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Abstract

Analysis of Coupled Model Intercomparison Project Phase 6 (CMIP6) models has focused on their higher equilibrium climate

sensitivity (ECS) relative to CMIP5 simulations, with higher ECS values attributed to changing cloud feedbacks. We examine

the simulation of the shortwave cloud radiative effect (SW CRE) in CMIP6 and explore a potential link between SW CRE errors

and ECS. We derive mean and compensating errors in model data relative to satellite observations using a cloud clustering

methodology. A statistically significant negative relationship between the mean and compensating errors in SW CRE over the

Southern Ocean is identified. This relationship is observed elsewhere, but is only significant over the Southern Ocean. This

implies model tuning efforts potentially hide biases in the representation of clouds in this region. High ECS models tend to

have lower mean and compensating errors over the Southern Ocean, suggesting model biases are unlikely to explain the high

ECS values.

1



manuscript submitted to Geophysical Research Letters

The Southern Ocean Radiative Bias, Cloud1

Compensating Errors and Equilibrium Climate2

Sensitivity in CMIP6 Models3

A. J. Schuddeboom1and A. J. McDonald1,2
4

1School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand5

2Gateway Antarctica, University of Canterbury, Christchurch, New Zealand6

Key Points:7 • Mean and compensating shortwave cloud radiative effect errors in CMIP6 AMIP8

models are quantified9 • A significant negative relationship between mean and compensating shortwave cloud10

radiative effect errors is found over the Southern Ocean11 • Shortwave cloud radiative effect errors are shown to be unlikely to explain the high12

effective climate sensitivity in these CMIP6 models13

Corresponding author: Alex Schuddeboom, Alex.Schuddeboom@canterbury.ac.nz

–1–



manuscript submitted to Geophysical Research Letters

Abstract14

Analysis of Coupled Model Intercomparison Project Phase 6 (CMIP6) models has fo-15

cused on their higher equilibrium climate sensitivity (ECS) relative to CMIP5 simula-16

tions, with higher ECS values attributed to changing cloud feedbacks. We examine the17

simulation of the shortwave cloud radiative effect (SW CRE) in CMIP6 and explore a18

potential link between SW CRE errors and ECS. We derive mean and compensating er-19

rors in model data relative to satellite observations using a cloud clustering methodol-20

ogy. A statistically significant negative relationship between the mean and compensat-21

ing errors in SW CRE over the Southern Ocean is identified. This relationship is observed22

elsewhere, but is only significant over the Southern Ocean. This implies model tuning23

efforts potentially hide biases in the representation of clouds in this region. High ECS24

models tend to have lower mean and compensating errors over the Southern Ocean, sug-25

gesting model biases are unlikely to explain the high ECS values.26

Plain Language Summary27

Climate models go through a continual process of evaluation and improvement. This28

process is based on using observational data and higher resolution models to detect er-29

rors within climate models and identifying the model elements that need to be improved.30

A major issue with the current generation of climate models is that the equilibrium cli-31

mate sensitivity is higher than previous generations of models. This means that the cur-32

rent generation of models show a greater temperature change in response to increased33

carbon dioxide than previous generations. It is unclear if this high equilibrium climate34

sensitivity is physically sensible or whether hidden errors in models are the cause. The35

traditional evaluation of climate models focuses on the average error. However, this can36

obscure the true magnitude of errors since models often have compensating errors where37

errors of opposing signs cancel out when averaged. This paper uses a technique based38

on cloud typing that evaluates both mean and compensating errors in CMIP6 models.39

The relationship between these errors and the high equilibrium climate sensitivity in these40

models is investigated, with a specific focus on the Southern Ocean region. We find no41

relationship between these hidden errors and ECS.42
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1 Introduction43

The refinement of climate models is a continual process driven by constant eval-44

uation against observational measurements and more detailed models. With the recent45

release of Coupled Model Intercomparison Project Phase 6 (CMIP6) model data (Eyring46

et al., 2016), a new wave of model assessment is currently underway. A major focus in47

the research released so far has been the equilibrium climate sensitivity (ECS) of the CMIP648

models (Zelinka et al., 2020; Meehl et al., 2020). Simply put, the ECS describes the mag-49

nitude of temperature change associated with doubling the carbon dioxide and running50

a model to equilibrium (National Research Council, 1979; Gregory et al., 2004). Com-51

pared to the models in CMIP5, those in CMIP6 have higher average ECS values and many52

CMIP6 models have a greater ECS value than the largest values from CMIP5 (Meehl53

et al., 2020). Work by Zelinka et al. (2020) has attributed this change to variations in54

cloud feedbacks, with the largest changes related to the shortwave (SW) cloud feedback55

linked to decreasing extratropical low cloud coverage and albedo. It is important to note56

that this feedback has the largest impact over the Southern Ocean, a region that has long57

been associated with large model biases relative to observations (Wild et al., 1995; Bodas-58

Salcedo et al., 2012; Kay et al., 2012). Work detailed in Gettelman et al. (2019) has also59

identified that the atmosphere model in CESM2 has higher cloud feedbacks than in pre-60

vious model versions and that changes to the stratiform cloud microphysics and ice nu-61

cleation processes are important, both of which have a large impact over the Southern62

Ocean.63

While in general it appears that the models that increased their ECS values be-64

tween CMIP5 and CMIP6 better match the observational data than their CMIP5 coun-65

terparts, it remains unclear if the high ECS models are more accurate than the low ECS66

models (Gettelman et al., 2019). One area of uncertainty is associated with the role played67

by compensating errors which can hide the true magnitude of model errors (Jakob, 2003;68

Hyder et al., 2018; Schuddeboom et al., 2019). Compensating errors potentially mean69

that an improvement to one aspect of a model can lead to poorer performance as the pre-70

vious bias may have counteracted an oppositely signed error which is unaccounted for71

in model tuning. Additionally, Zelinka et al. (2020) suggests that the high ECS values72

in some CMIP6 models could be a result of compensating errors whereby improvements73

in the representation of the SW cloud feedbacks could mean that some unresolved model74

errors are no longer being cancelled out, leading to an artificially high ECS. It may also75
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be possible that the improvements made over the Southern Ocean lead to larger errors76

in other regions.77

To explore the cloud compensating errors in the CMIP6 models, the methodology78

developed in Schuddeboom et al. (2018) and Schuddeboom et al. (2019) is used in this79

study. Schuddeboom et al. (2018) used the self organizing map (SOM, Kohonen (1998,80

2013)) clustering technique on cloud top pressure–cloud optical thickness (CTP-COT)81

histograms to generate a set of cloud regimes associated with different cloud types. This82

approach for identifying cloud regimes is well established (Jakob, 2003; Oreopoulos et83

al., 2014; Mason et al., 2015; McDonald et al., 2016). By examining errors in the rep-84

resentation of each cloud regime in terms of their frequency of occurrence and their ra-85

diative properties, we can derive both the mean and cumulative error in the shortwave86

cloud radiative effect (SW CRE). This then allows magnitude of compensating errors87

to be estimated (Schuddeboom et al., 2019). In Schuddeboom et al. (2019) this technique88

was used to compare the effect of applying different model parameterizations to the same89

model, here it is used to examine different CMIP6 model runs. Given the importance90

of the SW CRE errors over the Southern Ocean, this region was specifically analyzed in91

Schuddeboom et al. (2019) and will also be analyzed in this paper. Zelinka et al. (2012)92

used a radiative transfer model to derive the sensitivity of top of atmosphere fluxes to93

changes in each bin of ISCCP CTP-COT histograms, these sensitivities when multiplied94

by changes in cloud fraction forced by a doubling of carbon dioxide concentrations can95

be used to directly quantify cloud feedbacks. We therefore test whether potential issues96

in the representation of the current occurrence of different cloud regimes within CTP-97

COT histograms might impact ECS.98

2 Data99

2.1 Observational Data100

The analysis in this paper relies on data generated using the CFMIP Observation101

Simulator Package (COSP, Bodas-Salcedo et al. (2011) and Swales et al. (2018)). COSP102

is a satellite simulator which allows models to simulate data that is directly compara-103

ble to observations. This is particularly useful for producing variables like CTP-COT104

histograms as simulation of the observation process can reproduce many observational105

biases. The clusters developed in Schuddeboom et al. (2018) were generated using CTP-106
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COT histograms from the Moderate Resolution Imaging Spectroradiometer (MODIS,107

Platnick et al. (2003, 2017)) dataset. However, the regular outputs from the CMIP6 model108

runs only include International Satellite Cloud Climatology Project (ISCCP, Rossow and109

Schiffer (1991, 1999)) CTP-COT histograms. As such, this paper uses cloud regimes de-110

rived from ISCCP observations developed in McDonald and Parsons (2018) and based111

on the earlier work of McDonald et al. (2016).112

The first of the major differences between the ISCCP and MODIS clusters are that113

the two datasets have different resolutions which means that the generated clusters rep-114

resent different spatial scales. The second difference is that the ISCCP regimes from McDonald115

and Parsons (2018) have a different number of members than used in Schuddeboom et116

al. (2018). We should also note that the ISCCP clusters also include a filter that removes117

all data over regions with an average ground elevation of 1 km above sea level and that118

McDonald and Parsons (2018) used data from both 2007 and 2008 rather than a single119

year. While these factors impact the interpretation of the individual clusters, the inte-120

grated nature of the error calculation process means that the methodology is unaffected.121

These differences do however mean that the ∆CRE and |CRE| should not be directly122

compared to the values produced in Schuddeboom et al. (2019).123

In addition to the CTP-COT histograms from ISCCP, shortwave radiative fluxes124

from the Clouds and the Earth’s Radiant Energy System (CERES, Wielicki et al. (1996))125

dataset are used. In particular, this analysis uses top of atmosphere radiative fluxes from126

the synoptic 1◦ (SYN1deg) Edition 4.1 CERES dataset (Minnis et al., 2020). As in Schuddeboom127

et al. (2018) the CERES all sky and clear sky SW radiative fluxes are used to calculate128

the SW CRE. When used to analyze the cloud clusters, the CERES data is interpolated129

from a 1 degree by 1 degree equal angle grid to a 2.5 degree by 2.5 degree equal angle130

grid to match the resolution of the ISCCP data.131

2.2 Model Data132

There are a wide range of different model experiments included within the CMIP6133

framework. In this research only model runs that correspond to the Atmospheric Model134

Intercomparison Project (AMIP, Gates et al. (1999) and Eyring et al. (2016)) are uti-135

lized. In the AMIP simulations sea surface temperature, sea ice and CO2 concentrations136

are all prescribed. This specific experiment was chosen as it covers the same historical137
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period as the observations, it is also forced in a way which makes the models more com-138

parable to observations and includes model runs from several different models which sim-139

ulated all of the variables required for the analysis. The variables used in this study in-140

clude the COSP generated daily ISCCP COT-CTP histograms (clisccp) and the clear141

sky and all sky SW radiative fluxes (rsut and rsutcs). While the historical experiment142

runs also met this criteria, fewer model runs simulated all of these variable and by fo-143

cusing specifically on one experiment we can ensure that the models are compared in a144

consistent manner. To match the observational data, the cluster based analysis of the145

model data covers a period between 2007 and 2008 and removes all points over topog-146

raphy greater than 1 km above sea level.147

Once these requirements have been applied there are eight models available through148

the Earth System Grid Federation (ESGF) online system which have daily output for149

the set of variables required. The eight suitable models are CESM2 (Danabasoglu, 2019;150

Gettelman et al., 2019), CNRM-CM6-1 (Voldoire, 2018), CNRM-ESM2-1 (Seferian, 2018),151

GFDL-CM4 (Guo et al., 2018), HadGEM3-GC31-LL (Ridley et al., 2019), IPSL-CM6A-152

LR (Boucher et al., 2018), MRI-ESM2-0 (Yukimoto et al., 2019) and UKESM1-0-LL (Tang153

et al., 2019). There are two models which produce the clisccp variable but are not in-154

cluded in this analysis, BCC-CSM2-MR and GISS-E2-1-G, this is associated with an out-155

put error and a lack of other data, respectively. Both the HadGEM3 (5 runs) and IPSL156

(2 runs) models include multiple runs, for these models the clustering is applied to all157

runs and the ensemble mean displayed unless otherwise indicated. In later analysis, we158

use the effective climate sensitivity values for each of these models taken from Meehl et159

al. (2020) to represent model ECS. While there are differences between effective climate160

sensitivity and equilibrium climate sensitivity, these are generally small. These values161

are calculated from coupled atmosphere–ocean model simulations which is different then162

our analysis based on AMIP simulations. A lack of data means that this inconsistency163

can not be avoided without significant extra work. However, given that the errors we con-164

sider are associated with cloud feedbacks and these have been identified in previous work165

as critical to changes in ECS, we believe that the analysis of atmosphere-only models166

in AMIP is still valid. Brief testing (not included in this study) of a small subset of his-167

torical runs shows that they generate similar results to their equivalent AMIP runs, dif-168

fering by less than one third of a Wm−2 in mean error and less than one Wm−2 in com-169

pensating error.170
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3 Methodology171

The cluster based approach used to analyze the model runs in this paper was de-172

veloped in Schuddeboom et al. (2019) and was heavily influenced by the work in Williams173

and Webb (2009), Williams and Bodas-Salcedo (2017) and Hyder et al. (2018). This ap-174

proach is based on using the rate at which a given cluster occurs, known as the relative175

frequency of occurrence (RFO), and the cluster average SW CRE to calculate the dif-176

ference in SW CRE between models and observations. Two values are calculated, the177

∆CRE which is the mean difference between the model and observations and the |CRE|178

which is the difference if the errors associated with each cluster are summed rather than179

allowed to cancel. Therefore, |CRE| allows us to calculate the magnitude of the cloud180

cluster compensating errors. While there will be compensating errors not captured by181

this approach, by using the cloud clusters we are at least able to estimate the magnitude182

of compensating errors. ∆CRE and |CRE| can be calculated with equations 1 and 2 where183

C represents the average CRE of cluster N and R represents the RFO of cluster N .184

∆CRE = |
∑

N

C
Model

N R
Model

N − C
CERES

N R
ISCCP

N | (1)

|CRE| =
∑

N

|CModel

N R
Model

N − C
CERES

N R
ISCCP

N | (2)

4 Results and Discussion185

Before examining the models using the ∆CRE and |CRE|, the zonal mean SW CRE186

is studied. Figure 1 (a) shows the zonal mean SW CRE for the CERES data and for each187

model and also includes the anomaly for each of these models from the CERES obser-188

vations in figure 1 (b). The SW CRE zonal means are generally consistent across the dif-189

ferent models with a clear peak over the Southern Ocean. There are however relatively190

large differences between the models over the tropics. These results can be compared to191

figure 9.5d from Flato et al. (2013), which shows a corresponding plot for the CMIP5192

participants. In general, the shape of the distributions in CMIP5 and CMIP6 are sim-193

ilar, although the CMIP6 models have a smaller range of SW CRE over the Southern194

Ocean and also match better with the CERES mean SW CRE.195

The differences between the models are further explored in figure 1 (b) which shows196

the zonal mean anomalies from the CERES measurements. The zonal average anoma-197

–7–



manuscript submitted to Geophysical Research Letters

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90
-100

-80

-60

-40

-20

0

S
W

 C
R

E
(a) Zonal Average Shortwave Cloud Radiative Effect
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(b) Zonal Average Shortwave Cloud Radiative Effect Anomaly

Figure 1. Zonal mean SW CRE for the CERES observations and each of the included CMIP6

model runs (a) and SW CRE anomalies between each of the models and CERES observations

(b). The observational data used to generate the anomalies is from the CERES dataset and the

sign convention used for the anomalies is model minus observations.

lies show a wide spread of values, ranging from +15 Wm−2 to -15 Wm−2. At latitudes198

between 30oN and 60oN the models appear relatively consistent with small biases, with199

a wider range of biases north of 60oN . Between 30oS and 30oN there are a wide range200

of behaviours. The GFDL, IPSL, MRI and CESM models all show relatively small bi-201

ases, while the CNRM models show large negative biases and HADGEM3 and UKESM202

models show large positive biases. Finally, clear differences between the models are ob-203

served south of 30oS, specifically between 45oS and 70oS. Over this region the models204

display the same shape with positive anomalies between 50oS and 70oS with a peak around205

60oS and then steadily decreasing anomaly values from 60oS to 45oS in every case. While206

the form of the curve is similar in each case the magnitude of the bias differs significantly207
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between the models. This difference can reach up to 15 Wm−2 meaning that some mod-208

els have a mostly positive bias over this region while others are mostly negative. The na-209

ture of this bias is similar to a result identified in Schuddeboom et al. (2019) where the210

Southern Ocean featured two different regional biases, although the result in this paper211

is much weaker than shown in the previous work.212

Next the ∆CRE and |CRE| are calculated with equations 1 and 2 and plotted in213

figure 2. Figure 2 (a) shows results averaged globally for the cluster analysis, while fig-214

ure 2 (b) only examines the Southern Ocean region. In figure 2 the Southern Ocean is215

defined as the region between 40◦S and 70◦S to ensure it includes both of the large spikes216

visible in figure 1 (b). For the models with multiple runs, each model member is shown217

along with the ensemble mean. Examination of these runs highlights that they show lit-218

tle difference from the ensemble mean. Additionally, to determine if these results are rep-219

resentative, the same analysis was completed using data from 2009 and 2010 (see figure220

S1 in supplementary information) and differences are very minor. Also included in both221

sub-figures is the Pearson correlation coefficient, however this should be interpreted care-222

fully as the values are not statistically significant.223

The global values in figure 2 (a) show little coherent structure between the differ-224

ent models. In the mean error there appear to be two groups of models, MRI-ESM, HadGEM225

and UKESM which show higher mean errors of around 5 Wm−2 and all of the other mod-226

els which show mean errors around 1 Wm−2. The compensating errors show less struc-227

ture with values over a large range. Notably, the IPSL model shows compensating er-228

rors that are around 10 Wm−2 larger than the next largest model. Overall, it seems that229

CESM2, CNRM-ESM2 and CNRM-CM6 are the standout models when both metrics230

are considered with MRI-ESM2 also having notably small compensating errors. This fig-231

ure also demonstrates the importance of considering the compensating errors as both IPSL232

and GFDL appear to be amongst the most accurate models in the mean error, but are233

the least accurate in the compensating error. In all models the compensating errors are234

significantly larger than the mean errors suggesting significant work is still required to235

improve the representation of clouds in climate models. For example, consider the best236

performing model in |CRE|, CESM2. CESM2 has a mean error of around 1 Wm−2 and237

a total compensating error of around 34 Wm−2. This suggests that CESM2 actually has238

compensating errors of 16.5 and 17.5 Wm−2 that are cancelling out to give the mean239

error of 1 Wm−2.240
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Figure 2. The ∆CRE and |CRE| for each of the models. Subplot (a) shows the global average

values while subplot (b) covers the entire Southern Ocean region, defined here as between 40◦S

and 70◦S. For models with multiple runs, IPSL and HadGEM3, the individual runs are indicated

with a + symbol for IPSL and × symbol for HadGEM3. To aide interpretation of this figure

recall that ∆CRE can be considered the mean SW CRE error and |CRE| the magnitude of the

SW CRE compensating errors. This means that an ideal model would minimize both ∆CRE and

|CRE| and appear near the origin. The variables on each of the axis are described by equations 1

and 2. The Pearson correlation coefficients are included in the top right of each subplot with any

results that are statistically significant in bold.

The Southern Ocean values shown in figure 2 (b) display a completely different struc-241

ture compared to the global values in figure 2 (a). Over the Southern Ocean, the mod-242

els show a clear structure in which an increase in the mean error corresponds to a re-243

duction in the compensating errors. There is one major outlier, the IPSL model, which244

as in the global data has significantly larger compensating errors than other models. Look-245

ing at the other models, they appear to fall on a line between CESM2 and CNRM-ESM2.246

CESM2 has the lowest mean error of around 3 Wm−2, but the largest (excluding IPSL)247

|CRE| of around 70 Wm−2. While CNRM-ESM2 has the largest mean error of 16 Wm−2
248

and the smallest |CRE| of 40 Wm−2. This suggests compensating errors of 33.5 and 36.5249

Wm−2 for CESM2 and 12 and 28 Wm−2 for CNRM-ESM2. Special mention should also250

be made of the UKESM and HadGEM models as they have relatively small ∆CRE and251

|CRE|. The relationship between the mean and compensating biases identified in figure252

2 (b) appears to be related to ordering of the models over the Southern Ocean in figure253

1 (b). This suggests a relationship between the geographic nature of the SW CRE bi-254
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ases and the magnitude of compensating errors. We also note that the errors derived over255

the Southern Ocean are larger than those observed globally which is associated with the256

fact that the occurrence of specific cloud clusters is more flawed when averaged over the257

Southern Ocean than when averaged over the globe.258

Without examining other regions it is hard to contextualize the results over the South-259

ern Ocean. As such, figure 3 shows the ∆CRE and |CRE| over six different regions of260

the globe. An alternative representation which shows the mean and compensating er-261

rors as a function of latitude is also included in the supplementary information as fig-262

ure S2. The region that covers the majority of the Southern Ocean, the midlatitude South-263

ern Hemisphere, shows a strongly negative statistically significant relationship between264

∆CRE and |CRE|. The correlation coefficients also suggest negative relationships in the265

Northern Hemisphere regions. The two bands that cover the Southern Ocean also show266

considerably larger mean and compensating errors than the other geographic regions ex-267

amined. Overall, these results show that the negative relationship identified in figure 2268

(b) is strongest over the Southern Ocean and is only statistically significant over that269

region.270

We now examine whether the mean and compensating cloud errors, which quan-271

tify the misrepresentation in the CTP-COT histograms in the models relative to satel-272

lite observations, have any relationship to ECS (figure 4). Figure 4 displays the relation-273

ship between mean and compensating errors with ECS for the globe and the Southern274

Ocean. This enables an exploration of whether compensating errors over the Southern275

Ocean are a driving factor in the higher low-level cloud feedbacks which drive high ECS276

values (Zelinka et al., 2020). As with figure 2, this figure is recreated using data from277

2009 and 2010 and is included in the supplementary information as figure S3. Once again278

the differences between these figures are minimal. To more quantitatively evaluate the279

trends presented figures 2 and 4 alternate versions of these figures with a line of best fit280

determined by linear regression are included in the supplementary information as figure281

S4 and S5.282

The global mean errors shown in figure 4 (a) suggest only a weak relationship be-283

tween global mean SW CRE error and ECS. As described earlier, MRI-ESM, HadGEM284

and UKESM show much larger global mean errors than the other models however the285

MRI-ESM is the smallest ECS model used in this paper and the HadGEM and UKESM286
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Figure 3. The ∆CRE and |CRE| for each of the models. The subplots show regions defined

as following: (a) 90◦N to 60◦N , (b) 60◦N to 30◦N , (c) 30◦S to 0◦N , (d) 90◦S to 60◦S, (e) 60◦S

to 30◦S and (f) 30◦S to 0◦S. The variables on each of the axis are described by equations 1 and

2. The Pearson correlation coefficients are included in the top right of each subplot with any

results that are statistically significant in bold.

are the two largest. The global compensating errors in figure 4 (b) show more structure,287

but again do not show a clear relationship between compensating errors and ECS and288

the correlation coefficient suggests no relationship. At first glance it appears that the289

highest ECS models have the lowest compensating errors, but this is mostly due to the290

poor performance of the IPSL and GFDL models. Ultimately there might be more co-291

herent patterns for both these figures, but the limited number of models makes it un-292

clear and further work should add more models into this analysis as the data becomes293

available.294

The Southern Ocean errors in figure 4 (c) and (d) display some level of coherence295

between the different models. The mean errors in figure 4 (c) display a complicated struc-296

ture that can be be interpreted in two different ways. While the general tendency is that297

lower mean error models have higher ECS, this interpretation is complicated by the av-298

erage performance of HadGEM and UKESM. An alternative interpretation is to group299

the models into three groups. First, CESM by itself, then GFDL, IPSL, HadGEM and300
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Figure 4. The ECS and the mean and compensating SW CRE errors of the included CMIP6

models. This includes both global values and values over the Southern Ocean, defined here as

between 40◦S and 70◦S. Subplot (a) shows the global ∆CRE, subplot (b) shows global |CRE|,

subplot (c) shows the Southern Ocean ∆CRE and subplot (d) shows Southern Ocean |CRE|.

∆CRE and |CRE| are described in equations 1 and 2 and the ECS values are taken from Meehl

et al. (2020). The Pearson correlation coefficients are included in the top left of each subplot with

any results that are statistically significant in bold.

UKESM and finally, MRI-ESM and the two CNRM models. With this interpretation301

a greater mean error would correspond to a larger ECS. The line of best fit in supple-302

mentary figure S5 and the correlation coefficient suggest the negative relationship is more303

likely, but it is not statistically significant. Figure 4 (d) shows the clearest negative re-304

lationship with the highest ECS models showing the smallest compensating errors, al-305

though the relationship is weak. These results suggest a further examination of both the306

IPSL and CESM2 models as they have a clear position as outliers.307
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5 Conclusion308

This paper focuses on eight models from CMIP6 which have released AMIP runs309

with the appropriate data for the SW CRE to be evaluated with the techniques intro-310

duced in Schuddeboom et al. (2019). This methodology examines cloud cluster in terms311

of their frequency of occurrence and their radiative properties to derive both the mean312

and cumulative error in the shortwave cloud radiative effect (SW CRE). Initially the zonal313

distribution of SW CRE was compared across all the models. This identified that there314

was generally good agreement between the models and CERES observations, although315

there were two regions, the Tropics and the Southern Ocean, where clear model disagree-316

ment with the observations occurred. The issues over the Tropics are not explored fur-317

ther in the current work, but is an area worthy of further investigation.318

Next the mean and compensating errors in SW CRE were analyzed for each of the319

eight models using ∆CRE and |CRE|. Both globally and over the Southern Ocean the320

compensating errors are shown to be large relative to the mean errors. While there was321

no clear relationship between mean and compensating errors in the global results, there322

is a strong negative relationship over the Southern Ocean. Models with small mean er-323

rors over the Southern Ocean consistently have large compensating errors and vice versa.324

This suggests that the models with the high mean errors may better simulate the South-325

ern Ocean region but errors that are being cancelled out in other models increase the326

mean value. This behaviour possibly stems from a geographical bias identified in the zonal327

mean SW CRE.328

In addition to the Southern Ocean, other geographical regions were examined. While329

several relationships are suggested between mean and compensating errors, the strongest330

and only statistically significant relationship was observed over the Southern Ocean. The331

mean and compensating errors were also directly evaluated against the ECS taken from332

Meehl et al. (2020). Globally, there was no clear relationship between model ECS and333

its mean or compensating errors. Over the Southern Ocean there appears to be a weak334

relationship that suggested that a model with a strong ECS was more likely to have lower335

mean and compensating errors, though we emphasise that this relationship is not sta-336

tistically significant. The exact strength of these relationships are uncertain due to the337

limited number of available models.338
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The main result of this study is that the mean and compensating errors related to339

clouds in these models display a negative relationship over polar and midlatitude regions,340

most strongly observed over the Southern Ocean. This suggests that recent model im-341

provements targeted at removing shortwave radiative biases over the Southern Ocean342

relative to satellite observations have only partially corrected the issues and that other343

errors still exist when the distribution of cloud types and their radiative properties are344

considered. Unfortunately, the small number of models with suitable outputs is a ma-345

jor limitation on this study. We hope that as a wider array of models release appropri-346

ate data it will become possible to reach more definitive conclusions about the relation-347

ship between SW CRE errors over the Southern Ocean and ECS. In addition to adding348

extra models, the authors also plan on using this approach to evaluate the impact of changes349

made to models between CMIP5 and CMIP6. This could potentially lead to the iden-350

tification of the parts of the model that need further improvements.351
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(b) Southern Ocean SW CRE 
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Figure S1. The ∆SW CRE and |SW CRE| for each of the models. Subplot (a) shows

the global average values while subplot (b) covers the entire Southern Ocean region,

defined here as between 40◦S and 70◦S. This figure is the same as figure 2 from the main

body of the paper but generated with the data from 2009 and 2010 instead of 2007 and

2008.
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(b) Compensating SW CRE  
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Figure S2. The ∆SW CRE and |SW CRE| for each of the models across a wide range

of latitudes. Subplot (a) shows the ∆SW CRE in six different latitudinal regions while

subplot (b) shows |SW CRE| over the same region. The six latitudinal bands are 90◦S to

60◦S, 60◦S to 30◦S, 30◦S to 0◦S, 0◦S to 30◦N , 30◦N to 60◦N and 60◦N to 90◦N
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(c) Southern Ocean Mean Errors 
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(d) Southern Ocean Compensating Errors 
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Figure S3. The ECS and the mean and compensating SW CRE errors of the included

CMIP6 models. This includes both global and Southern Ocean data, defined here as

between 40◦S and 70◦S. Subplot (a) shows the global ∆SW CRE, subplot (b) shows

global |SW CRE|, subplot (c) shows the Southern Ocean ∆SW CRE and subplot (d)

shows Southern Ocean |SW CRE|. This figure is the same as figure 3 from the main body

of the paper but generated with the data from 2009 and 2010 instead of 2007 and 2008.
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(a) Global SW CRE 
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(b) Southern Ocean SW CRE 
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Figure S4. The ∆SW CRE and |SW CRE| for each of the models. Subplot (a) shows

the global average values while subplot (b) covers the entire Southern Ocean region,

defined here as between 40◦S and 70◦S. Included is a line of best fit determined with a

simple linear regression.
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(c) Southern Ocean Mean Errors 
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(d) Southern Ocean Compensating Errors 
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Figure S5. The ECS and the mean and compensating SW CRE errors of the included

CMIP6 models. This includes both global and Southern Ocean, defined here as between

40◦S and 70◦S, confined data. Subplot (a) shows the global ∆SW CRE, subplot (b)

shows global |SW CRE|, subplot (c) shows the Southern Ocean ∆SW CRE and subplot

(d) shows Southern Ocean |SW CRE|. Included is a line of best fit determined with a

simple linear regression.

September 5, 2020, 10:10pm


	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4

