on the mechanics of
a ductile porous solid within our model.

5 Tllustrative Applications

Having verified and tested the model, we now proceed with two illustrations that
demonstrate how hybridBiotInterFoam enables the simulation of relatively complex cou-
pled multiphase multiscale systems. The following cases serve as illustrative examples of
our model’s features and capabilities as well as tutorial cases within the accompanying
toolbox.

5.1 Elastic Failure in Coastal Barriers

Coastal barriers are ubiquitous features in coastal infrastructure development. When
designed appropriately, these structures can be very effective in regulating water levels
and protecting against inclement weather (Morton, 2002). However, accurate prediction
of the coupled fluid-solid mechanics of these structures (which can lead to barrier failure)
is inherently challenging as it requires modeling large-scale features (waves) while also
considering small-scale viscous and capillary interactions within the barrier.

The following case represents the continuation of the three-dimensional coastal bar-
rier illustration presented in Carrillo et al. (2020) with the addition of linear-elastic porome-
chanics. As such, the simulation was created by initializing a heterogeneous porosity field
(with kg = 2 x 1078 m? and ¢ = 0.5) in the shape of a barrier within a 8.3 by 2.7
by 0.25 m rectangular grid (1600 by 540 by 50 cells). The relevant solid mechanics pa-
rameters were E = 5 MPa, v = 0.45, and p, = 2350 kg/m>. Relative permeabilities
and capillary pressures were evaluated through the Van Genuchten model with m = 0.8
and p.o = 1 kPa. Before the start of the simulation, the water level was set to partially
cover the barrier and then allowed to equilibrate. A single wave was then initialized at t
= 0. This results in a simulation that exhibits a clear wave absorption cycle that gradually
dissipates in time, as seen in Figure 8. Detailed discussion on the fluid mechanics of this
problem can be found in Carrillo et al. (2020).

Here, however, we are interested in evaluating the barrier’s propensity to failure.
We do this by applying the Von Mises yield criterion, which is commonly used to pre-
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Figure 8. Waves crashing against a poroelastic coastal barrier. Here, the thin black line represents the
water-air interface (a,, = 0.5) and red-blue colors outside the coastal barrier represent water and air, re-
spectively. Colored contours within the barrier are the calculated Von Mises stresses and are shown in 5 kPa
increments in the general downwards direction. Note that the largest stresses are seen during the initial wave

crash and increase towards the base of the barrier due to gravitational effects.

dict material failure in elastic systems. It states that if the second invariant of the solid’s
deviatoric stress (the Von Mises stress) is greater than a critical value (the yield strength)
the material will begin to deform non-elastically (Von Mises, 1913). Although we do not
specify said critical value within our simulations, we can map the time-evolution of Von
Misses stresses within the coastal barrier as a result of a wave absorption cycle (Figure 8).
Our results illustrate the potential utility of our simulation framework in predicting the lo-
cation and time-of-formation of stress induced defects within coastal barrier as a function
of wave characteristics, permeability, and barrier geometry.

5.2 Flow-Induced Surface Deformation

Surface deformation due to subsurface fluid flow is a common geological phenomenon
occurring in strongly coupled systems and has clear implications in studies related to in-
duced seismicity (Shapiro & Dinske, 2009), CO; injection in the subsurface (Morris et
al., 2011), land subsidence (Booker & Carter, 1986), and the formation of dykes and vol-
canoes (Abdelmalak et al., 2012; Mathieu et al., 2008). In order to properly model these
systems, it is necessary to be able to capture the time-evolution of surface uplift, cracks,
and hydraulic fractures, as well as the effects that these features have on the overall flow
field. Here, we use the terms hydraulic fracture vs. crack to refer to solid failure at vs.
away from the injected fluid, respectively.

This illustrative case was inspired by the experiments reported by Abdelmalak et
al. (2012), where the authors injected a highly viscous fluid into a dry silica powder in
a Hele-Shaw cell in order to study the impact of hydraulic fractures on surface deforma-
tion, e.g., during the creation of volcanic structures. The system also bears some anal-
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ogy to situations involving the injection of fluids into subsurface reservoirs, e.g., dur-

ing geologic CO, sequestration (Rutqvist, 2012). The base case of our simulations con-
sists of an impermeable rectangular container (50 by 30 cm, 500 by 300 cells) that is
open to the atmosphere, is partially filled with a dry porous medium (¢5; = 0.6 =+ 0.05,
ps = 2650 kg/m?, ko = 5 x 107! m?), and has an injection well at its lower boundary
that injects water at ¢ = 6.5 ml/s (Figure 9). To account for irreversible solid deformation,
the porous medium is modeled as a plastic with yield stress 7y = 0.22 m?/s2. The solid
is represented as impermeable to the invading fluid through the use of the Van Genuchten
model with m = 0.05 and p. = 0. Then, using this base case as a standard, we individ-
ually varied each of the main parameters (¢, ko, 70, M, @5, Mwarer) OVer several simu-
lations in order to model the resulting solid deformation processes: fracturing, cracking,
surface uplift, and subsidence (Figure 9).

Figure 9. Study of hydraulic fracturing and cracking on surface deformation. (A-I) Representative cases
showing the effects of changing permeability kq (purple), solid yield stress 7 (green), injection rate g
(brown), and injected fluid viscosity u (red) on surface deformation. The blue and yellow subsections contain
the results of increasing or decreasing the controlling parameters, respectively. (J-L) Time evolution of the
fracturing base case. (M) Surface subsidence example. The difference between the base case (E) and all other
simulations is shown in each case’s legend. Dotted white lines represent the surface height of the initial solid

fraction configuration. Note that the color scheme in all simulations is the same as in Figure 4.

The resulting cases demonstrate that cracking (solid failure away from the injected
fluid) is strictly dependent on the number and orientation of existing hydraulic fractures,
as it only occurs when there is more than one fracture branching off from the main injec-
tion point (Figure 9B, C, D, H, and I). This is likely because in cases presenting a single
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vertical fracture solid displacement is almost exclusively perpendicular to the fracturing
direction, leading to virtually no surface deformation or cracking (Figure 9A, E and M).
Contrastingly, the creation of inclined fractures exerts vertical forces on the solid, resulting
in surface uplift and crack formation. The above diagram strongly suggests that deforma-
tion is controlled by the balance between viscous and structural forces: larger fractures
occur within softer solids with higher momentum transfer, and smaller fractures occur in
tougher solids with lower momentum transfer. As stated above, a comprehensive examina-
tion of the parameters that control solid fracturing will be the focus of an adjacent paper.

In addition to the surface uplift presented above, subsurface subsidence is observed
in the simulated system in conditions where the porous solid is rendered permeable to the
invading fluid (i.e., m > 0.05). This phenomenon is not primarily controlled by momen-
tum transfer, but rather by a gravitational effect whereby the displacement of air by water
within the porous medium around the advancing hydraulic fracture renders the solid-fluid
mixture heavier. Once it is heavy enough to overcome the plastic yield stress, the solid
sinks and compresses around the fluid source (Figure 9M).

With these last two illustrative examples, we have shown that our modeling frame-
work is flexible and readily applicable to a large variety of cases within elastic and plastic
systems. We invite the interested reader to tune, adapt, and expand the present illustrative
simulations, which are included in the accompanying CFD toolbox.

6 Conclusions

We derived, implemented, benchmarked, and applied a novel CFD package for sim-
ulation of multiscale multiphase flow within and around deformable porous media. This
micro-continuum modeling framework is based on elementary physics and was rigorously
derived through the method of volume averaging and asymptotic matching to the mul-
tiphase Volume of Fluid equations in solid-free regions and multiphase Biot Theory in
porous regions. The result is a single set of partial differential equations that is valid in
every simulated grid cell, regardless of content, which obviates the need to define differ-
ent meshes, domains, or complex boundary conditions within the simulation. The solver’s
numeric and algorithmic development were also discussed and implemented into hybridBi-
otlnterFoam, an open-source package accessible to any interested party.

Throughout this paper and its of predecessors (Carrillo & Bourg, 2019; Carrillo et
al., 2020), we show that the Multiphase DBB model can be readily used to model a large
variety of systems, from single-phase flow in static porous media, to elastic systems under
compression, to viscosity- or capillarity-dominated fracturing systems, all the way up to
multiscale wave propagation in poroelastic coastal barriers.

We note, however, that the solver presented here cannot be liberally applied to any
porous system, as it comes with the following inherent limitations. First, closure of the
system of equations requires appropriate constitutive and parametric relations that describe
fluid pressure, permeability, capillarity, and rheology within volume averaged porous re-
gions. Therefore, the assumptions present in each of these models should be carefully
considered. Second, volume averaging imposes important length scale restrictions in or-
der to fulfill the scale separation hypothesis, where the pore sizes within the averaging
volume must be substantially smaller than the chosen REV, and the REV must be substan-
tially smaller than the macroscopic length scale. Third, as implemented here, the multi-
phase DBB framework only represents continuum-level elastic or plastic solid mechanics.
As such, it cannot be used to model phenomena originating from sub-REV heterogeneities
such as fluidization or granular mechanics (Meng et al., 2020), except insofar as they are
captured in an averaged manner at the REV scale. Fourth, the use of the CSF as a repre-
sentation of capillary forces within solid-free regions enforces mass conservation, but it
creates a diffuse fluid-fluid interface that may generate spurious and parasitic currents.
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Finally, although the modeling framework developed here opens up significant new
possibilities in the simulation of coupled fluid-solid mechanics, it also creates a need
for the development of constitutive relations describing the coupling between multiphase
flow and poromechanics. Of particular importance is the formulation of saturation and
deformation-dependent solid rheological models (both plastic and elastic), as well as the
rigorous derivation of the interfacial condition between solid-free and deformable porous
regions. In this paper we proposed a suitable approximation for said boundary condition
based on our single-field formulation, the implementation of a wettability boundary condi-
tion, and the previous work done by Neale and Nader (1974) and Zampogna et al. (2019).
However, the accuracy and validity of such an approximation is still an open question, one
that is at the frontier of our modeling and characterization capabilities (Qin et al., 2020).
The derivation and implementation of said boundary condition, along with the addition of
erosion and chemical reactions into this modeling framework, will be the focus of subse-
quent papers.
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A Relative Permeability and Capillary Pressure Models
Al Relative Permeability Models

The two relative permeability models used in this paper and implemented in the ac-
companying code depend on defining an effective saturation in order to account for the
presence of irreducible saturations within a porous medium

Ay — Aw irr

Qw.ef f
1= w,irr — Qw,irr

here, @, ¢ is the wetting fluid’s effective saturation, which is the wetting fluid’s satura-
tion normalized by each fluid’s irreducible saturation «; ;. The Brooks and Corey (1964)
model relates each phase’s relative permeability to saturation through the following expres-
sions

kr,n = (] - CYw,eff)m

kr,w = (aw,eff)m

where m is a non-dimensional coefficient that controls how sensitive the relative perme-
ability is with respect to saturation. The van Genuchten (1980) model calculates relative
permeabilities in the following way

1 1\2m
ke = (1= @wiers ) (1= @wer 1))

(ST

(1 - (1 - (aw,ef:f)%)m)2

krw = (@w.err)
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In this case, m controls how wetting (or non-wetting) the porous medium is to a
given wetting (or non-wetting) fluid. High values of m indicate high relative permeabili-
ties for the non-wetting fluid, while low values of m indicate very low relative permeabili-
ties for the same fluid.

A2 Capillary Pressure Models

The implemented capillary pressure models also depend on an effective wetting-fluid
saturation ay, pe,

@y — CVpc,irr

Ay, pc =
Xpc,max — Apc,irr

here, &p¢ max is the maximum saturation of the wetting fluid and a, ;- is its irreducible
saturation. The Brooks and Corey (1964) model uses the following expression to calculate
the capillary pressures within a porous medium

DPe = pc,O(aw,pc) p

where p. o is the entry capillary pressure, and § is a parameter depending on the pore
size distribution. Conversely, the van Genuchten (1980) model calculates the capillary
pressure with the following relation

_1 1-m
Pc =Pc,0 ((aw,pc) " o— 1)

B Solid Rheology Models
B1 Hershel-Bulkley Plasticity

A Bingham plastic is a material that deforms only once it is under a sufficiently high
stress. After this yield stress is reached, it will deform viscously and irreversibly. The
Herschel-Bulkley rheological model combines the properties of a Bingham plastic with a
power-law viscosity model, such that said plastic can be shear thinning or shear thickening
during deformation. In OpenFOAM®) this model is implemented as follows:

2
o=u’’ ( VU, + (VU = 3V - (U 1))

where ,uﬁf " is the effective solid plastic viscosity, which is then modeled through a power
law expression:

° . T _
us’ ! =mm(#?, o T 1)

where y is the limiting viscosity (set to a large value), 7 is the yield stress, yg is the vis-
cosity of the solid once the yield stress is overcome, n is the flow index (n = 1 for con-
stant viscosity), and 7 is the shear rate.

B2 Quemada Rheology Model

The Quemada rheology model (Quemada, 1977; Spearman, 2017) is a simple model
that accounts for the fact that the average yield stress and effective viscosity of a plastic
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are functions of the solid fraction. These two quantities are large at high solid fractions
and small at low solid fractions, as described by the following relations

D

N =g, /gma)

Mo
2

_ 95

(1 ¢m)

here, ¢7'** is the maximum solid fraction possible (perfect incompressible packing), 7o is
the yield stress at ¢5 = ¢5'“*/2 , po is the viscosity of the fluid where the solid would be
suspended at low solid fractions (high fluid fractions), and D is a scaling parameter based

on the solid’s fractal dimension.

Hs =

B3 Linear Elasticity

A linear elastic solid assumes that a solid exhibits very small reversible deformations
under stress. Linear elasticity is described by the following relation:

o = usVug + ptg (Vug)? + Agtr (Vug) I

where u; is the solid displacement vector (not to be confused with solid velocity Uy), and
us and A are the Lamé coefficients (Jasak & Weller, 2000).

C Fracturing Instabilities

The following figures demonstrate how different fracturing patterns can result from
different solid fraction initializations. Here we set up two sets of four identical experi-
ments. In the first set, the only difference between cases is the value of the standard devia-
tion of their respective normally-distributed solid fraction field (all centered at ¢, = 0.64).
These experiments follow the same simulation setup used for the fracturing case shown in
Figure 4K.

Figure A. Effects of the solid fraction field’s standard deviation on fracturing.

In the second set of experiments we simulated the base case presented in Figure 9
with different solid fraction profiles picked from the same normal distribution ¢5 = 0.6 +
0.05.

Figures A and B clearly show that the created fractures are dependent on the initial
solid fraction distribution.
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Figure B. Effects of different solid fraction field initializations on fracturing.

List of Symbols

ay Saturation of the non-wetting phase

Qy Saturation of the wetting phase

o Elastic (or plastic) solid stress tensor in the grid-based domain (Pa)
T Terzaghi stress tensor in the grid-based domain (Pa)

B; i  Drag force exerted by phase k on phase i (Pa/m)

D;  Drag force exerted by phase k on phase i (Pa/m)

F.; Surface tension force in the grid-based domain (Pa.m“)

g Gravity vector (m.s™2)

n;; Normal vector to the i-j interface in the continuous physical space
n,,; Normal vector to the porous surface

S Single-field fluid viscous stress tensor in the grid-based domain (Pa)
twan  Tangent vector to the porous surface

Uy Single-field fluid velocity in the grid-based domain (m/s)

U, Relative velocity in the grid-based domain (m/s)

U Solid velocity in the grid-based domain (m/s)

Vi j Velocity of the i-j interface in the continuous physical space (m/s)
y Interfacial tension (Pa.m)

Hy Single-field viscosity (Pa.s)

i Viscosity of phase i (Pa.s)

v Poisson’s ratio

U : Phase-averaged velocity of phase i in the grid-based domain (m/s)
U; Superficial velocity of phase i in the grid-based domain (m/s)

dr Porosity field

s Solid fraction field

oF Single-field fluid density (kg/m?)

pi Density of phase i (kg/m?)

0 Plastic yield stress (Pa)

0 Surface contact angle

A Interfacial area between phase i and j (m?)

Cqo Parameter for the compression velocity model

27—



E Young’s modulus (Pa)

1 Identity matrix

k Apparent permeability (m?)

ko Absolute permeability (m?)

kyi Relative permeability with respect to phase i

M Total mobility (kg~'m3s™")

m Van Genuchten coefficient

M; Mobility of phase i (kg™'m3s™!)

P Single-field fluid pressure in the grid-based domain (Pa)
Pe Capillary pressure (Pa)

Pc,0 Entry capillary pressure (Pa)

Vv Volume of the averaging-volume (m?®)
Vi Volume of phase i in the averaging-volume (m?)
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Introduction

Here we present the simulation and semi-analytical solution to the pressure behaviour
of an oscillating porelastic core. We also present alternative representations of Figures 5

and 6 from the main manuscript.
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Text S1. Pressure Oscillation in Poroelastic Core

This additional verification quantifies the effects of the seismic stimulation of a poroe-
lastic core saturated with water and trichloroethene (TCE). Our simulations follow the
experimental and numerical set up described in Lo, Sposito, and Huang (2012), where a
horizontal one-dimensional sand core (0.3 m long, 30 x 1 grid cells, ¢y = 0.5, a,, = 0.9,
ko = 1.1 x 107! m?) is subjected to constant uniaxial compression and oscillatory pore
pressure variations imposed by time-dependent boundary conditions (Figure S1). In this
case, flow is allowed through both boundaries, which results in a system that continuously
undergoes a relaxation-compression cycle. The ensuing cyclical change in the core’s fluid
content as a function of time can be described by a semi-analytical solution first derived
in Lo et al. (2012) and reproduced in the next section.

For our matching simulations, the porous structure’s Young’s modulus was set to £ =
53 MPa and its Poisson ratio to v = 0.32. Here, water density was p, = 1000 kg/m3,
water viscosity was 1 cp, TCE density was prcrp = 1480 kg/m?, and TCE viscosity was
urce = 0.57 cp. Furthermore, the pressure at the left boundary was held at p = 1 kPa
while the pressure at the right boundary was set by p = posin (27 ft), with pg = 1 - 2 MPa
and f = 35 - 70 Hz. Lastly, the core was uniaxially compressed through a constant stress
of 1 kPa applied at both boundaries. A comparison between our numerical solutions and
Lo’s semi-analytical solution is presented in Figure S1, yielding excellent agreement for
all tested cases.

Lastly, we note that the Multiphase DBB formulation should be able to describe ‘Slow”
Biot pressure waves caused by the relative motion of the solid and fluid phases which

occurs at much higher frequencies than the ones simulated here (i.e. 10 MHz). However,
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capturing these effects and modelling “Fast/Compressional” pressure waves would require
the implementation of a pressure-velocity coupling algorithm that allows for compressible

flow (Lo et al., 2012). Such an endeavour is outside the scope of this paper.
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Text S2. Semi-Analytic Solution for the Seismic Stimulation of a Poroelastic
Core

Here we present the analytical solution used to describe the system in the previous
section. Given a Biot coefficient of unity and incompressible fluids, the fractional change
in an oscillating poroelastic core’s fluid content 2 as a function of time ¢ is given by (Lo

et al., 2012)

Q(t) = —a1v + asayp, + 0.5 (azposin(wt) — asap,) + Y A

n=1

2 o 45,
A= (mr)—22003 (nm) aspo (sm (wt) + wisin (wt + dy,)

2 22 220'
(W —w?)" + D%w?)

= ) (1 —cos(nm) )

where v is the uniaxial confining pressure, p, is the fixed pressure at the left boundary,
po is the amplitude of the oscillating pressure at the right boundary, and w = 27 f is the
angular frequency of the pressure variation. The summation terms w, and sin (¢,) are

defined as

o Cnm \°
"\ Length

. Dw
sin (6,) = 05

(W —w2)" + D2?)

w? — w2
cos (0,) = z oE

(W —w?)’ + D2w?)

Furthermore, the dissipation constant D, the wave speed C, and the compressibility

constants a; and a- are defined as follows

1 1
ko L (Pwa + M) — (poM,, + ppM,)

Qw QAn
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CLQZKb_l

where T' = 0.5 (1 + ngTI) is the tortuosity, K} is the bulk modulus of the solid matrix, G
is the shear modulus of the solid matrix, and the rest of the variables are defined as in the
main manuscript. The infinite sum was calculated through a python script, where it was

truncated at the point where the last sum term represented 0.01% of the previous term.
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Figure S1. Change in fluid content of an oscillating poroelastic core. (A) Simulation

setup. (B) Semi-analytical (solid lines) and numerical solutions (symbols) for the percent

change in the core’s fluid volume as a function of time.
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Figure S2. Wellbore pressure evolution during fluid-induced fracturing of low

permeability rocks. Here we show how we sync the fracturing analytical solution
shown in (Barros-Galvis et al., 2017) together with raw numerical data through non-

dimensionalization of time.
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Figure S3. Alternative to Figure 6 depicting dimensionalized wellbore pressure as a
function of injection rate and time. (A) A fractured system, where the thin black line
represents the position of the advancing glycerin-air interface. (B) The wellbore pressure
as a function of time for different flow rates and different yield stress-permeability pairs.
Solid curves represent analytical solutions, while symbols represent the simulated data

points. The color scheme in A is the same as in Figure 4 in the main manuscript.

Equilibrium Sate

Figure S4. Equilibrium state of the coastal barrier case shown in Figure 8 within the

main manuscript. The color scheme and simulation setup is the same as in said figure.
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