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Abstract

Satellite-based precipitation products (SPPs) with short latencies provide a new opportunity for flood forecasting in ungauged

basins. However, the larger uncertainties associated with such near-real-time SPPs can influence the accuracy of the resulting

flood forecast. Here we propose a real-time updating method, referred to as “Constrained Runoff Correction (CRC-M)” that

is based on the use of multi-source SPPs. The method is based on the hypothesis that the range over different near-real-

time SPPs provides insight regarding the approximate range in which the true rainfall value lies, during the current period.

Accordingly, the constrained runoff correction is performed in such a way as to be consistent with this range, and with the

observed value of discharge at the basin outlet. Evaluation using real-data indicates that the new method performs well, with

Nash–Sutcliffe (NS) values of 0.85 and 0.91 during calibration and evaluation, respectively. The necessity and value of imposing

constraints is demonstrated by comparing CRC-M against a control, referred to as “Unconstrained Runoff Correction” (URC-

S). Experiments indicate that the key factors resulting in good performance are 1) wider constraint ranges, and 2) relatively

reliable SPPs. Further, inclusion of redundant information may only result in slight improvements to forecast performance, and

can even cause the performance to deteriorate. Overall, the CRC-M method can result in accurate and stable flood forecasts

for ungauged basins, without the need for increased model complexity (i.e., the numbers of model parameters).
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Abstract: Satellite-based precipitation products (SPPs) with short latencies provide a new opportunity 16 

for flood forecasting in ungauged basins. However, the larger uncertainties associated with such near-17 

real-time SPPs can influence the accuracy of the resulting flood forecast. Here we propose a real-time 18 

updating method, referred to as “Constrained Runoff Correction (CRC-M)” that is based on the use of 19 

multi-source SPPs. The method is based on the hypothesis that the range over different near-real-time 20 

SPPs provides insight regarding the approximate range in which the true rainfall value lies, during the 21 

current period. Accordingly, the constrained runoff correction is performed in such a way as to be 22 

consistent with this range, and with the observed value of discharge at the basin outlet. Evaluation 23 

using real-data indicates that the new method performs well, with Nash–Sutcliffe (NS) values of 0.85 24 

and 0.91 during calibration and evaluation, respectively. The necessity and value of imposing 25 

constraints is demonstrated by comparing CRC-M against a control, referred to as “Unconstrained 26 

Runoff Correction” (URC-S). Experiments indicate that the key factors resulting in good performance 27 

are 1) wider constraint ranges, and 2) relatively reliable SPPs. Further, inclusion of redundant 28 

information may only result in slight improvements to forecast performance, and can even cause the 29 

performance to deteriorate. Overall, the CRC-M method can result in accurate and stable flood 30 

forecasts for ungauged basins, without the need for increased model complexity (i.e., the numbers of 31 

model parameters). 32 

Key points:  33 

⚫ Present a method for improving flood forecasts in ungauged basin using multiple near-real-time 34 

satellite-based products. 35 



 

 

⚫ Give suggestions on how to select satellite-based products to form reasonable constraints.  36 

⚫ The method can be applied in basins with a variety of sizes and climates without any modifications 37 

to the hydrological model. 38 

 39 
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1. Introduction 42 

Real-time forecasting of the rainfall-runoff process is an effective means to reduce flood risk. Accurate 43 

rainfall information plays an essential role in this process, since it is the primary driver for a 44 

hydrological model during flood events. Traditionally, ground-based rainfall observations have been 45 

widely used for hydrological forecasting due to their temporal resolution. However, their spatial 46 

coverage is typically not satisfactory, especially in remote regions, which translates into high forecast 47 

uncertainty. Recently, quasi-global satellite-based precipitation products (SPPs) have made it possible 48 

to develop spatial maps of rainfall with spatial resolutions that are finer than 0.25︒ and temporal 49 

resolutions that are shorter than daily, thereby provide a new opportunity for flood forecasting. 50 

Examples include the PERSIANN system (Precipitation Estimation from Remotely Sensed 51 

Information Using Artificial Neural Networks; Sorooshian et al., 2000), the CMORPH system 52 

(CMORPH developed by the National Oceanic and Atmospheric Administration Climate Prediction 53 

Center; Joyce et al., 2004), the TMPA system (Tropical Rainfall Measuring Mission Multi-satellite 54 



 

 

Precipitation Analysis; Huffman et al., 2006), the IMERG system (Integrated Multi-satellite Retrievals 55 

for the Global Precipitation Measurement; Huffman et al., 2018b), and the GSMaP system (Global 56 

Satellite Mapping of Precipitation; Kubota et al., 2007).  57 

Numerous studies have examined the accuracy and hydrological utility of the available SPPs (Behrangi 58 

et al., 2011; L. Jiang & Bauer-Gottwein, 2019; S. Jiang et al., 2018; Li et al., 2017; Pan et al., 2010; 59 

Sirisena et al., 2018; Yuan et al., 2017). These studies highlight the fact that that even though SPPs 60 

with short latencies (e.g., “Early” and “Late” of IMERG, hereinafter referred to as IMERG-E and 61 

IMERG-L, respectively) perform worse than post-real-time gauge bias-adjusted SPPs (e.g., “Final” of 62 

IMERG, hereinafter referred to as IMERG-F), all of them are able to characterize precipitation trends 63 

reasonably well (Yuan et al., 2019). In other words, while such near-real-time precipitation estimates 64 

have larger uncertainties, they do contain useful information about rainfall. In ungauged basins, such 65 

products being the only availabile near-real-time rainfall information can be very valuable, particularly 66 

because the short latencies are important to flood forecasting. Therefore, in this paper, we examine the 67 

possibility of using these near-real-time SPPs for flood forecasting in ungauged basins. 68 

Several previous studies have attempted to improve the accuracy of flood forecasting driven by SPPs. 69 

One way is to recalibrate the hydrologic model using such SPPs as input data (Ciabatta et al., 2016; 70 

Yuan et al., 2018). However, the model parameters obtained by this method tend to deviate from the 71 

ranges corresponding to physically plausible values (Bitew & Gebremichael, 2011; S. Jiang et al., 72 

2012). Further, this method seems to only improve flood forecasting accuracy to a limited extent. 73 

Other than this, methods to further improve the accuracy of flood forecasting driven by SPPs are of 74 



 

 

three types. The first is to bias-correct the SPPs to compensate for the deviation from ground-based 75 

observations before they are used to force the hydrological models (Deng et al., 2019; Harris et al., 76 

2007). The second is to integrate over the discharge estimates computed using a variety of SPPs to 77 

force the hydrological models (Sun et al., 2018; Jiang et al., 2014). The third is to perform updating 78 

of the real-time discharge forecasts using observed discharge or soil moisture measurements (Wei et 79 

al., 2015; Massari et al., 2019; Massari et al., 2018). Of these, given that the ground-based discharge 80 

can be directly measured, the method of real-time correction using discharge has been reported to give 81 

the best results.(Deng et al., 2019; Sun et al., 2018; Wei Si, Weimin Bao, 2015) Further, such an 82 

approach is suitable even for basins having no precipitation stations at all. As an important intermediate 83 

variable in conceptual rainfall-runoff models, runoff forecasts have been corrected using observed real 84 

time discharge data to obtain high flood forecasting accuracy (Liu et al., 2012). For example, Weimin 85 

et al. (2014) proposed a runoff correction method based on a dynamic system response curve, which 86 

can significantly improve the accuracy of flood forecast especially when the quality of the driving data 87 

is poor.  88 

To the best of our knowledge, there have been no investigations into the use of multi-source near-real-89 

time SPPs for real-time correction of runoff to improve the accuracy of flood forecasts. Here, we 90 

propose and evaluate a constrained runoff correction method using multi-source SPPs. The physical 91 

basis of this method is the flow concentration process of the conceptual rainfall-runoff model. 92 

Conceptually, we assume that the near-real-time SPPs retrieved using different algorithms can be 93 

considered to approximately span a range that includes the true value of rainfall. Therefore, the range 94 

formed by different runoff predictions, computed using different SPPs, will be treated as the likely 95 



 

 

range in which the true runoff is expected to occur. Constrained runoff correction will be performed 96 

using this range to constrain the discharge simulations at the basin outlet. 97 

The rest part of the paper is organized as follows. Section 2 describes the study area and various data 98 

sources used. Section 3 describes the details of the Constrained Runoff Correction method based on 99 

multi-source SPPs (CRC-M). To demonstrate the importance of using a range to constrain the runoff 100 

correction, a control test named Unconstrained Runoff Correction based on a single SPP (URC-S) is 101 

also conducted in this section. Section 4 reports the results and illustrates the importance of using 102 

reasonable constraint ranges in this method, followed by conclusions in Section 5. 103 

2. Study area and data 104 

2.1 Study area 105 

The Xiaoergou River, a tributary of the Nenjiang River, originates at the southern foot of the Greater 106 

Khingan Range, China (Figure 1). The Xiaoergou Basin, with a drainage area of 16761 km2, has a 107 

complex east-west inclined terrain with elevations ranging from 209 m to 1413 m, and extends from 108 

longitudes 121.73︒E to 123.88︒E and latitudes 48.83︒N to 50.61︒N in the northeast of Inner 109 

Mongolia in northeast China. Benefiting from its location in the middle and high latitudes on the 110 

eastern coast of Eurasia, this area has a typical temperate continental climate with long cold winters, 111 

dry and windy springs, hot and rainy summers, a short autumn, and very uneven precipitation in time. 112 

In the Xiaoergou Basin, the annual average temperature is approximately -1.2℃ , the highest 113 

temperature in the past year is 40.1℃, the lowest temperature is -35.4℃, the frost-free period is 132 114 



 

 

days, the main soil types are black soil, coniferous forest soil, dark brown forest soil and humus fen 115 

soil. There is no precipitation station in the basin, and only one hydrologic station is located at the 116 

basin outlet. It is the largest ungauged sub-basin of the Nenjiang basin with about 400-500 mm of 117 

average annual rainfall. Furthermore, due to the lack of a detention reservoir between the Xiaoergou 118 

basin and Qiqihar, which is an important city at downstream of the basin, the flood risk is high. The 119 

features of the Xiaoergou Basin make it an ideal region for investigating the use of SPP’s for flood 120 

forecasting at middle-high latitudes. 121 

 122 

Figure 1. Geographical location, topography and hydrologic station of the Xiaoergou Basin 123 



 

 

2.2 Data 124 

2.2.1 Satellite-based products  125 

The satellite-based products used in this study include four near-real-time SPPs, i.e., IMERG-E, 126 

IMERG-L, GSMaP-NRT (hereinafter referred to as GSMaP-N), and GSMaP-Gauge-NRT (hereinafter 127 

referred to as GSMaP-GN), and two different types of evapotranspiration products, i.e., GLDAS-CLM 128 

and GLEAM. The products used in this paper have a daily temporal resolution. Further, the products 129 

were spatially averaged over the basin extent to generate the forcing data required by the lumped 130 

hydrologic model; this is consistent with previous studies that have shown that aggregating the SPPs 131 

over larger spatial regions results in improved characterization of rainfall (Omranian & Sharif, 2018; 132 

Tan et al., 2017).  133 

(1) Precipitation 134 

IMERG and GSMaP are generally referred to as the new generation products, namely, the products of 135 

the Global Precipitation Measurement (GPM) era (Hou et al., 2014). This is because IMERG and 136 

GSMaP are retrieved from the GPM mission which was officially launched in February 2014 to replace 137 

TRMM. IMERG and GSMaP provide more expansive coverage than TRMM, which makes it possible 138 

to use SPPs to forecast flood in middle-high latitude basins. IMERG is the level 3 multi-satellite 139 

precipitation algorithm of GPM developed by NASA (https://disc.gsfc.nasa.gov), which combines all 140 

available constellation observations of the more accurate but infrequent microwave (MW) and more 141 

frequent but indirect infrared (IR) (Hou et al., 2014).  142 



 

 

The IMERG system is run several times, where the latencies of “Early” (IMERG-E) and “Late” 143 

(IMERG-L) are within one day (~4 h and ~12 h after observation time, respectively), so that they can 144 

be used to forecast flooding at daily time scales. IMERG-E provides a preliminary estimate using only 145 

forward morphing and IMERG-L corrects IMERG-E using both forward and backward morphing as 146 

more data arrive. For a more detailed description of IMERG algorithm, readers can refer to (Huffman 147 

et al., 2019; Huffman, Bolvin, et al., 2018; Huffman, Gsfc, et al., 2018).  148 

GSMaP is a satellite-based precipitation map algorithm developed by JAXA (http://www.jaxa.jp) for 149 

merging the observation of IR sensors and passive MW (PMW) radiometer from GPM Core GMI. The 150 

GSMaP products are produced in several steps. Firstly, the instantaneous precipitation rate is retrieved 151 

based on the PMW radiometers from different satellite platforms, including GMI, advanced microwave 152 

scanning radiometer 2 (AMSR2), TRMM Microwave Imager (TMI), special sensor microwave 153 

imager/sounder (SSMIS), advanced microwave sounding unit-A (AMSU-A), and microwave humidity 154 

sounder (MHS)(Zhu et al., 2018). Then, the gaps between PMW-based estimates are propagated using 155 

the cloud motion vectors computed from geo-IR images (Duan et al., 2016).  156 

Near-real-time products retrieved by GSMaP include GSMaP-N and GSMaP-GN, where GSMaP-GN 157 

is calibrated using gauge-based data, and the latencies of both are 4 hours, so that they can also be used 158 

to forecast flooding at daily time scales. Furthermore, since the data sources and retrieval algorithms 159 

are different between IMERG and GSMaP, the rainfall values of the four products in the same period 160 

are different, which provides a possible range for the rainfall estimate in that period. The distribution 161 

of the width of the rainfall range can be seen in Table 3. 162 



 

 

Data from four SPPs (IMERG-E, IMERG-L, GSMaP-N and GSMaP-GN), from April 2014 to 163 

November 2018, was used in this study. Basic information regarding the four products is provided in 164 

Table 1. IMERG-L and GSMaP-GN belong to the “corrected” class, because they use more data than 165 

IMERG-E and GSMaP-N, respectively.  166 

Table 1. Overview of the SPPs used in this study 167 

Product Corrected Spatial Resolution Developer Start Time Latency 

IMERG 
Early No 

0.1︒×0.1︒ NASA 
June 2000 4 hours 

Late Yes June 2000 12 hours 

GSMaP 
NRT No 

0.1︒×0.1︒ JAXA 
March 2000 4 hours 

NRT-gauge Yes April 2000 4 hours 

 168 

(2) Evapotranspiration  169 

To illustrate the importance of various sources of information used in this paper, two kinds of 170 

evapotranspiration products with different retrieval algorithms are selected (period April 2014 to 171 

November 2018); basic information is provided in Table 2.  172 

Table 2. Overview of the evapotranspiration (ET) products used in this study 173 

Data Sets Category Scheme Spatial Resolution Start Time 

GLDAS LSM Penman-Monteith 1︒×1︒ January 1979 

GLEAM Diagnostic Priestley-Taylor 0.25︒× 0.25︒ January 1980 

 174 

The first product is a simulation generated by the Common Land Model (CLM) V2.0 model as part of 175 



 

 

the Global Land Data Assimilation System (GLDAS; https://disc.gsfc.nasa.gov). The simulation was 176 

forced by a combination of NOAA/GDAS atmospheric analysis fields, spatially and temporally 177 

disaggregated NOAA Climate Prediction Center Merged Analysis of Precipitation (CMAP) fields, and 178 

observation-based downward shortwave and longwave radiation fields derived using the method of 179 

the Air Force Weather Agency's AGRicultural METeorological modeling system (AGRMET). The 180 

data is available from January 1979 to present at a 3-hour timestep (Rodell et al., 2004). For our 181 

purpose, the GLDAS-CLM product was aggregated to daily time-step.  182 

The other product is the version 3.3a dataset of Global Land Evaporation Amsterdam Model (GLEAM; 183 

https://www.gleam.eu), which is globally available from 1980 to present at daily temporal resolution 184 

and 0.25° spatial resolution. The retrieval algorithm is based on a diagnostic model that takes 185 

advantage of the Priestley and Taylor equation. The dataset is based on observations of surface net 186 

radiation, near-surface air temperature, precipitation, soil moisture, snow water equivalent and 187 

vegetation optical depth (Miralles et al., 2011; Martens et al., 2017). Due to essential difference 188 

between GLDAS-CLM and GLEAM, there is a gap between the two products. The distribution of the 189 

gap can be seen in the Table 3. Further, the depletion of evapotranspiration from precipitation, as the 190 

most common process in conceptual rainfall-runoff models, widens the range of the hydrologic model 191 

forcing data , whose distribution can also be seen in the Table 3. Since there are 4 kinds of precipitation 192 

estimates and 2 kinds of evapotranspiration estimates, this results in 8 pair-wise combinations of 193 

precipitation and evapotranspiration. 194 

Table 3. Distributions of the width of the ranges formed by different satellite-based products for a 195 

given period 196 



 

 

Variable 

Range  

[min, max] (mm) 

Interquartile Range 

[𝟏

𝟒
min, 𝟑

𝟒
max] (mm) 

Median 

(mm) 

Precipitation (P) [0, 46.57] [0.17, 3.54] 1.17 

Evapotranspiration (ET) [0, 5.86] [0.41, 1.42] 0.97 

P-ET [0.04, 47.89] [1.26, 5.10] 2.25 

 197 

2.2.2 Gauged discharge data 198 

Daily discharge data for 2014 to 2018, covering the same period as the GPM SPPs, were obtained from 199 

the Xiaoergou hydrologic station. The period includes 14 flood events with various net rainfall and 200 

flood peaks (Figure 2), of which the first 9 were used for calibration and the last 5 for verification. 201 

 202 

Figure 2. Net rainfall (a) and flood peaks (b) of 14 flood events of the Xiaoergou Basin 203 

3. Methodology 204 

3.1 Conceptual hydrological model 205 

Catchment-scale hydrological models can be conceptualized as shown in Figure 3 and can be 206 



 

 

expressed mathematically as 207 

 𝑸 = 𝒇[𝑷, 𝑬, 𝑿, 𝜽]  (1) 

where 𝑸 = [𝑄1, 𝑄2, 𝑄3, ⋯ , 𝑄𝑚]𝑇  is a time-ordered vector of discharge at the outlet, 𝑷 =208 

[𝑃1, 𝑃2, 𝑃3, ⋯ , 𝑃𝑛]𝑇  is a corresponding vector of areal mean rainfall from any SPPs, 𝑬 =209 

[𝐸1, 𝐸2, 𝐸3, ⋯ , 𝐸𝑛]𝑇  is a corresponding vector of areal mean evapotranspiration from any 210 

evapotranspiration product, 𝑿 = [𝑋1, 𝑋2, 𝑋3,⋯ , 𝑋𝑛]𝑇 is a corresponding vector of state values, and 211 

𝜽 = [𝜃1, 𝜃2, 𝜃3, ⋯ ]𝑇 is the vector of model parameters. 212 

 213 

Figure 3. A high-level systems diagram for a hydrological model; P(i), E(i) and X(i) indicate the 214 

areal mean rainfall, the areal mean evapotranspiration and the initial state of basin at the ith period, 215 

and Q(j) indicates the computed discharge output of the hydrological system at the jth period and 216 

also the first response to P(i), E(i) and X(i) of the basin outlet. Therefore, the lag time is j-i. 217 

Each parameter and time-ordered vector in formula (1) will affect the discharge process at the basin 218 

outlet. Once the parameters are determined, they are assumed to remain constant over time, so the 219 

above vectors are important factors in the water balance. Runoff is a variable which can synthetically 220 

reflect the above vectors, since it is calculated from them. Runoff represents the total amount of water 221 

accumulated within a certain period, whereas discharge represents the local value at a particular point 222 

and moment in time. To compute runoff, the runoff generation module, a subsystem of the hydrological 223 



 

 

model, can be expressed as: 224 

 𝑹(𝒊) = 𝒇𝟏[𝑷(𝒊), 𝑬(𝒊), 𝑿(𝒊), 𝜽′] (2) 

where 𝑅(𝑖) is runoff at period i, 𝑋(𝑖) = 𝑔1[𝑷, 𝑬, 𝑋0, 𝜽
′] and 𝜽′ is a subset of 𝜽. 225 

According to formula (2), besides the control exerted by the model parameters, the precision of the 226 

runoff is controlled mainly by the precision of rainfall and evapotranspiration, since the state values 227 

are calculated mainly from rainfall and evapotranspiration. However, the use of satellite-based 228 

products as system drivers results in added uncertainty associated with the runoff generation process. 229 

In an attempt to correct this error, this study will focus only on the hydrological model response to R. 230 

Therefore, formula (1) can be expressed as 231 

 𝑸 = 𝑸[𝑹, 𝜽] (3) 

By inputting rainfall, evapotranspiration and basin state values into the hydrological model at any 232 

period, the following can be obtained: 233 

 𝒒 = 𝒇[𝑷(𝒊), 𝑬(𝒊), 𝑿(𝒊), 𝜽] (4) 

where 𝒒 = [𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑚]𝑇 is the response of hydrological model to 𝑅(𝑖), that is, the discharge 234 

process of 𝑅(𝑖) at the basin outlet. Therefore, formula (4) can also be expressed as 235 

 𝒒 = 𝑞[𝑅(𝑖), 𝜽] (5) 

 𝑞(𝑗, 𝑖) = 𝑞[𝑅(𝑖), 𝜽, 𝑗] (6) 

where 𝑞[𝑅(𝑖), 𝜽, 𝑗] = 0 when i ≥ j. 236 

The accumulation of q in n periods is 𝑸 = [𝑄(𝑹, 𝜽, 1), 𝑄(𝑹, 𝜽, 2),⋯ , 𝑄(𝑹, 𝜽,𝑚)]𝑇 , namely the 237 



 

 

simulated discharge at the basin outlet, as shown in Figure 4, which can be expressed as 238 

 

{

𝑄(𝑹, 𝜽, 1) = 𝑞[𝑅(1), 𝜽, 1] + 𝑞[𝑅(2), 𝜽, 1] + ⋯+ 𝑞[𝑅(𝑛), 𝜽, 1]

𝑄(𝑹, 𝜽, 2) = 𝑞[𝑅(1), 𝜽, 2] + 𝑞[𝑅(2), 𝜽, 2] + ⋯+ 𝑞[𝑅(𝑛), 𝜽, 2]
⋮

𝑄(𝑹, 𝜽,𝑚) = 𝑞[𝑅(1), 𝜽,𝑚] + 𝑞[𝑅(2), 𝜽,𝑚] + ⋯+ 𝑞[𝑅(𝑛), 𝜽,𝑚]

 (7) 

Its matrix form is 239 

 𝑸 = 𝑳𝑨 (8) 

where: 240 

𝑨 = [1,1,⋯ ,1]𝑇, 241 

𝑳 = [

𝑞[𝑅(1), 𝜽, 1] 𝑞[𝑅(2), 𝜽, 1] ⋯ 𝑞[𝑅(𝑛), 𝜽, 1]

𝑞[𝑅(1), 𝜽, 2] 𝑞[𝑅(2), 𝜽, 2] ⋯ 𝑞[𝑅(𝑛), 𝜽, 2]
⋮ ⋮ ⋱ ⋮

𝑞[𝑅(1), 𝜽,𝑚] 𝑞[𝑅(2), 𝜽,𝑚] ⋯ 𝑞[𝑅(𝑛), 𝜽,𝑚]

]. 242 

The ith column in L is the discharge process of 𝑅(𝑖) at the basin outlet. Therefore, to correct the error 243 

of 𝑹, it is necessary to correct L column using real-time updated vector of observed discharge, that is, 244 

to retrieve the correction coefficient vector, namely 𝑨′ = [𝛼1, 𝛼2, ⋯ , 𝛼𝑚′]
𝑇 , which can be used to 245 

forecast discharge during the flood. 246 



 

 

 247 

Figure 4. Schematic diagram of formula (2)~(8) 248 

3.2 Constrained runoff correction based on multi-source SPPs 249 

When, for any period, there are ℎ (ℎ ≥ 2, ℎ ∈ Z) combinations of rainfall and evapotranspiration 250 

products available to force a hydrologic model, h different runoff responses can be calculated via the 251 

formula (2), that is, 𝑅1(𝑖),⋯ , 𝑅ℎ(𝑖). This can result in h kinds of responses of hydrological model to 252 

𝑅(𝑖), that is, 𝒒𝟏, ⋯ , 𝒒𝒉, so there are h different Ls, that is, 𝑳𝟏, ⋯ , 𝑳𝒉. Accordingly, the upper bound 253 

matrix (𝑳 ) and lower bound matrix (𝑳 ) required for constrained correction can be obtained from 254 

formula (9-10). It should be noted that the bigger h is, the wider is the range formed by the 𝑳 and the 255 

𝑳, and vice versa. 256 



 

 

 

𝑳 = [

𝑞[𝑅(1), 𝜽, 1] 𝑞[𝑅(2), 𝜽, 1] ⋯ 𝑞[𝑅(𝑛), 𝜽, 1]

𝑞[𝑅(1), 𝜽, 2] 𝑞[𝑅(2), 𝜽, 2] ⋯ 𝑞[𝑅(𝑛), 𝜽, 2]
⋮ ⋮ ⋱ ⋮

𝑞[𝑅(1), 𝜽,𝑚] 𝑞[𝑅(2), 𝜽,𝑚] ⋯ 𝑞[𝑅(𝑛), 𝜽,𝑚]

] 

𝑞̅(𝑗, 𝑖) = max [𝑞1(𝑗, 𝑖),⋯ , 𝑞ℎ(𝑗, 𝑖)] 

(9) 

 

𝑳 =

[
 
 
 
 
𝑞[𝑅(1), 𝜽, 1] 𝑞[𝑅(2), 𝜽, 1] ⋯ 𝑞[𝑅(𝑛), 𝜽, 1]

𝑞[𝑅(1), 𝜽, 2] 𝑞[𝑅(2), 𝜽, 2] ⋯ 𝑞[𝑅(𝑛), 𝜽, 2]

⋮ ⋮ ⋱ ⋮
𝑞[𝑅(1), 𝜽,𝑚] 𝑞[𝑅(2), 𝜽,𝑚] ⋯ 𝑞[𝑅(𝑛), 𝜽,𝑚]]

 
 
 
 

 

𝑞(𝑗, 𝑖) = min [𝑞1(𝑗, 𝑖),⋯ , 𝑞ℎ(𝑗, 𝑖)] 

(10) 

(1) Correction 257 

As shown in Figure 4, the rainfall event lasts for n time periods, and the discharge process generated 258 

by this rainfall lasts for m time periods. When there are 𝑚′ (𝑚′ ≤ 𝑛 < 𝑚)  values of observed 259 

discharge 𝑸𝒐 , the 𝑅1(𝑖),⋯ , 𝑅ℎ(𝑖)  in 𝑚′  periods are also known, so that the vector of observed 260 

discharge can be implemented through a simple nudging scheme, as in Eq. (11). 261 

 𝑸𝒐 = 𝑳(𝑚′×𝑚′)𝑨 + ∆𝑳(𝑚′×𝑚′)𝑨
′ + 𝜺 (11) 

where 𝑸𝒐 = [𝑄𝑜(𝑹, 𝜽, 1), 𝑄𝑜(𝑹, 𝜽, 2),⋯ , 𝑄𝑜(𝑹, 𝜽,𝑚′)]𝑇 ; ∆𝑳(𝑚′×𝑚′) = 𝑳̅(𝑚′×𝑚′) − 𝑳(𝑚′×𝑚′) , 262 

𝑳̅(𝑚′×𝑚′)  and 𝑳(𝑚′×𝑚′)  are the pre-m’-order submatrices of 𝑳̅  and 𝑳 ; 𝑨′ = [𝛼1, 𝛼2, ⋯ , 𝛼𝑚′]
𝑇  is 263 

the constrained correction coefficient vector that has the similar role of the Kalman gain in the classic 264 

data assimilation technique, where 0 ≤ 𝛼𝑖 ≤ 1, and the greater the value, the higher the weight is 265 

given to the upper bound, and lower weight is given to the lower bound. 𝛼𝑖 = 0  or 𝛼𝑖 = 1 266 

respectively indicates that the q calculated by 𝑅(𝑖)  is approximately equal to the lower or upper 267 

bound of h discharge processes. 𝜺 = [𝑒1, 𝑒2, ⋯ , 𝑒𝑚′]
𝑇 is the random error vector. According to the 268 

least-squares principle, 𝑨′ satisfies: 269 



 

 

 min
𝑨′

𝜺𝑇𝜺 =min
𝑨′

[𝑸𝒐 − 𝑳(𝑚′×𝑚′)𝑨 − ∆𝑳(𝑚′×𝑚′)𝑨
′]

𝑇
[𝑸𝒐 − 𝑳(𝑚′×𝑚′)𝑨 − ∆𝑳(𝑚′×𝑚′)𝑨

′] (12) 

In this way, 270 

 𝑨′ = (∆𝑳(𝑚′×𝑚′)
𝑇∆𝑳(𝑚′×𝑚′))

−𝟏∆𝑳(𝑚′×𝑚′)
𝑇(𝑸𝒐 − 𝑳(𝑚′×𝑚′)𝑨) (13) 

In addition, 𝛼𝑖 < 0 or 𝛼𝑖 > 1 respectively indicates that the corrected q is below the lower bound 271 

or above the upper bound. To constrain correcting R, the elements in 𝑨′ are constrained. So, if 𝛼𝑖 >272 

1, then 𝛼𝑖 = 1; if 𝛼𝑖 < 0, then 𝛼𝑖 = 0.  273 

Figure 5 shows the correction and forecasting process of the CRC-M by taking T=1 and m’=3 as an 274 

example. Since 𝑳̅(𝑚′×𝑚′), 𝑳(𝑚′×𝑚′) and ∆𝑳(𝑚′×𝑚′) are strictly lower triangular matrix, as shown in 275 

the Figure 5, only the first (𝑚′ − 𝑇)  elements in  𝑨′  are deterministic solutions, and the rest 𝑇 276 

elements are not unique, where 𝑇 is the lag time in Figure 3. 277 

(2) Forecasting 278 

For forecasting, not only the first (𝑚′ − 𝑇) elements in 𝑨′ are important but also the last T ones, 279 

because the future discharge process is influenced by all the rainfall in the preceding 𝑚′ periods. 280 

Considering the last  𝑇 elements in 𝑨′ are the key factors for discharge forecasting, let them be equal 281 

to 𝛼𝑚′−𝑇. Hereby, we can update the time series of forecasting discharge between (𝑚′ + 1)th and 282 

mth period using 𝑨′ by formula (14). 283 



 

 

(

 
 

𝑄𝑐(𝑹,𝜽,𝑚′ + 1)

𝑄𝑐(𝑹,𝜽,𝑚′ + 2)

⋮
𝑄𝑐

(𝑹,𝜽,𝑚) )

 
 

=

(

 
 
 
 

∑ 𝑞
 𝑚′+1,𝑖

𝑚′

𝑖=1

∑ 𝑞
 𝑚′+2,𝑖

𝑚′

𝑖=1

⋮

∑ 𝑞
𝑚,𝑖

𝑚′

𝑖=1 )

 
 
 
 

+

[
 
 
 
 
∆𝑞 𝑚′+1,1 ∆𝑞 𝑚′+1,2 ⋯ ∆𝑞 𝑚′+1, 𝑚′

∆𝑞 𝑚′+2,1 ∆𝑞 𝑚′+2,2 ⋯ ∆𝑞 𝑚′+2, 𝑚′

⋮ ⋮ ⋱ ⋮
∆𝑞𝑚,1 ∆𝑞𝑚,2 ⋯ ∆𝑞𝑚, 𝑚′ ]

 
 
 
 

∙

(

 
 

𝛼1

⋮
𝛼𝑚′−𝑇

⋮
𝛼𝑚′−𝑇)

 
 

  
(14) 

𝑸𝒄(𝑚−𝑚′) = 𝑳[(𝑚−𝑚′)×𝑚′]𝑨 + ∆𝑳[(𝑚−𝑚′)×𝑚′]𝑨
′ 

where ∆𝑳[(𝑚−𝑚′)×𝑚′] = 𝑳̅[(𝑚−𝑚′)×𝑚′] − 𝑳[(𝑚−𝑚′)×𝑚′] , 𝑳̅[(𝑚−𝑚′)×𝑚′]  and 𝑳[(𝑚−𝑚′)×𝑚′] 284 

respectively indicate the submatrix of 𝑳̅ and 𝑳 in rows 𝑚′ + 1~𝑚, columns 1~𝑚′. 𝑸𝒄(𝑚−𝑚′) =285 

[𝑄𝑐(𝑹, 𝜽,𝑚′ + 1), 𝑄𝑐(𝑹, 𝜽,𝑚′ + 2),⋯ , 𝑄𝑐(𝑹, 𝜽,𝑚)]𝑇  is a subset of 𝑸𝒄 , which is a time-ordered 286 

vector of forecasting discharge obtained by this correction process. With the increase of 𝑚′ , the 287 

𝑸𝒄(𝑚−𝑚′) keeps updating, leading to the constant update of 𝑸𝒄. Once  𝑚′ > 𝑛, all the qs during n 288 

periods are corrected and 𝑸𝒄 is no longer updated. Therefore, the final 𝑸𝒄 can be obtained after a 289 

total of n updates, whose process is shown in Figure 8. 290 

 291 

Figure 5. The correction and forecasting process of the CRC-M by taking T=1 and m’=3 as an 292 

example, where ∆𝑞𝑗,𝑖 = 𝑞
𝑗,𝑖

− 𝑞𝑗,𝑖. 293 

3.3 Unconstrained runoff correction based on a single SPP 294 

Considering the widespread tendency of SPP’s to underestimate extreme precipitation (Deng et al., 295 



 

 

2019; Zhang et al., 2019; Su et al., 2019), by using them to correct runoff with constraints it may be 296 

difficult to characterize extreme runoff. In order to demonstrate the necessity of the constraint in the 297 

process of runoff correction, a control test is set up, in which unconstrained runoff correction is 298 

conducted based on a single satellite-based product (URC-S) that still modifies the L column by 299 

column by scaling. Figure 6 shows the correction and forecasting process of the URC-S by taking T=1 300 

and m’=3 as an example. 301 

(1) Correction 302 

When there are 𝑚′ (𝑚′ ≤ 𝑛 < 𝑚) values of observed discharge, the 𝑅(𝑖) in 𝑚′ periods are also 303 

known, then 304 

 

{

𝑄𝑜(𝑹, 𝜽, 1) ≈ 𝑞[𝑅(1), 𝜽, 1]𝛼1 + 𝑞[𝑅(2), 𝜽, 1]𝛼2 + ⋯+ 𝑞[𝑅(𝑚′), 𝜽, 1]𝛼𝑚′

𝑄𝑜(𝑹, 𝜽, 2) ≈ 𝑞[𝑅(1), 𝜽, 2]𝛼1 + 𝑞[𝑅(2), 𝜽, 2]𝛼2 + ⋯+ 𝑞[𝑅(𝑚′), 𝜽, 2]𝛼𝑚′

⋮
𝑄𝑜(𝑹, 𝜽,𝑚′) ≈ 𝑞[𝑅(1), 𝜽,𝑚′]𝛼1 + 𝑞[𝑅(2), 𝜽,𝑚′]𝛼2 + ⋯+ 𝑞[𝑅(𝑚′), 𝜽,𝑚′]𝛼𝑚′

 (15) 

Its matrix form is 305 

 𝑸𝒐 = 𝑳(𝑚′×𝑚′)𝑨
′ + 𝜺 (16) 

where 𝑳(𝑚′×𝑚′)  is the pre-m’-order submatrix of 𝑳 ; 𝑨′ = [𝛼1, 𝛼2, ⋯ , 𝛼𝑚′]
𝑇  is the unconstrained 306 

correction coefficient vector, where 𝛼𝑖 is a member of the real number. According to the least square 307 

principle, 𝑨′ satisfies: 308 

 𝑨′ = (𝑳(𝑚′×𝑚′)
𝑇 𝑳(𝑚′×𝑚′))

−𝟏𝑳(𝑚′×𝑚′)
𝑇 𝑸𝒐 (17) 

Since 𝑳(𝑚′×𝑚′)  is also strictly lower triangular matrix, as shown in the Figure 6, only the first 309 

(𝑚′ − 𝑇) elements in 𝑨′ are deterministic solutions, where 𝑇 is the lag time in Figure 3. 310 



 

 

(2) Forecasting 311 

By the same logic as the previous method, let the last  𝑇 elements in 𝑨′ be equal to 𝛼𝑚′−𝑇. Hereby, 312 

we can update the time series of forecasting discharge between (𝑚′ + 1)th and mth period using 𝑨′ 313 

by formula (18). 314 

{

𝑄𝑐(𝑹, 𝜽,𝑚′ + 1) = 𝑞[𝑅(1), 𝜽,𝑚′ + 1]𝛼1 + 𝑞[𝑅(2), 𝜽,𝑚′ + 1]𝛼2 + ⋯+ 𝑞[𝑅(𝑚′), 𝜽,𝑚′ + 1]𝛼𝑚′

𝑄𝑐(𝑹, 𝜽,𝑚′ + 2) = 𝑞[𝑅(1), 𝜽,𝑚′ + 2]𝛼1 + 𝑞[𝑅(2), 𝜽,𝑚′ + 2]𝛼2 + ⋯+ 𝑞[𝑅(𝑚′), 𝜽,𝑚′ + 2]𝛼𝑚′

⋮
𝑄𝑐(𝑹, 𝜽,𝑚) = 𝑞[𝑅(1), 𝜽,𝑚]𝛼1 + 𝑞[𝑅(2), 𝜽,𝑚]𝛼2 + ⋯+ 𝑞[𝑅(𝑚′), 𝜽,𝑚]𝛼𝑚′

 315 

(18) 316 

Its matrix form is 317 

 𝑸𝒄(𝑚−𝑚′) = 𝑳[(𝑚−𝑚′)×𝑚′]𝑨
′ (19) 

𝑳[(𝑚−𝑚′)×𝑚′] indicates the submatrix of L in rows 𝑚′ + 1~𝑚, columns 1~𝑚′. Once  𝑚′ > 𝑛, all 318 

the qs during n periods are corrected and 𝑸𝒄 is no longer updated. Therefore, the final 𝑸𝒄 can be 319 

obtained after a total of n updates, whose process is shown in Figure 8. 320 

 321 

Figure 6. The correction and forecasting process of the URC-S by taking T=1 and m’=3 as an 322 

example. 323 



 

 

3.4 Parameter calibration and verification 324 

3.4.1 Forecast performance metrics 325 

Several statistical metrics including the Nash–Sutcliffe coefficient (NS), the relative error of peak flow 326 

(RPF), the error of peak time (EPT) and the relative error of runoff depth (RRD) are employed to 327 

evaluate the forecast performance of the above two correction methods based on 𝑸𝒄 and 𝑸𝒐. The 328 

formulas for NS, RPF, EPT and RRD are given by following (Yapo et al., 1996). 329 

 
𝑁𝑆 = 1 − ∑[𝑄𝑐(𝑗) − 𝑄𝑜(𝑗)]

2

𝑚

𝑗=1

/∑[𝑄𝑜(𝑗) − 𝑄𝑜]
2

𝑚

𝑗=1

 (20) 

 
𝑅𝑃𝐹 = mean (

|𝑄𝑐𝑓 − 𝑄𝑜𝑓|

𝑄𝑜𝑓
× 100%) (21) 

 𝐸𝑃𝑇 = mean(|𝑇𝑐𝑓 − 𝑇𝑜𝑓|) (22) 

 
𝑅𝑅𝐷 = mean(

𝑅𝑐𝑓 − 𝑅𝑜𝑓

𝑅𝑜𝑓
× 100%) (23) 

where 𝑄𝑐𝑓 and 𝑄𝑜𝑓 are the peaks in the forecast and observed discharge sequences of each flood 330 

event, respectively; 𝑇𝑐𝑓 and 𝑇𝑜𝑓 are the peak time in the forecast and observed discharge sequences 331 

of each flood event, respectively;  𝑅𝑐𝑓  and 𝑅𝑜𝑓  respectively indicates the forecast and observed 332 

runoff of each flood event. In view of the fact that 𝜽 is an unknown vector in the calculation of 𝑸𝒄, 333 

the above four evaluation indexes are all functions of 𝜽 which is composed of different elements 334 

according to the hydrologic model and needs to be calibrated by optimization. 335 



 

 

3.4.2 Xin’anjiang model 336 

The Xin’anjiang model (XAJ) is employed as the hydrologic forecasting model in this paper. It is a 337 

widely used conceptual hydrological model with excellent performance in flood forecasting (Li et al., 338 

2013b; Si et al., 2015; Zhao, 1992; Jiang et al., 2014). XAJ consists of four modules: 339 

evapotranspiration, runoff generation, runoff separation and runoff concentration. The first two 340 

modules can be considered as a process for calculating runoff and soil moisture from rainfall and 341 

evapotranspiration, namely f1 and g1 in formula (2) and also the blue part in Figure 7 (hereinafter 342 

referred to as Process 1). The basic principle of this process is: when 𝑃 − 𝐸 < 0, soil moisture is 343 

calculated according to the 3-layer evapotranspiration module；when 𝑃 − 𝐸 > 0, runoff is calculated 344 

according to the theory of conceptual runoff generation under saturated condition, meaning all rainfall 345 

is stored in the soil until the soil moisture content reaches field capacity; thereafter, the net rainfall 346 

drains out in the form of runoff without further loss.  347 

The main function of the last two modules of XAJ, namely runoff separation and runoff concentration 348 

and also the black part in Figure 7 (hereinafter referred to as Process 2), is calculating discharge from 349 

runoff. Therefore, the parameters, namely 𝜽 in this paper, to be calibrated are those in the XAJ model. 350 

Please refer to the literature (Zhao, 1995) for the parameter value range and other detailed information 351 

of XAJ model. 352 



 

 

 353 

Figure 7. A structural diagram of XAJ 354 

3.4.3 Calibration method 355 

For model calibration, the Particle Swarm Optimization (PSO) method was employed. PSO is an 356 

evolutionary computing technique developed by Kennedy and Eberhart (1995), derived from the 357 

simulation of a simplified social behavior model. PSO has previously been applied to the parameter 358 

calibration of hydrological models, and is considered to be able to efficiently search for the global 359 

optimal solution in the search-space. Since PSO is a single-objective optimization method, the 360 

information expressed by the NS, RPF, EPT and RRD performance criteria should be converted into a 361 

relative membership degree to obtain a single objective value to guide the optimization process. The 362 

relative membership degree (Shouyu, 1998, 2005; Shouyu & Yu, 2006) is computed as follows: 363 

 𝑅𝑀𝐷 =
1

1 +
∑ [𝑤𝑘(𝑔𝑘 − 𝑟𝑘)]2

4
𝑘=1

∑ [𝑤𝑘(𝑟𝑘 − 𝑏𝑘)]2
4
𝑘=1

 
(24) 

where 𝑅𝑀𝐷 indicates relative membership degree, such that larger 𝑅𝑀𝐷 indicates better values for 364 



 

 

𝜽; 𝑤𝑘 is the weight of the kth optimization objective, and NS, RPF, EPT and RRD are considered 365 

equally important so that 𝑤𝑘=0.25; 𝑟𝑘 is the kth optimization objective after normalization; 𝑔𝑘 and 366 

𝑏𝑘 are the upper and lower bounds of 𝑟𝑘, respectively. Figure 8 briefly illustrates the structure of the 367 

parameter calibration process. 368 

 369 

Figure 8. A structural diagram of parameter calibration 370 

4. Results and discussion 371 

4.1 Comparison between results of constrained and unconstrained runoff correction 372 

To demonstrate the necessity of constraints when performing runoff correction based on SPPs, we 373 

compare the results of CRC-M and URC-S during calibration and evaluation stages. A combination of 374 

precipitation and evapotranspiration products forms the basic input to the conceptual hydrological 375 

model. For CRC-M, multiple (at least two) combinations should be input into the model, so as to not 376 

only force the hydrological model, but more importantly, form a runoff range to constrain the runoff 377 



 

 

correction. Since there are 4 kinds of precipitation estimates and 2 kinds of evapotranspiration 378 

estimates, we can input up to 8 combinations into the model. For URC-S, only a single combination 379 

of precipitation and evapotranspiration is needed as input to the model. Here, we decided to use 8 380 

combinations to force CRC-M (namely h=8) and use combination the single combination of GSMaP-381 

GN and GLDAS-CLM to force URC-S.  382 

The performance metric values, including NS, RPF, EPT, RRD and RMD, obtained using CRC-M and 383 

URC-S for the calibration and evaluation stages are listed in Table 4. Of these five metrics reported, 384 

RMD provides a summary indicator. As indicated by RMD, whether in the calibration or the evaluation 385 

stage, the accuracy of flood forecasting based on CRC-M is higher than it based on URC-S. During 386 

calibration it is equal to 0.890 based on CRC-M and 0.764 based on URC-S, and during evaluation it 387 

is equal to 0.905 and 0.684 respectively based on CRC-M and URC-S. The consistency of accuracy in 388 

the calibration and evaluation periods indicates that the parameters determined by the CRC-M are 389 

representative, rather than results obtained by overfitting. As shown in Table 4, NS and RPF of URC-390 

S (0.84 and 22.02%, respectively) are only a little bit worse than those of CRC-M (0.85 and 17.35%, 391 

respectively) in the calibration stage, while they are much worse (0.64 and 34.92%, respectively) than 392 

those of CRC-M (0.91 and 9.6%, respectively) in the evaluation stage. This implies that the 393 

performance of CRC-M is more reliable and stable than that of URC-S. In general, Table 4 shows the 394 

superiority of CRC-M; in other words, it supports the importance of constraints when performing 395 

runoff correction based on SPPs. 396 

Table 4. Evaluation metrics of CRC-M and URC-S during calibration and validation stages. 397 



 

 

Evaluation metrics 
Calibration Validation 

CRC-M URC-S CRC-M URC-S 

NS 0.85 0.84 0.91 0.64 

RPF (%) 17.35 22.02 9.6 34.92 

EPT (d) 1.22 2.11 1.60 1.40 

RRD (%) 13.67 18.74 16.25 11.39 

RMD 0.890 0.764 0.905 0.684 

 398 

Performance metrics comparing CRC-M and URC-S for 14 different flood events are listed in Table 399 

5. The data in red are the RPFs when the flood peak is underestimated. Clearly, there are more red data 400 

in the list of CRC-M than in the list of URC-S (10 floods for CRC-M while 2 floods for URC-S). This 401 

implies that CRC-M tends to underestimates peak flows while URC-S tends to overestimate them. The 402 

possible reason is that since it is common for SPPs to underestimate extreme rainfall, using them to 403 

establish the runoff correction range will make it difficult to characterize extreme runoff. On the other 404 

hand, for URC-S, due to the lack of constraints in the process of correction, runoff can be infinitely 405 

magnified. Therefore, the peak flow estimates based on URC-S tends to be much larger than 406 

observation with RPF greater than 50% in 3 of the 14 flood events. Meanwhile, the grey-filled rows in 407 

Table 5 indicate the flood events for which all four of the evaluation metrics are inferior to the other 408 

method. We note that, based on this perspective, only two flood events based on CRC-M perform 409 

worse than those based on URC-S, while 6 flood events based on URC-S perform worse than those 410 

based on CRC-M.  411 

Table 5. Evaluation metrics of CRC-M and URC-S during different flood events, where the data in 412 

red are the RPFs when the flood peak is underestimated and the grey-filled data are the flood events 413 



 

 

whose all four evaluation metrics are inferior to the other method. 414 

  CRC-M URC-S 

 event NS RPF (%) EPT (d) RRD (%) NS RPF (%) EPT (d) RRD (%) 

Calibration 

1 0.79 -22.93 0 13.93 0.76 -28.36 -3 -25.04 

2 0.91 -25.65 -1 -25.70 0.94 9.18 -1 -12.49 

3 0.95 8.03 0 -9.19 0.94 16.32 -1 -1.32 

4 0.84 21.98 0 3.58 0.92 8.46 0 -19.94 

5 0.76 -22.11 2 4.46 0.92 1.87 -1 -7.93 

6 0.96 -0.09 -2 -10.30 0.52 27.09 4 26.97 

7 0.82 -15.30 -4 -28.02 0.91 9.66 0 -1.43 

8 0.76 -39.71 1 -25.14 0.01 75.69 1 63.74 

9 0.95 -0.34 -1 2.72 0.54 21.51 8 9.84 

Validation 

10 0.69 1.29 1 36.44 0.97 -10.24 0 -1.95 

11 0.93 -4.63 -1 0.45 0.91 28.63 -1 5.47 

12 0.73 19.06 -3 26.62 0.47 60.78 3 13.30 

13 0.92 -21.87 -1 -6.70 0.93 8.86 2 -1.23 

14 0.97 -1.14 -2 -11.04 0.43 66.12 1 34.99 

 415 

Values for NS, absolute RPF, absolute ERT and absolute RRD values of CRC-M and URC-S for 14 416 

flood events are shown in Figure 9. Based on NS and absolute RPF, CRC-M generally performs better 417 

than URC-S, especially in the evaluation period. Based on values of absolute ERT and absolute RRD, 418 

both CRC-M and URC-S show similar performance, except that URC-S does not perform well in some 419 

flood events (No.9 for absolute ERT and No.8 for absolute RRD). Based on this assessment, CRC-M 420 

tends to give better and more stable performance than URC-S, although with a tendency to 421 

underestimates peaks. 422 



 

 

 423 

Figure 9. NS, absolute RPF, absolute ERT and absolute RRD values of CRC-M (in blue) and 424 

URC-S (in orange) for 14 flood events. The gray section indicates the calibration period and the 425 

white section indicates the evaluation period. 426 

4.2 How to form reasonable constraints in CRC-M? 427 

To figure out how to determine reasonable constraints for use in CRC-M, this section compares the 428 

flood forecast performance of different input schemes, in other words, of different constraints, based 429 

on up to four SPPs. The performance is evaluated using RMD. In addition, the calculation in this 430 

section adopts the parameters calibrated by CRC-M in section 4.1, due to their stable performance. 431 

Since the constraints in CRC-M require at least two combinations to be input into the model, there are 432 

11 input schemes to force CRC-M. (∑ 𝐶4
ℎ4

ℎ=2 = 11, using up to 4 SPPs). As shown in Figure 10a, there 433 



 

 

are 11 input schemes with each evapotranspiration product. For any kind of evapotranspiration product, 434 

using all 4 SPPs to drive CRC-M, namely h=4, is the best performing scheme. With the increase of h, 435 

RMD of optimal schemes for each h increases approximately linearly. It can be inferred from formulas 436 

(9) and (10) that the larger h is, the wider the constraint range is. It might be further inferred that the 437 

wider the constraint range, the better the forecast performance. As it tends to the limit, the widest range 438 

would be the absence of constraints. However, this inference seems to contradict the conclusion in 439 

section 4.1 that CRC-M performs better URC-S which can be viewed as having no constraint range. 440 

This is because the excellent performance of CRC-M requires not only a wide range of constraints, but 441 

also SPPs with relatively high accuracy which can be seen from the schemes whose h are equal to 3 442 

and 2.  443 

When h=3, the optimal scheme is using IMERG-E, IMERG-L and GSMaP-GN. As can be seen in the 444 

Figure 10b, the difference between the unselected GSMaP-N and gauge observation is the largest, 445 

which means that use of GSMaP-N results in the worst performance. When h=2, the optimal scheme 446 

is using IMERG-L and GSMaP-GN. As can be seen in the Figure 10b, IMERG-E, IMERG-L and 447 

GSMaP-GN have similar differences with gauge. The largest pairwise difference of these three SPPs 448 

is the difference between IMERG-L and GSMaP-GN, since IMERG and GSMaP are two parallel 449 

retrieval algorithms for the GPM mission. As a result, they can form a relatively wider range. Therefore, 450 

relatively reliable SPPs and a wide constraint range are both very important for the performance of 451 

CRC-M. 452 



 

 

  453 

Figure 10. (a) The relationship between number of input combinations (h) and relative 454 

membership degree (RMD). The blue and orange points indicate input schemes using GLDAS-455 

CLM and GLEAM, respectively. The point in the dotted rectangle is the optimal schemes for the 456 

same h. (b) Taylor diagram of the four SPPs, where the standard deviation, correlation coefficient 457 

(CC) and root mean squared error (RMSE) evaluate the accuracy of the product data at 458 

precipitation gauges in the Nenjiang Basin at the similar latitude as Xiaoergou Basin. 459 

4.3 Does more information result in better performance?  460 

To see if providing additional information necessarily results in improved forecasting performance, 461 

evapotranspiration products were added to generate different constraint schemes; overall the 462 

performance of 8 combinations is compared. Consistent with section 4.2, we also use RMD to evaluate 463 

the performance and use the parameters calibrated by CRC-M in section 4.1. 464 

Since there are 4 kinds of precipitation estimates and 2 kinds of evapotranspiration estimates, for an 465 

input scheme, we can input 2 ~ 8 combinations into the model, and each combination is displayed in 466 

Table 6. Therefore, there are 247 input schemes to force CRC-M (∑ 𝐶8
ℎ8

ℎ=2 = 247). From the analysis 467 



 

 

in Section 4.2, we have determined that the width of the constraint range is one of the important factors 468 

affecting the forecast performance. To quantify the width of constraint range in an input scheme, we 469 

used the mean absolute difference (MAD) calculated by 𝑀𝐴𝐷 =
1

𝑚
∑ |(𝑃𝐸𝑖 − 𝑃𝐸𝑖)|

𝑚
𝑖=1  . 𝑃𝐸𝑖 470 

indicates subtraction between precipitation and evapotranspiration at period i in an input scheme, and 471 

there are 2 ~ 8 combinations of precipitation and evapotranspiration. 𝑃𝐸𝑖 and 𝑃𝐸𝑖 are the largest 472 

and smallest values among 𝑃𝐸𝑖s of the combinations in an input scheme, respectively. 473 

  474 

Figure 11. (a) Relative membership degree (RMD) for flood forecasting of different input 475 

schemes with various h, where h indicates the number of input combinations. The red crosses 476 

indicate the largest RMD scheme for each h. (b) Mean absolute difference (MAD) of each input 477 

scheme. The red crosses indicate the MAD of the optimal scheme for each h. 478 

As shown in Figure 11a, in general there is a tendency that more input combinations result in larger 479 

RMD which means better performance of flood forecasting, especially for the optimal scheme for each 480 

h. But unlike Figure 10(a), the tendency is not linear. With the increase of h, RMD of optimal scheme 481 

for each h increases more and more slowly. When h is equal to 4, 5, 6 and 7, RMD of optimal scheme 482 

is 0.897, 0.902, 0.904 and 0.904, as shown in Table 7. For each additional combination, RMD of 483 



 

 

optimal scheme increases by a maximum of 0.005. However, when h is equal to 2, 3 and 4, for each 484 

additional combination RMD of optimal scheme increases 0.105 and 0.022, respectively. The optimal 485 

scheme for h=4, which can be approximated as an inflection point, is formed by Ⅰ, Ⅳ, Ⅵ and Ⅶ. In 486 

more detail, as listed in table 6, it is formed by IMERG-E+GLDAS-CLM, GSMaP-GN+GLDAS-CLM, 487 

IMERG-L+GLEAM and GSMaP-N+GLEAM, which means that the scheme has already chosen all 4 488 

SPPs and their own relatively appropriate evapotranspiration products. The combinations not included 489 

in the scheme are Ⅱ, Ⅲ, Ⅴ and Ⅷ, which have similar information to Ⅵ, Ⅶ, Ⅰ and Ⅳ respectively, 490 

so they constitute redundant information.  491 

Meanwhile, as shown in the Figure 11(b), with the increase of h, the tendency of MAD is similar to 492 

that of RMD of each scheme, especially for the optimal scheme for each h, when h is larger than 4, its 493 

MAD grows slowly, and vice versa. To some extent, this indicates that the forecasting performance is 494 

controlled by the width of constrained range, which is consistent with the conclusion in 4.2. As shown 495 

in the Figure 11(b), when h≤4, MAD of each optimal scheme is the largest among the scheme with 496 

the same h. While h>4, it is no longer the maximum within the group with the same h. Even when h is 497 

equal to 7, it is the smallest in the group. So, this suggests that is it no longer possible to perform better 498 

as the width of constrained range increases. A wider width would interfere with the forecast.  499 

An example shown in Figure 11(a) can illustrate this further, in which two points circled with two 500 

dotted rectangles respectively represent the optimal scheme for h=4 and a common scheme for h=6. 501 

Input combinations of the latter scheme (Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅵ, Ⅶ) include all the input combinations of the 502 

former scheme (Ⅰ, Ⅳ, Ⅵ, Ⅶ). However, the RMD of the latter scheme (0.785) is much lower than 503 



 

 

that of the former (0.897), which indicates that the extra Ⅱ and Ⅲ have interfered with the original 504 

performance and reduced the forecasting accuracy. 505 

Table 6. Each combination of precipitation and evapotranspiration and its tag 506 

Tag Precipitation Evapotranspiration  

Ⅰ 
IMERG 

Early 

GLDAS_CLM 
Ⅱ Late 

Ⅲ 
GSMaP 

NRT 

Ⅳ Gauge-NRT 

Ⅴ 
IMERG 

Early 

GLEAM 
Ⅵ Late 

Ⅶ 
GsMaP 

NRT 

Ⅷ Gauge -NRT 

 507 

Table 7. The composition and RMD of the optimal schemes for the same h. 508 

h The largest RMD Scheme 

2 0.770 （Ⅳ, Ⅵ） 

3 0.875 （Ⅳ, Ⅴ, Ⅵ） 

4 0.897 （Ⅰ, Ⅳ, Ⅵ, Ⅶ） 

5 0.902 （Ⅰ, Ⅳ, Ⅵ, Ⅶ, Ⅷ） 

6 0.904 （Ⅰ, Ⅲ, Ⅳ, Ⅵ, Ⅶ, Ⅷ） 

7 0.904 （Ⅰ, Ⅲ, Ⅳ, Ⅴ, Ⅵ, Ⅶ, Ⅷ） 

 509 

4.4 Test using multiple basins of different sizes and climates 510 

To further test stability and reliability of the CRC-M, we tested the method on 7 basins with a variety 511 

of sizes and climates (including the aforementioned Xiaoergou Basin). The area of these basins (Figure 512 



 

 

12) is approximately evenly distributed between 2000 and 32000 km2, of which the smallest is the 513 

Biliuhe basin (2061 km2) and the largest is the Kumotun basin (32087 km2). The shapes and locations 514 

of these basins are shown in Figure 13. The 5 basins at the highest latitudes (②Geni, ③Kehou, ④515 

Jiagedaqi, ⑤Xiaoergou and ⑦Kumotun) are located in the upper reaches of the Nenjiang River, and 516 

have similar climatic conditions to the Xiaoergou Basin (see Section 2.1), with average annual rainfall 517 

of about 400-500 mm and average annual temperature of approximately -1.2℃. In addition, the Biliuhe 518 

basin (①), which extends from latitude 39.55︒N to 40.35︒N and longitude 122.31︒E to 122.89︒E, 519 

experiences an average annual rainfall about 700-800mm and average annual temperature of 520 

approximately 10.6℃. The lowest latitude Chishuihe basin (⑥) extends from latitude 27.20︒N to 521 

28.83︒N and longitude 104.72︒E to 106.99︒E，and experiences an average annual rainfall of about 522 

1000-1100mm and average annual temperature of approximately 17.6℃of the. The basins experience 523 

different frequencies of flooding, net rainfall amounts, and flood peak magnitudes. All of the flood 524 

events data used in this study are at the daily time step. 525 

 526 

Figure 12. Areas of test basins. 527 



 

 

 528 

 529 

Figure 13. Shapes and locations of test basins, where the number is sorted by basin area. 530 

The results obtained by application of the CRC-M to these 7 basins are shown in Tables 8 and 9, and 531 

in Figure 14. The accuracy of flood forecasts based on the CRC-M method in these 7 basins is high. 532 

The RMD is above 0.810 (with a maximum of 0.988) and the NS is above 0.73 (with a maximum of 533 

0.92), indicating that the method provides reliable results across a wide variety of basin conditions. 534 

Further, the similarity of the calibration and evaluation period metrics across basins indicates that the 535 

CRC-M method provides stable performance, and should therefore be applicable for flood forecasting 536 

in other ungauged basins. 537 



 

 

 538 

Figure 14. Relatively membership degree of 7 basins during calibration (in bule) and validation 539 

(in orange) based on CRC-M 540 

 541 

Table 8. Performance metric values obtained for the 7 basins during the calibration period. 542 

Basins NS RPF (%) EPT (d) RRD (%) RMD 

Biliuhe 0.80 16.66 0.60 5.92 0.928 

Geni 0.84 16.74 1.25 8.16 0.925 

Kehou 0.73 13.48 1.88 14.34 0.810 

Jiagedaqi 0.83 3.54 0.40 2.90 0.988 

Xiaoergou 0.85 17.35 1.22 13.67 0.890 

Chishuihe 0.79 13.96 0.25 16.43 0.919 

Kumotun 0.92 14.55 1.00 5.52 0.952 

 543 

Table 9. Performance metric values obtained for the 7 basins during the evaluation period. 544 

Basins NS RPF (%) EPT (d) RRD (%) RMD 

① Biliuhe 0.92 8.65 0.40 6.97 0.947 

② Geni 0.85 17.02 1.50 10.95 0.904 



 

 

③ Kehou 0.82 10.91 1.75 23.17 0.820 

④ Jiagedaqi 0.84 14.51 0.60 16.92 0.923 

⑤ Xiaoergou 0.91 9.60 1.60 16.25 0.905 

⑥ Chishuihe 0.81 20.22 0.50 20.78 0.859 

⑦ Kumotun 0.70 8.32 1.40 4.46 0.925 

 545 

5. Conclusions 546 

This paper proposes and evaluates a constrained runoff correction method (CRC-M) based on the use 547 

of multi-source satellite-based products to facilitate flood forecasting. The basic principle is to correct 548 

runoff using the real-time updated outlet discharge with constraints calculated by SPPs. To illustrate 549 

this, four near-real-time SPPs (IMERG-E, IMERG-L, GSMaP-N and GSMaP-GN) were employed to 550 

calculate the constraint range to be applied to runoff correction. The method was first tested in an 551 

ungauged basin and its performance discussed in terms of the importance of constraint range and 552 

characteristics of good constraints. Then, the method was applied to 7 basins with different sizes and 553 

hydroclimatic conditions. The primary conclusions can be summarized as follows: 554 

1. Application of CRC-M to the study site resulted in NS forecasting performance of 0.85 and 0.91 555 

during calibration and evaluation respectively. CRC-M resulted in better and more stable 556 

performance compared to a control test (URC-S), thereby demonstrating the importance of using 557 

a constraint range. While CRC-M underestimates the peak flow slightly, the unconstrained URC-558 

S approach tends to overestimate it severely. The results indicate that use of a runoff constraint 559 

range determined using different SPPs results in more stable and accurate runoff correction. 560 



 

 

2. We find that two characteristics result in better forecasting performance; wider constraint ranges 561 

and relatively reliable SPPs. For any kind of evapotranspiration product, using all 4 SPPs to drive 562 

CRC-M (meaning the widest constraint range) is the best performing scheme. Meanwhile, when 563 

h is limited, SPPs with higher accuracy are preferentially selected. 564 

3. Adding more information, in the form of evapotranspiration products, allows us to generate 565 

additional schemes. With increasing of h, we see progressively marginal improvements in RMD 566 

and MAD of the optimal scheme, especially when h is larger than 4. The optimal scheme for h=4, 567 

which includes all of the satellite products mentioned in this paper, can be approximated as an 568 

inflection point. After the inflection point, the increased information tends to be redundant (or 569 

even detrimental), and only improves the forecast performance slightly (or can even cause the 570 

performance to deteriorate). 571 

4. Application of CRC-M to a variety of basins having different sizes and hydroclimatic conditions 572 

resulted in RMD values above 0.8 and consistently similar calibration and evaluation period 573 

performance, suggesting that the CRC-M method can reliably be used for flood forecasting in a 574 

variety of other ungauged basins. 575 

Overall, the CRC-M method performs well in ungauged basins even though the accuracy of the near-576 

real-time SPPs used is not very high. Its performance is improved under wider constraint conditions 577 

and with more accurate SPPs, as long as redundancy and interference are minimal. The data and 578 

computer codes used in this study can be obtained from the corresponding author upon request. As 579 

always, we invite discussion and collaboration on this and related aspects of modeling and hydrological 580 



 

 

forecasting. 581 
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Figure captions: 730 

Figure 1. Geographical location, topography and hydrologic station of the Xiaoergou Basin 731 

Figure 2. Net rainfall (a) and flood peaks (b) of 14 flood events of the Xiaoergou Basin 732 

Figure 3. A high-level systems diagram for a hydrological model; P(i), E(i) and X(i) indicate the 733 

areal mean rainfall, the areal mean evapotranspiration and the initial state of basin at the ith period, 734 

and Q(j) indicates the computed discharge output of the hydrological system at the jth period and 735 

also the first response to P(i), E(i) and X(i) of the basin outlet. Therefore, the lag time is j-i. 736 

Figure 4. Schematic diagram of formula (2)~(8) 737 

Figure 5. The correction and forecasting process of the CRC-M by taking T=1 and m’=3 as an 738 

example, where ∆𝑞𝑗,𝑖 = 𝑞
𝑗,𝑖

− 𝑞𝑗,𝑖. 739 

Figure 6. The correction and forecasting process of the URC-S by taking T=1 and m’=3 as an 740 



 

 

example. 741 

Figure 7. A structural diagram of XAJ 742 

Figure 8. A structural diagram of parameter calibration 743 

Figure 9. NS, absolute RPF, absolute ERT and absolute RRD values of CRC-M (in blue) and URC-S 744 

(in orange) for 14 flood events. The gray section indicates the calibration period and the white section 745 

indicates the evaluation period. 746 

Figure 10. (a) The relationship between number of input combinations (h) and relative membership 747 

degree (RMD). The blue and orange points indicate input schemes using GLDAS-CLM and GLEAM, 748 

respectively. The point in the dotted rectangle is the optimal schemes for the same h. (b) Taylor diagram 749 

of the four SPPs, where the standard deviation, correlation coefficient (CC) and root mean squared 750 

error (RMSE) evaluate the accuracy of the product data at precipitation gauges in the Nenjiang Basin 751 

at the similar latitude as Xiaoergou Basin. 752 

Figure 11. (a) Relative membership degree (RMD) for flood forecasting of different input schemes 753 

with various h, where h indicates the number of input combinations. The red crosses indicate the 754 

largest RMD scheme for each h. (b) Mean absolute difference (MAD) of each input scheme. The 755 

red crosses indicate the MAD of the optimal scheme for each h. 756 

Figure 12. Areas of test basins. 757 

Figure 13. Shapes and locations of test basins, where the number is sorted by basin area. 758 



 

 

Figure 14. Relatively membership degree of 7 basins during calibration (in bule) and validation (in 759 

orange) based on CRC-M 760 
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Table 1. Overview of the SPPs used in this study 762 

Product Corrected 

Spatial 

Resolution 

Developer Start Time Latency 

IMERG 

Early No 
0.1︒×0.1︒ NASA 

June 2000 4 hours 

Late Yes June 2000 12 hours 

GSMaP 

NRT No 
0.1︒×0.1︒ JAXA 

March 2000 4 hours 

NRT-gauge Yes April 2000 4 hours 

 763 

Table 2. Overview of the evapotranspiration (ET) products used in this study 764 

Data Sets Category Scheme Spatial Resolution Start Time 

GLDAS LSM Penman-Monteith 1︒×1︒ January 1979 

GLEAM Diagnostic Priestley-Taylor 0.25︒× 0.25︒ January 1980 

 765 

Table 3. Distributions of the width of the ranges formed by different satellite-based products for a 766 

given period 767 

Variable 

Range  

[min, max] (mm) 

Interquartile Range 

[𝟏

𝟒
min, 𝟑

𝟒
max] (mm) 

Median 

(mm) 

Precipitation (P) [0, 46.57] [0.17, 3.54] 1.17 

Evapotranspiration (ET) [0, 5.86] [0.41, 1.42] 0.97 

P-ET [0.04, 47.89] [1.26, 5.10] 2.25 

 768 

Table 4. Evaluation metrics of CRC-M and URC-S during calibration and validation stages. 769 



 

 

Evaluation metrics 
Calibration Validation 

CRC-M URC-S CRC-M URC-S 

NS 0.85 0.84 0.91 0.64 

RPF (%) 17.35 22.02 9.6 34.92 

EPT (d) 1.22 2.11 1.60 1.40 

RRD (%) 13.67 18.74 16.25 11.39 

RMD 0.890 0.764 0.905 0.684 

 770 

Table 5. Evaluation metrics of CRC-M and URC-S during different flood events, where the data in 771 

red are the RPFs when the flood peak is underestimated and the grey-filled data are the flood events 772 

whose all four evaluation metrics are inferior to the other method. 773 

  CRC-M URC-S 

 event NS RPF (%) EPT (d) RRD (%) NS RPF (%) EPT (d) RRD (%) 

Calibration 

1 0.79 -22.93 0 13.93 0.76 -28.36 -3 -25.04 

2 0.91 -25.65 -1 -25.70 0.94 9.18 -1 -12.49 

3 0.95 8.03 0 -9.19 0.94 16.32 -1 -1.32 

4 0.84 21.98 0 3.58 0.92 8.46 0 -19.94 

5 0.76 -22.11 2 4.46 0.92 1.87 -1 -7.93 

6 0.96 -0.09 -2 -10.30 0.52 27.09 4 26.97 

7 0.82 -15.30 -4 -28.02 0.91 9.66 0 -1.43 

8 0.76 -39.71 1 -25.14 0.01 75.69 1 63.74 

9 0.95 -0.34 -1 2.72 0.54 21.51 8 9.84 

Validation 

10 0.69 1.29 1 36.44 0.97 -10.24 0 -1.95 

11 0.93 -4.63 -1 0.45 0.91 28.63 -1 5.47 

12 0.73 19.06 -3 26.62 0.47 60.78 3 13.30 

13 0.92 -21.87 -1 -6.70 0.93 8.86 2 -1.23 

14 0.97 -1.14 -2 -11.04 0.43 66.12 1 34.99 

 774 



 

 

Table 6. Each combination of precipitation and evapotranspiration and its tag 775 

Tag Precipitation Evapotranspiration  

Ⅰ 
IMERG 

Early 

GLDAS_CLM 
Ⅱ Late 

Ⅲ 
GSMaP 

NRT 

Ⅳ Gauge-NRT 

Ⅴ 
IMERG 

Early 

GLEAM 
Ⅵ Late 

Ⅶ 
GsMaP 

NRT 

Ⅷ Gauge -NRT 

 776 

Table 7. The composition and RMD of the optimal schemes for the same h. 777 

h The largest RMD Scheme 

2 0.770 （Ⅳ, Ⅵ） 

3 0.875 （Ⅳ, Ⅴ, Ⅵ） 

4 0.897 （Ⅰ, Ⅳ, Ⅵ, Ⅶ） 

5 0.902 （Ⅰ, Ⅳ, Ⅵ, Ⅶ, Ⅷ） 

6 0.904 （Ⅰ, Ⅲ, Ⅳ, Ⅵ, Ⅶ, Ⅷ） 

7 0.904 （Ⅰ, Ⅲ, Ⅳ, Ⅴ, Ⅵ, Ⅶ, Ⅷ） 

 778 

Table 8. Evaluation metrics obtained for 7 basins during calibration period. 779 

Basins NS RPF (%) EPT (d) RRD (%) RMD 

Biliuhe 0.80 16.66 0.60 5.92 0.928 

Geni 0.84 16.74 1.25 8.16 0.925 

Kehou 0.73 13.48 1.88 14.34 0.810 

Jiagedaqi 0.83 3.54 0.40 2.90 0.988 

Xiaoergou 0.85 17.35 1.22 13.67 0.890 

Chishuihe 0.79 13.96 0.25 16.43 0.919 



 

 

Kumotun 0.92 14.55 1.00 5.52 0.952 

 780 

Table 9. Evaluation metrics obtained for 7 basins during validation period. 781 

Basins NS RPF (%) EPT (d) RRD (%) RMD 

① Biliuhe 0.92 8.65 0.40 6.97 0.947 

② Geni 0.85 17.02 1.50 10.95 0.904 

③ Kehou 0.82 10.91 1.75 23.17 0.820 

④ Jiagedaqi 0.84 14.51 0.60 16.92 0.923 

⑤ Xiaoergou 0.91 9.60 1.60 16.25 0.905 

⑥ Chishuihe 0.81 20.22 0.50 20.78 0.859 

⑦ Kumotun 0.70 8.32 1.40 4.46 0.925 
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