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Abstract

The detection and quantification of global land change by satellite observations are the grand challenges to improve the

understanding of global environmental change. In this study, we develop a new vegetation index, which can be used as a

proxy of the fractions of tree canopy and short vegetation, based on the simple linear regression between microwave vegetation

optical depth (VOD) and optical leaf area index (LAI). Although we use no high-resolution reference data, the newly developed

vegetation index successfully detects and quantifies the global land change which has been reported by the previous estimations

based on high-resolution reference data. We find that the relationship between VOD and LAI is non-stationary and the temporal

change in the VOD-LAI relationship is the important signal to detect and quantify global change in the terrestrial ecosystem.
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Abstract 16 

The detection and quantification of global land change by satellite observations are the 17 

grand challenges to improve the understanding of global environmental change. In this 18 

study, we develop a new vegetation index, which can be used as a proxy of the fractions 19 

of tree canopy and short vegetation, based on the simple linear regression between 20 

microwave vegetation optical depth (VOD) and optical leaf area index (LAI). Although 21 

we use no high-resolution reference data, the newly developed vegetation index 22 

successfully detects and quantifies the global land change which has been reported by 23 

the previous estimations based on high-resolution reference data. We find that the 24 

relationship between VOD and LAI is non-stationary and the temporal change in the 25 

VOD-LAI relationship is the important signal to detect and quantify global change in 26 

the terrestrial ecosystem. 27 

 28 

Plain language summary 29 

The detection and quantification of global land change, such as deforestation and 30 

afforestation, are crucially important to understand the effects of climate change and 31 

human activities on the terrestrial ecosystem. There are two major methodologies of 32 

satellite remote sensing of vegetation: optical and microwave remote sensing. While 33 



photosynthetic activities of plants can be observed by optical remote sensing, total 34 

aboveground vegetation water content can be observed by microwave remote sensing. 35 

Here we find that the simple linear regression between two vegetation indices generated 36 

from optical and microwave satellite observations can accurately quantify the fractions 37 

of tree canopy and short vegetation in the observation pixels. We apply this finding to 38 

detect global land change from 2003 to 2019. We can detect several important land 39 

changes, such as tree canopy gain in Sahel and deforestation in southeastern Amazon. 40 

  41 



Key Points 42 

1. The simple linear regression between VOD and LAI can quantify the fractions of 43 

tree canopy and short vegetation/bare ground. 44 

2. The relationship between VOD and LAI is non-stationary and its temporal 45 

change is the important signal to detect global land change. 46 

 47 

 48 

1. Introduction 49 

The detection and quantification of global change in the terrestrial ecosystem are 50 

crucially important to understand global environmental change. Vegetation indices 51 

generated from optical satellite observations (e.g., Zhu et al. 2013; Tucker et al. 2005) 52 

have been intensively used to monitor the change in the terrestrial ecosystem. For 53 

example, Song et al. (2018) developed a yearly global vegetation product, in which 54 

every land pixel is characterized by its per cent cover of tree canopy, short vegetation, 55 

and bare ground, from the optical-infrared Normalized Difference Vegetation Index 56 

(NDVI), and successfully detected the long-term global land change. 57 

 58 



The limitation of the optical satellite observation is that it is sensitive only to a 59 

photosynthetically active part of terrestrial biomass (i.e. leaf) and it is not 60 

straightforward to retrieve the amount of a photosynthetically inactive part of 61 

aboveground biomass (i.e. woody biomass). To distinguish tree canopy and short 62 

vegetation from optical satellite observations, complex supervised machine learning 63 

with high-resolution reference data is usually required (e.g., Song et al. 2018). To 64 

overcome this limitation, microwave remote sensing has been recognized as an 65 

alternative approach to monitor global change in the terrestrial ecosystem. Microwave 66 

Vegetation Optical Depth (VOD) is sensitive to vegetation water content, which 67 

includes the information of both leaf and woody biomass (see Owe et al. (2001) and 68 

Jones et al. (2011) for the detailed description of VOD and the retrieval algorithms). Liu 69 

et al. (2015) successfully monitored the long-term change in global aboveground 70 

biomass carbon by microwave VOD data. Zhou et al. (2014) indicated that microwave 71 

VOD was more sensitive to the degradation of the Congo rainforest by drought than the 72 

optical vegetation index. 73 

 74 

Combining the microwave and optical vegetation indices has the potential to improve 75 

the understanding of vegetation dynamics. Jones et al. (2013) found that the post-fire 76 



recovery of NDVI was much faster than that of microwave VOD, which indicated the 77 

faster recovery of short vegetation than woody biomass after extreme wildfires in 78 

Alaska and Canada. Van Dijk et al. (2013) found that in the Australian millennium 79 

drought, no decreasing trend could be detected in the optical vegetation indices while 80 

microwave VOD significantly declined. By numerical simulation, Sawada and Koike 81 

(2016) attributed this difference to the higher resilience of short vegetation to drought 82 

than woody biomass. These studies showed the high potential of fusions of microwave 83 

and optical satellite observations to distinguish the dynamics of tree canopy and short 84 

vegetation. 85 

 86 

We aim to develop a new method to detect global land change by combining microwave 87 

VOD and optical Leaf Area Index (LAI). We reveal that the simple linear regression 88 

between microwave VOD and optical LAI provides a useful proxy of the fractions of 89 

tree canopy and short vegetation. The proposed vegetation index successfully detects 90 

and quantifies global change in the terrestrial ecosystem from 2003 to 2019 without any 91 

additional reference data. 92 

 93 

 94 



2. Data 95 

We used the microwave VOD product based on the Land Parameter Retrieval Model 96 

(LPRM) provided by National Aeronautics and Space Administration (NASA). The 97 

description of the LPRM algorithm can be found in Owe et al. (2001) and Owe et al. 98 

(2008). Microwave VOD is retrieved from C-band (6.9 GHz) brightness temperature 99 

observed by Advanced Microwave Scanning Radiometer for Earth observation system 100 

(AMSR-E) and AMSR2. The VOD products from both AMSR-E (from June 2002 to 101 

September 2011) and AMSR2 (from July 2012 to December 2019) were used. We used 102 

only night scene data to reduce the effect of a surface temperature bias in the retrieval 103 

algorithm (Liu et al. 2011). The spatial resolution of this dataset is 0.25 degree. The 104 

temporal resolution of this dataset is approximately 2-daily, and we resampled it to 105 

8-daily. 106 

 107 

We used the optical LAI product processed by Ichii et al. (2017). Ichii et al. (2017) 108 

applied detailed quality control to MODerate resolution Imaging Spectroradiometer 109 

(MODIS) onboard Terra and Aqua satellites LAI L4 data (MCD15A2H; Myneni et al. 110 

2015). The spatial and temporal resolutions are 0.25 degree and 8-daily, respectively. 111 

 112 



As land cover data, we used the MODIS land cover climate modeling grid (MCD12C1) 113 

version 6 data product (Friedl et al. 2015). The temporal resolution of this dataset is 114 

yearly. The original spatial resolution of this dataset is 0.05 degree and we resampled it 115 

to 0.25 degree by the nearest neighbor approach. 116 

 117 

 118 

3. Method 119 

The Microwave and Optical Fusion Approach (MiOFA) was originally proposed by 120 

Sawada et al. (2017a) to improve the skill to retrieve surface soil moisture and 121 

vegetation water content from C-band brightness temperature. In the MiOFA, the 122 

relationship between VOD and total aboveground Vegetation Water Content (VWC) can 123 

be formulated as: 124 

𝑉𝑂𝐷 = 𝑏 × 𝑉𝑊𝐶 + 𝑅 (1) 125 

where b is a parameter and R quantifies the effect of surface soil roughness. Because it 126 

is difficult to distinguish the effects of vegetation and surface soil roughness on 127 

brightness temperature, the existing VOD data include the effect of surface soil 128 

roughness (e.g., Sawada et al. 2016, 2017a, 2017b; Wang et al. 2015; Njoku and Chan 129 

2006). The important assumption of the MiOFA is that b-parameter for C-band VOD is 130 



time-invariant and species-independent. Sawada et al. (2016) and Sawada et al. (2017b) 131 

supported this assumption by a field experiment although Jackson and Schmugge 132 

(1991) originally formulated this parameter as a species-dependent variable. 133 

 134 

Paloscia and Pampaloni (1988) proposed the empirical relationship between VWC and 135 

optical LAI, which was supported by the in-situ observations (e.g., Sawada et al. 136 

2017b): 137 

𝑉𝑊𝐶 = exp ቀ௅஺ூ௬ ቁ − 1 ≅ ௅஺ூ௬  (2) 138 

where y is a species-dependent parameter which cannot be directly observed by satellite 139 

sensors. The y-parameter can be recognized as the contribution of leaf biomass to the 140 

total aboveground VWC. The lower y indicates the larger fraction of short vegetation 141 

since the small increase of LAI induces the large increase of total aboveground VWC. 142 

The higher y indicates that there is the larger amount of tree canopy. The y-parameter 143 

can be a good index of canopy biomass structure. 144 

 145 

By substituting (2) to (1), we obtain the equation (3). 146 

𝑉𝑂𝐷 = ௕௬ 𝐿𝐴𝐼 + 𝑅 (3) 147 



The MiOFA proposes to estimate the parameters of canopy biomass structure (b/y) and 148 

surface soil roughness (R) by the linear regression between microwave VOD and optical 149 

LAI. In the original paper of the MiOFA (Sawada et al. 2017a), the R-parameter was 150 

focused on to improve the retrieval of surface soil moisture. In this paper, we focused on 151 

the slope of the linear regression, b/y, as a vegetation index. Because we assumed that b 152 

is a constant parameter, we hypothesized that tree canopy (short vegetation) is dominant 153 

in pixels with lower (higher) b/y. 154 

 155 

By performing the linear regression between microwave VOD and optical LAI, we 156 

developed the yearly global b/y dataset from 2003 to 2019. Since we had no C-band 157 

brightness temperature observations in the transition period from AMSR-E to AMSR2, 158 

we did not estimate b/y in 2011 and 2012 (see also section 2). There are long-term and 159 

temporally continuous VOD datasets derived by merging the multi-sensor VOD 160 

products (e.g., Moesinger et al. 2020). However, the assumption of the constant 161 

b-parameter is correct only in the lower frequencies such as C-band so that we avoided 162 

to use VOD retrieved by brightness temperature with higher frequencies in this first 163 

application. No significant inconsistency between AMSR-E and AMSR2 has been found 164 

in the previous calibration studies (e.g., Okuyama and Imaoka 2015; Parinussa et al. 165 



2015; Du et al. 2017). We showed b/y in the pixels where the slope of the linear 166 

regression is positive and statistically significant with a 95% confidence level.  167 

 168 

 169 

4. Results and discussion 170 

Figure 1 shows climatologic b/y from 2003 to 2019. We use all 8-daily data of 171 

microwave VOD and optical LAI in the study period to perform the linear regression, 172 

and the estimated slope is shown in Figure 1. Although the linear relationship between 173 

microwave VOD and optical LAI is statistically insignificant in the rainforest regions 174 

due to the saturation of the signals of VOD and/or LAI in the densely vegetated areas, 175 

we can retrieve b/y in most of the vegetated pixels. Generally, b/y tends to be low in the 176 

temperate and boreal forest areas. In semiarid grassland, b/y is relatively high indicating 177 

the large contribution of LAI to VWC. The spatial distribution of the retrieved 178 

R-parameter shown in Figure S1 is similar to the previous global estimation of a 179 

roughness parameter in a radiative transfer model (Wang et al. 2015). 180 

 181 

To confirm that b/y can be used as the proxy of the fractions of tree canopy and short 182 

vegetation, we estimated yearly b/y and compared it with the yearly land cover type 183 



data. Figures 2 and S2 indicate that we obtain low b/y in broadleaf and needleleaf forest 184 

areas. b/y increases in savannas, cropland, and grassland areas. In pixels with lower 185 

(higher) b/y, tree canopy (short vegetation) is dominant so that our proposed b/y can be 186 

a useful index to quantify the fractions of tree canopy and short vegetation. It is not 187 

straightforward to distinguish tree canopy dominant pixels from short vegetation 188 

dominant pixels by simply analyzing yearly optical LAI (Figure S3). Boxplots in Figure 189 

2 show the large variance of b/y in the specific land cover types probably due to the 190 

coarse resolution of microwave VOD, which prevents the direct matchup of b/y with the 191 

land cover data (see also section 2). 192 

 193 

We can detect global land change by our yearly b/y. Figure 3 shows the linear trend of 194 

yearly b/y from 2003 to 2019. The decrease of b/y (shown in blue) indicates the increase 195 

of tree canopy, and the increase of b/y (shown in red) indicates the increase of short 196 

vegetation/bare ground. Most of the detected trends are consistent to the previous 197 

findings. We can detect the increase of tree canopy in the Sahel region, which previous 198 

studies attributed to the increase of rainfall (Brandt et al. 2017: Hickler et al. 2005). The 199 

increase of tree canopy in eastern Europe detected in our dataset is consistent to 200 

previous studies (e.g., Potapov et al. 2015; Hansen et al. 2013). We can detect the 201 



widespread increase of tree canopy in China, which resulted from reforestation and 202 

afforestation programs (e.g., Piao et al. 2015). The decreasing trend of b/y is also 203 

detected in western India, which can be attributed to the transition from bare ground to 204 

short vegetation by agricultural activities (Tian et al. 2014). The decrease of tree canopy 205 

in southeastern Amazon and Siberia detected in our dataset is also consistent to the 206 

previous findings (e.g., Hansen et al. 2013). 207 

 208 

The global land change detected by our newly developed b/y index is consistent to the 209 

state-of-the-art dataset provided by Song et al. (2018). Song et al. (2018) estimated the 210 

long-term trend of the fractions of tree canopy, short vegetation, and bare ground from 211 

NDVI by supervised machine learning with high-resolution reference data. It is 212 

promising that our proposed method can detect the similar change in the terrestrial 213 

ecosystem to Song et al. (2018) by the simple linear regression between microwave 214 

VOD and optical LAI without any reference data. However, there are some differences 215 

between changes detected by this study and Song et al. (2018). Song et al. (2018) 216 

detected the short vegetation gain in the Congo rainforest, which we do not detect. Song 217 

et al. (2018) detected the tree canopy gain in eastern U.S. while the long-term trend in 218 

this region is unclear in our dataset. Our estimated trend in Siberia is also inconsistent to 219 



Song et al. (2018) although it is consistent to the other estimation which focused only 220 

on forest cover (Hansen et al. 2013). There are several reasons for these differences. 221 

First, the linear regression between microwave VOD and optical LAI is insignificant in 222 

densely vegetated areas as shown in Figure 1 so that our b/y index cannot accurately 223 

quantify vegetation dynamics in the dense rainforest. Second, the study period in this 224 

study (2003-2019) is different from that in Song et al. (2018) (1982-2016). The human 225 

influence on the terrestrial ecosystem in the 20th century cannot be detected in our 226 

dataset. Third, the spatial resolution of our b/y data (0.25 degree) is much lower than 227 

that of Song et al. (2018) (0.05 degree) so that many impacts of human activities on 228 

vegetation dynamics in small scales may be invisible in our data. 229 

 230 

The results shown above imply that the empirical equations and assumptions of the 231 

MiOFA described in section 3 are accurate in the global scale. Since these empirical 232 

equations and assumptions are closely related to the algorithms to retrieve surface soil 233 

moisture and VOD from brightness temperature (e.g., Owe et al. 2001, 2008; Fujii et al. 234 

2009; Sawada et al. 2017a) and to assimilate brightness temperature into land surface 235 

models (e.g., Yang et al. 2007, 2009; Sawada and Koike 2014; Sawada et al. 2015), our 236 

retrieved b/y and R parameters may greatly contribute to improving these algorithms 237 



and the understanding of microwave radiative transfer in the canopy. The most 238 

important implication of this study is that the relationship between microwave VOD (or 239 

VWC) and the optical vegetation index is non-stationary although it is assumed to be 240 

stationary in previous studies on the development and validation of the VWC retrieval 241 

algorithms (e.g., Gao et al. 2015). The temporal change in the VOD-LAI relationship is 242 

the important signal to quantify global environmental change so that it should not be 243 

neglected in the development, validation, and analysis of satellite land observation 244 

products. 245 

 246 

 247 

5. Conclusions 248 

We propose the new vegetation index by combining microwave VOD and optical LAI. 249 

Our new index can be the good proxy of the fractions of tree canopy and short 250 

vegetation and is useful to detect and quantify global change in the terrestrial ecosystem. 251 

The advantage of our new method is that the vegetation index can be obtained by the 252 

simple linear regression between microwave VOD and optical LAI so that no 253 

high-resolution reference data are required. The limitation is the lower spatial resolution 254 

than the other existing methods. Future work will focus on the applications of this new 255 



vegetation index to deepen the understanding of vegetation dynamics in extreme climate 256 

conditions such as drought. 257 

 258 
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