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Abstract

The elemental stoichiometry of particulate organic carbon (C), nitrogen (N), and phosphorus (P) connects the C fluxes of

biological production to the availability of the limiting nutrients in the ocean. It also influences the marine food-web by

modulating the feeding behavior of zooplankton and the decomposition of organic matter by bacteria and viruses. Despite

its importance, there is a general paucity of information on how the global C:N:P ratio evolves seasonally and interannually,

and large parts of the global ocean remain devoid of observational data. Here, we developed a new method that combines

satellite ocean-color data with a cellular trait-based model to characterize the spatio-temporal variability of the phytoplankton

stoichiometry in the surface mixed layer of the ocean. Here, we demonstrated this method specifically for the C:P ratio. The

approach was applied to phytoplankton growth rates and chlorophyll-to-carbon ratios derived from MODIS-Aqua and to maps

of temperature-dependent nutrient limitation in order to generate global and seasonal maps of upper-ocean phytoplankton

C:P. Taking it a step further, we determined the C:P of the bulk particulate organic matter, using MODIS-Aqua estimates of

particulate organic carbon and phytoplankton biomass. A reasonably good comparison of our results with available data, both

horizontal distributions and time series, indicates the viability of our new method in accurately quantifying seasonally resolved

global ocean bulk C:P. We anticipate that the new hyperspectral capabilities of the NASA’s PACE (Plankton, Aerosol, Cloud,

ocean Ecosystem) mission will facilitate the determination of phytoplankton stoichiometry for different size classes and can

further enhance the predictability of marine ecosystem stoichiometry from space.
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Abstract 10 

The elemental stoichiometry of particulate organic carbon (C), nitrogen (N), and phosphorus (P) 11 
connects the C fluxes of biological production to the availability of the limiting nutrients in the 12 
ocean. It also influences the marine food-web by modulating the feeding behavior of zooplankton and 13 
the decomposition of organic matter by bacteria and viruses. Despite its importance, there is a general 14 
paucity of information on how the global C:N:P ratio evolves seasonally and interannually, and large 15 
parts of the global ocean remain devoid of observational data. Here, we developed a new method that 16 
combines satellite ocean-color data with a cellular trait-based model to characterize the spatio-17 
temporal variability of the phytoplankton stoichiometry in the surface mixed layer of the ocean. Here,  18 
we demonstrated this method specifically for the C:P ratio. The approach was applied to 19 
phytoplankton growth rates and chlorophyll-to-carbon ratios derived from MODIS-Aqua and to maps 20 
of temperature-dependent nutrient limitation in order to generate global and seasonal maps of upper-21 
ocean phytoplankton C:P. Taking it a step further, we determined the C:P of the bulk particulate 22 
organic matter, using MODIS-Aqua estimates of particulate organic carbon and phytoplankton 23 
biomass. A reasonably good comparison of our results with available data, both horizontal 24 
distributions and time series, indicates the viability of our new method in accurately quantifying 25 
seasonally resolved global ocean bulk C:P. We anticipate that the new hyperspectral capabilities of 26 
the NASA’s PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) mission will facilitate the 27 
determination of phytoplankton stoichiometry for different size classes and can further enhance the 28 
predictability of marine ecosystem stoichiometry from space.  29 

1 Introduction 30 

Ever since Redfield first reported on it more than 85 years ago (Redfield, 1934), the C:N:P ratio of 31 
particulate organic matter (POM) has been widely assumed to be stable. A fixed C:N:P ratio has long 32 
played a central role in ocean biogeochemistry because this ratio largely determines the strength of 33 
the biologically-mediated ocean carbon cycle. However, recent studies show convincingly that the 34 
C:N:P stoichiometry of POM varies substantially on ocean-basin scales. For example, Martiny et al. 35 
(2013) showed a globally coherent pattern, with C:N:P ratio of 195:28:1 in the subtropical gyres, 36 
137:18:1 in the warm upwelling zones, and 78:13:1 in the nutrient-rich polar regions. An inverse 37 
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model of ocean biogeochemistry also inferred a similar spatial pattern of the global C:P and N:P 38 
ratios (Teng et al., 2014; Wang et al., 2019). 39 

As carbon export is inversely related to atmospheric CO2 (Volk and Hoffert, 1985), carbon-enriched 40 
particulate organic matter in subtropical gyres could lead to lower atmospheric CO2 and higher 41 
export production of carbon, thereby influencing climate (Galbraith and Martiny, 2015; Tanioka and 42 
Matsumoto, 2017; Matsumoto et al., 2020; Ödalen et al., 2020). The ocean carbon modeling 43 
community is beginning to respond to this development. For example, the state of the art CMIP5/6 44 
models developed by various climate modeling teams around the world represent phytoplankton 45 
stoichiometry with varying degree of flexibility, from no flexibility (i.e., fixed C:N:P ratio) to fully 46 
flexible (e.g., Bopp et al., 2013; Arora et al., 2020). 47 

A major challenge to adopting fully flexible stoichiometry in biogeochemical models is our current 48 
inability to observationally constrain the temporal variability of the C:N:P in the global ocean. 49 
Although some progress has been made to explore a temporal shift in C:N:P using local time-series 50 
data (Hebel and Karl, 2001; Karl et al., 2001; Singh et al., 2015; Martiny et al., 2016; Talarmin et al., 51 
2016), our holistic global view of the global C:N:P ratio variation is still unclear. In-situ C:N:P 52 
measurements of POM inherently suffer from bias towards regions and periods of active 53 
oceanographic research, and large parts of the global ocean remain devoid of data. For example, there 54 
is a considerable paucity of POM sampling efforts in the South and Equatorial Atlantic regions 55 
(Sharoni and Halevy, 2020).   56 

The remote sensing using satellite ocean-color sensors have the potential to provide a unique tool to 57 
constrain the temporal evolution of organic matter C:N:P ratio. Ocean color provides global, synoptic 58 
views of the spectral remote-sensing reflectance of the ocean that can be used to generate estimates 59 
of marine inherent optical properties (IOPs) at various timescales (Werdell et al., 2018). Satellite 60 
ocean color (i.e., remote-sensing reflectance) provides an unparalleled tool to capture climate-driven 61 
signals in the upper biological functions of the global ocean (Dierssen, 2010; Dutkiewicz et al., 62 
2019), and has the potential to yield crucial information on the modes of C:N:P variability. Indeed, 63 
previous field studies have shown that C:N:P ratio is significantly influenced by interannual climate 64 
variabilities such as ENSO and Pacific Decadal Oscillation (Martiny et al., 2016; Fagan et al., 2019).  65 

One possible approach to assess the spatio-temporal variability in the C:N:P of POM is to directly 66 
estimate the change in the total concentration of particulate organic carbon (POC), particulate organic 67 
nitrogen (PON), and particulate organic phosphorus (POP) using satellite ocean color data. Multiple 68 
methods of estimating total POC from satellite ocean color have been developed over the years, and 69 
the satellite estimates are extensively calibrated with in-situ measurements (Evers-King et al., 2017). 70 
More recently, Fumenia et al. (2020) have developed a method to link the backscattering coefficient 71 
of (bbp) at 700 nm with PON and POP concentrations in the oligotrophic Western Tropical South 72 
Pacific. However, the reliability of bbp as a quantitative proxy of PON and POP still needs to be 73 
investigated in other oceanographic areas, including non-oligotrophic regions.  74 

Another possible approach of deriving C:N:P of bulk POM is to predict the elemental composition of 75 
phytoplankton and use it as a proxy for the bulk composition, assuming phytoplankton make up the 76 
largest proportion of POM. The study by Arteaga et al. (2014) showed a seasonally variable global 77 
C:N:P ratio of phytoplankton by using a combination of remote sensing data and a mechanistic 78 
growth-model of phytoplankton (Pahlow et al., 2013). More recently, Roy (2018) developed a 79 
method to estimate the macromolecular content of phytoplankton protein, carbohydrate, and lipid via 80 
satellite ocean color by using empirical relationships between the particulate backscattering 81 
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coefficient, phytoplankton cell size, and cellular macromolecular concentrations. However, this 82 
method cannot derive phytoplankton C:P as there is no empirical link between cell size and P-rich 83 
macromolecules such as RNA and DNA. Furthermore, a fundamental limitation in both of these 84 
studies is that the elemental composition of phytoplankton may not be able to explain the full 85 
dynamics of bulk POM because, in reality, phytoplankton biomass typically constitute only 30~50% 86 
of bulk particulate organic matter in the open ocean (Eppley et al., 1992; Durand et al., 2001; 87 
Gundersen et al., 2001; Behrenfeld et al., 2005).  88 

Here, we propose a new remote-sensing approach that uniquely combines established methodologies 89 
in order to understand the spatio-temporal variability of the upper-ocean stoichiometry of 90 
phytoplankton and bulk POM (Figure 1). Although we only demonstrate the feasibility of this 91 
method for C:P ratio in this paper, the framework can theoretically be expanded to include C:N and 92 
N:P ratios. In this approach, we first determine C:P of phytoplankton by combining satellite-derived 93 
estimates of growth rate, Chl:C ratio, and nutrient depletion temperatures (NDTs) with a newly 94 
developed mechanistic model of phytoplankton stoichiometry (Inomura et al., 2020). We then 95 
convert phytoplankton C:P ratio to the total POC:POP using remotely sensed concentrations of 96 
phytoplankton biomass and POC. This approach is unique in that all inputs are derived from satellite 97 
remote sensing and does not rely on in-situ measurements, thereby enabling us to predict the “real-98 
time” evolution of phytoplankton and bulk POM C:P on various temporal and spatial scales of 99 
interest.  100 

The Methods section of this paper describes this new satellite-informed framework for predicting C:P 101 
ratios in the mixed layer. The Results and Discussion section then describes the implementation of 102 
our framework to available satellite data and their derived quantities. We discuss the relative 103 
importance of the two main drivers of POC:POP variability: (1) variability due to change in 104 
phytoplankton C:P that reflect changes in environmental condition such as nutrient supply (e.g.., 105 
Garcia et al., 2018; Martiny et al., 2013), and (2) variability due to change in community plankton 106 
composition (e.g., Sharoni & Halevy, 2020; Talmy et al., 2016; Weber & Deutsch, 2010). Finally, we 107 
discuss caveats, limitations, and future directions. Our ultimate goal in this paper is to demonstrate 108 
the feasibility of the method, given all the assumptions and limitations. We envision that future 109 
advances in satellite instrumentation will enhance the accuracy of satellite-derived input parameters 110 
and will thus improve the overall estimate of C:N:P from space.  111 

2 Methods 112 

2.1 Satellite-Informed Modeling Framework 113 

The flowchart shown in Figure 1 provides an overview of how we determine phytoplankton C:P and 114 
bulk POC:POP ratios from satellite products (ocean color, SST). In the sections below, we briefly 115 
describe the phytoplankton stoichiometry model and the method of estimating the bulk C:P of POM. 116 
2.1.1 Phytoplankton Stoichiometry Model 117 

In this study, we determined the C:P ratio for a single phytoplankton functional type using the 118 
recently developed phytoplankton stoichiometry model (Inomura et al., 2020). The phytoplankton 119 
stoichiometry model of Inomura et al. (2020) is conceptually simple but facilitates the accurate 120 
computation of phytoplankton C:P and C:N ratios under a variety of environmental conditions. The 121 
input variables required in calculating phytoplankton C:P are light intensity, growth rate, and the 122 
presence/absence of limiting nutrients. The model is based on four empirically supported lines of 123 
evidence: (1) a saturating relationship between light intensity and photosynthesis, (2) a linear 124 
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relationship between RNA-to-Protein ratio and growth rate, (3) a linear relationship between 125 
biosynthetic proteins and growth rate, and (4) a constant macromolecular composition of the light-126 
harvesting machinery. Also, it follows from these assumptions that chlorophyll-to-carbon ratio 127 
(Chl:Cphyto) and growth rate are directly linked for any given light intensity (Laws and Bannister, 128 
1980). Inomura et al. calibrated their model parameters subject to constraints provided by data from 129 
published laboratory chemostat studies for several key prokaryotic and eukaryotic phytoplankton 130 
species. For this study, we used the model parameter set for the cyanobacteria Synechococcus 131 
linearis because the parameters for this species were most rigorously calibrated with laboratory data 132 
compared to the other two possible options (cf. a diatom, Skeletonema costatum, and a haptophyte, 133 
Pavlova lutheri). Also, picocyanobacteria such as Synechococcus and Prochlorococcus are the most 134 
abundant phytoplankton types in the global ocean (Flombaum et al., 2013; Berube et al., 2018). Thus, 135 
if we are choosing a single group of phytoplankton to represent the whole phytoplankton community, 136 
as we do in this study, Synechococcus would be a reasonable choice. However, as this particular 137 
species of Synechococcus is a freshwater species, further calibration efforts specific to the marine 138 
cyanobacteria species would be necessary. A complete description and evaluation of the 139 
phytoplankton stoichiometry model are provided in the original model description paper (Inomura et 140 
al., 2020). 141 

In order to determine phytoplankton C:P, we made three minor modifications to the original 142 
stoichiometry model by Inomura et al. (2020). First, we drove the stoichiometry model directly with 143 
depth-integrated Chl:Cphyto in the mixed layer obtained from the satellite ocean color instead of 144 
calculating Chl:Cphyto as a function of photon-flux density. This way, we could circumvent the need 145 
to estimate depth-dependent irradiance, which is complicated by issues such as self-shading and 146 
particle scattering (Jamet et al., 2019). Second, we imposed a fixed maximum growth rate of 2 d-1 in 147 
calculating C:P, which is equal to the maximum growth rate commonly imposed on the satellite-148 
based estimates of growth rate (Westberry et al., 2008; Laws, 2013). Third, we disregarded the 149 
elemental composition in terms of C:N. This last simplification made it possible to circumvent the 150 
need to determine whether the cell is P-limited or N-limited based on the external nutrient supply. 151 
With this third modification, C:P is fixed at a constant value of 102 under P-replete condition 152 
regardless of the P supply, and C:P is stoichiometrically flexible under P-limited condition. We note 153 
that under P limitation, the internal P storage inside the cell becomes zero so that the stoichiometry 154 
model, by default, does not require information on external nutrient concentration in calculating 155 
cellular C:P. With these three modifications, we were able to predict phytoplankton C:P using only 156 
satellite ocean color products as inputs.  157 
2.1.2 Satellite-Derived Inputs 158 

We drove the modified Inomura model with satellite-derived growth rates (µ), Chl:Cphyto (a measure 159 
of light intensity), and phosphate limitation (via phosphate depletion temperature) to estimate 160 
phytoplankton C:P (rC:P) in the surface mixed layer (Equation 1):  161 

 !":$ = &'()*+ ,'()*+⁄ = .(0, &ℎ3:	&'()*+, 556)  (1) 162 

The required input data in Equation (1) are monthly binned and averaged observations from the Aqua 163 
Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua) acquired from January 2003 to 164 
December 2018 and re-gridded on a regular 1°-latitude by 1°-longitude grid. All satellite-derived 165 
input data and estimates of mixed-layer depth are available for download from the Oregon State 166 
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Ocean Productivity Website (http://sites.science.oregonstate.edu/ocean.productivity/index.php, last 167 
access: June 22, 2020).  168 

The carbon-based specific growth rate µ  (measured in d-1) is estimated by dividing the depth-169 
integrated net primary productivity (NPP, measured in mg C m-2 d-1) by the standing stock of 170 
phytoplankton carbon (Cphyto, measured in mg C m-2): 171 

 µ = NPP/Cphyto  (2) 172 

There are multiple NPP data products available to date (Westberry and Behrenfeld, 2014; Bisson et 173 
al., 2018). In order to illustrate the robustness of our C:P determination to the choice of the NPP 174 
products, we used the following four NPP satellite data products: (1) the Carbon, Absorption and 175 
Fluorescence Euphotic-resolving model (CAFE) (Silsbe et al., 2016), (2) the Vertically Generalized 176 
Productivity Model (VGPM) (Behrenfeld and Falkowski, 1997), (3) the Eppley-VGPM Model 177 
(Eppley, 1972; Behrenfeld and Falkowski, 1997), and (4) the Carbon-based Productivity Model 178 
(CbPM) (Westberry et al., 2008). A previous study showed that CAFE compares best with in-situ 179 
NPP measurements (Bisson et al., 2018). Because the growth rates from VGPM, Eppley-VGPM, and 180 
CbPM are similar quantitatively (Supplementary Figure 1), we only present results from VGPM as 181 
representing the three models in the main text. Throughout the text, we use the phrases “CAFE-182 
informed phytoplankton C:P” and “VGPM-informed phytoplankton C:P” to refer to C:P calculated 183 
using µ from CAFE-based NPP and VGPM-based NPP, respectively.   184 

For Cphyto, we used the satellite data product of Westberry et al. (2008), who computed Cphyto as a 185 
linear function of the particulate backscatter coefficient at 443 nm, bbp(443). We only considered a 186 
single algorithm of Cphyto in this study because the previous intercomparison study showed that no 187 
single algorithm outperforms any of the other algorithms when compared with in-situ data (Martínez-188 
Vicente et al., 2017). We excluded from our analyses the coastal regions with Cphyto exceeding 1000 189 
mg C m-3 and we multiplied the monthly mean surface concentration of Cphyto with monthly mean 190 
mixed layer depth (MLD) from the Hybrid Coordinate Ocean Model (HYCOM) to get the depth-191 
integrated Cphyto. Here, MLD is defined as the depth where the density of water is greater than that of 192 
water at a reference depth of 10 m by 0.125 kg m-3 (Levitus, 1982). The growth rate calculated this 193 
way in Equation (2) is representative of a well-mixed, photoacclimated community subject to the 194 
median PAR in the mixed layer. The satellite-derived seasonal variability in µ reflect changes in light 195 
and nutrient limitation, as well as phytoplankton community composition (Behrenfeld et al., 2005).  196 

Figure 2 shows satellite-derived estimates of µ during summer and winter. CAFE predicts a higher µ 197 
during summer months compared to winter months for the large parts of the ocean (Figure 2a-c). 198 
VGPM (Figure 2d-f) and the other two NPP products (CbPM and Eppley-VGPM; Supplementary 199 
Figure 1) show similar trends in the high latitude but show the opposite trend in the subtropics with 200 
lower µ during summer compared to winter. As a result, the range of estimated µ amongst NPP 201 
products are higher during the summer (Figure 2g) compared to winter (Figure 2h) and is most 202 
extensive in the subtropics. Here, the range is a measure of uncertainty and is given by the difference 203 
between the maximum and minimum µ estimates amongst four NPP products. Throughout the rest of 204 
this paper, the “summer” average refers to average values during July – September in the Northern 205 
Hemisphere and during January – March in the Southern Hemisphere. For the “winter,” the target 206 
months are reversed between two hemispheres. 207 

The Chl:Cphyto ratio, a proxy for light limitation (Falkowski et al., 1985; MacIntyre et al., 2002), is 208 
computed here by dividing MODIS-derived Chl-a with Cphyto. Chl-a concentration is depth-integrated 209 
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and therefore converted from mg Chl m-3 to mg Chl m-2 by multiplying the monthly mean surface 210 
concentration with monthly mean MLD. Like for growth rate, we assumed that the Chl:Cphyto is 211 
vertically uniform in the mixed layer. Figure 3a-c shows estimates of Chl:Cphyto during summer and 212 
winter. In general, Chl:Cphyto is higher during winter than summer as the reduced incident irradiance 213 
causes phytoplankton to allocate more of the cellular component to the light-harvesting apparatus 214 
(Geider, 1987; MacIntyre et al., 2002; Arteaga et al., 2016). High Chl: Cphyto in the sunlit layer of the 215 
continental margins are known to be relatively inaccurate and biases due to interferences by the high 216 
and variable amounts of colored dissolved organic matter (CDOM) and detritus (Siegel et al., 2005; 217 
Morel and Gentili, 2009; Loisel et al., 2010). As we excluded coastal regions in the subsequence 218 
analyses, this issue should not affect our satellite-informed estimates of C:P.   219 

We assessed if there is P limitation by utilizing nutrient depletion temperatures (NDTs), which are 220 
temperatures above which nutrients are no longer detectable by traditional wet-chemistry techniques 221 
(Zentara and Kamykowski, 1977; Kamykowski and Zentara, 1986). The method leverages an 222 
observed inverse empirical relationship between surface nutrient concentration and sea-surface 223 
temperature (SST). In this relationship, phytoplankton is considered nutrient-limited if the difference 224 
between SST and NDT is higher than 0 and vice versa if the difference is lower than 0. We used a 225 
global NDT mask of the percentile-based, cubic root-corrected phosphate depletion temperatures 226 
(PDT3) re-gridded to a 1-by-1° spatial resolution (Figure 3f; Kamykowski et al., 2002). We 227 
subtracted PDT3 from MODIS-derived monthly mean SST to determine the absence/presence of P 228 
limitation in the surface ocean. P limitation as a result of SST exceeding phosphate depletion 229 
temperature is globally prevalent during summer (Figure 3d). Phosphate depletion is alleviated 230 
during winter months at high latitudes and in some parts of the equatorial regions as the surface 231 
ocean cools in part because of enhanced vertical mixing (Figure 3e). For the current work, we limited 232 
our study to latitudes ranging from 50°S to 70°N as the original data on PDT3 beyond this latitudinal 233 
range are sparse (Kamykowski et al., 2002). We further discuss the caveats and limitations of this 234 
approach in Section 3.4. 235 

We obtained the MODIS-derived total monthly averaged POC (0.7 µm < D < 17 µm) from the 236 
NASA Ocean Color Product webpage (http://oceancolor.gsfc.nasa.gov, last access: June 22, 2020). 237 
This total POC determination is based on an empirical relationship between POC and the blue-to-238 
green band of spectral remote-sensing reflectance (Stramski et al., 2008). The algorithm employed 239 
here is widely implemented for producing maps of surface POC.  The global mean Cphyto:POC is ~ 240 
30% (Figure 3g-h), consistent with previous estimates (Behrenfeld et al., 2005). The Cphyto:POC is 241 
generally higher in the subtropical gyres than other regions reaching up to 50-70% during summer 242 
(Figure 3g). Cphyto:POC ratio rarely exceeds a value of 1 except during episodic events in coastal 243 
regions, which we disregard in our analyses. Although Cphyto and POC are independently determined, 244 
the fact that Cphyto:POC ratio rarely exceeds a value of 1 increases our confidence in the predictability 245 
of Cphyto:POC.  246 

2.1.3 Estimating C:P of Bulk POM 247 

Globally, phytoplankton derived organic matter represents on average ~30% of bulk organic matter 248 
(Eppley et al., 1992; Durand et al., 2001; Gundersen et al., 2001; Behrenfeld et al., 2005), and the 249 
rest is due to contributions from zooplankton and non-living detrital materials. In order to estimate 250 
C:P of bulk POM, we split the POC and particulate organic phosphorus (POP) into two components: 251 
(1) phytoplankton-derived organic matter with C:P ratio following the stoichiometry model in the 252 
previous section, and (2) non-algal component with fixed C:P of 117:1 following Anderson and 253 
Sarmiento (1994). Throughout the rest of this paper, the “community composition” refers to the 254 
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relative balance between the algal and non-algal components of organic matter, not the community 255 
composition of different phytoplankton functional types.  256 
The non-algal component of particulate organic matter with fixed C:P represents a combination of 257 
zooplankton and other non-living detrital materials such as fecal pellets and other organic matter left 258 
over from sloppy feeding (Martiny et al., 2013a, 2013b; Talmy et al., 2016). Previous studies have 259 
shown that zooplankton generally has a C:P close to the Redfield ratio even under P-limited 260 
conditions (e.g., Copin-Montegut & Copin-Montegut, 1983; Sterner & Elser, 2002). Isopycnal 261 
analysis of export and remineralization stoichiometry of the deep ocean (>400 m) also indicates a 262 
relatively constant C:P of around ~117 globally (Anderson and Sarmiento, 1994).   263 

In calculating the C:P ratio of bulk POM, we solve for three unknowns: (1) the carbon content of 264 
non-algal POM, (2) the phosphorus content of non-algal POM, and (3) total POP. This is achieved 265 
with three equations: 266 

 &'()*+ + &9+9 = ,:&  (3) 267 

 ,'()*+ + ,9+9 = ,:,  (4) 268 

 &9+9 ,9+9⁄ = 117  (5) 269 

The subscript “phyto” refers to the phytoplankton component, and “non” refers to the non-algal 270 
component of POM. All the quantities are in mol per unit volume. Equations (3) and (4) describe the 271 
conservation of carbon and phosphorus, respectively, and the Equation (5) describes the fixed C:P 272 
ratio of non-algal organic matter. Essentially, Equations (3) - (5) constitute a simple two end-member 273 
mixing model of the algal and non-algal components. We can obtain C:P of the bulk organic matter 274 
as a function of the known quantities from Section 2.1, Cphyto, rC:P, and total POC by rearranging (1), 275 
(3) - (5): 276 

 ,:&:,:, = ==>∙@A:B
==>∙"CDEFG/$I"J@A:B∙(=K"CDEFG/$I")

	  (6) 277 

Equation (6) shows that the bulk C:P ratio is a non-linear function of phytoplankton C:P (rC:P) and 278 
the relative abundance of Cphyto over total POC (Cphyto/POC).  279 

2.2 Model-Data Comparison of POC:POP  280 

We compared the satellite-informed bulk POC:POP with a recently compiled data set of 5573 in-situ 281 
observations of suspended oceanic POC:POP ratios from cruises and other marine stations distributed 282 
globally (Martiny et al., 2014). The suspended POM samples were collected on 0.7 µm filters (GF/F), 283 
and their C:P ratios reflect contributions from phytoplankton, microzooplankton, detrital material, 284 
and mixed particle aggregates. Here, we only used samples from the upper 100 m of the water 285 
column, representative of an average mixed layer (Kara et al., 2003) and excluded samples with POP 286 
concentrations inferior to the reported detection limit of 5 nM. We also removed samples from 287 
coastal waters, which often include a substantial contribution of allochthonous POM (e.g., benthic, 288 
riverine) (Liénart et al., 2018).  289 

When comparing the large-scale temporal variability of in-situ C:P with satellite estimates, we 290 
binned the measured C:P data into 10°-latitude increments. At each sampling station, we calculated 291 
the mean C:P in the top 100 m. After this screening process, we were left with 185 observational 292 
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points for summer and 111 observational points for winter (Figure 4). We compared the seasonally-293 
averaged, satellite-informed POC:POP with the C:P of suspended POM spanning from 50°S to 70°N. 294 

To further evaluate the performance of our modeling framework, we compared our satellite-informed 295 
estimates of C:P to direct POC:POP measurements at the BATS and HOT sites. The time-series data 296 
of POC and POP measurements from these two stations are included in the global POM database. 297 
Here, we selected data in the top 100 m that were collected between 2003 – 2010 for the “point-to-298 
point” comparison with the satellite estimates of C:P.  299 

3 Results and Discussion 300 

3.1 Large-scale Seasonal Variability in Phytoplankton C:P 301 

Combining the estimates of growth rate, Chl:Cphyto, and P limitation can help determine the seasonal 302 
variability in phytoplankton C:P (Figure 5). The satellite-informed rC:P is highest in the stratified 303 
oligotrophic gyres and lowest in the higher-latitude, seasonally stratified seas and equatorial 304 
upwelling regions, consistent with existing field observations (Martiny et al., 2013a). Both the CAFE 305 
(Figure 5a-c) and VGPM-informed rC:P (Figure 5d-f) show elevated rC:P in the higher-latitude region 306 
during the summer months compared to the winter months as ocean warming enhances stratification 307 
and phytoplankton becomes P-limited. The increase in light availability during summer, shown by a 308 
decrease in Chl:Cphyto, also helps in increasing rC:P at higher-latitude regions.   309 

Although the spatio-temporal pattern of phytoplankton C:P is consistent across four satellite-310 
informed cases for high-latitude regions and equatorial regions (Supplementary Figure 2), the range 311 
of the four satellite rC:P estimates is large in the subtropics (Figure 5g-h). This larger range reveals a 312 
relatively large uncertainty in rC:P in the subtropics. Considering that the oligotrophic gyres tend to be 313 
P-limited throughout the year and the change in Chl:Cphyto is small, large uncertainties in µ are 314 
predominantly responsible for this uncertainty in rC:P in those regions of the global ocean. While the 315 
CAFE-informed rC:P shows a noticeable decrease during summer by ~100-200 molar units (Figure 316 
5c), VGPM-informed rC:P shows an increase during summer (Figure 5f).  317 

In theory, rC:P should decrease as growth rate increases, and the fractional change in rC:P should be 318 
highest for low growth (Droop, 1974; Burmaster, 1979; Goldman et al., 1979; Morel, 1987). In other 319 
words, a small change in growth rate should lead to a large change in rC:P when the growth rate is 320 
low. Multiple culture experiments support this prediction, where phytoplankton growing at a high 321 
rate is both P-rich and has reduced stoichiometric flexibility (e.g., Hillebrand et al., 2013). If we 322 
assume P-limited growth condition and replace growth rate with PO4 concentration, this pattern 323 
would also be true for PO4 vs. rC:P where phytoplankton growing under low P environment are frugal 324 
(high rC:P) and more stoichiometrically flexible (Galbraith and Martiny, 2015; Tanioka and 325 
Matsumoto, 2017, 2020). As subtropical regions are strongly P limited and the growth is suppressed 326 
(Wu et al., 2000; Martiny et al., 2019), this reasoning can explain the elevated rC:P with large 327 
uncertainty and sensitivity. 328 

Figure 6 illustrates how rC:P varies under varying growth rates and Chl:Cphyto in specific regions. 329 
Contour lines (isopleths) representing the theoretical values of rC:P are predicted by the Inomura 330 
phytoplankton stoichiometry model for different combinations of µ and Chl:Cphyto under the P limited 331 
scenario. In order to illustrate the regional variability, we superimposed monthly averaged, CAFE-332 
informed rC:P in four oceanographic regions. These four regions are: (1) the high latitude bloom-333 
forming North Atlantic Ocean (NAT: 25°W - 35°W, 45°N - 50°N), (2) the North Atlantic subtropical 334 
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gyre (NASG: 25°W-70°W, 25°-35°N), (3) the South Pacific subtropical gyre (SPSG: 90°W-150°W, 335 
15°S-40°S), and (4) the Equatorial upwelling region (EQU: 5°S - 5°N), following Westberry et al. 336 
(2016). The size of the symbol indicates the extent of P limitation. “P-replete” symbolizes < 20% of 337 
grid boxes in the region are P-limited, “Moderate” symbolizes 20% – 80% , and “Deplete”  > 80% 338 
based on the seasonally varying SST. The numbers represent the month of the year.  339 

There are two key features in this plot. The first is that different oceanographic regions occupy a 340 
unique space. For example, North Atlantic (NAT) experiences large seasonal variability in growth 341 
rate, P limitation, and rC:P, while EQU experiences small seasonal changes. The second important 342 
feature is that the contours representing rC:P become increasingly close together as the growth rate 343 
decreases. This reiterates the fact that a small change in satellite-derived growth rate can lead to a 344 
large change in rC:P at chronically nutrient-deplete subtropical gyres (NASG and NPSG).  345 

Light availability also affects rC:P as light modulates the cellular allocation between light-harvesting 346 
apparatus, biosynthetic apparatus, and energy storage reserves (Falkowski and LaRoche, 1991; 347 
Moreno and Martiny, 2018). The Inomura phytoplankton stoichiometry model predicts that increased 348 
light limitation increases cellular allocation toward photosynthetic proteins and decreases allocation 349 
toward C-rich biosynthetic proteins. Therefore, an increase in Chl:Cphyto (i.e., increased light 350 
limitation) will lead to a decrease in rC:P at a constant growth rate (Figure 6).  351 

As expected, satellite-derived Chl:Cphyto indeed shows maxima during winter months (January-March 352 
in Northern Hemisphere and July-September in Southern Hemisphere) due to decreased exposure to 353 
sunlight (Figure 6). As shown in previous modeling studies, the effect of light on rC:P is 354 
disproportionally large when the growth rate is low, and an increase in Chl:Cphyto can effectively 355 
reduce rC:P during winter months (Arteaga et al., 2014; Talmy et al., 2014). Compared to the growth 356 
rate, however, the effect of light limitation on rC:P is weak, as shown by the vertically steep contour 357 
lines in Figure 6. Indeed, a meta-analysis on published laboratory studies has shown that the effects 358 
of light on rC:P are significantly weaker than that of macronutrients and temperature (Tanioka and 359 
Matsumoto, 2020). 360 

3.2 Large-scale Seasonal Variability in Bulk POC:POP 361 

By combing the satellite-informed phytoplankton C:P and the community composition measured by 362 
Cphyto:POC, we can determine POC:POP of the bulk POM (Figure 7). Similar to rC:P, bulk POC:POP 363 
ratios are highest in the gyres compared to the equatorial upwelling and high-latitude regions. 364 
Globally, satellite POC:POP is higher during the summer compared to the winter. This seasonal trend 365 
can be explained by the higher Cphyto:POC during summer than winter (Figure 3i). This makes 366 
intuitive sense because the phytoplankton biomass concentration is kept low in the mixed layer 367 
during winter months due to the deepening of MLD, strong light limitation, and zooplankton grazing 368 
(Behrenfeld and Boss, 2018). As C:P of P-limited phytoplankton is higher than C:P of non-algal 369 
organic matter, increase in Cphyto:POC during summer leads to an increase in POC:POP. The most 370 
noticeable increase is visible in the South Pacific Subtropic Gyre, where summertime POC:POP is 371 
higher than the winter value by ~200 as Cphyto:POC increases by ~50% during summer compared to 372 
winter. The range (uncertainty) in satellite-informed POC:POP (Figure 7g-h) is much smaller 373 
compared to that of phytoplankton C:P (Figure 5g-h), and all the four satellite-informed estimates 374 
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agree on a general increase in POC:POP during summer compared to winter (Figure 7i, 375 
Supplementary Figure 3). 376 

Figure 8a illustrates how the bulk POC:POP is nonlinearly related to the community composition 377 
(measured by Cphyto:POC) for a given change in rC:P. We observe from the satellite-derived data of 378 
Cphyto and POC that Cphyto:POC is, on average, ~30% and rarely exceeds 50% of the total POC pool. 379 
The increase in POC:POP with respect to increase in rC:P reaches a plateau quickly when Cphyto:POC 380 
< 30%. In other words, the community dominance of non-algal POM over algal POM can effectively 381 
put a cap on the increase in bulk POC:POP, even when phytoplankton C:P is very high (e.g., NASG 382 
and SPSG). This top-down control on POC:POP due to community composition also explains the 383 
low uncertainty in the estimates of satellite-informed POC:POP despite the large uncertainty in 384 
satellite-informed rC:P. 385 

Figure 8b is an alternative way of illustrating this top-down control on bulk POC:POP by community 386 
composition. Contour lines representing POC:POP based on our simple two end-member algal/non-387 
algal mixing model are widely separated when Cphyto:POC is low, indicating that POC:POP is 388 
relatively stable when Cphyto:POC is relatively low. On the other hand, when Cphyto:POC is high, 389 
contour lines become closer together, and bulk POC:POP quickly approaches rC:P. If we plot 390 
monthly-averaged estimates of satellite-derived bulk POC:POP under different regions, two distinct 391 
clusters become apparent. Subtropical gyres (NASG and SPSG) are characterized by high rC:P and 392 
Cphyto:POC resulting in sizeable seasonal variability in bulk POC:POP. On the other hand,  NAT and 393 
EQU experience a smaller seasonal change in POC:POP as the Cphyto:POC remains relatively 394 
constant around 15%. The take-home message from Figure 8 is that a community composition can 395 
exert a strong top-down control on POC:POP even when phytoplankton C:P is much higher than the 396 
Redfield ratio. Indeed, multiple studies emphasize this point, including recent studies on C:N (e.g., 397 
Talmy et al., 2016), N:P (e.g., Sharoni and Halevy, 2020), as well as the original study by Redfield et 398 
al. (1963). 399 

3.3 Model-Data Comparison  400 

In order to assess our model predictions, we first compare our seasonally-resolved zonally averaged 401 
satellite POC:POP estimates with measurements of sampled POC:POP (Figure 9). Globally, both the 402 
satellite estimates and the in-situ observations show higher POC:POP in summer (Figure 9a) than in 403 
winter (Figure 9b). This increase during summer is likely to be driven by a change in community 404 
composition, with an increased Cphyto:POC during summer. At high-latitudes, an increase in 405 
phytoplankton C:P also drives an increase in POC:POP during summer. Therefore, the combination 406 
of the change in community composition and phytoplankton C:P is responsible for the increased bulk 407 
POC:POP during summer.  408 

Although it is promising that our predictions are mostly consistent with observations, there are two 409 
distinct regions where the satellite POC:POP and the observations do not agree. The first is the 410 
equatorial region during summer (Figure 9a), where satellite-informed POC:POP is around 150 but 411 
observed POC:POP is close to the Redfield ratio of 106. This discrepancy stems from the fact that 412 
our method likely overestimates the degree on which the equatorial regions are P-limited, which in 413 
turn leads to an overestimation of the phytoplankton C:P to as high as ~200. In addition, our 414 
phytoplankton C:P model is tuned to data for Synechococcus. In reality, fast-growing opportunistic 415 
eukaryotic plankton such as diatoms and other eukaryotes with lower C:P are more predominant in 416 
the equatorial region (Arrigo, 2005; Martiny et al., 2013a; Kostadinov et al., 2016). The second 417 
region where we observed a noticeable difference between satellite estimates and in-situ observation 418 

In review



  Satellite-informed upper ocean C:P 

 
11 

is around 20°S during winter (Figure 9b). Given the paucity of observations in this region, however 419 
(n = 12 and 8 for summer and winter, respectively), it is challenging to determine the exact cause for 420 
the increase in POC:POP during the winter.  421 

To further assess our model capability, we compare time-series data of suspended POC:POP in the 422 
top 100 m from BATS and HOT with satellite estimates in the seasonally mixed-layer depth from 423 
2003-2010 (Figure 10). It is important to note that suspended POC:POP is a “point” value reflecting 424 
elemental composition at a particular location and at a particular time, whereas the satellite-informed 425 
POC:POP is a monthly and area-averaged value for a  3-by-3-pixel area around the BATS and HOT 426 
stations. We use the median satellite-informed phytoplankton C:P and POC:POP values from four 427 
satellite products (CAFE, VGPM, Eppley-VGPM, and CbPM) for comparison with the data.  428 

In general, measured POC:POP ratios lie between our satellite estimates of phytoplankton C:P and 429 
bulk POC:POP ratios at both BATS and HOT (Figure 10a-b). Measured POC:POP, on average, is 430 
closer to the satellite-informed POP:POC than to satellite-informed rC:P (Figure 10c-d).  This makes 431 
intuitive sense because in-situ observations show that the biomass of picocyanobacteria 432 
(Prochlorococcus, Synechococcus) only contributes to < ~40% of the POC pool in the gyres (Casey 433 
et al., 2013). Qualitatively, our satellite estimates of bulk POC:POP seem to capture the general 434 
seasonal variability, with POC:POP being lowest in the winter and highest in the summer and the 435 
fall. Also, both the satellite-informed and the observed C:P are lowest in the late winter as a result of 436 
deep mixing and increased supply of nutrients, which cause phytoplankton C:P to decrease (Singh et 437 
al., 2015). Satellite-informed bulk POC:POP, however, underestimates the observed POC:POP by 438 
~50 on average at BATS (Figure 10c) and ~20 at HOT (Figure 10d), and this may reflect the fact that 439 
non-algal organic matter has a higher ratio than Redfield of 117. Also, our satellite-informed estimate 440 
may not be fully capturing episodic temporal changes in C:P, for example, during the spring bloom 441 
when phytoplankton C:P is expected to increase rapidly (Polimene et al., 2015).  442 

The satellite-informed estimates of phytoplankton C:P and POC:POP presented here are still 443 
preliminary and, therefore, should not be treated as accurate estimates. Nevertheless, even with this 444 
simple two-end-member mixing model approach, we can make a testable hypothesis regarding the 445 
underlying mechanisms causing the observed temporal change in suspended POC:POP. First, in 446 
order to model temporal shifts in POC:POP, we need to consider the contribution that non-algal 447 
organic matter makes to POM as well as the change in phytoplankton C:P. Our results indicate that 448 
phytoplankton C:P alone leads to a considerable overestimation of bulk POC:POP, regionally, and 449 
globally. Second, our satellite-informed bulk POC:POP can capture the seasonal trend in POC:POP, 450 
which shows elevated values during summer compared to winter. We are optimistic that with more 451 
sophisticated parameter calibration of the phytoplankton stoichiometry model and non-algal C:P, it 452 
will be possible to predict the temporal variability of POC:POP accurately in future studies.  453 

3.4 Caveats, Limitations, and Future Needs 454 

Satellite estimates of phytoplankton and bulk C:P have considerable uncertainty in the subtropical 455 
gyres during summer. This mainly stems from the fact that satellite-derived growth-rate estimates are 456 
considerably different depending on which NPP product is used. In the future, we also need to 457 
conduct careful sensitivity analyses of how different satellite-based algorithms of Cphyto and POC 458 
would affect satellite-informed estimates of ecosystem stoichiometry. It is inherently challenging to 459 
characterize C:P accurately in subtropics with phytoplankton stoichiometry models (Garcia et al., 460 
2020) as phytoplankton turnover happens quickly on a time scale of days (Malone et al., 1993). For a 461 
complete understanding of the temporal variability of phytoplankton and bulk C:P, measurements of 462 
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phytoplankton-specific C:P using high throughput flow cytometry (Graff et al., 2015; Kirchman, 463 
2016) or single-probe mass spectrometry (Sun et al., 2018) would be necessary. Linking 464 
metagenomics data with the phytoplankton stoichiometry model and remote sensing may also help 465 
improve C:P estimates in the subtropics (Garcia et al., 2020).  466 

In this study, we used parameters for Synechococcus, a cosmopolitan phytoplankton species with a 467 
broad biogeographic distribution that extends from tropics to subpolar regions (Flombaum et al., 468 
2013; Berube et al., 2018). This parameterization should be representative of another 469 
picocyanobacterium, Prochlorococcus. Together, Prochlorococcus and Synechococcus are 470 
responsible for roughly a quarter of the total ocean net primary productivity (Flombaum et al., 2013). 471 
Given that the current satellite-derived products cannot easily resolve size-partitioned phytoplankton 472 
physiologies such as growth rate and Chl:Cphyto, it seems reasonable to tune the phytoplankton 473 
stoichiometry model to these most common phytoplankton types. With new advances in satellite 474 
instrumentation, such as the development of reliable hyperspectral ocean color measurements 475 
(Werdell et al., 2018; Schollaert Uz et al., 2019), we may be able to better resolve the size-specific 476 
C:P of different phytoplankton functional types. This would enable us to fully capture the spatio-477 
temporal variability of community phytoplankton C:P, particularly in nutrient-rich upwelling and 478 
coastal regions where nano- and micro-phytoplankton are more dominant than picophytoplankton 479 
(Kostadinov et al., 2016).  480 

We inferred the P limitation of phytoplankton by comparing satellite-based SST and the previously 481 
compiled mask of nutrient depletion temperature. Although our method can provide a first-order 482 
pattern of P limitation, this method cannot resolve the degree to which phytoplankton are P-stressed. 483 
In other words, we cannot determine whether the phosphate is the primary or secondary limiting 484 
nutrient for phytoplankton growth (Moore et al., 2013). Also, a recent study suggests that we cannot 485 
determine for sure that phytoplankton are P-limited even when the observed phosphate concentration 486 
is below the detection limit (Martiny et al., 2019). Accurate determination of nutrient concentration 487 
from space is inherently challenging (Goes et al., 2000; Steinhoff et al., 2010; Arteaga et al., 2015), 488 
and this is one of the major bottlenecks for accurately probing phytoplankton nutrient limitation from 489 
space. Although there are no standard protocols or algorithms currently available, we may be able to 490 
accurately retrieve surface nutrient concentrations by using advanced statistical and machine learning 491 
techniques applied to satellite-retrieved sea surface salinity, temperature, and remote-sensing 492 
reflectance (e.g., Wang et al., 2018).    493 

A fundamental assumption made when predicting bulk POC:POP is that C:P of non-algal organic 494 
matter is constant with a Redfield Ratio of 117. There is a consensus from previous marine and 495 
freshwater studies that C:P of heterotrophs is generally lower and more homeostatic (relatively 496 
constant) than that of phytoplankton (Elser and Urabe, 1999; Persson et al., 2010). The bulk POM, 497 
however, can be modified due to decomposition (Schneider et al., 2003), viral shunt (Jover et al., 498 
2014), preferential remineralization (Shaffer et al., 1999), as well as the interplay between the 499 
dissolved and particulate pools. Measuring the elemental composition of separate constituents of 500 
organic matter should better help us constrain the most appropriate end-member C:P for non-algal 501 
organic matter. Alternatively, we can mechanistically predict C:P of bulk POM by coupling the 502 
phytoplankton stoichiometry model with models of prey-predator interaction and decomposition 503 
(e.g., Anderson et al., 2005; Butenschön et al., 2016; Tanioka and Matsumoto, 2018).   504 

4 Conclusion 505 
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We showed that it is possible to determine spatially and temporally coherent patterns of the C:P 506 
ratios of phytoplankton and bulk POM using only remotely sensed information. The results shown 507 
here should not be treated as accurate estimates of upper-ocean C:P but rather as a feasibility study 508 
that can benefit from more accurate remotely sensed estimates of growth rate and from a better 509 
understanding of the links between growth rate and stoichiometry in various marine phytoplankton. 510 
The data describing the C:P ratio of individual POM components (i.e., algal and non-algal 511 
components) is also currently insufficient spatially and temporally to validate our estimates. 512 
However, our main conclusion highlighting the importance of community composition in controlling 513 
bulk POC:POP does not depend on the accuracy of stoichiometry estimates. This hypothesis has 514 
important implications for estimating carbon and phosphorus fluxes to the deep ocean and for the 515 
trophic transfer to higher organisms. Indeed, if the POC:POP of exported POM is controlled by 516 
community composition rather than phytoplankton C:P, we would not expect large “stoichiometric 517 
buffering” of carbon export under climate-change scenarios as proposed by previous studies (Teng et 518 
al., 2014; Galbraith and Martiny, 2015; Tanioka and Matsumoto, 2017; Matsumoto et al., 2020). The 519 
effect of change in phytoplankton C:P will, however, become more critical for carbon export if the 520 
total % of phytoplankton in organic matter increases or of the C:P of non-algal component increases. 521 
We hope that the questions raised here will foster collaborative work combining satellite remote 522 
sensing, field sampling, and numerical modeling specialists to improve our ability to predict organic 523 
matter dynamics and reduce uncertainties in our projections of the future carbon cycle.  524 
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Figure Captions 825 

Figure 1: Flowchart summarizing the modeling framework. White squares represent globally 826 
gridded data from MODIS-Aqua and their direct products (NPP, Cphyto, and POC). The dashed arrows 827 
pointing towards NPP indicate that remotely sensed SST and Chl are used in deriving NPP. Orange 828 
boxes are main products from this study; C:P of phytoplankton (rC:P) and bulk POC:POP.  829 

Figure 2: Global climatology of average summer and winter growth rate (µ) in the surface mixed 830 
layer derived from the CAFE (a-c) and VGPM (d-f) NPP products. Panels (g) and (h) show the 831 
maximum range in the four satellite-derived estimates of µ in summer and winter, respectively. Panel 832 
(i) shows the seasonal change in the median value of satellite-derived µ.  833 

Figure 3: Global climatology of summer and winter surface mixed layer averages for model inputs: 834 
(a)-(c) Chl:Cphyto, (d)-(f) P limitation based on cubic root-corrected phosphate depletion temperature 835 
(PDT3), and (g-i) the mass ratio between phytoplankton biomass (Cphyto) and total POC in %. PDT3 836 
is seasonally invariant, and phytoplankton is P-limited if SST minus PDT3 is greater than 0. 837 

Figure 4: Geographical locations of suspended POM sample stations used in this study. Red dots 838 
represent samples collected in summer months (July-September in the Northern Hemisphere, 839 
January-March in the Southern Hemisphere), and blue dots represent samples collected in winter 840 
months (January-March in the Northern Hemisphere, July-September in the Southern Hemisphere). 841 
Dashed boxes delineate regions where the seasonality of satellite-informed estimate is examined 842 
(NAT: North Atlantic Temperate, NASG: North Atlantic Subtropical Gyre, SPSG: South Pacific 843 
Subtropical Gyre, EQU: Equatorial Upwelling regions). 844 

Figure 5: Global climatology of summer and winter average CAFE-informed rC:P (a-c) and VGPM-845 
informed rC:P (d-f) in the surface mixed layer. rC:P is in molar units. Panels (g) and (h) show the 846 
maximum range in the four satellite-informed rC:P for summer and winter, respectively. Panel (i) 847 
shows the seasonal change in median rC:P.  848 

Figure 6:  Influence of growth rate and Chl:Cphyto on rC:P under P limitation. Colored points represent 849 
seasonally averaged CAFE-informed Chl:Cphyto, µ, and rC:P for four oceanographic regions (NAT: 850 
North Atlantic Temperate, NASG: North Atlantic Subtropical Gyre, SPSG: South Pacific Subtropical 851 
Gyre, EQU: Equatorial Upwelling region. The size of marker represents the degree of P limitation 852 
within the region (P-replete: < 20% of the region is P-limited, Moderate: 20% -80%, Deplete: > 853 
80%). The numbers next to the markers correspond to the months of the year. Contour lines show 854 
C:P calculated under varying µ and Chl:Cphyto with phytoplankton stoichiometry model under P-855 
limited condition.   856 

Figure 7: Global climatology of average summer and winter CAFE-informed POC:POP (a-c) and 857 
VGPM-informed POC:POP (d-f) in the surface mixed layer. Panels (g) and (h) show the range in 858 
satellite-informed POC:POP, for summer and winter, respectively. Panel (i) shows the seasonal 859 
change in median POC:POP.  860 

Figure 8: Two graphical representation of the influence of rC:P and Cphyto:POC on bulk POC:POP. In 861 
Panel (a), rC:P is plotted against POC:POP and contour lines show Cphyto:POC from 0 to 1. The 862 
colored dots are annual mean CAFE-informed rC:P and POC:POP from the selected regions and the 863 
grey dots in the background are monthly predictions from each 1° by 1° grid point. In Panel (b), rC:P 864 
is plotted against Cphyto:POC and the contour lines show POC:POP. Colored points represent 865 
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seasonally averaged POC:POP for four oceanographic regions, as in Figure 6. Both Panels (a) and (b) 866 
highlight the importance of top-down control on POC:POP by Cphyto:POC. 867 

Figure 9: Comparisons of modeled and observed zonal POC:POP for (a) summer and (b) winter. The 868 
solid red curve shows the median POC:POP of the satellite-informed estimates, and shading shows 869 
the range. The black dot in the box and whisker plot show the median POC:POP and the upper and 870 
lower edges of each box correspond to the upper and lower quantiles. The vertical tails correspond to 871 
a 95% confidence interval. When the sample size is 1, the sample variance could not be estimated, 872 
and only the dot representing unique POC:POP is shown (e.g., 10°N during Summer). Note that the 873 
satellite-informed POC:POP ratios are global latitudinal averages, whereas the measured POC:POP 874 
are averages of discrete data points.  875 

Figure 10: (a-b): Comparison of observed and modeled monthly C:P stoichiometry during 2003-876 
2010 in the surface 100 m for BATS and HOT. Solid black lines are 3-month running means, and 877 
sample error bars are 1s from the mean values. Solid blue and red lines are median estimates for 878 
satellite-informed rC:P and POC:POP, respectively. The shadings show the range. (c-d): Box-whisker 879 
plot comparing the annual ratios of satellite-informed phytoplankton C:P (blue), satellite-informed 880 
POC:POP (red), and in-situ POC:POP (black). Each season represents a three-month average (Spring 881 
= April to June, Summer = July to September, Fall = October to December, Winter: January to 882 
March).  883 
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Supplementary Figure 1: Global climatology showing average summer and winter growth rate 
(µ) in the surface mixed layer for the four NPP models (CAFE: (a-c), CbPM: (d-f), VGPM: (g-i), 
and Eppley-VGPM (j-l)).  The last row shows the difference between the summer average µ and 
winter average µ. 

 
Supplementary Figure 2: The seasonal mean climatology of phytoplankton C:P (rC:P) in the 
surface mixed later predicted by phytoplankton stoichiometry model for each NPP model. The 
last row shows the difference between the summer average rC:P and winter average rC:P. 
 
 
 
  



 
Supplementary Figure 3:  The seasonal mean climatology of bulk POC:POP in the surface 
mixed later predicted from rC:P and Cphyto:POC for each NPP model. The last row shows the 
difference between the summer average POC and winter average POP. 
 


