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Abstract

Six conceptually different models of steady groundwater flow and conservative transport are applied to the heterogeneous

MADE aquifer. Their predictive capability is assessed by comparing the modelled and observed longitudinal mass distributions

at different times of the plume in the MADE-1 experiment, as well as at a later time. The models differ in their conceptualization

of the heterogeneous aquifer structure, computational complexity, and use of permeability data obtained from various observation

methods (DPIL, Grain Size Analysis, Pumping Tests and Flowmeter). Models depend solely on aquifer structural and flow

data, without calibration by transport observations. Comparison of model results by various measures, i.e. peak location, bulk

mass and leading tail, reveals that the predictions of the solute plume agree reasonably well with observations if the models

are underlined by a few parameters of close values: mean velocity, a parameter reflecting log-conductivity variability and a

horizontal length scale related to conductivity spatial correlation. From practitioners perspective the robustness of the models

is an important and useful property. The model comparison provides insight into relevant features of transport in heterogeneous

aquifers. After further validation by additional field experiments or by numerical simulations, the results can be used to provide

guidelines for users in selecting conceptual aquifer models, characterization strategies, quantitative models and implementation

for particular goals.
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Abstract24

Six conceptually different models of steady groundwater flow and conservative transport25

are applied to the heterogeneous MADE aquifer. Their predictive capability is assessed26

by comparing the modelled and observed longitudinal mass distributions at different times27

of the plume in the MADE-1 experiment, as well as at a later time. The models differ28

in their conceptualization of the heterogeneous aquifer structure, computational com-29

plexity, and use of permeability data obtained from various observation methods (DPIL,30

Grain Size Analysis, Pumping Tests and Flowmeter). Models depend solely on aquifer31

structural and flow data, without calibration by transport observations. Comparison of32

model results by various measures, i.e. peak location, bulk mass and leading tail, reveals33

that the predictions of the solute plume agree reasonably well with observations if the34

models are underlined by a few parameters of close values: mean velocity, a parameter35

reflecting log-conductivity variability and a horizontal length scale related to conductiv-36

ity spatial correlation. From practitioners perspective the robustness of the models is37

an important and useful property. The model comparison provides insight into relevant38

features of transport in heterogeneous aquifers. After further validation by additional39

field experiments or by numerical simulations, the results can be used to provide guide-40

lines for users in selecting conceptual aquifer models, characterization strategies, quan-41

titative models and implementation for particular goals.42

1 Introduction43

Modelling contaminant transport by groundwater is a topic of great interest that44

stimulated intensive research in the last four decades due to its relevance to aquifer pol-45

lution (Dagan, 1989; Gelhar, 1993; Fetter et al., 2018). The task of predicting transport46

faces a few difficulties: the processes are of long duration, measurements are scarce, the47

subsurface medium is of complex heterogeneous structure subjected to uncertainty and48

many times the geometry and the mass content of the contaminant source is also not known49

with certainty.50

Under these circumstances models play an important role: they help understand-51

ing the involved processes, analysing field data and making long range prediction. Mod-52

els developed in the past differ in conceptualization of the aquifer structure, in the re-53

quired data, in quantification of transport, in the formulation of the governing equations54

and mechanisms they represent, in computational complexity and in models goals.55

We focus on transport of plumes of conservative solutes in steady natural gradi-56

ent flow, driven by a constant mean head gradient. Quantification of the spatial distri-57

bution is by m(x, t), mass per unit length, where x is the mean flow direction and t the58

time. It encapsulates the process of longitudinal spreading in space and time. In prac-59

tice it allows, for instance, to estimate the mass of solute pumped by wells or flowing into60

rivers or reservoirs. It also serves as a first step toward achieving other goals like deter-61

mining the local concentration C(x, t).62

There is general agreement that spatial variability of the hydraulic conductivity63

K(x) is the main growth mechanism responsible for plume spreading in aquifers, termed64

macrodispersion (Zech et al., 2015). The effect increases with higher K heterogeneity65

as quantified for instance by the log-conductivity variance σ2
Y .66

A few elaborate field experiments were conducted in the past in order to gain un-67

derstanding and validate models. The most challenging one is at the MADE site (Boggs68

et al., 1992), situated in a highly heterogeneous aquifer, making it of relevance to many69

actual aquifers (Gomez-Hernandez et al., 2017). An important feature of MADE was70

the application of different observation methods in order to characterize the K spatial71

distribution (e.g. Boggs et al. (1990); Rehfeldt et al. (1992); Bohling et al. (2016)). Long-72

term tracer tests provide graphs of observed mass distribution m(x, t) in space at a few73
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fixed t values (Boggs et al., 1990, 1995). It has motivated a flurry of works on structure74

characterization by field data and different modelling strategies (see e.g. Zheng et al. (2011)).75

We will elaborate on MADE in section 2.76

We examine the ability of six conceptually different models to predict the observed77

mass m. Subsequently, we examine the predictive power of the models by extending the78

time (t = 1000 days) beyond MADE observations (tmax = 503 days). The selected79

models, outlined in Section 3, differ in conceptualizations of formation structure and trans-80

port, in the use of field data, in initial conditions, in computational methodology and81

in effort. A few of the models were developed in the past while the others were formu-82

lated for use in the present paper. The models cover a wide spectrum of configurations.83

We concentrate here only on models that can predict transport based on field data of84

aquifer properties and flow; we do not consider models calibrated on prolonged trans-85

port tests which are generally of large duration and cost.86

We believe that the comparison of the models which differ in type and underlying87

field data, conceptualization of K spatial structure and complexity of computations by88

using MADE as a platform is important in helping the research community to grasp trans-89

port issues and the users in selecting characterization strategies, goals of models and method90

implementation.91

The plan of the paper is as follows: Sect. 2 recapitulates the MADE aquifer char-92

acterization and transport experiment; Sect. 3 describes the methodology of the mod-93

els, including their application to MADE ; Sect. 4 is devoted to the model prediction for94

solute mass m in comparison to MADE observations as well as time beyond. Sect. 5 con-95

tains the general discussion on data comparison while Sect. 6 concludes the paper.96

2 MADE Transport Field Experiment97

The MADE experiment was the object of a large body of publications dealing with98

the aquifer properties data collection and analysis as well as transport observations and99

interpretation (see for instance reviews Zheng et al. (2011); Gomez-Hernandez et al. (2017)).100

We recall in the following only those aspects of direct relevance to the examined mod-101

els.102

2.1 Hydraulic Conductivity Spatial Distribution103

The MADE site aquifer is composed of highly heterogeneous alluvial terrace de-104

posits. Measurements of hydraulic conductivity at multiple locations (see Fig. 1) were105

performed by granulometry of soil samples, flow meter, slug test, and Direct Push In-106

jection Logger (DPIL) (Boggs et al., 1990; Rehfeldt et al., 1992; Bohling et al., 2016).107

Besides, two pumping tests provide equivalent conductivities Keq of the volume surround-108

ing the wells (Boggs et al., 1992). The use of different techniques at same site and sub-109

sequent application by different models offers an unique opportunity to examine their110

impact on transport prediction.111

The spatially distributed observations (Fig. 1), carried out at different depths re-112

sulted in a large volume of data which served for geostatistical analysis. Fig. 2 summa-113

rizes their outcomes, which is of interest for the application of the different models (Sect. 3).114

The most reliable and extensively used data are those based on flowmeter (Boggs et al.,115

1990; Rehfeldt et al., 1989) with a total number of N = 2611 observations and more116

recently DPIL with N = 31123 (Bohling et al., 2012, 2016).117

The differences in the geostatistical parameters, especially in the geometric mean118

KG, are a result of the different properties of the observation methods as well as the den-119

sity and locations of observation points. Particularly, the difference between flowmeter120

and DPIL can be explained by the inability of flowmeter to detect low K values. While121
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Figure 1. Left: Map of MADE site according to Boggs et al. (1990); Bohling et al. (2016):

Locations of hydraulic conductivity measurements devices (coloured dots); tracer test source area

(black outline); and sampling network boundary (dashed outline) where bromide samples were

collected. Right: Potentiometric surface map of head measurements according to Boggs et al.

(1990). Black dot marks tracer test injection location.

the maximal values Kmax are close (around 0.005 m/s) the minimal values Kmin differ122

by two orders of magnitude. The effect manifested in Fig. 2 is that flowmeter KG is larger123

and σ2
Y is smaller. The difference in the longitudinal integral scales Ih suggests that the124

zones of low K values are less connected than those of higher magnitude. The analysis125

based on soil samples (N = 214) is less reliable. Still, it provided input data for con-126

ductivity conceptualization based on the lithofacies approach (e.g. Carle & Fogg (1996))127

as presented by Bianchi & Zheng (2016) and herein for a simplified binary structure ap-128

proach. The impact of these difference upon flow and transport are discussed in Sect. 4.129

2.2 Flow130

In Fig. 1 we reproduce the head contour lines map (Boggs et al., 1992, Fig. 3). The131

head gradient is not constant, but slowly varying in space. The mean head gradient is132

between J ∈ [0.003, 0.0036] depending on the choice of boundary locations. The non-133

uniformity of the head contour density indicates the presence of large scale mean hydraulic134

conductivity trends.135

2.3 Transport Experiment136

We focus on the first tracer transport experiment, which was conducted in years137

1986–1988 (Boggs et al., 1990, 1992; Rehfeldt et al., 1992; Adams & Gelhar, 1992). The138

tracer plume displayed a non-Gaussian longitudinal solute mass distribution with the139

bulk of the mass staying near the source, but with lower amounts spreading downgra-140

dient extensively.141
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Figure 2. Geostatistical measures for MADE from DPIL (direct push injection logging)

(Bohling et al., 2016), flowmeter, grain size analysis, slug tests (Rehfeldt et al., 1992): log-

conductivity variance σ2
lnK , horizontal and vertical integral scale (correlation length) I and

Iv, respectively. Visualization of geometric mean conductivity KG, range of observed values from

minimal to maximal ([Kmin,Kmax]), and range of one variance around mean ([KG·e−σ
2

,KG·eσ
2

]).

Keq denotes the equivalent conductivity for two large scale pumping tests (Boggs et al., 1990).

Initial Conditions: A quantity of M0
∼= 25 kg of Bromide dissolved in 10 m3

142

of water was injected over a period of 48 hours through 5 wells of half a meter screen length.143

While the subsequent transport took place under practically mean uniform flow condi-144

tions, the tracer solution was forced radially into the aquifer during injection. As a re-145

sult, the initial tracer body was much larger than the body adjacent to the wells screens,146

which can be seen in the early tracer plume snapshot at 9 days after injection (Adams147

& Gelhar, 1992, Fig.5). This is important as far as ergodicity and setup of initial con-148

ditions are concerned. The apparent upstream tracer spread cannot be interpreted as149

a result of upstream dispersion. The injection mode also implies that the initial condi-150

tion was flux proportional, with a preference of mass flowing in high conductivity chan-151

nels.152

Plume Detection and Data Aggregation (Upscaling): We reproduce the longitu-153

dinal mass distribution m̄(x, t) of Adams & Gelhar (1992, Fig.7) at six times T : 49, 126,154

202, 279, 370, and 503 days after beginning of injection. The computation of m̄ is based155

on concentration C(x, y, z, t) sampled in a dense MLS network, which thins out with dis-156

tance to the source (Fig. 1). Subsequently, C was numerically integrated over transverse157

planes (y, z), accumulated and averaged over slices of 10 m length in the x direction to158

obtain the upscaled longitudinal mass m̄(x, t) (Adams & Gelhar, 1992). The reported159

mass is displayed at the centers of the slices at x = −5 m, 5 m, 15 m, . . . (see discus-160

sion of difference between the fine scale m and the upscaled one m̄ in the sequel).161

The fact that the reported mass is an upscaled/aggregated quantity, was overlooked162

by many previous studies which compared m̄ with modeled mass at fine scale, as men-163

tioned by Fiori et al. (2019). The significance of data aggregation is discussed in section 4164

herein.165

Mass Recovery The reported mass m̄ does not obey the mass conservation re-166

quirement
∫
m̄(x, t) dx = 1 except at 126 days after injection. Mass apparently decreases167

over time after 126 days with recovery rates of 2.06, 0.99, 0.68, 0.62, 0.54, and 0.43, for168

the T = 49, 126, 202, 279, 370, and 503 days, respectively.169

As discussed in Adams & Gelhar (1992), the excessive mass recovery at t = 49170

days could be due to spurious hydraulic connections among the multilevel samplers. This171

is a result of the method of installation and is enhanced by the pressure of injection. Pref-172
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erential sampling from high conductivity regions is also possible. In such case, the as-173

sumption of uniform tracer distribution employed in the spatial integration easily leads174

to an overestimated mass recovery.175

We attribute the apparent mass loss at later times to insufficient sampling in the176

downstream zone in line with Fiori (2014). The high heterogeneity implies possible chan-177

neling effects at MADE. In combination with the much lower sampling density down-178

stream, it is generally difficult to sample the leading edge of the plume, which may con-179

tain a significant fraction of the plume mass (Fiori et al., 2019).180

Unlike some authors, we do not normalize observed mass m̄ by the total reported181

mass i.e. m̃ = m̄(x, t)/
∫
m̄(x, t) dx, but use m̄ for comparison with theoretical mod-182

els, as it is appropriate for a conservative solute. Normalizing would imply that mass ap-183

parent loss is proportional to the observed mass.184

3 Subsurface Transport Models185

3.1 Common Features and Prerequisites186

We compare various models which were developed independently by the authors187

in the past or devised recently in the frame of the present study. Before describing the188

models specific properties, we recapitulate a few common features:189

1. We examine only predictive models. They rely solely on structural and flow data190

which can be measured independently of transport. Models with parameters cal-191

ibrated by transport experiments are not considered.192

2. Flow is steady and uniform in the mean (natural gradient), driven by the steady193

head gradient J in the x direction.194

3. Transport is advective and spreading is caused by the spatial variability of K(x).195

The effective porosity θ is assumed to be constant.196

4. A plume of mass M0 of a conservative solute is injected initially in the aquifer at197

t = 0. Spreading is quantified by the mass arrival at a control plane at x: Mtotal(x, t) =198

θ
∫∞
x

∫ ∫
C(x′, y, z, t)dx′dydz, where C is the concentration. For a fixed x, M =199

Mtotal /M0 is the BTC whereas for a fixed t it is the relative mass accumulated200

beyond x.201

5. We determine the fine scale relative mass spatial distribution m(x, t) = −∂M/∂x202

at a few times t. However, in line with MADE observations, we calculate the (up-203

scaled) relative mass averaged over a medium slice of length ∆ = 10 m centered204

at x, which is given by m̄(x, t; ∆) = (1/∆)[M(x−∆/2, t)−M(x+∆/2, t)] such205

that m = lim∆�I m̄.206

6. The upscaled relative mass m̄ is derived for the MADE conditions at t =49, 126,207

202, 279, 370, and 503 days after injection toward comparison with measured m̄.208

Additionally, models are applied to prediction of m̄ at t = 1000 days for inter-209

comparison. As useful additional quantification we also consider the mass flux through210

the control plane, µ(x, t) = ∂M/∂t.211

Remark on additional MADE transport Models: Several other transport models212

which are not discussed here have been presented in the literature for MADE. We do not213

consider models calibrated on transport observations since they are not predictive, such214

as the work of Barlebo et al. (2004). This further includes dual-domain models (e.g. Har-215

vey & Gorelick (2000) and Feehley et al. (2000)) and the continuous time random walk216

(CTRW) model of Berkowitz & Scher (2001). The lithofacies approach of Bianchi & Zheng217

(2016) would have been a candidate but results are only available for the MADE -2 tracer218

experiment setting rather than MADE -1 considered here. The same holds for the work219

of Salamon et al. (2007). The conceptual framework is however underlying the facies model220

herein. Similarly, the fractional ADE model of Benson et al. (2001) is applied only to221
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MADE -2 data. Furthermore, not all parameters, such as the skewness parameter β, are222

fully predictive based on structural data only. Dogan et al. (2014) presented a predic-223

tive fully numerical transport model for the MADE -1 experiment based on flowmeter224

and DPIL measurements. They generated detailed representations of the K field con-225

ditioned to observations in a small sector of the MADE site aquifer and subsequently226

solved the flow and transport equations. However, due to the computational effort, trans-227

port simulation results are limited to a fraction of the total plume transport distance.228

Thus, their results are unsuitable for model comparison, particularly with prediction be-229

yond observation times.230

3.2 Brief Description231

3.2.1 First Order Approximation (FOA)232

Background The solution of flow and transport in heterogeneous formations of233

a random Y = ln K structure by a first order approximation in the log-conductivity234

variance σ2
Y was the topic of intensive research in the last four decades (see e.g. the mono-235

graphs Dagan (1989); Gelhar (1993); Rubin (2003)) leading to various analytical solu-236

tions. We briefly recall past results and recent advances relevant to this work.237

K-Structure The random Y field is regarded as stationary and multi-Gaussian.238

It is characterized completely by KG, σ2
Y , and the two point covariance CY of horizon-239

tal integral scale I and vertical one Iv. The anisotropy ratio e = Iv/I is generally smaller240

than unity.241

Flow The mean velocity is given by U = KeffJ/θ, with the effective conductiv-242

ity Keff/KG = func(σ2
Y , e) determined from the solution of the flow equations for the243

random velocity field. The latter is obtained by expanding the mass conservation equa-244

tion and Darcy’s law in power series in Y ′ = Y − 〈Y 〉.245

Transport Traditionally, the mean relative mass distribution 〈m(x, t)〉 was de-
rived for conditions of given initial deterministic resident concentrations C0(x, 0) either
in a volume V0, with C0 = M0/(θV0), or with mass concentrated on the plane x = 0
over an area A0 and quantified by m0 = M0/A0 (Kreft & Zuber, 1978). Similarly, de-
tection was in the resident mode with the mean 〈M〉 and 〈m〉 satisfying the ADE

∂〈M〉
∂t

+ U
∂〈M〉
∂x

= DL(t)
∂2〈M〉
∂x2

(1)

The macrodispersion coefficient DL = UαL, with longitudinal macrodispersivity αL,246

was determined in the Lagrangean framework with the aid of the solute particles tra-247

jectories. At first order αL(t) grows from zero at t = 0 to an asymptotic constant value248

αL = σ2
Y I (Dagan, 1989). The transient αL(t) was determined by a quadrature for an249

exponential covariance and is approximated accurately by an analytical expression as250

function of mean flow velocity, time and aquifer statistics: αL(t)/σ2
Y I = func(Ut/I, e)251

(Dagan & Cvetkovic, 1993, Eq. 20). The asymptotic value is attained after a travel dis-252

tance of a few integral scales I. The Gaussian solution approximates 〈m〉 satisfactorily253

for field experiments in weakly heterogeneous aquifers like Cape Cod (Hess et al., 1992)254

and Borden Site (Sudicky, 1986) and/or far from the injection zone. However, it failed255

to model the highly skewed mass distribution observed at MADE close to the injection256

zone. This finding has motivated development of new nonlinear models.257

Fiori et al. (2017) presented the solution of the ADE (1) for the more realistic con-
ditions of flux proportional injection. The solution for the BTC is given by the inverse
Gaussian distribution:

〈M〉 =
1

2

{
erfc

(
x− Ut
2
√
DLt

)
+ exp

(
Ux

DL

)
erfc

(
x+ Ut

2
√
DLt

)}
(2)
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Unlike the Gaussian solution of Eq. (1), 〈m(x, t)〉 = −∂〈M〉/∂x from Eq. (2) displays258

a skewed shape and lack of upstream dispersion. Jankovic et al. (2017) showed that the259

solution (2) with dispersion by first-order approximation DL(x) represents accurately260

the results of numerical simulations even for the large value of σ2
Y = 8 except an un-261

derestimation of a few percents of the mass in the tail of late arrival. We apply Eq. (2)262

to predict the MADE plume in the sequel as part of models comparison.263

Application to MADE Application of Eq. (1) to MADE was based on the param-264

eters derived from Bohling et al. (2016) by DPIL as follows: KG = 0.58m/d, θ = 0.31,265

I = 9.1m, Iv = 1.8m, σ2
Y = 5.9. Rather than the first order approximation we used266

the more general formula by Zarlenga et al. (2018, Eq. 5) to arrive at Keff = 2.28 m/d.267

After identifying the representative mean head gradient in the plume zone (Fig. 1) as268

J = 0.0036, the mean velocity is given by U = KeffJ/θ = 0.026 m/d. Subsequently,269

the transient regime is taken into account by using a preasymptotic Dispersion DL(x)270

=UαL(x), calculated according to Fiori et al. (2019, Eqs. C1,C2) based on αL of (Da-271

gan & Cvetkovic, 1993, Eq. 20), with the asymptotic value αL = σ2
Y I = 53.7m. This272

was the information needed in order to derive 〈m̄〉 based on Eq. (1) at the t and x val-273

ues pertinent to MADE.274

3.2.2 Multi-indicator Model and Self Consistent Approximation (MIM-275

SCA)276

Background MIMSCA was developed in the last 15 years as an approximate model277

of flow and transport for aquifers of arbitrary degree of heterogeneity (Dagan & Fiori,278

2003; Fiori et al., 2006; Cvetkovic et al., 2014). Its outcome has been compared with ac-279

curate numerical solutions for σ2
Y ≤ 8 and applied to MADE. Fiori et al. (2019) recently280

applied the model to assess the uncertainty of prediction due to non-ergodic conditions281

or parametric uncertainty.282

K - Structure The aquifer is modeled as an ensemble of rectangular inclusions283

tessellating the space similarly to layers of bricks. The elements are of dimension 2I×284

2I × 2Iv. The block K values are assigned independently with random values from a285

univariate pdf f(K) (multi-indicator model). As usual, f(K) was chosen to be lognor-286

mal of parameters KG, σ
2
Y . This way the random K field is completely defined in terms287

of 4 parameters, similarly to the FOA (section 3.2.1).288

Flow The mean velocity is given by U = KeffJ/θ. The mean effective conduc-289

tivity Keff is derived by the self consistent approximation (SCA), a well established method290

in the literature on heterogeneous aquifers (Dagan, 1989). Here, it consists in solving the291

flow equations for a generic inclusion of conductivity K, submerged in a homogeneous292

matrix of the unknown Keff and determining the latter by the SCA argument. Keff fol-293

lows as solution of a simple integral equation. Suribhatla et al. (2011) compared it with294

accurate numerical simulations with satisfactory agreement.295

Transport Transport for the MIM was solved also with the SCA. Fiori et al. (2003)296

determined analytically the travel time required for a solute particle to move over an in-297

clusions of conductivity K, surrounded by a matrix of Keff . The BTC 〈M〉 follows as298

sum over the travel time random residuals pertaining to the inclusions of different K ly-299

ing between the injection plane x = 0 and the control plane at x and the initial con-300

dition was of flux proportional injection at x = 0 while the mean BTC was derived by301

fast Fourier transform. Jankovic et al. (2003) showed a satisfactory agreement between302

the semi-analytical results and accurate 3D numerical simulations. Fiori et al. (2017) showed303

that the bulk of the BTC is well approximated by the FOA, while MIMSCA captures304

also the long tail of a few percents of the solute mass observed in numerical simulations.305
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Application to MADE Fiori et al. (2013) applied the method to the MADE site306

transport setting for 〈m〉 and for 〈m̄〉, with an update in Fiori et al. (2019) motivated307

by an update in geostatistical input parameters by Bohling et al. (2016). The needed308

parameters values are the same as those given above for FOA.309

3.2.3 TDRW310

Background Time-domain random walk and continuous time random walk ap-311

proaches have been used extensively over the past two decades for the modeling of trans-312

port in heterogeneous porous media (Noetinger et al., 2016). Within this framework and313

based on the stochastic TDRW method of Comolli et al. (2019), Dentz et al. (2020) de-314

rived a predictive upscaled model that avoids calibration by transport observations. The315

basic idea is to quantify particle motion in spatially variable flow fields through a Markov316

processes for equidistant particle velocities, whose steady state distribution is given by317

the flux-weighted distribution of flow velocities. While details can be found in Dentz et318

al. (2020), we describe here the main features of the model. This modeling approach has319

been used and verified for the prediction of the evolution of particle velocity statistics,320

particle distributions, dispersion and breakthrough curves in pore and Darcy scale het-321

erogeneous porous media (Hakoun et al., 2019; Comolli et al., 2019).322

K-Structure Hydraulic conductivity is represented by a three-dimensional log-323

normally distributed multi-Gaussian spatial random field. Thus, the random K-field is324

characterized in terms of 4 parameters, similarly to the FOA (section 3.2.1): geometric325

mean conductivity KG, lnK variance, and correlation lengths `h and `v. Random re-326

alizations were filtered such that the spatial mean and variance of the log hydraulic con-327

ductivity are within a 5% tolerance interval around the target values.328

Flow Model Groundwater flow is the result of the steady state groundwater flow329

equation, which is solved numerically on multi-Gaussian hydraulic conductivity fields char-330

acterized by a log-normal marginal distribution. A unit head drop between inlet and out-331

let is considered and no-flux boundaries are specified at the horizontal domain bound-332

aries. The target variable is the magnitude of the Eulerian velocity ve(x) (absolute value333

of the Eulerian velocity), which is characterized by a uni-variate distribution. It is ob-334

tained from the numerically obtained magnitude of the Darcy velocity q(x) by multipli-335

cation with the magnitude J of the head gradient, and geometric mean conductivity KG,336

and division by (constant) porosity θ, thus ve(x) = q(x)KGJ/θ.337

Transport Model Transport is modeled by a continuous time random walk. Thus,338

particles move at constant space increment at transition times that are obtained from339

the particle velocity. The plume mass distribution at a given time is equivalent to the340

particle distribution. The particle velocity is modeled as a stationary Markov process,341

whose steady state distribution pv(v) is given by the flux-weighted Eulerian flow veloc-342

ity. The flux-weighting is due to the fact that in this framework particle velocities sam-343

ple the flow velocity equidistantly along path lines. This is in contrast to isochrone sam-344

pling in classical Lagrangian frameworks, for which the steady state distribution of par-345

ticle velocities is equal to the Eulerian velocity distribution (Dentz et al., 2016; Comolli346

et al., 2019).347

The Markov process of particle velocities is modeled through an Ornstein-Uhlenbeck348

process for the normal scores. The normal scores are obtained by mapping the veloci-349

ties first to a uniform and then to a unit Gaussian random variable. The model requires350

the Eulerian velocity distribution and advective tortuosity as inputs. The latter is given351

by the ratio of the mean Eulerian velocity and the mean Eulerian velocity component352

along the mean hydraulic gradient.353
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Application to MADE For application to MADE, the model is parameterized based354

on the description of experimental conditions and aquifer properties as head gradient of355

J = 0.0036 and porosity of 0.31 according to Boggs et al. (1992); Adams & Gelhar (1992).356

The retardation coefficient is set equal to one. The distribution of Eulerian velocity mag-357

nitude as the propagator of the upscaled transport model is derived using the geosta-358

tistical parameters of log-normal hydraulic conductivity reported by Bohling et al. (2016)359

(Fig. 2). The average velocity component in mean flow direction is given by v1 = q1KGJ/θ =360

1.942×10−7 m/s = 0.0167 m/d. The average Eulerian velocity magnitude is ve = qKGJ/θ =361

2.234 m/s = 0.0193 m/d.362

A point source particle distribution is assumed. Following Boggs et al. (1992) and363

Fiori et al. (2013), the initial mass distribution is approximately flux-weighted. Thus,364

in this modeling framework, the initial distribution of particle velocities is set equal to365

the flux-weighted Eulerian velocity distribution (Dentz et al., 2020).366

3.2.4 Binary Facies367

Background An alternative approach to adopting continuous univariate Y dis-368

tribution consists in representing the media as an assemblage of hydrofacies. Among the369

geostatistical methodologies adopted for this purpose, the one based on the combined370

use of transition probability and Markov chain has been mostly employed since its in-371

troduction by Carle & Fogg (1996). It enjoys flexibility in handling justapositonal ten-372

dencies among hydrofacies and the availability of the software T-PROGS (Carle, 1999).373

In the context of the studies of MADE, Bianchi & Zheng (2016) presented an applica-374

tion to the MADE-2 experiment by adopting representation by 5 hydrofacies. Here we375

apply the methodology to the MADE-1 experiment in a more parsimonious way. We main-376

tain the highly conductive hydrofacies and combine the remaining four, of low conduc-377

tivity, into a single hydrofacies.378

K-Structure The porous media is modeled by using two or more facies, each one379

of constant hydraulic conductivity. The spatial distribution of the facies is generated ran-380

domly based on transition probabilities, e.g. by using T-PROGS. Hydrofacies indenti-381

fication is usually based on granulometry analysis. Here we focus on two hydrofacies of382

probabilities of occurrence p1 and p2, respectively. Hydraulic conductivities K1,2 are the383

weighted arithmetic means of the hydraulic conductivity of all samples belonging to the384

same granulometry class, i.e. hydrofacies. The hydraulic conductivity of the samples are385

calculated from the characteristic diameters d10 and d25 of the sediments by using a mod-386

ified version of the Kózeni-Carman expression proposed by Riva et al. (2010). Transi-387

tion probabilities between hydrofacies are obtained by fitting a Markov model to the ex-388

perimental transition probabilities (Carle & Fogg, 1996). They are expressed with the389

aid of the characteristic thickness and length for each facies, denoted as Lz,1, Lz,2, Lx,1,390

and Lx,2 respectively. Commonly, samples density is relatively low in the horizontal di-391

rections, leading to uncertain experimental transition probabilities in these directions,392

even after assuming isotropy in the horizontal plane.393

Flow and Transport Flow and transport are solved repetitively in a Monte Carlo394

frame by making use of numerical solvers, Modflow 2005 in combination with particle395

tracking (Pollock, 2012). Mean velocity U and mean relative mass distribution 〈m̄〉 are396

obtained by ensemble averaging.397

Application to MADE The binary hydrofacies model was based on the granulom-398

etry of 214 samples taken from the 38 boreholes at MADE (Boggs et al., 1990), which399

is a data set completely independent from those of DPIL used by the FOA and MIM-400

SCA models. The parameters values pertinent to MADE were identified as: p1 = 0.145,401

p2 = 0.855, K1 = 190 m/d, K2 = 1.49 m/day, Lz,1 = 0.702 m, Lz,2 = 4.15 m. The low402

borehole density prevented reliable estimate of the transition probability in the horizon-403
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tal directions. Thus, isotropy is assumed in horizontal direction and the characteristic404

lengths were based on the integral scales identified by Rehfeldt et al. (1992) and assum-405

ing that the relationship L1,z/L1,h = L2,z/L1,h = e apply, with e being the anisotropy406

ratio. Thus, horizontal length scales are obtained by dividing the vertical ones, by the407

estimate of e = 0.0437 (Rehfeldt et al., 1992), arriving at Lh,1 = 16.0m, and Lh,2 =408

94.8m. In vertical direction the Markov model of transition probability fitted to the ex-409

perimental one was used. As already mentioned above, the horizontal length scales val-410

ues shall be regarded as estimates, affected by uncertainty. A check of the results ob-411

tained with different, smaller, values (not shown) led to similar plume mass distributions412

except for the long distance tail of minute mass. An ensemble of over 200 independent413

Monte Carlo realizations of the hydrofacies distribution were thus generated.414

Flow was solved numerically with Modflow 2005 in a computational domain of 300×415

100× 10 m3 with grid spacing of 1m in horizontal and 0.5m in vertical directions for416

each hydrofacies realization. Constant head boundary conditions were applied with a mean417

head gradient of J = 0.003. The adopted porosity value was θ = 0.31. Advective trans-418

port was simulated by tracking 1000 particles, distributed according to the mass distri-419

bution measured at day 9 since the beginning of the tracer test and advected by the ran-420

dom velocity (in the absence of local dispersion) by means of the ModPath 6 package.421

The resulting ensemble mean velocity is U = 0.079m/day with a standard deviation422

of 0.0046 m/d.423

3.2.5 Binary Inclusions424

Background Further simplification of the previous binary facies model is achieved425

by representing the high conductivity zones as rectangular inclusions submerged in the426

low conductivity matrix. Furthermore, for the high length to thickness ratio of the in-427

clusions it was found that flow and transport can be modeled approximately as two-dimensional.428

We describe here briefly the application of the model to MADE presented in Zech et al.429

(2020), in which the stochastic conceptualization of the binary hydraulic conductivity430

took large scale deterministic information into account.431

K-Structure The aquifer is modeled as binary random structure. The two pos-432

sible conductivity values K1 and K2 represent areas of high and low conductivity, respec-433

tively. The spatial structure is given as non-overlapping conductivity blocks of length434

I and width Iv. Site specific topological features, are integrated as deterministic struc-435

tures, such as layers or blocks of different average conductivity. The MADE -specific K-436

structure model is outlined below.437

Flow and Transport Flow and transport is solved for every random K realiza-438

tion numerically making use of Darcy’s Law and ADE solvers. Mean velocity U and mean439

relative mass distribution 〈m̄〉 are obtained by ensemble averaging.440

Applcation to MADE Zech et al. (2020) adopted the K-structure for MADE and441

its characterizing parameter values based on the inspection of the piezometric surface442

map of Boggs et al. (1992, Fig. 3), on two large scale pumping tests (Table 1) and on443

a few flow meter logs (Boggs et al., 1992). According to observations, the area near the444

source is dominated by low conductivity K2 with inclusions of high K1. The relative area445

of the inclusions is p = 15% determined from flow meter log analysis. Beyond a dis-446

tance of 20 m downstream of the injection location the distribution is inverted: the bulk447

is dominated by the high conductivity K1 with p = 15% inclusions of low K2. The in-448

clusions are of thickness `v = 0.5 m and length `h ∈ [5, 10, 20] m. The former was de-449

termined from flowmeter observations while the latter are subjected to parametric un-450

certainty. The range was determined from the ratio of thickness and observed anisotropy451

value. The random component of the model comprises of the locations of the three ver-452

tical inclusions of 0.5 m thickness, while length and horizontal position of inclusions are453
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fixed for every realization. Given the inclusion occurrence of p = 15%, an aquifer thick-454

ness of 10 m and a thickness of 0.5 m, a total number of 3 inclusions per block are ran-455

domly placed in vertical position with equal probability. Altogether, an ensemble of 600456

conductivity structures was created with random inclusion structures, with groups of 200457

realizations of same length inclusion length `h of 5 m, 10 m or 20 m.458

Flow and transport was calculated for every random K-structure solving the ground-459

water flow equation and subsequently the ADE with the FEM software OpenGeoSys in460

a 2D cross section of 220m×10m. The boundary conditions were of constant head on461

the vertical boundaries defined by the selected head gradient J = 0.003. The initial con-462

dition for transport was imposed by injecting a solute discharge Qin = 1.15·10−5 m3/s463

during a period of Tin = 48.5 h in the injection well with a screen length of 0.6 m (Boggs464

et al., 1992). Porosity is θ = 0.32, local dispersivity was αL = 0.01 m, not impacting465

the overall mass distribution. The resulting ensemble mean velocity was U = 0.0254466

m/d with a standard deviation of 0.02 m/d.467

3.2.6 Reactors468

Background The reactor model conceptualizes subsurface solute transport as se-469

ries of reactors which are linked to aquifer structure. The concept allows to model trans-470

port in a setting where tracer is injected into a low permeability zone, capturing strongly471

constrained downstream movement and skewed plume shapes. The concept was applied472

e.g. by Molin & Cvetkovic (2010).473

K-Structure Hydraulic conductivity is conceptualized as log-normal spatial ran-474

dom function Y with continuous two-point correlation structure. The multi-Gaussian475

geostatistical parameters are those reported by Bohling et al. (2016) based on DPIL for476

the model application to MADE of same values as those adopted in the First Order and477

MIMSCA models (sections 3.2.1 and 3.2.2).478

Flow Mean uniform flow velocity is calculated analytically based on Darcy’s Law:479

U = Keff · J/θ. Keff for MADE is derived analogously to the MIMSCA model from480

geostatistical parameters (Zarlenga et al., 2018), resulting in U = 0.026m/d.481

Transport Transport is modelled analytically as series of flow reactors, each de-482

scribed by an exponential function exp(−t/∆τ) of the mean turnover time ∆τ . While483

this model cannot be related directly to the permeability distribution, it is of interest484

to examine the outcome of a conceptually different model. The number of reactors is a485

function of the ratio x/∆x of the transport domain size x and the velocity fluctuations486

length scale ∆x. Each reactor has a mean turnover time of ∆τ = ∆x/U and thus a res-487

idence time pdf of exp(−tU/∆x).488

The residence time pdf in the x/∆x series of reactors is then a Gamma function:

f(t, x) =
e−

tU
∆x t

x
∆x−1

(
U

∆x

)x/∆x

Γ
(

x
∆x

) (3)

The cumulative density function of residence time is obtained by integration as

F (t, x) =

∫ t

0

f(θ, x) dθ = 1− γ (x/∆x, tU/∆x)

Γ (x/∆x)
(4)

where γ is the lower incomplete Gamma-function.489
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The spatial tracer distribution, as the tracer position pdf p(x; t) [1/L] at time t fol-
lows as:

p(x, t) = −∂F (t, x)

∂x
(5)

=
1

∆xΓ
(

x
∆x

) [G3,0
2,3

(
tU

∆x
| 1, 1

0, 0, x
∆x

)
+ Γ

(
x

∆x
,
tU

∆x

) (
log

(
tU

∆x

)
− ψ(0)

( x

∆x

))]
(6)

where G is the Meijer g-function, and ψ0 is the Polygamma function. With unit tracer490

mass, we have m(x, t) = p(x, t).491

Note that in the limit ∆x→ 0, the number of reactors tends to infinity x/∆x→492

∞, and we recover plug flow as f(t, x)→ δ(t− x/U).493

Like in the MIMSCA model, the length parameter ∆x, the integral scale of the ve-494

locity fluctuations, is assumed to be in the range of two to three log-conductivity hor-495

izontal correlation length I.496

Application to MADE The value of U = 0.026 m/d is identical with the one used497

in the FOA or MIMSCA models and similarly I = 9.1m is based on Bohling et al. (2016).498

4 Prediction and Inter-comparison using MADE Data499

4.1 Results Presentation500

The visual presentation of results concerning the mass spatial distribution signif-501

icantly influences the perception of model performance. Critical aspects are the display502

scale, data upscaling (aggregation) and normalization. We present longitudinal mass dis-503

tributions 〈m̄〉 at linear and logarithmic scales as well as in a cumulative form 〈M〉, to504

achieve a comprehensive display. The various display modes of the spatial mass distri-505

butions allow to interpret a few plume’s specific features: (i) mass peak location and bulk506

behavior; (ii) the tails (forefront and trailing zones) and (iii) mass recovery. They are507

relevant to specific goals such as risk assessment and remediation.508

In line with the MADE experimental results, we remind that 〈m̄(x, t)〉 is aggre-509

gated over intervals of 10 m. We illustrate the effect by displaying the model outcomes510

at T = 126 days in both forms, the fine scale 〈m(x, t)〉 and the upscaled 〈m̄(x, t)〉 (Fig. 3)511

as well as 〈M〉. All longitudinal mass distributions are normalized with respect to the512

injected mass such that the area beneath m or m̄ is unity. For the MADE data this is513

only true for t = T = 126 days where mass recovery is around 99%.514

Spatial moments are commonly used to quantify the comparison between differ-515

ent models and measurements. However, this is not appropriate because of the skewed516

shape of 〈m̄〉 and the large impact of the uncertainty of the tail. Instead, we compare517

in Fig. 4 recovery locations at T = 126 days for 5%, 50%, and 95% as predicted by mod-518

els relative to MADE values of x = 0.7, 8.6, 42.8 meters. The definition of the recov-519

ery location is for instance for x95% ,the position for which 95% of the total mass is up-520

stream of x95%, i.e. 〈M〉 = 0.95.521

Spatial moments are commonly used to quantify the comparison between differ-522

ent models and measurements. However, this is not appropriate because of the skewed523

shape of 〈m̄〉 and in particular the large impact of the minute and uncertain mass frac-524

tion in the forefront tail, upon the second spatial moment (Fiori et al., 2017). Instead,525

we compare in Fig. 4 recovery locations at T = 126 days for 5%, 50%, and 95% as pre-526

dicted by models relative to MADE values of x = 0.7, 8.6, 42.8 meters. The definition527

of the recovery location is for instance for x95% ,the position for which 95% of the to-528

tal mass is upstream of x95%, i.e. 〈M〉 = 0.95.529
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Figure 3. Longitudinal mass distribution for models at T = 126 d in fine model resolution

(left column) and upscaled (aggregated) form (∆x = 10 m, right column) against MADE-1 ex-

periment data at linear scale (1st row), log-scale (2nd row) and in cumulative mass (3rd row).

Vertical lines in 3rd column indicate locations of 5% (dotted), 50% (dashed), and 95% (dashed

dotted) recovered mass. Note that for the Binary Facies model the fine scale refers to a grid

resolution of 2 meters.
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Figure 4. Model-experiment-comparison of recovery locations x for 5%, 50%, and 95% mass

recovery (columns) at 126 days after injection where mass recovery was 99% in the experiment.

MADE values at the x-axis [in m] and model values as absolute [in m] and relative [in %] differ-

ence in coloured bars and in numbers.

4.2 Comparison between Models Prediction and MADE Experiment530

Fig. 3 displays the longitudinal mass distribution for all models and the MADE ex-531

perimental data at T = 126 days after injection: 〈m〉 at model’s fine resolution and 〈m̄〉532

aggregated over 10 m intervals, including MADE. Direct comparison is most revealing533

at that time since the experimental recovery rate is 99%.534

The various models display some differences in their mass distribution 〈m〉 at fine535

scale. Particularly, the peak value is higher for the Flow Reactors by a factor of 2 than536

the other models. The Binary Facies model displays plume tailing downstream of the537

other models, with x95%
∼= 60m while for all the others models 30m . x95% . 40m538

(see Fig. 3).539

The comparison between 〈m〉 and the upscaled 〈m̄〉 in Fig. 3 reveals a few inter-540

esting features: upscaling reduces the peak values of 〈m〉 by a factor of around 2, the spread-541

ing zone is expanded, and the differences between models prediction are greatly reduced.542

In particular, the predicted 〈m̄〉 agrees quite well with MADE, much better than 〈m〉,543

as far as visual inspection reveals. This is expectable though in the past models predic-544

tion at fine scale were compared with MADE (e.g. Harvey & Gorelick (2000); Dogan et545

al. (2014)). The upstream spread of the aggregated 〈m̄〉 for MADE is partly an artifact546

of upscaling: it smears the upstream forced injected mass of the initial solute body over547

10 meters. It could be erroneously interpreted as upstream dispersion.548

The quantitative results in Fig. 4 on recovery locations relative to MADE strengthen549

the conclusions from the visual inspection. All models are in good agreement with MADE550

for the location x50%. We attribute that to the closeness of the mean velocity U of var-551

ious models (see previous Section). The Binary Facies differs by 15% due to the differ-552
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Figure 5. Longitudinal mass distribution for models and MADE-1 experiment at 49, 202,

279, 370, and 503 days after injection at linear scale (1st column), log-scale (2nd column) and

in cumulative form (3rd column) with recovery locations (Fig. 3). Observe the different recovery

rates of 2.06, 0.68, 0.62, 0.54, and 0.43, respectively.
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Figure 6. Longitudinal mass prediction of models at 1000 days at linear scale (1st column),

log-scale (2nd column) and in cumulative form (3rd column) with recovery locations.

ence in the value of U . The agreement is still good for x5% with some deviations for the553

Binary Inclusion model. Last, the models prediction relative to MADE of x95%, reflect-554

ing the ”fast ” moving solute, is more variable, but still within acceptable differences in555

practice.556

Fig. 5 summarizes the model and MADE results of 〈m̄〉 for all times for which MADE557

experimental data is available. The comparison at these times with MADE is more dif-558

ficult than for T = 126 days because of the variable mass recovery, which is visible in559

Fig. 5 in the cumulative mass panel 〈M〉.560

Our interpretation of the apparent ”mass loss” for later times is the less dense sam-561

pling in the downstream zone as illustrated by Fig. 1 on one hand and the not-sampled562

solute quickly moving in high conductivity channels on the other hand, as already men-563

tioned before. This is clearly visible in Fig. 5 displaying the larger predicted mass than564

the measured one downstream of the peak. Despite that, it is remarkable that for T =565

202, 270, 370 days all models agree quite with both measured peak value and its distance566

from the injection zone. At the largest time T = 503 days the low mass recovery (43567

%) makes the comparison between data and models prediction quite problematic. Still,568

the peak location and even the value are within acceptable differences in practice. As569

for inter-comparison of models prediction, inspection of the robust cumulative mass 〈M〉570

at different times shows remarkable closeness except for Binary Facies. The latter over-571

estimates the location x% pertaining to fixed values of 〈M〉 > 0.4. This enhanced tail-572

ing is attributed in part to the larger integral horizontal scale identified from granulom-573

etry analysis (Fig. 2) as compared to that resulting from DPIL, which was used by the574

most of the models. In addition, it may be related to channels of high conductivity present575

in some realizations of the binary K field. It is remarkable that for both 〈m̄〉 and 〈M〉,576

the predictions by FOA, MIMSCA and TDRW are very close for all x (see discussion577

in Sect 5).578

4.3 Prediction Beyond MADE Experiment579

The important role of models is to provide prediction of future solute plumes de-580

velopment. In order to compare the outcome of the 6 different models considered in the581

present study, we have used them for the same MADE conditions, but at larger time than582

T=503 days. Thus, the long term (at T = 1000 days) predicted plume mass spatial dis-583

tribution is displayed in Fig. 6. All models agree in the peak travel distance as a con-584

sequence of similar flow velocities U . However, the differences between the peak value585

are more pronounced but still within a factor of two and even less for all models, except586

the Reactors, which predicts a higher peak and reduced tail. As for prediction of fore-587

front tailing associated with fast moving solute, both Binary Facies and Binary Inclu-588

sions display longer tails with 80 . x95% . 140 meters. Inspection of the cumulative589
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distribution reveals again that prediction of models except Binary Facies are within a590

relatively narrow distribution.591

5 Discussion592

5.1 Modelling593

The main aim of the study is to compare the prediction of six different models, with594

MADE serving as a platform. However, based on conceptual similarity as well as pre-595

diction, the six models can be divided in three groups as follows: (i) FOA (First Order596

Approximation), MIMSCA (Multi Indicator and Self Consistent Approximation), and597

TDRW (Time Domain Random Walk); (ii) BF (Binary Facies) and BI (Binary Inclu-598

sions); and (iii) Reactors. Herein a discussion of the main results for each group.599

(i) FOA, MIMSCA, and TDRW600

For the three models K is modeled as a multi-Gaussian stationary random field,601

completely characterized by KG, σ2
Y , I , Iv, the flow mean velocity being given by U =602

KeffJ/θ. They lead to approximate distributions of 〈m〉, 〈m̄〉 and 〈M〉 as functions of x, t.603

The three models differ in conceptualization and computational complexity. FOA604

is analytical, leading to an Inverse Gaussian 〈m〉 which satisfies an ADE with macrodis-605

persivity derived analytically by FOA. MIMSCA is semi-analytical, based on summa-606

tion of travel time through inclusions of random K. TDRW is semi-numerical, with the607

velocity field derived by Monte Carlo simulations while transport is based on an approx-608

imation of the Lagrangian velocity field.609

One of our main result is that the solutions for 〈m̄〉 and 〈M〉 by the three mod-610

els are very close and in good agreement with the bulk of MADE experimental data. Thus611

they are are very robust and prediction depends primarily on U Fiori et al. (2017), as612

well as σ2
Y and I and much less on models methodology.613

(ii) BF and BI614

The hydraulic conductivity heterogeneity is modeled by two values K1,K2 of vol-615

ume fractions p1 and p2 = 1−p1. Two length scales Lx, Lz characterize the K-facies,616

whose geometry has random elements. Flow and transport are solved numerically and617

repeatedly, by Monte Carlo simulations; besides the mean values U, 〈m̄〉 and 〈M〉, the618

statistical moments of these parameters can be also obtained.619

The two models differ in few respects: BF is three-dimensional; the random facies620

geometry is generated by transitional probability using the TPROGS code, which re-621

quires the knowledge of two more length scales for the second K-facies being different622

from the first. All the structural parameters are obtained from granulometry measure-623

ments. In contrast, the simpler BI model is two-dimensional and consists of identical624

rectangular inclusions of conductivity K1 submerged in the K2 matrix for specified de-625

terministic regions. The inclusions lengths assume 3 different values of same probabil-626

ity, their elevation being random. The structural parameters K1, K2 and p1, as well as627

the length scales, are derived from pumping tests and few flowmeter measurements.628

The main results for these two models are as follows: the agreement with MADE1629

data is reasonable; while the characterization effort is less demanding than for the pre-630

vious models, the numerical solutions and the Monte Carlo simulations of both flow and631

transport are quite involved, especially for BF.632

The main conclusions are: the favorable comparison with MADE1 is an additional633

proof of models robustness; the simplified structures and characterization are adapted634
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to the particular features of the MADE site for which two dominant zones could be de-635

lineated.636

(iii) Reactors637

This model has a different conceptualization from the previous ones and it was mo-638

tivated by its general use in engineering and convenience for reactive transport modelling.639

The model parameters are U , which is derived from the solution of flow via Keff, and ∆x,640

the velocity longitudinal correlation length which is related to I. The degree of hetero-641

geneity quantified by σ2
Y is not included, instead the series of reactors aggregate the in-642

herent dispersion of a flow reactor; thus the model is not a general candidate for mod-643

eling advective transport in a heterogeneous aquifer. Still, it was found of interest to com-644

pare the analytical solution for 〈m̄〉 with MADE plume. The surprising result is that 〈m〉645

and even more so 〈m̄〉 agree reasonably well with MADE, though the predicted peak of646

〈m̄〉 is larger by a factor of 1.5 than prediction by other models for T =1000 days.647

The finding strengthens the conclusion about the robustness of 〈m̄〉 and 〈M〉 in pre-648

dicting the measured MADE plume and its future development, with the predominant649

role of two parameters, the mean velocity U and correlation scale I; whether the reac-650

tors model can be used for prediction requires its further development and comparison651

with more cases.652

5.2 Data Selection653

The K distribution at the MADE site as inferred from different characterisation654

methods is summarized in Fig. 2: (i) DPIL measurements are a novel, affordable tech-655

nique for shallow aquifers (Dietrich et al., 2008) by which the most comprehensive data656

set was obtained suitable for a geostatistical interpretation, including two-point statis-657

tics; (ii) Granulometry (or grain size analysis) is a standard method in hydrogeology that658

yields highly uncertain conductivity estimates (Vienken & Dietrich, 2011); (iii) flowme-659

ter measurements and pumping tests are standard methods for hydrogeological charac-660

terisation, the main limitation being accuracy of low K values (Fig. 2).661

The (semi-)analytical models FOA, MIMSCA, TDRW, and Reactors used DPIL662

observations to estimate the flow velocity and the plume spreading. The model Binary663

Facies (BF ) used granulometry data and the Binary Inclusions (BI ) model used pump-664

ing test estimates, information from head maps and a few flowmeter data. In essence,665

BF simplifies the facies approach applied by Bianchi and Zheng (2016) MADE2 by con-666

sidering 2 facies instead of 5, where the binary K values are inferred from granulome-667

try. The BI approach simplifies further the 3D random structure by considering regu-668

lar inclusions in two dimensions. Thus the semi-analytical models are relatively simple669

for computations but use a more extensive DPIL data set whereas BI and BF modelling670

approaches are heavier on computation but use more readily accessible data sets.671

The derivation of the mean velocity U by the different models imply the use of es-672

timates of the measured mean head gradient J and the effective porosity θ, which are673

approximate. The models differ primarily in the use of the K data. Still, the resulting674

estimates of the mean velocity U are relatively close as revealed by the values appear-675

ing in Sect. 3.2 ( 0.026m/d for FOA,MIMSCA, 0.019m/d for TDRW, 0.079m/d for BF676

and 0.025m/d for BI ). Even the deviation for BF is within an acceptable range, vari-677

ous approximations notwithstanding. Thus, the estimates of U are quite robust, which678

explains the relative closeness of the predicted and measured locations of the peak of 〈m̄〉679

in Figures 3, 5, 6.680

Similarly, the prediction of spreading as quantified by the 〈m̄〉 and 〈M〉 distribu-681

tions is quite robust, as already discussed above. An interesting finding which may some-682

what explain the relative closeness of the distributions for different data characteriza-683
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tion methods is the magnitude of the FOA asymptotic longitudinal macrodispersivity684

αL = σ2
Y I based on the different values of σ2

Y and I in Fig. 2. The resulting values of685

αL are 53.7m, 54.1m and 49.6m for DPIL, Flowmeter and Grain Size, respectively.686

Although above observations strictly apply to the MADE site only, they are nev-687

ertheless encouraging and motivate similar comparative analysis e.g., for less heteroge-688

neous aquifers for which experimental data are available.689

6 Summary and Conclusions690

With a variety of hydraulic data available, MADE provides a unique opportunity691

for a comparative analysis of predictive modelling, from a wide range of (semi)-analytical692

models (FOA, MIMSCA and TDRW ) that utilise extensive DPIL data for inferring geo-693

statistical parameters, to numerical models (BF and BI ) with relatively simple (binary)694

structures that utilise much less extensive data sets (granulometry and pumpoing tests+695

flowmeter). The present paper takes advantage of these possibilities offered by MADE,696

and focuses on comparing predictions of the plume spreading by six different models. The697

models differ in theoretical formulations, in the conceptualization of aquifer structure,698

in the field data input, and in the computational effort. Common features of the mod-699

els are: flow is steady, uniform in the mean and driven by a head gradient J ; solute spread-700

ing is caused by aquifer conductivity heterogeneity; models rely on structural data and701

flow data with no calibration on transport observations i.e. the models are predictive;702

plume mass behavior is assumed ergodic, i.e. the mean relative mass distribution 〈m̄〉703

derived by the model is compared with the measured mass m̄ at a few times T . More-704

over, the apparent loss of mass of measured mass at MADE1 for T > 126 days (attributed705

to limited sampling) is not taken into account by the models. Model comparison at T =706

1000 days, i.e., beyond the period of measurements, is also included.707

The main and encouraging result for practitioners is that all model prediction agree708

reasonably well with MADE1 mass distributions and the same for the comparison at T=1000709

days. Thus, the measures of the solute plumes are robust and models are reliable as long710

as they are underlined by a few basic parameters: mean velocity U , a parameter reflect-711

ing log-conductivity variability and one taking horizontal correlations in conductivity into712

account. However, the reasonable agreement in model results is also related to the par-713

ticular quantity under examination: the longitudinal mass distribution which is aggre-714

gated over spatial intervals is quite robust itself. If other measures are employed, such715

as local concentrations, results might differ.716

To render the above conclusions of general validity, the study shall be extended by717

application to other cases than MADE. As a first step synthetic examples can be con-718

sidered like formations of log-normal conductivity, with different connectivities as an-719

alyzed for instance by Fiori et al. (2017), or typical facies structures (e.g. Carle & Fogg720

(1996)). Similarly, one needs to test the hypothesis that a consistent comparison would721

have been obtained even for a less heterogeneous aquifer.722
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