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Abstract

We present a very high-resolution (400 m) operational air quality forecasting system developed to alert citizens of Delhi and the

National Capital Region (NCR) about acute air pollution episodes. Such a high-resolution system has been developed for the

first time and is evaluated during October 2019-February 2020. The system assimilates near real time aerosol observations from

in situ and space-borne observations in the WRF-Chem model to produce a 72-h forecast every day in a dynamical downscaling

framework. The assimilation of aerosol optical depth and surface PM 2.5 observations improves the initial condition for surface

PM 2.5 by about 45 μg/m 3 (about 50%). The accuracy of the forecast degrades slightly with time as mean bias increases from

+2.5 μg/m 3 on the first day to-17 μg/m 3 on the third day of forecast. Our forecasts are found to be very capable both for

PM 2.5 concentration and unhealthy/ very unhealthy air quality indices categories. 2
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Abstract 

 

We present a very high-resolution (400 m) operational air quality forecasting system 

developed to alert citizens of Delhi and the National Capital Region (NCR) about acute air 

pollution episodes. Such a high-resolution system has been developed for the first time and is 

evaluated during October 2019-February 2020. The system assimilates near real time aerosol 

observations from in situ and space-borne observations in the WRF-Chem model to produce 

a 72-h forecast every day in a dynamical downscaling framework. The assimilation of aerosol 

optical depth and surface PM2.5 observations improves the initial condition for surface PM2.5 

by about 45 µg/m
3
 (about 50%). The accuracy of the forecast degrades slightly with time as 

mean bias increases from +2.5 µg/m
3
 on the first day to -17 µg/m

3 
on the third day of 

forecast. Our forecasts are found to be very capable both for PM2.5 concentration and 

unhealthy/ very unhealthy air quality indices categories. 
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1. Introduction 

 

 

Being the second most populated megacity in the world, Delhi faces enormous challenges 

due to a range of issues including adverse air pollution episodes during the winter season 

(Ghude et al., 2008; Beig et al., 2019; Chandra et al., 2018; Hakkim et al., 2019; Takigawa et 

al., 2020), which pose a higher health risk as a result of substantial population density 

exposure (Beig et al., 2013; Chate et al., 2013; Ghude et al., 2016; Guttikunda and Goel, 

2013; Spears et al., 2019). In recent years, particulate matter of aerodynamic diameter smaller 

than 2.5 µm(PM2.5) has dominated severe air pollution episodes frequently observed during 

the winter season, affecting daily life in Delhi (Chowdhury et al., 2019; Jethva et al., 2019). 

Thus, managing air quality with practical mitigation options has emerged as a complicated 

task without compromising the intended growth in the overall infrastructure development, 

industries, and service sectors.  

 

The Government of India(GOI) is committed to enforce policy-driven measures to reduce 

the pollutant emissions. The National Clean Air Program(NCAP) initiated by the GOI targets 

significant reduction of surface PM2.5 concentration by the year 2024. A Graded Response 

Action Plan(GRAP) has been designed for the National Capital Region(NCR) that allows 

pollution control authorities to reduce the magnitude of predicted air pollution for different 

air quality indices(AQI) categories. Activation of different GRAP measures requires 

information of forthcoming extreme air pollution episodes so that effective temporary control 

measures can be identified early and implemented in advance. Therefore, GOI mandate 

required the Ministry of Earth Science(MoES) to develop an operational high-resolution 

modelling for the NCR region. In response to the mandate, MoES institutions, Indian Institute 

of Tropical Meteorology(IITM) and India Meteorology Department(IMD), has developed a 

first very high-resolution (400 m) chemical weather forecasting capability in mutual 
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collaboration with U.S. National Centre for Atmospheric Research(NCAR). The initial 

capability was developed for Delhi during 2018 based on weather research and forecasting 

model coupled with online chemistry module(WRF-Chem) at horizontal resolution of 2 km 

(Ghude et al., 2020). The first version of the forecasting system has been found to 

significantly improve air quality decision-making activity by reducing biases in 72-h PM2.5 

forecasts to a greater extent (Kumar et al., 2020). However, that system struggled to predict 

the absolute PM2.5 levels during very acute air pollution episodes characterized by surface 

PM2.5 mass concentrations greater than 350 µg/m
3 

(Ghude et al., 2020).  

 

To further enhance the air quality decision-making activity the modelling framework was 

further extended to produce forecast fields of PM2.5 concentrations at much higher resolution 

of 400 meters. To the best of our knowledge, none of the operational centres are currently 

providing short-term operational air quality forecasts at a spatial scale of 400 x 400 m
2 

covering approximately 50 km
2
 areas. This is the first attempt to develop and evaluate the 

performance of PM2.5 forecast in a highly polluted environment using integration of 

dynamical models with chemical data assimilation. This high-resolution forecasting system 

consists of a newly developed high-resolution (400 m) emission inventory for Delhi, 

assimilation of satellite aerosol optical depth(AOD) and surface PM2.5 concentrations from a 

dense air quality monitoring network in Delhi to constrain the regional and local background 

of aerosols, and ingests near real-time fire emissions, and applies high-resolution dynamical 

downscaling into the WRF-Chem. PM2.5 forecasts at 400 m resolution were made operational 

in October 2019. 

 

Here, we provide a brief description of the operational high-resolution forecasting system, 

highlight the impact of data assimilation, and evaluate the quality of the PM2.5 operational 
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forecast for the latest winter season in Delhi. We show that the forecast falls within the 

expected uncertainties and, therefore is suitable for operational air quality early warning for 

the Delhi region.     

 

 

2.  Air quality forecasting system 

 

The complete overview of the air quality early warning system is given in the 

schematic shown in Figure S1. The major components of the system are a) high-resolution 

numerical predication model WRF-Chem, b) gridpoint statistical interpolation (GSI) based 

three-dimensional variational(3D-var) data assimilation integrated with dynamical 

downscaling, c) observational data and emission pre-processer, d) post analysis, and e) public 

dissemination system(https://ews.tropmet.res.in/). The system operates overnight and 

disseminates the information in the morning for the next 72 hours.    

 

 

2.1 Modelling setup  

The core of the forecasting system consists of the regional WRF-Chem Version 3.9.1 

configured in a three domain set-up with the outer domain covering northern part of the 

Indian subcontinent at a horizontal resolution of 10 km, the second domain covering the NCR 

and neighboring state at 2 km resolution, and the innermost domain covering Delhi at 400 m 

resolution (Figures S1 and S2). The meteorological initial and boundary conditions are based 

on the analysis and forecast product (Ensemble-Kalman filtering) produced by the IITM-

Global Forecasting System (IITM-GFS, T1534) spectral model at 12.5 km grid resolution 

available at every three hours. The outer domain (D1) is provided with the six-hourly 

chemical boundary conditions from the MOZART-4 10-year climatology. However, 

chemistry output from the D1 domain every three-hour interval was dynamically used to 

establish a chemical boundary for the WRF-Chem inner domain (D2). Similarly, the output 
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from the D2 domain was dynamically used to establish boundary conditions for the final 400 

m domain (D3). Physical and chemical parameterizations used in the model are listed in 

Supplementary Table ST1. The forecast was run with MOZART-4 gas-phase chemistry 

linked to GOCART aerosol scheme(MOZCART). In the GOCART, aerosol nitrates and 

secondary organic aerosols are missing and are a source of uncertainty in the estimated PM2.5. 

However, this scheme is computationally most efficient than the other advanced aerosol 

schemes (e.g., MOZAIC), and therefore it is suitable for the operational forecast. 

 

2.2 Satellite AOD and Surface PM2.5 data assimilation 

We used three-dimensional variational method(3D-Var) component of the community 

Gridpoint Statistical Interpolation(GSI) system Version 3.5. The 3D-var scheme blends the 

information from the satellite AOD and surface PM2.5 observations, and iteratively minimizes 

a cost function   that depends on observation and background error covariance matrices as 

defined in equation (1).  

 

      
 

 
       

            
 

 
                      (1) 

 

where   represents the state vector required in AOD calculation,    represents the “a priori” 

information about x and is referred to as background, B is the background error covariance 

(BEC) matrix, H is the forward operator that transforms WRF-Chem aerosol chemical 

composition to AOD following Liu et al. (2011),   represents the MODIS AOD retrievals, 

and   is the observation error covariance matrix. BEC statistical parameters are calculated 

using two 24-h WRF-Chem forecast initialized at 00 z with different meteorological, 

anthropogenic emissions and biomass burning emissions to account for the uncertainties in 

both meteorology, anthropogenic, and biomass burning emissions (Kumar et al., 2019). 
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Observations from MODIS overpasses at 10:30 and 1:30 L.T. at 10 km resolutions and 

hourly mean surface PM2.5 observations from the 37 monitoring stations (Figure S3) across 

Delhi are collected at the analysis time on 0900 UTC assimilation cycle. GOCART has 

sixteen aerosol species, and all are adjusted directly by AOD and surface PM2.5 assimilation. 

More details on the AOD assimilation for the GOCART scheme can be found elsewhere 

(Ghude et al., 2020; Kumar et al., 2020). Every day, the chemical fields are initialized from 

the previous WRF-Chem forecast at 0900 UTC, aerosol initialization is updated through 

assimilation, and meteorology is refreshed using the IITM-GFS forecast. To understand how 

much the assimilation of surface PM2.5 and satellite AOD observations changes the WRF-

Chem PM2.5 at the initialization time on every day towards the observed reality, averaged 

surface PM2.5 simulated by the model before and after assimilation are compared with the 

observations at 0900 UTC assimilation cycle (Figure 1). Before assimilation, the simulated 

PM2.5 at the initialization time significantly underestimates the observed PM2.5, and 

assimilation pushes WRF-Chem initial condition very close to the observations. The average 

observed PM2.5 is about 13388 µg/m
3
, whereas simulated PM2.5 before assimilation and after 

assimilation is estimated as 9036 µg/m
3
 (mean bias = -32%) and 13583 µg/m

3
 (mean bias 

= +1%), respectively. This indicates that assimilation on an average improves the initial 

condition for PM2.5 by ~45 µg/m
3
 (about 50%) at the assimilation cycle.    

 

3.3. Emissions and observations 

Two anthropogenic emission databases are included in the forecasting setup. We used 

2010 EDGAR-HTAP emissions at 10 km resolution for the outer (D1) and intermediate (D2) 

domains and scaled to 2019 using scaling factors given in  Venkataraman et al. (2018). This 

data was used only for the area outside the Delhi region. For Delhi itself (D3), we used 400 m 

resolution emission inventory for the year 2018 developed under the MoES(Figure S4) 
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System of Air Quality and Weather Forecasting and Research(SAFAR) project. For the outer 

and intermediate domain, the original 400 m emissions were processed using a mass-

conserving approach to match the 10 km and 2 km grid spacing so that the total mass emitted 

is the same before and after re-grinding. We adopted diurnal variation in emissions from a 

recent study by Govardhan et al. (2019). We performed emission sensitivity simulations by 

keeping EDGAR emissions for the entire model domain and then replacing the Delhi region 

with high-resolution Delhi emission inventory. We find that PM2.5 mass concentration 

simulated by the EDGAR largely under-predict (bias = -52%) the observed PM2.5 mass 

concentrations in Delhi, whereas as high-resolution inventory over-predict by 36% during the 

winter season (Figure S5). Additional simulation where emissions are reduced by 40% shows 

better agreement with observations (bias =3%). Therefore, in the forecasting setup, we 

choose emissions reduced by 40% over the Delhi region.  

 

Model of Emissions of Gases and Aerosols from Nature (MEGAN; Guenther, 2007) 

is used to include interactive biogenic emissions. Dust emissions are based on the online 

AER/AFWA scheme (Jones and Creighton, 2011). Our recent study shows that post-

monsoon biomass burning emission significantly affects the air quality in Delhi (Kulkarni et 

al., 2020). Therefore, an accurate representation of fire emissions is essential for the quality 

of the forecast. Most of the near real-time biomass burning emission estimate is available 

with a time lag of one day and thus operational air quality forecasts are forced to assume 

persistent fire emissions over the forecast cycle. Here, we have developed a pre-processor 

based on the high-resolution Fire INventory from NCAR (FINN, Wiedinmyer et al., 2011) to 

derive fire emissions for the forecast day instead of using the estimates from a previous day. 

We first developed a historical daily gridded (at the model grid spacing) data set of biomass 

burning emissions from 2010 to 2018. Secondly, daily fire location information is obtained 
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from the near real-time MODIS-C6 active fire data from FIRMS 

(https://firms.modaps.eosdis.nasa.gov/). Finally, the historical fire emissions are used to 

represent fire emissions in all the model grids showing the fire activity. To include the fire 

emissions for the next two days, we calculated the historical fire frequency for each day and 

for each model grid based on a 10-year gridded data set. We include the fire emissions only 

in those grid cells where frequency of fire count is more than 50%.               

 

The PM2.5 data set used in the study are obtained in near real-time from the 37 air 

quality monitoring stations operated by the Central Pollution Control Board(CPCB), Delhi 

Pollution Control Committee(DPCC), and IITM. The instruments are calibrated, and the 

measurements are quality controlled (https://cpcb.nic.in/quality-assurance-quality-control/). 

In addition to the CPCB quality control, we apply additional filters to remove single spikes, 

PM2.5 measurements above 1500 µg/m
3
, observations from the period corresponding to 

instrument malfunction (Kumar et al. 2020). The details of these monitoring locations are 

given in Table ST2 in the supplement, and the geographical locations are shown in Figure S3.  

Statistical evaluation metrics such as mean bias(MB), Pearson’s correlation coefficient(r), 

normalized mean bias(NMB), normalized mean fractional error(NME) (Yu et al., 2006; 

Zhang et al., 2006) are used to evaluate the performance of PM2.5 forecasts. 

 

3. Result 

3.1 Performance of the PM2.5 forecast 

The air quality forecast verification period (21 October 2019–02 February 2020) selected 

here for Delhi was dominated by the large-scale open biomass burning in October and 

November followed by wintertime stable meteorological conditions conducive for build-up of 
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PM2.5 pollution in Delhi. An example of the spatial distribution of average PM2.5 

concentration from day 1 forecast is shown in Figure 2a. As expected, the 400 m domain 

resolves emission sources in Delhi much better than the 10 km and 2 km domains (Figure 

S6). At finer grid resolution, PM2.5 hotspots associated with the industrial, dense residential, 

major traffic junctions, and high-density vehicular traffic roads can be clearly distinguished 

from Figure 2a. Daily forecast (Figure 2b) tracts the daily variation of mean observations 

quite well in the NCR region. However, model performance for the PM2.5 forecast for 

individual monitoring stations (supplementary table ST2) generally shows that the NMB 

varies from -46% to 85% among the 37 stations located across the NCR region. Out of 37 

stations, 24 individual stations (65% of stations) show NMB within ±30%, and 5 stations 

(13% of stations) show NMB more than 50%.  

 

To more closely examine the model performance for the PM2.5 forecast specific to the 

NCR, we compared the hourly time series of mean PM2.5 forecast with observations. The 

NCR region contains 37 monitoring stations, and model forecasts from the locations of all 

these monitoring stations are extracted and average to get PM2.5 time series for Delhi. The 

comparison for the first, second, and third day of forecast at 400 m resolution domain is 

depicted in Figure 3. The forecast captures the temporal variability in PM2.5 observation quite 

well on most of the days. On two occasions, 2–4 November and 12–16 November, the model 

largely failed to capture extremely high PM2.5 values observed in the NCR region. However, 

very-poor pollution events occurred on 20–22 November, and very-poor to sever air quality 

events on 5–12 December, 19–22 December, 19–21 December, 29 December 2019–5 January 

2020 were captured very well by the forecast. The sudden drop in PM2.5 levels (e.g., on 14 

December, 7 January, 24 January, etc.) followed by the very-poor to sever events were also 

captured very well by the model. The temporal variation in observed PM2.5 over Delhi and 



10 
 

pollution episodes are driven mainly by the frequent large scale open biomass burning and 

wintertime synoptic-scale meteorological condition in combination with the large 

anthropogenic emissions in this region. Figure 3 shows that the model has a very good ability 

to capture this variability and indicates that the forecast system is very capable of issuing 

PM2.5 forecasts associated with urban pollution and synoptic-scale meteorological events.  

 

The performance statistics for hourly mean PM2.5 forecast for the first, second and 

third day is evaluated by examining MB, RMSE, r, NMFB, and NMFE (Table 1). Following 

Morris et al. (2005), we have adopted three levels of performance criteria for fractional bias 

and error to evaluate the forecast performance (supplementary table ST3). It can be seen that 

the magnitude of MB on the first day of hourly forecast was quite low (2.5 µg/m
3
), and 

slightly under predicted by about -9 µg/m
3 

and -17 µg/m
3 

on the second and third day of the 

forecast, respectively. Table 1 reveals that PM2.5 forecast performed close to excellent criteria 

on day 1 since the NMFB and NMFE were within 1.3% and 36.3%, respectively. The model 

performance was quite good on day 2 and day 3 with fairly low NMFB (<±10%), and NMFE 

was within ±40%. Performance statistics on daily mean PM2.5 time series show fairly 

excellent performance on all the three days of forecast since NMFB and NMFE were within 

±10% and 29%, respectively. The correlation coefficient (r) is around 0.5 for the hourly 

forecast and 0.6 for the daily mean forecast. It appears from Figure S7 that there is a 

considerable scatter between observed and predicted PM2.5. Forecasts generally show a 

tendency to under predict the higher values and slightly over predict the lower values, 

consistent with the other studies (Eder et al., 2006, 2010). Efforts are underway to investigate 

why this underestimation in higher values occurs and whether it is the result of errors in the 

meteorological, boundary condition, emission, or chemical factors. 
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3.2 Performance of the Air Quality Index (AQI) forecast 

The main interest in the application of high-resolution forecast is to provide timely air 

quality alerts to the public in the NCR region, particularly for the Poor to Severe AQI 

category. As per the CPCB guidelines, AQI category is classified as poor for AQI range 201-

300, very-poor for AQI range 301-400, and severe for AQI range 401 and above. Therefore, 

it is essential to evaluate the applicability of the system to simulate the correct AQI values, as 

these are typically disseminated to the general public rather than the actual PM2.5 mass 

concentrations. Accordingly, hourly AQI values for PM2.5 based on 24-h PM2.5 standard was 

calculated based on National Ambient Air Quality Standard(NAAQS), and break-point 

concentration suggested in the CPCB notification (see supplementary Table ST4). It can be 

seen in Table 1 that the magnitude of MB for overall AQI values (0–500) was slightly higher 

(about 22 units) on the first day of forecast compared to MB observed on the second day (10 

unit) and third day (<1 unit). However, following the Morris et al., (2005) criteria, the AQI 

forecast on all three days performed excellently, since NMFB and NMFE were within ±6% 

and 18%, respectively. The statistical performance (Supplementary Table ST5) indicates that 

the forecast over-predicts poor air quality category by about 22% on day one and by about 

19% and 16% on days two and three, respectively. AQI forecast on all three days in poor 

category performed fairly good since NMFB and NMFE were within ±22% and 22%, 

respectively. For a very-poor category, the AQI forecast performed excellent on all three days 

(NMFB <5% and NMFE <9%) of the forecast. In comparison, statistics show that forecast 

under-predicts the severe category by about 14% on day one and by about 17% and 21% on 

day two and day three, respectively. On the first day, the AQI forecast for the severe category 

performed excellently (NMFB <14% and NMFE <17%), while it performed reasonably well 

on day two and day three (NMFB <21% and NMFE <21%). Overall, the forecast falls within 
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the expected uncertainties and, therefore, is suitable for operational air quality forecast for the 

Delhi region. 

 

  3.3 Skill score for categorical AQI forecast 

To assess the skill of real-time forecast, that is, whether the forecast will fall in unhealthy 

(AQI >201), or very-unhealthy (AQI >301) or critical category (AQI >401), false alarm 

rate(FAR), probability of detection(POD) or hit rate, critical success index(CIS) and 

accuracy, was calculated according to Kang et al. (2005) and Eder et al. (2010). 

Supplementary table ST6 describes the equations that are used to calculate the skill score of 

the categorical AQI forecast. Table 1 presents the skill score for the unhealthy, very-

unhealthy, and critical category of AQI for winter season. The forecast accuracy for 

unhealthy category (i.e., forecast that correctly predicted the unhealthy or no-unhealthy AQI) 

showed the accuracy values to be >88% on all the three days. The skill score for the POD and 

CSI is relatively promising with a value grater that ~0.9, which indicates that the model has 

reasonable good predictive accuracy in predicting the unhealthy air quality conditions with 

respect to a total number of the observed air quality hours. Also note that FAR is quite low 

(~10%) for the unhealthy category, which indicates that the performance of the real-time 

high-resolution forecast was excellent for both unhealthy category and non-unhealthy 

category of air quality. For the very-unhealthy category, although the skill score of POD 

(>0.9) is excellent, compared to the unhealthy category, the skill score for the CSI is a little 

low (~0.7), and FAR is a little high (20-30%) on all three days of forecast. However, the skill 

score overall indicates excellent performance for predicting air quality in the very-unhealthy 

category. On the other hand, the skill score shows moderate performance for the severe 

category of events on all three days. Table 1 indicates that compared to the unhealthy and 

very-unhealthy category, the skill score for POD and CSI is low (<0.35) on day one and day 
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two of forecast and further declines on day three. Note that the accuracy of the forecast is 

about 80%, and the skill score for FAR does not show a significant increase compared to the 

other two categories, which indicates the moderate ability of the forecasting system to predict 

the extremely high pollution events in NCR region correctly. Some of the causes of 

unsuccessful prediction of accurate extremely high pollution events may include difficulties 

in simulating processes like boundary layer height, synoptic advection, and synoptic-scale 

conditions and choice of aerosol module. Our future studies will investigate the role of these 

processes in predicting the extreme PM2.5 pollution events in the NCR region.            

 

4. Conclusion  
 

This study aims to demonstrate the efficacy of a prototype very high-resolution 

operational air quality forecasting system developed to issue timely warning to the citizens of 

Delhi about forthcoming air pollution episodes. The system is based on the WRF-Chem 

model integrated with satellite AOD and surface PM2.5 data assimilation and dynamical 

downscaling. Performance of the system was evaluated both for PM2.5 mass concentration 

and AQI categories to assist both local forecaster and air quality model developers. Both 

AOD and surface PM2.5 data assimilation, on an average, improves the initial condition for 

PM2.5 by about by ~45 µg/m
3
 (about 50%) at the assimilation cycle. Model evaluation shows 

that finer-resolution PM2.5 forecasting system is capable of issuing reliable forecasts for Delhi 

during winter season both for PM2.5 concentration and AQI in particular for unhealthy and 

very-unhealthy AQI categories, within the expected uncertainties. On the other hand, 

verification statistics with reference to severe categories show moderate skill and may require 

further improvement in the forecast. Although finer-resolution PM2.5 forecast captures the 

spatial variability in emissions, it is desirable to have an accurate forecast at every individual 

station with a high-resolution forecast. The model showed moderate performance to capture 
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the accurate spatial concentration across the NCR region and requires further improvement. 

We recognize that the accuracy of the high-resolution emission inventory, choice of aerosol 

model, chemical mechanism, and boundary layer parameterization will continue to be a 

challenge to forecast the PM2.5 at individual point monitoring locations in a highly polluted 

environment. Efforts are underway to explore the sensitivity of these parameters to the 

accuracy of location-specific PM2.5 forecast. For the first time, the system was also used by 

the environmental pollution control authorities to make the decision on imposing/lifting the 

restriction on construction activities and regulating the heavy vehicle inflow in Delhi region 

during the pollution/no-pollution events. This has significantly contributed to the build-up the 

trust to the end-users and policy-makers for taking science-based well-informed decisions 

and actions for important public services in India.  
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Figure 1: Averaged surface PM2.5 simulated by the model before (red) and after (green) assimilation at 0900 UTC assimilation cycle (Figure 1) 

and its comparison with observed mean PM2.5 over Delhi during 21 October 2019 to 01 February 2020.  
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Figure 2: (a) Spatial distribution of averaged PM2.5 at 400 m horizontal resolution (from day 1 forecast) overlay with mean PM2.5 observed at 

different monitoring stations across Delhi during 21 October 2019 to 01 February 2020, (b) Comparisons between daily mean PM2.5 forecast 

(red) and daily mean PM2.5 observations (blue) over Delhi during 21 October 2019 to 01 February 2020 (vertical bar shows the standard 

deviation).  
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Figure 3: Comparisons between hourly mean PM2.5 forecast (red) and hourly mean PM2.5 observations (blue) on day one (top), day two (middle) 

and day three at 400 meter horizontal resolution over Delhi during 21 October 2019 to 01 February 2020 (vertical bar shows the standard 

deviation). 
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Table 1: Performance statistics for mean PM2.5 forecast and skill score for different forecast 

AQI category over Delhi during 21 October 2019 to 01 February 2020. 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statistical performance 

State 

Variables 

Forecast 

Day 

400 meter 

MB  NMFB (%) NMFE (%) r 

PM25_hourly 

 

1
st
 day  2.5 1.3 36.3 0.5 

2
nd

 day -8.4 -4.8 38.1 0.5 

3
rd

 day -16.8 -9.8 40.5 0.4 

PM25_daily 

 

1
st
 day  1.8 1.0 25.6 0.6 

2
nd

 day -8.8 -5.0 26.7 0.6 

3
rd

 day -17.3 -10.1 29.5 0.5 

PM25_AQI 1
st
 day  21.7 6.5 16.5 0.7 

2
nd

 day 10.4 3.1 16.5 0.6 

3
rd

 day 0.3 0.1 17.8 0.5 

Skill score for AQI 

AQI range Forecast 

Day 

FAR POD CSI Accuracy 

Unhealthy 

(poor, very-poor, 

severe) 

1
st
 day  0.11 1.00 0.88 0.88 

2
nd

 day 0.09 0.99 0.90 0.90 

3
rd

 day 0.09 0.98 0.88 0.88 

Very Unhealthy 

(very poor, 

severe) 

1
st
 day  0.28 0.98 0.70 0.72 

2
nd

 day 0.25 0.94 0.71 0.75 

3
rd

 day 0.23 0.89 0.70 0.74 

Critical (severe) 1
st
 day  0.35 0.34 0.29 0.82 

2
nd

 day 0.15 0.35 0.33 0.85 

3
rd

 day 0.25 0.21 0.19 0.82 
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Figure S1: Major system components of air quality early warning system  
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Figure S2: Map of model simulation domain (D1: 10 km horizontal resolution, D2: 2 km horizontal domain and D3: 400 meter horizontal 

domain)  
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Figure S3: Geographical locations of 37 air quality monitoring stations (stations names associated with the 

numbers are provided in table ST2) 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4: Spatial emission plots of PM2.5 (unit: 10
10

 kg/m
2
/s) at 400 m horizontal resolution 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Figure S5: Sensitivity simulations for different emission inventory over Delhi.  

 

 

 

 

 

 

 

 

 

 

 

Figure S6: Spatial distribution of average PM2.5 of 1
st
 day forecast for 400 meter resolution 

during 21 October 2019 to 01 February 2020 at 10 km horizontal resolution (left) and 2 Km 

Horizontal resolution (right). 
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Figure S7: Correlation between hourly mean observed and predicted PM2.5 from Delhi.  

 

 

 

 

 

 

 

 

 

 



Table ST1: Selected atmospheric physical and chemical parameterizations 

 

 

Atmospheric Process Parameterization 

Cloud Microphysics WRF Single-Moment 6-class scheme (WSM6) (Hong et 

al., 2006) 

Short- and Long-wave radiation Rapid Radiative Transfer Model for GCMs (Iacono et al., 2008) 

Surface Layer Monin-Obukhov (Janjic Eta)Scheme (Janjic, 1996, 2002) 

Land Surface model Unified Noah Land-surface model (Tewari et al., 2004) 

Planetary Boundary Layer MYNN2.5() 

Cumulus  Grell-Freitas ensemble scheme (Grell&Freitas, 2014) 

Gas-phase Chemistry Model for Ozone and Related Tracers (Emmons et al., 2010)  

Aerosol Processes Goddard Global Ozone Chemistry Aerosol Radiation and Transport 

(GOCART) (Chin et al., 2000) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table ST2: Performance statistics for simulated PM2.5 at different monitoring sites in Delhi 

during 21 October 2019 to 01 February 2020 at 400 m horizontal resolution   

 

 

 

 

 

State Station name Latitude Longitude MB NMB 

(%) 

RMSE R 

 

 

 

 

 

 

Delhi 

CRRI Mathura Road (103) 28.5512005 77.2735737 158.7 87.6 249.9 0.4 

Burari Crossing (104) 28.7256504 77.2011573 -60.2 -31.0 149.5 0.3 

North Campus DU (105) 28.6573814 77.1585447 68.4 40.8 181.6 0.3 

IGI-Airport-T3 (106) 28.5627763 77.1180053 -12.6 -8.1 106.0 0.4 

Pusa IMD (107) 28.639645 77.146262 115.2 83.4 208.1 0.3 

DTU (118) 28.7500499 77.1112615 -95.6 - 45.6 161.2 0.3 

R K Puram (124) 28.674045 77.131023 59.4 37.2 154.0 0.4 

Shadipur (113) 28.6514781 77.1473105 104.4 65.5 177.0 0.6 

NSIT Dwarka (115) 28.60909 77.0325413 -36.1 - 20.7 92.4 0.5 

Mandir Marg (122) 28.636429 77.201067 52.2 29.1 174.3 0.2 

Punjabi Bagh (125) 28.563262 77.186937 -0.5 - 0.2 122.1 0.5 

Sirifort (119) 28.5504249 77.2159377 -12.4 - 6.3 120.4 0.4 

Lodhi Road (109) 28.5918245 77.2273074 34.4 23.3 127.8 0.3 

ITO (117) 28.6316945 77.2494387 20.0 10.7 144.4 0.3 

Anand Vihar (301) 28.646835 77.316032 -52.3 - 25.0 145.2 0.5 

Sector – 62 (111) 28.6245479 77.3577104 -33.5 -17.3 133.8 0.3 

IHBAS-Dilshad-Garden 

(114) 

28.6811736 77.3025234 13.3 8.5 118.5 0.4 

Aya Nagar (108) 28.4706914 77.1099364 -23.8 -15.7 110.8 0.4 

Vasundhara (144) 28.6603346 77.3572563 -31.5 - 14.0 140.5 0.4 

Sector 125 (153) 28.5447608 77.3231257 -14.9 - 7.5 140.9 0.3 

Ashok_Vihar (1420) 28.695381 77.181665 26.1 24.3 79.0 0.2 

DKSS_Stadium (1421) 28.498571 77.264840 -48.0 - 24.5 137.8 0.3 

Dwarka Sector8 (1422) 28.57 77.07     

Jahangirpuri (1423) 28.732820 77.170633 -81.1 - 35.9 151.5 0.3 

Jawaharlal Nehru Stadium 

(1424) 

28.580280 77.233829 3.0 1.5 116.8 0.5 

MDC National Stadium 

(1425) 

28.611281 77.237738 32.7 19.2 140.0 0.3 

Najafgarh (1427) 28.570173 76.933762 46.1 85.3 59.3 0.1 

Narela (1426) 28.822836 77.101981 -49.4 - 38.8 66.8 0.1 

Nehru Nagar (1429) 28.567890 77.250515 -9.2 - 3.8 145.3 0.5 

Okhla Phase2 (1428) 28.530785 77.271255 17.4 14.7 77.6 0.2 

Patparganj (1431) 28.623748 77.287205 28.7 16.0 122.5 0.4 

Rohini (1430) 28.732528 77.119920 -88.6 - 39.1 163.0 0.4 

Sonia Vihar (1432) 28.710508 77.249485 -44.6 - 25.8 114.3 0.3 

Sri_Aurbindo_Marg 

(1562) 

28.531346 77.190156 2.6 3.1 53.5 0.1 

Mundak (1561) 28.684678 77.076574 19.0 18.8 50.8 0.6 

New_collectorate (1569) 28.974801 77.213357 -83.3 - 46.4 142.2 0.4 

New_mandi (1550) 29.4723508 77.7194031 -65.0 - 44.9 109.6 0.4 

Bawana (1560) 28.776200 77.051074 -92.6 - 41.9 163.4 0.4 



Table ST3: Model performance goals used to evaluate the model performance for PM2.5 

(Morris et al., 2005) 

 

Table ST4: AQI category and corresponding break-point concentrations ranges for PM2.5 

based on National Ambient Air Quality Standard (NAAQS). 

 

 

 

 

AQI Category AQI PM2.5 

Concentration range 

Good 0 - 50 0 - 30 

Satisfactory 51 - 100 31 - 60 

Moderately 100 - 200 61 - 90 

Poor 201 - 300 91 - 120 

Very poor 301 - 400 121 - 250 

Severe 401 + 250+ 



 

Table ST5: Performance statistics of different PM2.5 AQI forecast category   

 

 

 

 

 

 

 

State PM25 AQI 

Category 

Variables 10km 2km 400 meter 

MB  NMFB 

(%) 

NMFE (%) 

 

MB  NMFB 

(%) 

NMFE (%) 

 

MB  NMFB 

(%) 

NMFE (%) 

 

Delhi Poor 

(201-300) 

1
st
 day  51.1 18.4 19.3 66.2 23.2 23.3 62.9 22.1 22.3 

2
nd

 day 30.4 11.4 20.8 56.1 20.0 22.6 53.6 19.2 22.2 

3
rd

 day 16.3 6.2 23.2 42.4 15.4 20.9 44.6 16.2 20.2 

Very Poor 

(301-400) 

1
st
 day  4.2 1.2 6.4 12.3 3.5 7.4 8.2 2.3 6.8 

2
nd

 day -17.7 -5.3 9.1 0.2 0.1 6.7 -2.7 -0.8 6.9 

3
rd

 day -27.5 -8.3 11.4 -13.7 -4.0 8.9 -13.4 -3.9 8.7 

Severe 

(401-above) 

1
st
 day  -47.1 -11.1 15.6 -55.5 -13.3 16.2 -58.0 -13.9 16.3 

2
nd

 day -89.0 -22.1 22.2 -70.2 -17.1 17.5 -70.8 -17.2 17.8 

3
rd

 day -

105.0 

-26.7 26.7 -86.2 -21.4 21.8 -83.6 -20.7 20.9 



Table ST6: A contingency table and equations used to calculate the different skill score for different category of AQI forecast.  

 

 

 

 

 

 

 

Statistic name What it measures Equation unit How to interpret 

Accuracy (A) Percent of forecasts thatcorrectly 

predicted the event ornon-event. 

A=(a+d)/(a+b+c+d) 

*100 

% Higher numbers 

are better 

False Alarm Rate (FAR) The percent of times a forecastof high 

pollution did notactually occur. 

FAR = (b/(a+b)) *100 % Smaller values 

are best 

Probability of Detection 

(POD) or Hit rate 

Ability to predict highpollutionevents 

(i.e., thepercentage of forecasted 

highpollutionevents that 

actuallyoccurred). 

POD = (a/(a+c)) * 100 % Higher numbers 

are best 

Critical Success Index 

(CSI), also called Threat 

Score 

How well the high-pollutionevents were 

predicted. Usefulfor evaluating rarer 

events likehigh-pollution days. It is not 

affected by a large number ofcorrectly 

forecasted, lowpollutionevents. 

CSI = (a/(a+b+c)) * 

100 

% Higher numbers 

are best 


