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Abstract

Geothermal energy plays an important role in the energy transition by providing a renewable energy source with a low CO2

footprint. For this reason, this paper uses state-of-the-art simulations for geothermal applications, enabling predictions for a

responsible usage of this earth’s resource. Especially in complex simulations, it is still common practice to provide a single

deterministic outcome although it is widely recognized that the characterization of the subsurface is associated with partly

high uncertainties. Therefore, often a probabilistic approach would be preferable, as a way to quantify and communicate

uncertainties, but is infeasible due to long simulation times. We present here a method to generate full state predictions based

on a reduced basis method that significantly reduces simulation time, thus enabling studies that require a large number of

simulations, such as probabilistic simulations and inverse approaches. We implemented this approach in an existing simulation

framework and showcase the application in a geothermal study, where we generate 2D and 3D predictive uncertainty maps.

These maps allow a detailed model insight, identifying regions with both high temperatures and low uncertainties. Due to the

flexible implementation, the methods are transferable to other geophysical simulations, where both the state and the uncertainty

are important.

1



Uncertainty Quantification for Basin-Scale
Geothermal Conduction Models
Denise Degen1,*, Karen Veroy2,3, and Florian Wellmann1

1RWTH Aachen University, Computational Geoscience and Reservoir Engineering (CGRE), Wüllnerstraße 2, 52072
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ABSTRACT

Geothermal energy plays an important role in the energy transition by providing a renewable energy source with a low CO2
footprint. For this reason, this paper uses state-of-the-art simulations for geothermal applications, enabling predictions for a
responsible usage of this earth’s resource. Especially in complex simulations, it is still common practice to provide a single
deterministic outcome although it is widely recognized that the characterization of the subsurface is associated with partly
high uncertainties. Therefore, often a probabilistic approach would be preferable, as a way to quantify and communicate
uncertainties, but is infeasible due to long simulation times. We present here a method to generate full state predictions based
on a reduced basis method that significantly reduces simulation time, thus enabling studies that require a large number of
simulations, such as probabilistic simulations and inverse approaches. We implemented this approach in an existing simulation
framework and showcase the application in a geothermal study, where we generate 2D and 3D predictive uncertainty maps.
These maps allow a detailed model insight, identifying regions with both high temperatures and low uncertainties. Due to the
flexible implementation, the methods are transferable to other geophysical simulations, where both the state and the uncertainty
are important.

Introduction1

Geophysical and geoscientific applications have many sources of uncertainties, arising from, for instance, unresolved and2

unaccounted physical processes, inaccurate geometrical information, and variations in the parameter distributions1–7. Identifying3

and quantifying these uncertainties is a non-trivial process. Methods that easily require a million forward simulations, as4

Markov Chain Monte Carlo (MCMC), make this task not only non-trivial but computationally prohibitive for basin-scale5

geological heat flow models using state-of-the-art finite element solvers.6

A common way to address this is to replace the finite element model by a surrogate model such as Kriging8, 9, or polynomial7

chaos expansions10. The issue with these surrogate models is that they are based on observations and do not preserve the8

physics. Values outside the observation space need to be determined via inter- and extrapolation. For geothermal studies,9

however, we are interested in the entire temperature distribution at a particular target depth and at preserving the physics to10

compensate for data sparsity. Therefore, we use a physics-based learning approach, the reduced basis method (RB)11–14, as11

the surrogate model. In contrast to other surrogate models, the RB method has the advantage that it retrieves the temperature12

distribution in the whole model and thus preserves the physics, enabling an evaluation of the uncertainties in the complete13

model. Furthermore, the RB method provides, for the here presented geothermal application, an error bound allowing an14

objective assessment of the approximation quality. This has also advantages in the area of risk assessments since in contrast to15

data-driven approaches, we are able to provide the accuracy of our model15.16

The utility of model order reduction for Bayesian inversion has been investigated in previous studies. This includes a17

data-driven POD approach16 and parameter-state model reductions, with a Greedy algorithm, for addressing the computational18

challenges of uncertainty quantification17, 18. Furthermore, a POD approach is available for addressing non-linear PDEs19.19

Also, combinations of RB models, to address the computational issues, and error models are discussed20. Furthermore, a20

sparse-grid reduced basis version for Bayesian inversion for both linear and non-linear PDEs exists21, 22. Additionally, an21

example of using the RB method within a MCMC scheme for a geodynamical model is available23. However, these papers22

focus on the methodology, and the presented case studies do not capture the typical geometrical complexity of geothermal23

basin-scale applications.24

A work investigating the uncertainty of the thermal conductivity via Markov Chain Monte Carlo in a geoscientific context25



is also at hand24. Still, in this work, the uncertainty for the temperatures are only considered for five realizations and only26

interpreted on a 2D-slice lacking the mathematical complexity of uncertainty quantification. In contrast, we present a global-27

sensitivity-driven stochastic model calibration for complex basin-scale applications to generate predictive 3D uncertainty28

maps enhancing the efficiency of geothermal exploration. Furthermore, we consider all realizations obtained by the Markov29

Chain Monte Carlo analysis for the uncertainty quantification of the temperatures. The workflow is illustrated in Fig. 1. In30

previous studies, we investigated the construction of surrogate models for a geoscientific context using the RB method25.31

Furthermore, we demonstrated the benefits of the RB method for basin-scale global sensitivity analysis and deterministic model32

calibrations26.33

In this study, we focus on the methodology of uncertainty quantification for geophysical problems. The case study of34

Berlin-Brandenburg serves as a proof of concept and should highlight the impacts of this methodology for geophysical35

applications. Although, we focus on a thermal case study, the methods can be applied to a wide range of applications.36

[˚C]
[˚C]

[˚C]

A

B C

[˚C]

B

A

A

a)

b)

c)

Zechstein
Sedimentary
Rotliegend

Tertiary-
Rupelian-clay

Tertiary-post
Rupelian

Quaternary

Zechstein
Sedimentary
Rotliegend

Tertiary-
Rupelian-clay

Tertiary-post
Rupelian

Quaternary

Parameter Space Reduction:
14 à 6
For more details see Fig. S1

Posterior Prediction Maps

For more details see Fig. 4

Construction of the 
Low Dimensional Model

Dimension Reduction:
2,141,550 Dofs à 273 Dofs

+

+
…

210 km250 km

m
ax

. 1
40

 k
m

+

210 km250 km

m
ax

. 1
40

 k
m

210 km250 km

m
ax

. 1
40

 k
m

Uncertainty Quantification

For more details see Fig. 3

λLM
a) b)

c) d)

Global Sensitivity Analysis

λLC,J,BS λLM λscale
λZ

λKλTPRC,
UC

λZ
λscale

Truncated due to 
too low sensitivities

Figure 1. Schematic representation of the workflow.

The paper is structured as follows: First, we illustrate the methodology and the case study of Berlin-Brandenburg.37

Afterwards, we present the results of the uncertainty quantification and the predictive uncertainty quantification maps. This is38

followed by a discussion and concluded afterwards.39

Methods40

In the following section, we briefly introduce the numerical methods, the governing equations, and the geological model used41

throughout this paper.42

Uncertainty Quantification43

Bayes Theorem is the basis of the Markov Chain Monte Carlo (MCMC) method27:

P(u|y) ∝ P(y|u) P(u). (1)

The prior P(u) describes our knowledge about the unknown value of a parameter without taking the data into account. The44

posterior P(u|y) is the knowledge we have about the value of u given data y. Furthermore, P(y|u) is the likelihood, which45

describes the likelihood of the parameters given the observation data. Often, we do not have a very accurate or detailed46

knowledge of our unknowns, which means that determining the priors is challenging. MCMC is a method to draw samples47

from the posterior probability distribution. This is based on the generation of a Markov Chain. A Markov Chain develops based48

only on the knowledge of the present and previous events and subsequently iterates to the approximate the posterior distribution.49

However, this approximations comes at a cost: it often requires thousands to millions of iterations and therefore solves of the50
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forward model27.51

52

The Berlin-Brandenburg Model53

In this paper, we are using a combination of the Berlin-Brandenburg models presented in two previous studies28, 29. The model54

(see Fig. 2) has a spatial extent of 250 km in the EW-direction, 210 km in the NS-direction and extends vertically to the55

lithosphere-asthenosphere boundary (LAB). It consists of 17 geological layers and is discretized using tetrahedrons. The upper56

11 layers have a horizontal resolution of 0.22 km2 and a vertical resolution that is interpolated from the z-evaluations of the57

geological layers. The lower six layers have the same horizontal resolution as the upper 11 layers but the vertical element length58

corresponds to the layer thickness. This results in a tetrahedron mesh with 2,141,550 degrees of freedom.59

a)

b) c)

[˚C]

[˚C]

Figure 2. a) Image of the Berlin-Brandenburg model with a partial insert showing the prior temperature distribution. For the
layer IDs refer to Table S1. b) The error between the full and reduced model for the prior parameters. c) Convergence of the
maximum relative error bound for the entire parameter range.

For the forward simulations, we take a geothermal conduction problem with the radiogenic heat production S as the source
term30:

−λ∇
2T +S = 0, (2)

where λ is the thermal conductivity, and T the temperature. In order to investigate the relative importance of the parameters,60

and for efficiency reasons, we nondimensionalize the equation, which leads to Eq. 3:61

− λ

λref Sref

∇2

l2
ref

(T −Tref

Tref

)
+

S l2
ref

Sref Tref λref
= 0 (3)
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Here, we chose the maximum thermal conductivity of the Brandenburg model of 3.95 W m-1 K-1 as reference thermal62

conductivity λref. The maximum temperature of 1300 °C is the reference temperature Tref, the maximum radiogenic heat63

production (2.5 µW m3) is the reference radiogenic heat production Sref. The reference length lref corresponds to the maximum64

x-extent of all models (250,000 m). At the top of the model, we apply a Dirichlet boundary condition of 8 °C, corresponding to65

the average annual temperature, and at the base of the LAB a Dirichlet boundary condition of 1300 °C31. Additionally, we66

allow a scaling of the lower boundary condition of ± 10 % to account for errors in the geometric description of the LAB. All67

thermal properties are summarized in Table S1 and the weak form of Eq. 3 is presented in Text S2.68

For the validation of the models, we are using the bottom-hole temperature measurements presented in Noack et al.28, 29
69

and corrected after Förster32. The values for the thermal conductivity and the radiogenic heat production are taken from Noack70

et al.28, 29 and are originating from previous model studies after Bayer et al.30. Throughout this paper, we vary only the thermal71

conductivities, whereas the radiogenic heat production values are kept constant since the radiogenic heat productions have a72

minor effect on the temperature distribution at the target depth in comparison to the thermal conductivities. We further reduce73

the number of involved parameters in the reduction and inverse processes by combining layers with equal thermal conductivities74

into one, as presented in Table S1.75

Berlin-Brandenburg – Reduced Model76

We construct a surrogate model using the RB method based on the full FE model. The RB method is a model order reduction77

technique that aims at significantly reducing the spatial and temporal degrees of freedom of, for instance, finite element78

problems. For further information regarding the method please refer to the literature11–14, and for more information on the79

RB method in the context of Geosciences refer to Degen et al.25. The geothermal problem, described in Eq. 2, is affine80

decomposable, meaning separable into a parameter-independent and -dependent part.81

The RB method takes advantage of this affine decomposition in an offline-online procedure. During the offline stage,82

performed only once, all expensive pre-computations for the basis construction are performed. The construction of the basis is83

achieved via a greedy algorithm12, which involves training or “learning” of the low-dimensional model. In contrast to machine84

learning approaches, we are not training based only on data but instead also consider the physical model.85

On the other hand, the online stage uses only the reduced model. Hence, it is for the given example several orders of86

magnitude faster than the original FE model making it advantageous for “outer loop” processes, such as calibrations and87

uncertainty quantification.88

We derive the weak formulation, where u(µ) ∈ X satisfies11, 13, 14:

a(u(µ),v; µ) = f (v; µ), ∀v ∈ X . (4)

Note that we use the operator representation here. This means, we present the bilinear form a (instead of the stiffness matrix)
and the linear form f (instead of the load vector). In particular, the bilinear form a has the following decomposition:

a(w,v;λ ) =−
n

∑
q=0

λq

∫
Ω

∇w ∇v dΩ, ∀v,w ∈ X , ∀λ ∈D , (5)

where w is the trial function, v the test function, the index “q” denotes the number of the training parameter (for more information
see Table S1), X the function space (H1

0 (Ω)⊂ X ⊂ H1(Ω)), Ω the spatial domain in R3, and D the parameter domain in Rp

with p being the number of parameters. In our example p is equal to 14. The linear form f is decomposed in the following way:

f (v;λ ,s) =−
n

∑
q=0

λq s
∫

Γ

∇v g(x,y,z) dΓ+ s
∫

Γ

∇v S dΓ, ∀v ∈ X , ∀λ ∈D ,

with g(x,y,z) = Ttop
h(x,y,z)− zbottom(x,y)

d(x,y)
.

(6)

Here, Γ is the boundary in R3, s the scaling parameter for the lower boundary condition, g(x,y,z) the lifting function, Ttop the89

temperature at the top of the model, h(x,y,z) the location in the model, zbottom(x,y) the depth of the bottom surface, and d(x,y)90

the distance between the bottom and top surface.91

Results92

For the uncertainty quantification of the Berlin-Brandenburg model, we perform a Markov Chain Monte Carlo analysis27 with a93

Metropolis sampling using the Python library PyMC33. A previously performed Sobol sensitivity analysis with the Saltelli94
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sampler and 300,000 forward solves showed that the model is insensitive to eight of the 14 parameters (Fig. S1)34. We thus95

reduce the parameter dimension from 14 parameters to six. For more information regarding global sensitivity analyses, refer to96

Sobol35, and Degen et al.26.97

For all thermal conductivities in the sensitivity analysis and the MCMC algorithm, we allow a variation of ± 50 %. The98

number of function evaluations for the MCMC run is set to 1,000,000 with a thinning of 1,000 and 10,000 burn-in-simulations.99

For the priors, we use normally distributed parameters. The mean of each parameter corresponds to the fitted thermal100

conductivity values of Noack et al.28, 29. Both the standard deviation and proposal standard deviation are set to:101

• one for the Tertiary-pre-Rupelian-clay/Upper Cretaceous and Lower Cretaceous/Jurassic layer102

• two for the Keuper layer103

• four for the Zechstein layer and the Lithospheric Mantle104

• 0.002 for the scaling parameter of the lower boundary condition105

and are afterwards divided by their respective mean values. The standard deviations have been determined such that the values106

do not exceed a range of ± 50 % of their mean values to ensure physical plausibility. For the stochastic model calibration, we107

use the temperature data presented in Noack et al.28, 29. The bottom-hole temperatures of this database have been measured108

during the drilling process and were later on corrected after Förster32. This correction might not fully capture the perturbation109

of the temperature field. Therefore, we apply a standard deviation of 2 % for the observation data.110

Thermal Conductivities111

Now, we discuss the posterior distribution of the thermal conductivities obtained by the MCMC analysis (Tab. S1). Through a112

Quantile-Quantile analysis (Fig. S2), we determined that the normal distributions describe our parameter quite well. Hence, we113

discuss in the following only the posterior mean and standard deviations of the thermal conductivities.114

We obtain for the Tertiary Rupelian-clay/Upper Cretaceous layer (Fig. S4), a slight increase in the posterior mean thermal115

conductivity of 0.05 W m-1 K-1 in contrast to the prior thermal conductivity. The parameter follows a normal distribution with a116

standard deviation of 0.47 W m-1 K-1. We observe a posterior thermal conductivity of:117

• 2.11 W m-1 K-1 ± 0.45 W m-1 K-1 for the Lower Cretaceous/Jurassic/Buntsandstein layer (Fig. S5),118

• 2.35 W m-1 K-1 ± 0.58 W m-1 K-1 for the Keuper layer (Fig. S6),119

• and 3.56 W m-1 K-1 ± 0.81 W m-1 K-1 for the Zechstein layer (Fig. S7).120

Hence, all three cases show an increase in the posterior thermal conductivity in comparison to the prior thermal conductivity,121

and they are also normally distributed. The Lithospheric Mantle shows a decrease in the posterior mean thermal conductivity of122

0.11 W m-1 K-1 in comparison to the prior thermal conductivity and has a posterior standard deviation of 0.86 W m-1 K-1 (Fig.123

3). The scaling parameter (Fig. S8) has a posterior mean value of 1.00, which is identical to the prior value, and a posterior124

standard deviation of 0.04. All parameters follow a normal distribution and a autocorrelation around zero. The z-scores (Figure125

3a, S4a - S8a) indicated converges for all chains. The z-scores measure the mean and the variance of the entire chain.126

Uncertainty Quantification Maps127

First, we use the parameter distributions of the MCMC analysis to generate 2D and 3D uncertainty quantification maps. We128

make here also use of the RB method, which allows us to compute model realizations for samples from the posterior distribution129

to obtain temperature state values everywhere in space.130

For the generation of uncertainty quantification maps, we have to choose a suitable representation. A Quantile-Quantile131

analysis (Fig. S3) for nine points at a depth of 5 km shows that the temperature is normally distributed. Hence, we plot the132

posterior mean temperatures and their standard deviations to achieve a suitable representation of the temperature uncertainties133

in the following.134

First, we present the posterior distributions in the entire Berlin-Brandenburg model. The posterior standard deviations135

have their highest value within the sedimentary basin at a depth of about 30 to 35 km (see Fig. 4a). Consequently, the highest136

uncertainties also occur there. Overall, we observe uncertainties ranging from 0 °C to 53 °C. We observe that the uncertainty137

decreases towards the boundaries and increases towards the center part of the model. The gradient of the posterior mean138

temperature distribution is steep in the upper part of the model and has a significantly less steep gradient in the lower part of the139

model. The temperatures range from 8 °C to 1300 °C (see Fig. 2).140

Now, we focus on the posterior distributions at a typical target depth for geothermal systems of 5 km. The posterior mean141

temperature ranges from 141 °C to 197 °C, and the posterior standard deviation from 8 °C to 18 °C. The highest uncertainty,142
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λLM
a) b)

c) d)

Figure 3. Posterior Analysis of the Lithospheric Mantle (LM) as an example. The remaining posterior analyses figures are
found in the Supplementary Material. Shown are the a) Geweke Plot b) autocorrelation, c) posterior parameter distributions,
and d) the trace.

in a depth of 5 km, is north of the interface of the Tertiary-post-Rupelian and the Rupelian clay and south to the Zechstein -143

Sedimentary Rotliegend interface. The area is marked with an A in Fig. 4c. It has its highest peak southeast to the region,144

where salt structures majorly influence the posterior mean temperatures. Generally, from the interface (marked with a B), the145

uncertainties increase towards the north and decrease towards the south of the model.146

The highest posterior mean temperatures of over 190 °C are north of the interface of the Tertiary-post-Rupelian and the147

Rupelian clay (marked with a C). In contrast, the lowest posterior mean temperature values around 140 °C are south of this148

interface (see B in Fig. 4b). In general, the posterior mean temperature north of the interface decrease to the northern border of149

the model. Furthermore, in the north-west part of Berlin-Brandenburg, a region of lower posterior mean temperatures is located150

(area A in Fig. 4b). We explain the reasons for this decreased posterior mean temperature in the Discussion.151

Computational Cost152

The reduction requires 273 basis functions for reaching the pre-defined relative error tolerance of 5·10-4 for the nondimensional153

model (see Fig. 2c). Note that the most accurate measurements have an accuracy of 10-1. Consequently, the chosen error154
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tolerance ensures that we do not introduce approximation errors above the measurement error. The reduced basis method leads155

to a speed-up of 1.0·105. This yields an execution time of the MCMC algorithm of about 4.5 hours, for the one million forward156

solves.157

Discussion158

A benefit of the methodology presented here is the generation of predictive uncertainty quantification maps, enabled by using159

the RB method as a surrogate model. Therefore, we are able to reveal important insights into the spatial distribution of the160

uncertainties. Most other surrogate models would not allow the generation of predictive physics-preserving uncertainty maps161

for the entirety of the model since they generally do not preserve the physics.162

Thermal Conductivities163

To discuss the uncertainties related to the thermal conductivities, we first focus on the posterior mean thermal conductivities.164

The posterior mean thermal conductivities of all layers show only a slight deviation from the prior thermal conductivities.165

This is not surprising since they are derived from previous model studies and are therefore already well adapted to the model.166

However, if we compare them to the measured thermal conductivities presented in Noack et al.28, we observe an apparent167

deviation since this paper present the input parameters prior to the “trial-and-error” model calibration.168

Even though the posterior mean thermal conductivities are in a good agreement with the prior thermal conductivities, the169

need for uncertainty quantification becomes apparent through the posterior standard deviation. For all layers, we observe170

large posterior standard deviations for the thermal conductivity, meaning that we have high uncertainties for all layers. The171

uncertainty in the parameters is mainly influenced by the uncertainty of the observation data and by the upper boundary172

condition. In our study, we place a lot of trust in the data. Still, we allow variations from that data set since we are operating173

with partially corrected bottom-hole temperatures. We assume that the correction factor is not able to fully compensate for174

the perturbation of the temperature field during the drilling process, resulting in slightly uncertain observation data. The175

posterior standard deviation decreases by placing more trust in the observation data. Therefore, temperature observations that176

are performed when the temperature field is in equilibrium would significantly improve the certainty of the different thermal177

conductivities.178

Except for the Lithospheric Mantle, all posterior mean thermal conductivities show an increase in comparison to the prior179

thermal conductivity. Since the layers above the salt show an increase in the posterior thermal conductivity and the layer below180

shows a decrease, that might be an indication that some salt structures were not resolved. The stochastic calibration demonstrates181

that a geothermal conduction problem adequately describes the sedimentary basin of Berlin-Brandenburg. Furthermore, the182

small posterior standard deviation of the scaling parameter for the lower boundary condition shows that the boundary is placed183

far enough from the area of interest to avoid any interference.184

Uncertainty Quantification Maps185

We first focus on the uncertainties associated with the temperatures in the entire Brandenburg model. The distribution of these186

uncertainties seems to be contradictory to our expectations. Usually, one expects an increasing uncertainty with depth. We187

observe a decreasing uncertainty towards the boundaries and an increasing uncertainty towards the center part of the model188

instead. Both for the top and the bottom boundary condition, we apply Dirichlet boundary conditions, where the upper boundary189

condition has a value of 8 °C throughout all simulations. The lower boundary condition varies by a factor of ± 10 %. We allow190

this variation to account for geometrical parameterization errors of the LAB. This is the reason why we observe decreasing191

uncertainties towards these boundary conditions because the values of the boundaries are relatively fixed within all simulations.192

The highest uncertainties are between 30 km and 35 km depth, where no interactions of the boundary conditions are observable.193

For a detailed investigation of the influence of boundary conditions on geothermal conduction model, we refer to Degen et al.34.194

We can also use the distribution of the uncertainties to investigate the influence of the respective boundary conditions.195

Although the LAB is at a depth varying from approximately 100 km to 140 km, the boundary significantly influences the model196

up to a depth of 80 km to 100 km. For our investigations, this is uncritical since our target depth is at 5 km depth. Nonetheless,197

this demonstrates that it is essential to have a vertical extent that is significantly larger than the target depth. The upper boundary198

condition is influencing the model to a depth of 10 km, meaning that the upper boundary condition significantly affects our199

target depth. This is not avoidable since the surface naturally defines the upper boundary. However, this is less critical than the200

influence of the lower boundary condition because we can determine the upper boundary with a much higher certainty than the201

lower. Nonetheless, it shows that it is crucial to characterize the upper boundary condition with great detail.202

At the target depth, the highest uncertainties are in the northwest (denoted by “A” in Fig. 4). Hence, they are north of the203

Tertiary-post-Rupelian and the Rupelian clay interface (denoted by “B” in Fig. 4), and south of the Sedimentary Rotliegend and204

Zechstein interface. The reason is that the variations of the contrast in thermal conductivity are high at these interfaces.205
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Figure 4. a) Distribution of the posterior mean temperature and the posterior standard deviation of the entire
Berlin-Brandenburg model. b) Map of the posterior mean temperature and c) posterior standard deviation at the target depth of
5 km. The light green lines in b) and c) indicate the boundaries of the geological layers.
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Note that the Rupelian clay has a posterior mean thermal conductivity of 1.93 W m-1 K-1 with a posterior standard deviation206

of 0.53 W m-1 K-1 and the Zechstein layer a posterior thermal conductivity of 3.60 ± 0.96 W m-1 K-1. Furthermore, the207

highest uncertainties are adjacent to the region of the salt structures, further emphasizing the influence of the Zechstein layer208

on the uncertainties. At the target depth, we consider only the Rupelian clay and the Zechstein layer as uncertain and do not209

include other layers in the uncertainty quantification. The sensitivity analysis shows that the model is insensitive to these210

parameters. Consequently, the observed uncertainty is arising from the contrast in thermal conductivity between the Rupelian211

clay- Zechstein layer and the remaining layers.212

The posterior mean temperatures at a depth of 5 km are higher north from the Tertiary-post-Rupelian and the Rupelian clay213

interface (marked with the letter B in Fig. 3b) because the Tertiary-post-Rupelian has a lower thermal conductivity than the214

Rupelian clay. The colder posterior mean temperature values in the north-western part of the model (area A in Fig. 3b) are215

coming from the high thermal conductivity of the Zechstein layer. It is further emphasized by the round dome structures in the216

temperature distribution that are typical for salt. The posterior mean temperature after the stochastic model calibration only217

slightly deviates from the prior temperature distribution since the changes in the posterior mean thermal conductivity are also218

minor.219

Reduced Order Model220

The results show that the usage of a physics-based learning approach has considerable advantages for geothermal investigations221

and similar advantages can be expected for many other geophysical applications. This is caused by the sparsity of the observation222

data. The data sparsity makes purely data-driven approaches in many geophysical applications prohibitive. Instead of using223

data for the training phase, we use only the physical model in the construction of the surrogate model and are therefore able to224

mitigate the problem with the data sparsity at this stage. The data is introduced only during the inversion itself.225

The RB method requires 5.4 h for the offline stage, using two Intel Xeon Platinum 8160 CPUs (24 cores, 2.1 GHz, 192 GB226

of RAM) and 4.5 h for the MCMC method. Note that with the finite element method itself, the same analysis would require227

over 16 core-a.228

Conclusion and Outlook229

We presented an uncertainty quantification at the basin-scale with the generation of uncertainty quantification maps. This is230

computationally possible since we replace the finite element forward simulation by the reduced basis forward simulation. This231

results in a reduction of computation time from a couple of hundred seconds to a few milliseconds per simulation, and hence232

in a speed-up of five orders of magnitude. Therefore, we are able to efficiently perform both global sensitivity and MCMC233

analyses which both require thousands to millions of forward evaluations. Because we consider not only the deterministic but234

the stochastic temperature distribution, we are able to predict the temperatures with uncertainty, everywhere in space. For235

future work, it would be interesting to incorporate these temperature uncertainties into the economic evaluation of potential236

geothermal wells. It would be also interesting to investigate the effects of different observation data qualities on the uncertainty237

of the model temperature distributions.238
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INTRODUCTION

This supporting material provides additional information regarding the thermal properties of
the Berlin-Brandenburg model in Table S1. In Figure S1, we present the results of the sensitivity
analysis, which servers as a preparational study for the uncertainty quantification. Figures S2
and S3 show the quantile-quantile plots for the thermal parameters and the temperatures at
designated points in the model, respectively. We present the posterior analysis of the not in the
main manuscript presented thermal parameters in Figures S4 to S8 as referenced in the main
manuscript.

TABLE S1: THERMAL PROPERTIES

Table S1. Thermal properties of the Berlin-Brandenburg model before and after the uncertainty
quantification. The prior thermal properties are from [1, 2]. We denote all parameters that are
not involved in the uncertainty quantification, due to too low sensitivities, with n/a. Addi-
tionally, the affine decomposition for the model reduction is provided. Note that µ denotes
the training parameter, S the radiogenic heat production, λprior the prior thermal conductivity,
λmean the posterior mean thermal conductivity, and λstd the posterior standard deviation of the
thermal conductivity.

ID Layer µ S
[µWm−3]

λprior

[Wm−1K−1]
λmean

[Wm−1K−1]
λstd

[Wm−1K−1]

0 Quaternary 0 0.7 1.50 n/a n/a

1 Tertiary-post-Rupelian 0 0.7 1.50 n/a n/a

2 Tertiary Rupelian-clay 1 0.45 1.00 n/a n/a

3 Tertiary-pre-Rupelian-clay 2 0.3 1.90 1.95 0.47

4 Upper Cretaceous 2 0.3 1.90 1.95 0.47

5 Lower Cretaceous 3 1.4 2.00 2.11 0.45

6 Jurassic 3 1.4 2.00 2.11 0.45

7 Keuper 4 1.4 2.30 2.35 0.58

8 Muschelkalk 5 0.3 1.85 n/a n/a

9 Buntsandstein 3 1.0 2.0 2.11 0.45

10 Zechstein 6 0.09 3.50 3.56 0.81

11 Sedimentary Rotliegend 7 1.0 2.16 n/a n/a



12 Permo-Carboniferous Volcanics 8 2.0 2.50 n/a n/a

13 Pre-permian 9 1.5 2.65 n/a n/a

14 Upper crust 10 2.5 3.10 n/a n/a

15 Lower crust 11 0.8 2.70 n/a n/a

16 Lithospheric Mantle 12 0.03 3.95 3.84 0.86

Parameter µ Prior Value [-] Posterior
Mean Value

[-]

Posterior
Std Value [-]

Scale 13 1.00 1.00 0.04

λLC,J,BS λLM λscale
λZ

λKλTPRC,
UC

λZ
λscale

Truncated due to 
too low sensitivities

Fig. S1. Global Sensitivity analysis for the Berlin-Brandenburg model. We show the first- (blue)
and total-order contributions (orange).
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Fig. S2. Quantile-Quantile plots for all thermal conductivities considered in the uncertainty
quantification of the Berlin-Brandenburg model.
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Point 7 Point 8

Point 9

Fig. S3. Quantile-Quantile plots and histograms of the temperatures for all parameters from
the MCMC analysis for the Berlin-Brandenburg model at nine points.
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λTPRC,UC
a) b)

c) d)

Fig. S4. Posterior Analysis of the Tertiary-pre-Rupelian-clay (TPRC) and the Upper Crust (UC).
Shown are the a) Geweke Plot b) autocorrelation, c) posterior parameter distributions, and d)
the trace.
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λLC,J,BS
a) b)

c) d)

Fig. S5. Posterior Analysis of the Lower Crust (LC), the Jurassic (J), and the Buntsandstein (BS).
Shown are the a) Geweke Plot b) autocorrelation, c) posterior parameter distributions, and d)
the trace.
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λK
a)

c) d)

b)

Fig. S6. Posterior Analysis of the Keuper (K). Shown are the a) Geweke Plot b) autocorrelation,
c) posterior parameter distributions, and d) the trace.
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λz
a) b)

c) d)

Fig. S7. Posterior Analysis of the Zechstein (Z). Shown are the a) Geweke Plot b) autocorrela-
tion, c) posterior parameter distributions, and d) the trace.
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scale

a) b)

c) d)

Fig. S8. Posterior Analysis of the scaling parameter for the lower boundary condition. Shown
are the a) Geweke Plot b) autocorrelation, c) posterior parameter distributions, and d) the trace.

9



REFERENCES

1. V. Noack, M. Scheck-Wenderoth, and M. Cacace, “Sensitivity of 3D thermal models to
the choice of boundary conditions and thermal properties: a case study for the area of
Brandenburg (NE German Basin),” Environ. Earth Sci. 67, 1695–1711 (2012).

2. V. Noack, M. Scheck-Wenderoth, M. Cacace, and M. Schneider, “Influence of fluid flow on
the regional thermal field: results from 3D numerical modelling for the area of Brandenburg
(North German Basin),” Environ. earth sciences 70, 3523–3544 (2013).

10



Supporting Information for
“Uncertainty Quantification for
Basin-Scale Geothermal Conduction
Models”

Contents of this file

1. Table S1

2. Figures S1 to S8

INTRODUCTION

This supporting material provides additional information regarding the thermal properties of
the Berlin-Brandenburg model in Table S1. In Figure S1, we present the results of the sensitivity
analysis, which servers as a preparational study for the uncertainty quantification. Figures S2
and S3 show the quantile-quantile plots for the thermal parameters and the temperatures at
designated points in the model, respectively. We present the posterior analysis of the not in the
main manuscript presented thermal parameters in Figures S4 to S8 as referenced in the main
manuscript.

TABLE S1: THERMAL PROPERTIES

Table S1. Thermal properties of the Berlin-Brandenburg model before and after the uncertainty
quantification. The prior thermal properties are from [1, 2]. We denote all parameters that are
not involved in the uncertainty quantification, due to too low sensitivities, with n/a. Addi-
tionally, the affine decomposition for the model reduction is provided. Note that µ denotes
the training parameter, S the radiogenic heat production, λprior the prior thermal conductivity,
λmean the posterior mean thermal conductivity, and λstd the posterior standard deviation of the
thermal conductivity.

ID Layer µ S
[µWm−3]

λprior

[Wm−1K−1]
λmean

[Wm−1K−1]
λstd

[Wm−1K−1]

0 Quaternary 0 0.7 1.50 n/a n/a

1 Tertiary-post-Rupelian 0 0.7 1.50 n/a n/a

2 Tertiary Rupelian-clay 1 0.45 1.00 n/a n/a

3 Tertiary-pre-Rupelian-clay 2 0.3 1.90 1.95 0.47

4 Upper Cretaceous 2 0.3 1.90 1.95 0.47

5 Lower Cretaceous 3 1.4 2.00 2.11 0.45

6 Jurassic 3 1.4 2.00 2.11 0.45

7 Keuper 4 1.4 2.30 2.35 0.58

8 Muschelkalk 5 0.3 1.85 n/a n/a

9 Buntsandstein 3 1.0 2.0 2.11 0.45

10 Zechstein 6 0.09 3.50 3.56 0.81
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12 Permo-Carboniferous Volcanics 8 2.0 2.50 n/a n/a

13 Pre-permian 9 1.5 2.65 n/a n/a

14 Upper crust 10 2.5 3.10 n/a n/a
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Fig. S1. Global Sensitivity analysis for the Berlin-Brandenburg model. We show the first- (blue)
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Fig. S2. Quantile-Quantile plots for all thermal conductivities considered in the uncertainty
quantification of the Berlin-Brandenburg model.

3



Point 1 Point 2

Point 3 Point 4

Point 5 Point 6
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Fig. S3. Quantile-Quantile plots and histograms of the temperatures for all parameters from
the MCMC analysis for the Berlin-Brandenburg model at nine points.
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λTPRC,UC
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c) d)

Fig. S4. Posterior Analysis of the Tertiary-pre-Rupelian-clay (TPRC) and the Upper Crust (UC).
Shown are the a) Geweke Plot b) autocorrelation, c) posterior parameter distributions, and d)
the trace.
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λLC,J,BS
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c) d)

Fig. S5. Posterior Analysis of the Lower Crust (LC), the Jurassic (J), and the Buntsandstein (BS).
Shown are the a) Geweke Plot b) autocorrelation, c) posterior parameter distributions, and d)
the trace.
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λK
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b)

Fig. S6. Posterior Analysis of the Keuper (K). Shown are the a) Geweke Plot b) autocorrelation,
c) posterior parameter distributions, and d) the trace.
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λz
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c) d)

Fig. S7. Posterior Analysis of the Zechstein (Z). Shown are the a) Geweke Plot b) autocorrela-
tion, c) posterior parameter distributions, and d) the trace.
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Fig. S8. Posterior Analysis of the scaling parameter for the lower boundary condition. Shown
are the a) Geweke Plot b) autocorrelation, c) posterior parameter distributions, and d) the trace.
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