
P
os
te
d
on

30
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
41
89
/v

2
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Statistics and Forecasting of Aftershocks during the 2019

Ridgecrest, California, Earthquake Sequence

Robert Shcherbakov1,1

1Western University

November 30, 2022

Abstract

The 2019 Ridgecrest, California, earthquake sequence represents a complex pattern of seismicity that is characterized by the

occurrence of a well defined foreshock sequence followed by a mainshock and subsequent aftershocks. In this work, a detailed

statistical analysis of the sequence is performed. Particularly, the parametric modelling of the frequency-magnitude statistics

and the earthquake occurrence rate is carried out. It is shown that the clustering of earthquakes plays an important role during

the evolution of this sequence. In addition, the problem of constraining the magnitude of the largest expected aftershocks to

occur during the evolution of the sequence is addressed. In order to do this, two approaches are considered. The first one is

based on the extreme value theory, whereas the second one uses the Bayesian predictive framework. The latter approach has

allowed to incorporate the complex earthquake clustering through the Epidemic Type Aftershock Sequence (ETAS) process

and the uncertainties associated with the model parameters into the computation of the corresponding probabilities. The

results indicate that the inclusion of the foreshock sequence into the analysis produces higher probabilities for the occurrence of

the largest expected aftershocks after the M7.1 mainshock compared to the approach based on the extreme value distribution

combined with the Omori-Utsu formula for the earthquake rate. Several statistical tests are applied to verify the forecast.
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Abstract13

The 2019 Ridgecrest, California, earthquake sequence represents a complex pattern of14

seismicity that is characterized by the occurrence of a well defined foreshock sequence15

followed by a mainshock and subsequent aftershocks. In this work, a detailed statisti-16

cal analysis of the sequence is performed. Particularly, the parametric modelling of the17

frequency-magnitude statistics and the earthquake occurrence rate is carried out. It is18

shown that the clustering of earthquakes plays an important role during the evolution19

of this sequence. In addition, the problem of constraining the magnitude of the largest20

expected aftershocks to occur during the evolution of the sequence is addressed. In or-21

der to do this, two approaches are considered. The first one is based on the extreme value22

theory, whereas the second one uses the Bayesian predictive framework. The latter ap-23

proach has allowed to incorporate the complex earthquake clustering through the Epi-24

demic Type Aftershock Sequence (ETAS) process and the uncertainties associated with25

the model parameters into the computation of the corresponding probabilities. The re-26

sults indicate that the inclusion of the foreshock sequence into the analysis produces higher27

probabilities for the occurrence of the largest expected aftershocks after the M7.1 main-28

shock compared to the approach based on the extreme value distribution combined with29

the Omori-Utsu formula for the earthquake rate. Several statistical tests are applied to30

verify the forecast.31

Plain Language Summary32

Strong earthquakes typically trigger the subsequent sequence of events known as33

aftershocks. Among those, the largest aftershocks can pose significant hazard and result34

in additional damage to infrastructure already weakened by the mainshock. Therefore,35

the estimation of the magnitude of the largest expected aftershock is of critical impor-36

tance. This problem can be addressed within the statistical modelling of the occurrence37

of earthquakes. In this work, the 2019 Ridgecrest, California, earthquake sequence is cho-38

sen to illustrate and compare several approaches to constrain the magnitudes of the largest39

expected aftershocks during the evolution of the sequence. The first approach uses the40

extreme value theory and the modelling of the earthquake rate based on the Omori-Utsu41

formula. Whereas, the second approach uses a recently formulated method based on the42

Bayesian predictive analysis and the Epidemic Type Aftershock Sequence (ETAS) model43

to approximate the earthquake rate. The obtained results indicate that the latter ap-44
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proach produces statistically accurate forecast for the magnitudes of the largest expected45

earthquakes. This is verified by applying several statistical tests.46

1 Introduction47

The occurrence of a significant mainshock presents an opportunity to test differ-48

ent existing or novel statistical approaches to model the evolution of the corresponding49

sequences of earthquakes that precede and follow the mainshock. Among several statis-50

tical measures, the computation of the probability to have the magnitude of the largest51

expected earthquake to be above a certain value during a predefined future time inter-52

val is of critical importance. In this respect, the 2019 Ridgecrest, California, earthquake53

sequence represents the latest highly productive and non-standard sequence to be an-54

alyzed in detail.55

The problem of constraining the magnitudes of the largest expected aftershocks is56

important as these aftershocks can inflict further damage to already weakened by a main-57

shock structures or the evolution of the sequence can trigger even larger subsequent events58

(Gerstenberger et al., 2005; Shebalin et al., 2011; Omi et al., 2013; Page et al., 2016).59

The standard approach is to use the past seismicity to compute the probabilities of hav-60

ing subsequent strong earthquakes during a finite future time interval. The most recog-61

nized model was formulated by Reasenberg and Jones (1989) for California based on the62

analysis of the past aftershock sequences. In that model, the probabilities are computed63

from the extreme value distribution by assuming that the occurrence of earthquakes fol-64

lows a non-homogeneous Poisson process, the earthquake rate is approximated by the65

Omori-Utsu formula and the frequency-magnitude statistics is described by the left-truncated66

exponential distribution. Reasenberg and Jones (1989) estimated the average values of67

the model parameters to be used in California. However, a recent work by Hardebeck68

et al. (2019) introduced improvements to the original model by analysing more recent69

sequences, introducing the ability to control the early incompleteness of aftershock se-70

quences, and using the Bayesian updating of the model parameters. These developments71

contributed to the introduction of the operational aftershock forecasting in the U.S. by72

the U.S. Geological Survey (Michael et al., 2019). A similar approach has been under-73

taken in Japan to create a real-time system for automatic aftershock forecasting (Omi74

et al., 2016, 2019). Earthquake forecasting centers also operate in New Zealand (Rhoades75
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et al., 2018) and Italy (Taroni et al., 2018), where the evaluation of earthquake proba-76

bilities and assessment of earthquake hazard are routinely performed.77

A critical aspect of any earthquake forecasting methods is their prospective/retrospective78

testing and validation (Kagan & Jackson, 1995). This is consistently implemented by79

the Collaboratory for the Study of Earthquake Predictability (CSEP) (Schorlemmer et80

al., 2007; Zechar et al., 2010; Schorlemmer et al., 2018; Gerstenberger et al., 2020). Within81

the CSEP framework several statistical methods were developed to test the short/long82

term earthquake forecasts. Those methods test the consistency of a given forecasting scheme83

to reproduce the observed number of earthquakes, their spatial and magnitude distri-84

butions during the forecasting time interval (Zechar et al., 2010). They also incorporate85

likelihood based approaches to compare various forecasting schemes. For example, this86

framework was used to test the performance of aftershock forecasts during the 2011 To-87

hoku, Japan, earthquake (Nanjo et al., 2012), the 2010 Canterbury, New Zealand, earth-88

quake sequence (Rhoades et al., 2016; Cattania et al., 2018), and the 2016 Kaikoura, New89

Zealand, earthquake sequence (Rhoades et al., 2018).90

An early systematic empirical study of aftershocks concluded that the largest oc-91

curred aftershock on average was approximately 1.2 magnitude less than the magnitude92

of a mainshock (B̊ath, 1965). This is referred to as B̊ath’s law. Subsequently, it was pro-93

posed that the difference was independent of the number of events and its mean value94

was proportional to the inverse of the b-value (Vere-Jones, 1969, 1975). More recent stud-95

ies have provided further details on this difference (Console et al., 2003; Shcherbakov &96

Turcotte, 2004; Tahir et al., 2012; Shearer, 2012; Shcherbakov et al., 2013). The after-97

shock sequences also exhibit scaling with respect to the lower magnitude cutoff (Shcherbakov98

et al., 2004; Shcherbakov, Turcotte, & Rundle, 2005; Shcherbakov et al., 2006, 2015).99

An important limitation of all earthquake catalogs is the early aftershock incom-100

pleteness (Kagan, 2004; Peng et al., 2006; Hainzl, 2016b, 2016a). This incompleteness101

can affect the estimation of the model parameters if the magnitude of completeness is102

underestimated. As a result, this can significantly influence the calculation of the prob-103

abilities for the occurrence of extreme earthquakes. To recover partially the true rate a104

variable magnitude of completeness can be considered (Helmstetter et al., 2006; Omi et105

al., 2014; Page et al., 2016). Several approaches were suggested to recover the aftershock106

rate by using the information of early aftershocks in order to estimate the probability107
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of larger subsequent events during future evolution of the sequences (Omi et al., 2013;108

Ebrahimian et al., 2014; Omi et al., 2016).109

The occurrence of strong earthquakes typically produces spatial and temporal clus-110

ters. This clustering is a result of triggering by preceding earthquakes that can lead to111

a cascade of events with a complicated branching structure (Felzer et al., 2004). To de-112

scribe such a clustering, the ETAS model was introduced that offers a realistic and quan-113

tifiable approximation to the earthquake occurrence rate (Ogata, 1988, 1999, 2017). Par-114

ticularly, it can model the rate of earthquakes punctuated by the occurrence of strong115

earthquakes. This also allows to quantify the increased earthquake hazard after a main-116

shock by incorporating the triggering ability of foreshocks, a mainshock, and subsequent117

aftershocks. It also can be used for short-term forecasting of large earthquakes by study-118

ing past seismicity (Helmstetter et al., 2006; Werner et al., 2011; Ogata, 2017; Ebrahimian119

& Jalayer, 2017; Harte, 2017; Omi et al., 2019).120

After the occurrence of the 2019 Ridgecrest earthquakes, several approaches have121

been used to study the statistical and triggering aspects of this sequence. The operational122

earthquake forecasting was documented based on the UCERF3-ETAS model (Milner et123

al., 2020; Savran et al., 2020). Retrospective analysis of the historic seismicity in Cal-124

ifornia and its relation to the initiation of the 2019 Ridgecrest sequence was performed125

(Ogata & Omi, 2020). Predictive skills of the models based on the Coulomb stress trans-126

fer were analyzed (Mancini et al., 2020; Toda & Stein, 2020). The triggering of aftershocks127

during the evolution of the sequence was studied using the stress-similarity model (Hardebeck,128

2020). The question of changes in the stress field inferred from past seismicity and its129

relation to the initiation of the Ridgecrest sequence and subsequent relaxation was ad-130

dressed in Nanjo (2020).131

In this paper, a detailed statistical analysis of the 2019 Ridgecrest earthquake se-132

quence was performed to study its temporal evolution and frequency-magnitude statis-133

tics. In addition, several methods were considered to estimate the probabilities to have134

the largest expected aftershock to be above a certain magnitude during several stages135

of the evolution of the sequence. The computation of probabilities was performed using136

two approaches, i.e., the one based on the extreme value theory and the second one us-137

ing the Bayesian predictive distribution. These approaches assume parametric models138

for the earthquake occurrence rate and the frequency-magnitude statistics. Specifically,139
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the Omori-Utsu (OU) law (Omori, 1894; Utsu, 1961; Utsu et al., 1995), the compound140

Omori-Utsu law (Ogata, 1983), and the Epidemic Type Aftershock Sequence (ETAS)141

process (Ogata, 1988, 1999, 2017) were used to approximate the earthquake rate. The142

frequency-magnitude statistics of earthquakes was modelled by the left-truncated expo-143

nential distribution (Vere-Jones, 2010). The obtained results, which are reported below,144

suggest that the clustering of earthquakes plays an important role in approximating the145

earthquake rate and as a consequence can significantly affect the computation of the prob-146

abilities for the occurrence of the largest expected aftershocks.147

The paper is organized as follows. In Section 2, the statistical methods used in the148

study are summarized and explained. In Section 3, a detailed analysis of the sequence149

is presented. The retrospective validation of the forecasting results is given in Section150

4. In Section 5, the obtained results are summarized and evaluated. The last section presents151

concluding remarks.152

2 Data and Methods153

2.1 The 2019 Ridgecrest earthquake sequence154

The 2019 Ridgecrest earthquake sequence started on July 4th when several small155

events of low magnitude occurred not far away from the town of Ridgecrest in Califor-156

nia. Then, two strong foreshocks of magnitudes M3.98 and M6.4 struck on 2019/07/04157

at 17:02:55 UTC and 17:33:49 UTC, respectively (Figure 1). These events were followed158

by a well-developed aftershock sequence that culminated in the occurrence of M7.1 main-159

shock on 2019/07/06 (03:19:53 UTC), which in turn generated a more prolific aftershock160

sequence. The M6.4 foreshock ruptured several predominantly strike-slip, left-lateral fault161

segments, whereas the M7.1 mainshock occurred on a system of several right-lateral fault162

segments conjugate to the rupture of the M6.4 foreshock (Ross et al., 2019; Barnhart et163

al., 2019). Many of the foreshocks and subsequent aftershocks of the M7.1 mainshock164

occurred on numerous secondary faults adjacent to the main rupture faults. It was sug-165

gested that this earthquake sequence occurred in an immature fault zone with a com-166

plex fault structure (Ross et al., 2019; Liu et al., 2019).167

To analyze the 2019 Ridgecrest earthquake sequence, the earthquake catalog pro-168

vided by the Southern California Seismic Network (SCSN, 2020) was used. The spatial169

distribution of seismicity during 14 days starting from 2019/07/04 (17:02:55 UTC) is shown170
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Figure 1. The distribution of earthquake epicentres of the 2019 Ridgecrest, California, se-

quence during 14 days starting from 2019/07/04 (17:02:55 UTC). Dark red solid squares within

an elliptical zone indicate foreshocks above magnitude m ≥ 3.2 during 1.428 days before the

occurrence of the M7.1 mainshock on 2019/07/06 (03:19:53 UTC). Similarly, blue solid circles

indicate aftershocks of the M7.1 mainshock. The focal mechanisms of the M7.1 mainshock and

M6.4 foreshock are plotted as beach balls. All other earthquakes above magnitude m ≥ 2.0 are

shown as black solid circles. The quaternary faults are plotted as light brown line segments.
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in Figure 1. This includes the occurrence of the M6.4 foreshock on 2019/07/04 (17:33:49171

UTC) and the occurrence of the M7.1 mainshock on 2019/07/06 (03:19:53 UTC). Their172

focal mechanisms are also shown and were obtained from the SCSN Moment Tensor cat-173

alog (SCSN, 2020). The foreshock-aftershock zone for the sequence is defined as an el-174

liptical region outlining the majority of earthquakes that occurred near the ruptures of175

both the M6.4 foreshock and M7.1 mainshock. Figure 1 also shows the quaternary faults176

for this region extracted from the U.S.G.S. Quaternary fault and fold database (USGS,177

2006).178

When analyzing seismicity, several time intervals, during which the parameters of179

statistical models can be estimated or future evolution of the seismicity can be quanti-180

fied, are defined. Specifically, the past seismicity is extracted during the training time181

interval [T0, Te]. To minimize the effect of earlier earthquakes in the sequence, the train-182

ing time interval is typically subdivided into a preparatory time interval [T0, Ts] and a183

target time interval [Ts, Te] during which the parameters of the earthquake models are184

estimated. One also considers a forecasting time interval [Te, Te + ∆T ] during which185

specific measures of seismicity can be computed or evolution of seismicity can be fore-186

casted. For properly estimating the parameters of earthquake models, it is also impor-187

tant to consider the seismicity above the magnitude of completeness mc as typical earth-188

quake catalogs have missing events below this magnitude.189

For the statistical modeling of seismicity, the occurrence of earthquakes can be con-190

sidered as a realization of a stochastic marked point process in time (Daley & Vere-Jones,191

2003; Vere-Jones, 2010). In this representation, the earthquakes are characterized by their192

occurrence times ti and magnitudes mi represent corresponding marks. The occurrence193

of earthquakes during a specified time interval can be arranged in an ordered set S =194

{(ti,mi)} : i = 1, ..., n. In one simplified assumption, the occurrence of earthquakes195

in the sequence can be described by a non-homogeneous Poisson marked point process196

(Utsu et al., 1995; Shcherbakov, Yakovlev, et al., 2005), where magnitudes and the time197

intervals between successive events are not correlated.198
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2.2 Exponential Distribution and the Gutenberg-Richter Scaling Re-199

lation200

The frequency-magnitude statistics of earthquake magnitudes is typically modelled201

by the left-truncated exponential distribution (Vere-Jones, 2010):202

fθ(m) = β exp [−β (m−m0)] , (1)

Fθ(m) = 1− exp [−β (m−m0)] , for m ≥ m0 , (2)

where fθ(m) is the probability density, Fθ(m) is the cumulative distribution function,203

and θ = {β} is the model parameter. m0 is a given lower magnitude cutoff set above204

the catalog completeness level m0 ≥ mc. All earthquakes above m0 during the target205

time interval [Ts, Te] are used to estimate the model parameter β.206

The parameter β is related to the b-value of the Gutenberg-Richter (GR) scaling207

relation, β = ln(10)b (Gutenberg & Richter, 1944):208

log10N (≥ m) = a− bm , (3)

where N (≥ m) is the cumulative number of earthquakes above magnitude m. The GR209

relation combines two aspects of the occurrence of earthquakes, i.e. the frequency-magnitude210

statistics of earthquake magnitudes and the average rate of the occurrence of earthquakes,211

which is quantified through the parameter a. N (≥ 0) = 10a gives the total number of212

earthquakes above magnitude zero that occurred during the corresponding time inter-213

val.214

The standard method to estimate the parameter β (or b-value) is to use the max-215

imum likelihood approach, which has an analytic solution for the point estimator of the216

parameter of the exponential distribution. However, in typical earthquake catalogs the217

magnitudes are binned and not continuous variables. Therefore, one needs to apply a218

corrected estimator, which explicitly assumes the binning of the magnitudes (Bender,219

1983). For the estimation of the parameter uncertainties at a given confidence level in220

case of binned magnitudes one can use the method suggested in Tinti and Mulargia (1987).221

2.3 Omori-Utsu Law222

The occurrence of moderate to large earthquakes, in most cases, triggers subsequent223

aftershock sequences and results in the rise of seismic activity. The most accepted model224
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that reproduces the rate of the occurrence of aftershocks is know as the Omori-Utsu (OU)225

law (Omori, 1894; Utsu, 1961; Utsu et al., 1995):226

λω(t) =
Ko

(t+ co)po
, (4)

where λω is the rate of aftershocks per unit time for events above a certain magnitude227

m0. ω = {Ko, co, po} are the OU model parameters. The time t is elapsed since T0 =228

0, which corresponds to the time of the occurrence of the mainshock. The parameter Ko229

describes the productivity of the sequence, co is a characteristic time, and po specifies230

how fast or slow the sequence decays in time. The parameters can be estimated using231

the maximum likelihood method and parameter uncertainties are computed using the232

inverse of the Fisher information matrix, which is derived from the likelihood function233

(Ogata, 1983, 1999). In this model, it is assumed that the occurrence of earthquakes can234

be approximated by a non-homogeneous Poisson process, where earthquake magnitudes235

are independent and identically distributed (i.i.d.) random numbers and do not influ-236

ence the future earthquake rate. The Bayesian approach to estimate the parameters and237

their uncertainties of the OU law was also implemented (Holschneider et al., 2012).238

The Omori-Utsu law is applicable to ”standard” aftershock sequences with a sin-239

gle mainshock and a consistently decaying rate. However, in some cases the earthquake240

sequence can be punctuated by several strong shocks each one of them producing their241

own aftershocks. In that case, a compound Omori-Utsu model can be considered (Ogata,242

1983; Shcherbakov et al., 2012). In a case of two strong earthquakes, it is written as:243

λω(t) =
K1

(t+ c1)p1
+H(t− τm)

K2

(t− τm + c2)p2
, (5)

where ω = {K1, c1, p1, K2, c2, p2}, time t is elapsed since the occurrence of the first244

event at T0 = 0 and τm is the time of the occurrence of the second strong event. H(x)245

is a Heaviside step function and is equal to one for positive x ≥ 0 and is zero otherwise.246

For the times past the occurrence of the second strong earthquake (t ≥ τm), Eq. (5)247

defines the earthquake rate as a superposition of two aftershock sequences triggered by248

the both strong earthquakes.249

2.4 Epidemic Type Aftershock Sequence (ETAS) Model250

The occurrence of earthquakes is characterized by the clustering of seismicity. This251

clustering is a direct manifestation of the ability of earthquakes to trigger subsequent252
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events. The ETAS model was introduced to reflect this essential aspect of the occurrence253

of earthquakes (Ogata, 1988, 1999, 2017). In the temporal version of the model, the con-254

ditional earthquake rate λω(t|Ht) at a given time t is given as (Ogata, 1988; Harte, 2010):255

λω(t|Ht) = µ+K

Nt∑
i:ti<t

eα(mi−m0)(
t−ti
c + 1

)p , (6)

where ω = {µ, K, c, p, α} is a set of parameters and m0 is a reference magnitude. The256

summation is performed over the history, Ht, of past events up to time t during the time257

interval [T0, t]. Nt is the number of earthquakes in the interval [T0, t] above the lower258

magnitude cutoff m0. In the ETAS process, a certain fraction of earthquakes occurs ran-259

domly with a constant rate µ. These earthquakes are associated with background seis-260

micity driven by tectonic loading and can be modelled as a homogeneous Poisson pro-261

cess. It is also postulated that each earthquake is capable of triggering its own offsprings.262

As a result, the total earthquake rate at a given time, is a superposition of the background263

rate given by µ and the contribution from each already occurred earthquake.264

As the ETAS rate, Eq. (6), is conditioned on past seismicity H, one has to min-265

imize the effect of lack of earthquakes at the start of the sequence when estimating the266

ETAS parameters. For this, one can consider a short time interval [T0, Ts] before the tar-267

get time interval [Ts, Te]. The earthquakes in the interval [T0, Ts] can be used to prop-268

erly estimate the conditional earthquake rate during the target time interval [Ts, Te]. The269

explicit forms of the log-likelihood function and the productivity of the ETAS model were270

given in Shcherbakov et al. (2019). The ETAS parameters ω = {µ, K, c, p, α} are es-271

timated in the target time interval [Ts, Te] by maximizing the likelihood function and272

the uncertainties are computed using the inverse of the Fisher information matrix.273

2.5 Extreme Value Distribution274

For the sequence of earthquake that can be described as a non-homogeneous Pois-275

son process, the probability that the magnitude of the largest expected event will exceed276

m for all possible number of events during a future time interval [Te, Te+∆T ] can be277

computed from the extreme value distribution (EVD) (Campbell, 1982; Coles, 2001; Da-278

ley & Vere-Jones, 2003):279

PEV(mex > m|θ, ω,∆T ) = 1− exp{−Λω(∆T ) [1− Fθ(m)]} , (7)

where the productivity is Λω(∆T ) =
∫ Te+∆T

Te
λω(t) dt. Using the exponential model for280

the magnitude distribution, Eq. (2), this results in the Gumbel distribution for the mag-281
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nitudes of extreme earthquakes:282

PEV(mex > m|θ, ω,∆T ) = 1− exp{−Λω(∆T ) exp [−β (m−m0)]} . (8)

Assuming that the earthquake rate is described by the OU law (4), the productiv-283

ity Λω(∆T ) can be computed explicitly and takes the following form for po 6= 1:284

Λω(∆T ) = Ko
(Te + co)

1−po − (Te + ∆T + co)
1−po

po − 1
. (9)

Given a set of parameters {θ, ω}, which can be estimated from past seismicity during285

the training time interval [Ts, Te], Eqs. (8) and (9) allow to compute the probability to286

have the extreme earthquake above magnitude m during a future time interval ∆T . It287

is equivalent to the computation of the probabilities given in Reasenberg and Jones (1989).288

For the compound OU model (5) the productivity Λω(∆T ) can be expressed as fol-289

lows for p1 6= 1 and p2 6= 1:290

Λω(∆T ) = K1
(Te + c1)1−p1 − (Te + ∆T + c1)1−p1

p1 − 1
+

K2
(Te − τm + c2)1−p2 − (Te + ∆T − τm + c2)1−p2

p2 − 1
, (10)

where τm is the time of the occurrence of the second strong earthquake during the train-291

ing time interval [Ts, Te].292

2.6 Bayesian Predictive Distribution293

The computation of the EVD (7) using specific parametric models for the earth-294

quake rate and frequency-magnitude statistics, requires the knowledge of the model pa-295

rameters. However, the true values of the model parameters are not known for specific296

earthquake sequences. As a result, the parameter estimates are used, which are computed297

with a given range of uncertainties. Those uncertainties can significantly affect the com-298

putation of the corresponding probabilities. The incorporation of the model uncertain-299

ties into the computation of probabilities can be achieved through the Bayesian predic-300

tive distribution (BPD) (Zöller et al., 2013; Shcherbakov et al., 2018, 2019). The BPD301

for the largest expected event mex to be greater than a certain value m and during the302

forecasting time interval ∆T is:303

PB(mex > m|S,∆T ) =

∫
Ω

∫
Θ

PEV(mex > m|θ, ω,∆T ) p(θ, ω|S) dθ dω , (11)
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where Θ and Ω define the multidimensional domains of the frequency-magnitude distri-304

bution and earthquake rate parameters, respectively. When computing the predictive305

distribution, Eq. (11), the model parameter uncertainties are fully integrated into the306

BPD (Renard et al., 2013; Shcherbakov et al., 2019). This is done through the use of the307

posterior distribution function p(θ, ω|S), which characterizes the distribution of the model308

parameter uncertainties.309

For the ETAS model, the extreme value distribution for the extreme events does310

not follow Eq. (7), due to stochastic nature of the process, which deviates from a non-311

homogeneous Poisson process. In this case, one can compute the extreme value distri-312

bution by stochastic simulation of the ETAS model and extracting the maximum mag-313

nitude from each simulated sequence (Shcherbakov et al., 2019).314

To compute the BPD (11) for a given training time interval, first, the Markov Chain315

Monte Carlo (MCMC) sampling of the posterior distribution is performed to generate316

a chain of the ETAS parameters using the Metropolis-within-Gibbs algorithm. The gen-317

erated chains of length Nsim are used to simulate the ensemble of the ETAS processes318

forward in time during the forecasting time interval ∆T . From each simulated sequence319

the maximum event is extracted and the distribution of these maxima approximates the320

BPD (Shcherbakov et al., 2019).321

3 Results322

3.1 Frequency-Magnitude Statistics323

The earthquakes within an elliptical region, given in Figure 1, were extracted dur-324

ing predefined target time intervals. The frequency-magnitude statistics of earthquake325

magnitudes were computed for the foreshock sequence starting from 2019/07/04 (17:02:55326

UTC) which corresponds to T0 = 0 and during the target time interval [Ts, Te] = [10−4, 1.428]327

days. It was also computed for the aftershocks of the M7.1 mainshock starting from 2019/07/06328

(03:19:53 UTC) during 7 days after the mainshock. The frequency-magnitude statistics329

was also computed for the whole sequence including both foreshocks and aftershocks dur-330

ing 31 days. The results are given in Figure 2 as open symbols for events larger than m ≥331

2.0. The maximum likelihood fits of the exponential distribution, Eq. (2), to the frequency-332

magnitude data above m ≥ 3.2 are shown as GR plots with estimated b-values using333
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Figure 2. The frequency-magnitude statistics of earthquakes in the sequence and the mod-

elling by the Gutenberg-Richter relation, Eq. (3). The symbols (representing the cumulative

numbers) correspond to the foreshocks of the M7.1 mainshock (open squares), the aftershocks

of the mainshock (open circles), and for the whole sequence (open diamonds). The fits of the

GR relation are plotted as straight lines. The estimated b-values are given in the legend for all

earthquakes above m ≥ 3.2. The uncertainties are given as 95% confidence intervals.

the method of Bender (1983) and their 95% confidence intervals according to Tinti and334

Mulargia (1987).335

The sequence exhibited a change in the slope of the frequency-magnitude statis-336

tics around a magnitude 3.2. This was the reason to use only the events above this value337

in the analysis. This change in the behavior can be the result of the early aftershock in-338

completeness observed right after the M6.4 foreshock and the M7.1 mainshock or it can339

be related to the fact that the aftershocks occurred on a distributed fault network and340

the geometrical distribution of fault sizes affected the statistics of earthquake magnitudes.341

The fit of the exponential distribution, Eq. (2), (or the corresponding Gutenberg-Richter342

relation) to the frequency-magnitude statistics of the foreshock and aftershock sequences343

produced the b-values which were typical for tectonic earthquakes as illustrated in Fig-344

ure 2. The largest aftershock of the M7.1 mainshock had a magnitude 5.5 and occurred345

less than half an hour after the mainshock. Two more strong aftershocks of magnitude346
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4.7 and 5.0 occurred later in the sequence on 20th and 48th days after the mainshock.347

The value of the largest occurred aftershock is lower than what would be expected from348

B̊ath’s law (B̊ath, 1965). It is possible that the M6.4 foreshock partially released the ac-349

cumulated strain energy in the region and this resulted in a lower magnitude of the largest350

occurred aftershock.351

3.2 Earthquake Rate Evolution and Modelling352

First, the earthquake rate was modelled separately for the foreshock and aftershock353

sequences using the OU law (4). The results are given in Figure 3 for all earthquakes above354

magnitude m ≥ 3.2. For the foreshock sequence, the following target time interval was355

used [Ts, Te] = [10−3, 1.407] days with T0 = 0 corresponding to 2019/07/04 (17:33:49356

UTC). For the aftershock sequence, T0 = 0 was set to the occurrence of the M7.1 main-357

shock on 2019/07/06 (03:19:53 UTC) with the target time interval [Ts, Te] = [10−3, 30]358

days. The OU law parameters for the foreshock and aftershock sequences are given in359

the legend with the corresponding 95% confidence intervals. The earthquake decay rates360

after the M6.4 foreshock and M7.1 mainshock exhibited a consistent pattern observed361

in other prominent aftershock sequences. The fit of the OU law (4) produced p = 0.99±362

0.18 for the foreshock sequence and p = 1.28 ± 0.07 for the aftershock sequence (Fig-363

ure 3). The smaller p-value for the foreshock sequence can be the result of a strong M5.36364

foreshock that occurred 16.2 hours before the M7.1 mainshock and triggered its own se-365

quence of events.366

Next, the compound OU model (5) was used to fit the sequence starting from the367

occurrence of the M6.4 foreshock on 2019/07/04 (17:33:49 UTC) corresponding to T0 =368

0 and during the following target time interval [Ts, Te] = [10−3, 8.407] days. This is369

illustrated in Figure 4 and Figure S1. The maximum likelihood fitting of the compound370

OU model yielded the following parameters {K1, c1, p1, K2, c2, p2} = {23.22, 0.0026, 0.93, 40.3, 0.034, 1.59}.371

The ETAS model (6) was fitted to the 2019 Ridgecrest sequence using a number372

of target time intervals. In one particular example, the training time interval [Ts, Te] =373

[0.03, 8.428] days was used with T0 = 0 corresponding to the start date 2019/07/04 (17:02:55374

UTC). The estimated conditional rate, Eq. (6), and the corresponding earthquake mag-375

nitudes above m ≥ 3.2 are plotted in Figure 5 and Figure S2. For comparison, the sep-376
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Figure 3. The earthquake decay rates for the foreshock sequence (solid squares) and for the

aftershock sequence (solid circles). The corresponding fits of the Omori-Utsu law, Eq. (4), to the

foreshock (dash-dotted line) and aftershock (dashed line) sequences. The estimated parameters

with the corresponding 95% confidence intervals are given in the legend.

arate fits of the Omori-Utsu law to the foreshocks and aftershocks of the M7.1 mainshock377

are also plotted with the parameters given in Figure 3.378

Finally, the point estimates of the model parameters and their 95% confidence in-379

tervals were computed at predefined times during the evolution of the sequence (Figure 6).380

The reported b-value at time 1.428 days corresponds to the foreshock sequence starting381

from the occurrence of the M3.98 event on 2019/07/04 (17:02:55 UTC). The frequency-382

magnitude statistics and the fitting of the GR relation to the foreshock sequence is also383

illustrated in Figure 2. The subsequent estimates of b-values at days 1d, 2d, etc., cor-384

respond to the time duration of the aftershock sequence since the M7.1 mainshock (Fig-385

ure 6a). Similarly, the parameters of the OU law (4) were estimated during the same time386

intervals (Figure 6b). In addition, the point estimates of the ETAS model parameters387

were also computed (Figure 6c). The parameter µ was held constant at µ = 0.05 to im-388

prove the stability of the parameter estimation. It was assumed that the background seis-389

micity rate for earthquakes above magnitude m ≥ 3.2 was relatively low in this region390

prior to the start of the sequence.391
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Figure 4. The occurrence of earthquakes during the evolution of the 2019 Ridgecrest sequence

and the fitting of the compound Omori-Utsu law, Eq. (5). T0 = 0 corresponds to the occurrence

of M6.4 foreshock on 2019/07/04 (17:33:49 UTC). The earthquake magnitudes are plotted as

open diamond symbols. The cumulative number of earthquakes is plotted as open circles. The

dashed curve corresponds to the fit of the compound Omori-Utsu law, Eq. (5). The correspond-

ing fit of the cumulative numbers is given as a solid curve.
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Figure 5. The occurrence of earthquakes during the evolution of the 2019 Ridgecrest sequence

and the fitting of the ETAS model, Eq. (6). The start of the sequence T0 = 0 corresponds to the

time of the occurrence of the M3.98 foreshock on 2019/07/04 (17:02:55 UTC). The ETAS model

is fitted to the sequence during the target time interval [Ts, Te] = [0.03, 8.428] days. The esti-

mated conditional earthquake rate (solid curve) is plotted using the following ETAS parameters:

µ = 0.05, K = 2.64, c = 0.015, p = 1.41, and α = 2.10. For comparison, the Omori-Utsu law fit,

Eq. (4), is plotted as a short-dashed curve.
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Figure 6. Point estimates of the model parameters during the evolution of the 2019 Ridge-

crest sequence. The start of the sequence T0 = 0 corresponds to the time of the occurrence of the

M3.98 foreshock on 2019/07/04 (17:02:55 UTC). All the events above magnitude m ≥ 3.2 were

used to compute the parameters using the maximum likelihood method. The point estimates of

a) the b-value; b) the Omori-Utsu parameters, Eq. (4), and c) the ETAS parameters, Eq. (6), are

plotted. The 95% confidence intervals are also given. The vertical dashed lines correspond to the

times in days since the occurrence of the M7.1 mainshock.
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Figure 6. Continued.

–20–



manuscript submitted to JGR: Solid Earth

3.3 Forecasting the Magnitude of the Largest Expected Earthquake392

The EVD (7) and the BPD (11) were used to compute retrospectively the prob-393

abilities of having the largest expected earthquakes to occur during predefined times of394

the evolution of the 2019 Ridgecrest earthquake sequence. This was done both before395

and after the occurrence of the M7.1 mainshock using the OU (4), compound OU (5),396

or ETAS (6), parametric models for the earthquake rate and the exponential distribu-397

tion, Eq. (2), for the distribution of earthquake magnitudes. When computing the prob-398

abilities for the aftershock sequence generated by the M7.1 mainshock two cases were399

analyzed. In the first consideration, only the aftershocks were used. However, when us-400

ing the ETAS model and the compound OU model the foreshock sequence was also in-401

corporated into the analysis.402

First, the only aftershocks of the M7.1 mainshock were used to compute the prob-403

abilities of having the strongest aftershocks above a specified magnitude during a future404

time interval of ∆T = 7 days. The occurrence of the M7.1 mainshock on 2019/07/06405

(03:19:53 UTC) corresponded to T0 = 0 with the target time interval [Ts, Te] = [10−4, 1]406

days. One particular example is given in Figure 7, where the EVD (8) was computed af-407

ter 1 day and plotted as a short dashed violet curve. The following model parameter es-408

timates were used: {β, Ko, co, po} = {2.28, 39.85, 0.038, 1.65}. The corresponding prob-409

abilities to have strong aftershocks above mex ≥ 5.0, 6.1, 7.1 are also given.410

Next, the BPD (11) was computed using the aftershocks of the M7.1 mainshock411

during different training time intervals to forecast the magnitudes of the largest expected412

earthquakes to occur during the evolution of the sequence. The OU law (4) was used to413

approximate the earthquake rate. The exponential distribution, Eq. (2), was used to model414

the frequency-magnitude statistics. The forecasting time interval was fixed at ∆T = 7415

days. The computed BPD to estimate probabilities for the largest expected aftershocks416

above magnitude m ≥ 3.2 during one day after the mainshock is plotted in Figure 7417

as a dash-dotted cyan curve. This was done by employing the MCMC sampling of the418

posterior distribution and the Gamma distribution for the priors of the model param-419

eters (Shcherbakov et al., 2019). The total number of 200,000 MCMC sampling steps420

were performed for each model. The first 100,000 steps were discarded as ”burn in” and421

the remaining Nsim = 100, 000 sampling steps were used for the synthetic model sim-422

ulations or analysis. For the OU model, this is given in Figure S3. The distribution of423
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Figure 7. The extreme value and the Bayesian predictive distributions for the 2019 Ridge-

crest sequence. The BPD is shown as a solid red curve using the ETAS model and MCMC

sampling with the Gamma prior for the foreshocks and 1 day of aftershocks after the M7.1 main-

shock. For the same sequence of events, the EVD using the compound OU law is shown as a

dashed blue curve. For the rest of the distributions, 1 day of aftershocks after the M7.1 main-

shock was used: the OU rate using the MCMC sampling with the Gamma prior (dash-dotted

cyan curve); the Gumbel distribution with OU rate (short dashed violet curve).
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the OU model parameters computed from the MCMC chain is illustrated in Figure S4.424

The matrix plot of the pairs of the OU model parameters is given in Figure S5. The val-425

ues for the mean and variance of the prior distribution (Gamma) of the OU model pa-426

rameters are provided in Table S1.427

To investigate the influence of the foreshocks on the computation of the probabil-428

ities for the largest expected aftershocks, the EVD (8) using the compound OU law (5)429

and the BPD using the ETAS model (6) were computed for the earthquake sequence start-430

ing from the occurrence of the first M3.98 foreshock on 2019/07/04 (17:02:55 UTC). The431

earthquakes above magnitude m ≥ 3.2 were used. In case of the BPD with the ETAS432

model, the target time interval [Ts, Te] = [0.03, 2.428] days was used with T0 = 0 cor-433

responding to 2019/07/04 (17:02:55 UTC), which included the foreshocks and one day434

of aftershocks after the M7.1 mainshock. The values for the mean and variance of the435

prior distribution (Gamma) of the compound OU and ETAS model parameters are pro-436

vided in Tables S2-S3. The resulting BPD is plotted as a solid red curve in Figure 7. The437

probabilities of having the largest expected earthquakes during the next ∆T = 7 days438

are provided in the legend. For the same sequence, the EVD (8) with the compound OU439

law (10) was computed and the corresponding probabilities to have the largest aftershocks440

during the next ∆T = 7 days were estimated. This is plotted as a dashed blue curve441

in Figure 7. The MCMC sampling steps are given in Figure S6. The distribution of the442

compound OU model parameters computed from the MCMC chain is illustrated in Fig-443

ure S7. The matrix plot of the pairs of the compound OU model parameters is given in444

Figure S8.445

The probabilities to have the largest expected earthquake above a certain magni-446

tude can be computed at specified times during the evolution of the sequence. This can447

be done by increasing progressively the upper limit Te of the target time interval [Ts, Te]448

for a fixed forecasting interval ∆T . Figure 8 illustrates the computed probabilities from449

the BPD (11) with the ETAS model (6) for the earthquake rate, and the exponential dis-450

tribution, Eq. (2), for the frequency-magnitude statistics. T0 = 0 corresponded to the451

date 2019/07/04 (17:02:55 UTC) and Ts = 0.03 days. The MCMC sampling steps, the452

distribution of the ETAS model parameters, and the matrix plot of the pairs of the ETAS453

parameters are given in Figures S9-S11 for the following target time interval [Ts, Te] =454

[0.03, 2.4284] days. The probabilities were estimated for the largest expected earthquakes455

to be above mex ≥ 4.5, 5.0, 6.1, 6.4, and 7.1. First, the probabilities were computed456
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Figure 8. The probabilities for the largest expected earthquake to be above the magni-

tudes mex ≥ 4.5, 5.0, 6.1, 6.4, 7.1 and during the progressively increasing time intervals since

2019/07/04 (17:02:55 UTC). The probabilities are estimated using the BPD combined with

the ETAS model for the earthquake rate during the forecasting time interval ∆T = 7 days and

plotted in a logarithmic scale. The earthquake magnitudes of the 2019 Ridgecrest sequence are

plotted as open diamonds for all events above magnitude m ≥ 3.2. The fit of the ETAS model is

shown as a solid curve.

using only the foreshock sequence right before the occurrence of the M7.1 mainshock with457

Te = 1.4284 days. After that, the probabilities were recomputed for each subsequent458

day after the M7.1 mainshock by incorporating the information from the newly occurred459

aftershocks. For reference, the fit of the ETAS model is also shown as a red curve us-460

ing the following estimated model parameters {β, µ, K, c, p, α} = {2.39, 0.05, 3.47, 0.01, 1.35, 2.05}461

during the training time interval [Ts, Te] = [0.03, 15.4284] days. The forecast evolu-462

tion during 330 days after the occurrence of the M7.1 mainshock is given in Figure S12.463

It also illustrates the computed probabilities before the occurrence of the M5.5 event,464

which occurred on June 4, 2020.465
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Figure 9. The comparison of the computed probabilities for the largest expected after-

shock to be above magnitude mex ≥ 6.1 during the progressively increasing time intervals since

2019/07/04 (17:02:55 UTC) for the fixed forecasting time interval ∆T = 7 days. The four models

were considered: the EVD with the OU law (solid squares), the EVD with the compound OU

formula (solid circles), the BPD with the ETAS model (solid triangles), and the BPD with the

OU law (solid diamonds).

Finally, Figure 9 provides a comparison of the results for the computation of the466

probabilities to have the expected largest aftershock to be greater than mex ≥ 6.1 af-467

ter progressively increasing times Te during the evolution of the sequence by using sev-468

eral methods examined in this work. The forecasting time interval was set to ∆T = 7469

days. Specifically, the EVD with the OU law, Eqs. (8) and (9), was used and the esti-470

mated probabilities are plotted as solid squares. Next, the compound OU law (10) was471

used in the EVD computation and the results are plotted as solid circles. The computed472

probabilities from the BPD (11) with the ETAS model (6) as the earthquake rate are473

plotted as solid triangles. Finally, the probabilities were computed from the BPD with474

the earthquake rate modelled using the standard OU law (4) and are plotted as solid di-475

amonds.476
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4 Forecast Validation477

The extreme value distribution, Eq. (8), and the Bayesian predictive distribution,478

Eq. (11), allow to compute the probability of having the expected largest event during479

the forecasting time interval ∆T . This computation critically depends on the proper sim-480

ulation of the earthquake rate and the frequency-magnitude distribution of earthquakes481

during ∆T . Therefore, it is important to perform specific statistical tests to validate ret-482

rospectively as to how the models, that are used to describe those aspects of seismicity,483

accurately reproduce the observed earthquakes during the forecasting time intervals. One484

such test has been developed for the CSEP testing framework and is known as the N-485

test (Kagan & Jackson, 1995; Schorlemmer et al., 2007; Zechar et al., 2010). This test486

is used to quantify as to how accurately a given stochastic process reproduces the ob-487

served number of earthquakes above a certain magnitude during the forecasting time in-488

terval.489

The following implementation of the N-test is considered in this work. It is assumed490

that Nobs earthquakes above magnitude m0 occurred during a given forecasting time in-491

terval [Te, Te + ∆T ]. The posterior distribution of the parameters of a given stochas-492

tic point process model is sampled by the MCMC method Nsim times using the infor-493

mation of the earthquakes that occurred during the training time interval [Ts, Te]. The494

MCMC sets of the model parameters are used to model forward in time a given point495

process during the forecasting time interval ∆T . The synthetic simulations produce the496

distribution of the number of the forecasted events at the end of the interval ∆T cor-497

responding to each MCMC set of model parameters. The N-test statistically assesses whether498

the observed number of earthquakes Nobs is consistent with the forecast. The two quan-499

tile scores are computed (Zechar et al., 2010):500

δ1 = 1− P (Nobs − 1|Nfore) , (12)

δ2 = P (Nobs|Nfore) , (13)

where Nfore is the average number of forecasted events above magnitude m0 at the end501

of the forecasted time interval Te+∆T . P (x|λ) is the cumulative Poisson distribution502

with the expectation λ. As a result, δ1 gives the probability of observing at least Nobs503

events and δ2 gives the probability of observing at most Nobs events. The forecast un-504

derpredicts the observations if δ1 is very small and the forecast overpredicts the obser-505

vation if δ2 is very small. Therefore, one can consider a one-sided test with an effective506
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significance level αeff . If the computed probabilities δ1 and δ2 are smaller than αeff then507

the forecast can be rejected.508

The second test, which is known as M-test, has been suggested to check whether509

the distribution of the forecasted magnitudes is consistent with the observed magnitudes510

(Schorlemmer et al., 2007; Zechar et al., 2010). The M-test is performed by computing511

a quantile score κ. The values of κ below a significance level αeff signify that the distri-512

bution of forecasted earthquake magnitudes is inconsistent with observations. The de-513

tails of computing the κ score can be found in Zechar et al. (2010).514

Two more tests have been introduced to compare the performance of different fore-515

casting models. These are known as R-test and T-test (Schorlemmer et al., 2007; Rhoades516

et al., 2011). The R-test is performed by computing the log-likelihood ratio for two mod-517

els under consideration. The joint log-likelihood for given earthquake observations dur-518

ing the forecasting time interval can be written as follows:519

L(M|Λ) = log [Pr(M|Λ)] =
∑
i∈B

{−λ(i) +m(i) log[λ(i)]− log[m(i)!]} , (14)

where M = {m(i)|i ∈ B} is the set of the number of earthquakes m(i) in each mag-520

nitude bin above a certain magnitude threshold. Λ = {λ(i)|i ∈ B} is the earthquake521

forecast produced by a given point process in each magnitude bin, where λ(i) is the num-522

ber of earthquakes forecasted in bin i and the magnitude binning coincides with the bin-523

ning of the earthquake catalog. In the definition of the joint log-likelihood, Eq. (14), it524

is assumed that the number of earthquakes in a forecast bin follows a Poisson distribu-525

tion: Pr(m|λ) = λm

m! exp(−λ). To compare two models, Λ1 and Λ2, that forecast the526

same sequence of events one can compute the log-likelihood ratio: R21 = L(M|Λ2) −527

L(M|Λ1).528

In applying the R-test, one of the two models is assumed to be correct and is used529

to simulate the ensemble of synthetic earthquake events and compute the log-likelihood530

ratios for each synthetic record by using both models. These ratios are compared with531

the log-likelihood ratio computed for the observed earthquake sequence during the fore-532

casting interval. The properly normalized fraction of the simulated ratios that are less533

than the observed ratio gives the quantile score α (Schorlemmer et al., 2007). The val-534

ues of α, that are larger than a certain significance level, support the model that was as-535

sumed to be correct. This test is symmetric with respect to both models and can result536

in the situations when both models reject each other (Rhoades et al., 2011). To over-537
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come this difficulty, a so called T-test was introduced along with the sample informa-538

tion gain per earthquake (Rhoades et al., 2011). The sample information gain per earth-539

quake of the model Λ2 over the model Λ1 is defined as IN (Λ2,Λ1) = R21/Nobs, where540

Nobs is the number of observed earthquakes during the forecasting time interval ∆T . The541

T-test checks whether the sample information gain is statistically different from zero that542

indicates a significant difference between the two models (Rhoades et al., 2011).543

One important difference in performing the above tests is implemented in this work.544

To account for the stochastic variability of the model parameters and the uncertainty545

associated with the prior information on the model parameters, the MCMC sampling546

of the posterior distribution of the model parameters is performed to produce a chain547

of model parameters that are used when simulating the models forward in time during548

the forecasting time interval.549

The N-, M-, R-, and T-tests check the consistency of the underlying earthquake550

rate and frequency-magnitude distribution models. To test the consistency of the Bayesian551

predictive distribution, Eq. (11), with the observed largest earthquakes during the fore-552

casting time interval [Te, Te + ∆T ], one can evaluate the posterior predictive p-value553

(Gelman et al., 2013, p.146). The Bayesian pB-value gives the probability that the largest554

simulated earthquakes can be more extreme than the observed largest earthquake dur-555

ing the forecasting time interval. It is defined as follows:556

pB = Pr [T (ŷ, θ, ω) ≥ T (y, θ, ω)|y] , (15)

where T (y, θ, ω) is a test quantity computed for an observed variable y and simulated557

variable ŷ. The test quantity T (y, θ, ω) characterizes data y with given model param-558

eters θ and ω. It is used for model checking in Bayesian analysis similar to a test statis-559

tic in classical testing. One possible choice for the test quantity is: T (y, θ, ω) = max(y).560

In practice, the Bayesian pB-value can be computed from the MCMC chain of the model561

parameters θ and ω. For each set of the model parameters, the stochastic forecasting model562

is simulated forward in time and the largest event is extracted. This will allow to com-563

pute T (ŷ, θ, ω) = max(ŷ). The realized test quantity T (y, θ, ω) = max(y) is simply564

the value of the largest observed earthquake during the forecasting time interval. There-565

fore, the estimated pB-value is the proportion of the test quantities for the simulated max-566

imum events that are larger than the observed largest event:567

pB =
|{T (ŷ, θi, ωi) ≥ T (y)|i = 1, ..., Nsim}|

Nsim
, (16)
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where Nsim is the total number of simulated sequences from the MCMC chain and |x|568

gives the size of the set x.569

4.1 Application to the 2019 Ridgecrest sequence570

The three point process models (OU, compound OU, and ETAS) were examined571

to see whether they were consistent with the observed seismicity during the forecasting572

time intervals [Te, Te+∆T ]. For this, N- and M-tests were performed. Figure 10a shows573

the observed number of earthquakes above magnitude m ≥ 3.2 (as solid black diamonds)574

during a fixed forecasting time interval ∆T = 7 days and varying training time inter-575

val [Ts, Te]. The numbers are plotted at the end of the forecasting time interval with the576

training interval ending after 1, 2, 3, 4, 5, 6, 7, 10, 14, 30 days after the M7.1 mainshock577

(the corresponding Te = 2.4284, 3.4284, ..., 22.4284, 31.4284). For example, the first578

symbol at Te + ∆T = 9.4284 days gives 89 earthquakes above magnitude 3.2 that oc-579

curred during 7 days starting after 1 day (Te = 2.4284) after the M7.1 mainshock. It580

also shows the average forecasted numbers of earthquakes with the corresponding 95%581

bands (plotted as shaded regions) simulated by the three models. Each model was sim-582

ulated Nsim = 100, 000 times forward in time during ∆T = 7 days and for the vary-583

ing ends of the training time interval Te. For each model simulation, the parameters were584

chosen from the MCMC chain obtained by sampling the posterior distribution of the model585

parameters. This allowed to incorporate the variability of the model parameters into the586

forecasted numbers. Similarly, Figure 10b illustrates the observed and forecasted num-587

ber of earthquakes when the end of the training time interval was held fixed at Te = 3.4284588

days (2 days after the M7.1 mainshock) and the forecasting time interval varied ∆T =589

1, 2, 5, 7, 10, 14 days. For the compound OU and ETAS models the preceding foreshock590

sequence was used. For the OU model only the aftershocks of the M7.1 mainshock were591

used.592

To analyze to what extent the considered models underpredicted or overpredicted593

the observed sequence of earthquakes, the N-test was performed. The quantile scores com-594

puted during the N-test corresponding to the forecasting of the number of earthquakes595

are illustrated in Figure 11ab. Two threshold quantiles are plotted at 0.025 and 0.05 lev-596

els. δ1 and δ2 scores, Equations (12) and (13), were computed and plotted for the three597

models for the same forecasting time intervals of duration ∆T = 7 days as used in Fig-598

ure 10a. In addition, the results of the M-test for the three models and for the same fore-599
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Figure 10. The observed and forecasted numbers of earthquakes starting after one day of

aftershocks post M7.1 mainshock and during specified forecasting and training time intervals by

using the three rate models: Omori-Utsu (OU), compound OU, and ETAS. a) The forecasting

time interval ∆T = 7 days is fixed while the end of the training time interval Te is progressively

increasing as Te = 2.428, 3.428, ..., 22.428, 31.428 days. The symbols indicate the number of the

observed (black solid diamonds) and the mean number of forecasted earthquakes during ∆T = 7

days computed at times Te + ∆T . b) The end of the training time interval is fixed at Te = 3.428

days while the forecasting time interval is increasing as ∆T = 1, 2, 5, 7, 10, 14. The shaded

bands correspond to 95% confidence intervals.
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Figure 10. Continued.

casting time intervals are plotted in Figure 11c, where the quantile score κ character-600

izes the consistency of the forecasted earthquake magnitudes compared to the observed601

ones in each forecasting time interval. The quantile scores in a case of the varying fore-602

casting time interval ∆T = 1, 2, 5, 7, 10, 14 days and fixed training time interval Te =603

3.4284 days are given in Figure S13.604

The models were also compared among each other by applying the R- and T-tests.605

Two pairs of the models were considered, i.e. the forecasts produced by the ETAS model606

versus the model with the OU law and the ETAS model versus the model with the com-607

pound OU law. The results of the quantile score α for the R-test are plotted in Figure 12.608

The scores α were computed at the end of each forecasting time interval of duration ∆T609

as in Figure 10a. The corresponding sample information gain IN (Λ2,Λ1) for each pair610

of the models is given in Figure 13. The quantile score α and the information gain per611

earthquake in a case of the varying forecasting time interval ∆T = 1, 2, 5, 7, 10, 14 days612

and fixed training time interval Te = 3.4284 days are given in Figures S14 and S15. In613

both pairs of models, it was assumed that the ETAS model (with the forecast Λ2) is the614
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Figure 11. Plot of the quantile scores a) δ1 (N-test), b) δ2 (N-test), and c) κ (M-test) for the

performance of the aftershock forecasts based on the three point process models. The scores are

computed at the end of each forecasting time interval of fixed duration ∆T = 7 days and varying

training time intervals [Ts, Te] as in Figure 10.
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Figure 11. Continued.

correct model to simulate the synthetic sequences of events during the forecasting time615

intervals.616

Finally, the Bayesian pB-value, Eq. (16), was computed for the three models. This617

is plotted in Figure 14 for the varying training time intervals. Figure S16 illustrates the618

dependency of the pB-value on the varying forecasting time interval as in Figure S14.619

5 Discussion620

The 2019 Ridgecrest earthquake sequence occurred in a complex network of fault621

structures. It generated a prominent foreshock sequence that culminated in the occur-622

rence of the M7.1 mainshock, which was followed by a productive aftershock sequence.623

This complexity of the sequence was partially reflected in the frequency-magnitude statis-624

tics of foreshocks and aftershocks. It also manifested in the clustering of earthquakes in625

time and in space. The complex pattern of multi-segmented ruptures of the two strongest626

events in the sequence contributed to the assumed stress transfer pattern, which affected627

the distribution of subsequent triggered aftershocks.628
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Figure 12. Plot of the quantile score α (R-test) for the comparative test of the ETAS model

versus the forecast based on the OU model and on the compound OU model. The scores are

computed at the end of each forecasting time interval as in Figure 11.
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Figure 13. The sample information gain for the pairs of the models. The solid squares cor-

respond to the comparison of the forecasts based on the ETAS model versus the forecasts based

on the OU model. The solid diamonds correspond to the comparison of the forecasts based on

the ETAS model versus the forecast based on the compound OU model. The 95% confidence

intervals are given.
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Figure 14. Plot of the Bayesian predictive distribution pB-value for the three models. The

pB-values are computed at the end of each forecasting time interval as in Figure 11.

One of the main objectives of this work was to provide a framework to compute629

the probabilities for the occurrence of the largest expected aftershocks during different630

stages of the evolution of this sequence by incorporating the preceding seismicity. This631

was accomplished through two main approaches. The first one was based on the assump-632

tion that the occurrence of earthquakes could be modelled as a non-homogenous Pois-633

son process with a specified parametric model for the earthquake rate and the frequency-634

magnitude distribution. Specifically, one can use the OU law (4) or the compound OU635

law (5) and the exponential distribution for the earthquake magnitudes, Eq. (2). Then,636

the probabilities can be estimated from the EVD (8) for a specific forecasting time in-637

terval ∆T by using the point estimates of the model parameters. The second approach638

employed the computation of the BPD (11), which allowed to incorporate the uncertain-639

ties of the model parameters into the computation of the corresponding probabilities.640

This approach also requires to provide certain a priori knowledge on the model param-641

eters specified through the prior distributions.642
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The comparison of these two approaches with the combination of the three mod-643

els for the earthquake rate and either including or excluding the foreshocks is illustrated644

in Figure 7. The results clearly illustrate that the inclusion of the foreshocks along with645

the earthquake rate models that favour earthquake clustering produces higher probabil-646

ities for the occurrence of the largest expected earthquakes during the specified forecast-647

ing period of ∆T = 7 days.648

It is interesting to note, the 2019 Ridgecrest earthquake sequence bears a striking649

similarity to the 2016 Kumamoto, Japan, earthquake sequence. Both sequences had a650

pronounced foreshock sequence which was triggered by the strong foreshocks of similar651

magnitudes (M6.4 vs. M6.5) and duration. They occurred on the different fault segments652

than the mainshock fault rupture. The b-values of the GR relation and p values of the653

OU law were also smaller than the values for the aftershocks generated by the mainshocks.654

The mainshock magnitudes were also similar (M7.1 vs. M7.3) and had the strike-slip mech-655

anisms. It is difficult to pin point the common stress conditions and state of faults that656

lead to the occurrence of both sequences but some clues may be inferred from the seis-657

micity patterns that preceded and followed both events and can be related to the changes658

in the stress field (Nanjo et al., 2019; Nanjo, 2020).659

To validate the three stochastic models, several statistical tests (N-, M-, R-, and660

T-tests) were applied retrospectively for several combinations of the training and fore-661

casting time intervals. The results of the N-test indicate that the OU model underes-662

timated the observed number of earthquakes for most of the forecasting time intervals.663

The compound OU model performed better especially in the early stages of the evolu-664

tion of the sequence. The ETAS model approximated the observed number of earthquakes665

during the all considered forecasting time intervals, however, the ETAS model also had666

wider 95% spread in the number of forecasted earthquakes (Figure 10). This is the con-667

sequence of the branching nature of the ETAS process and the deviation of the distri-668

bution of the number of events from the Poisson distribution. The ETAS model was also669

consistent in reproducing the distribution of the magnitudes in each bin that is illustrated670

in Figure 11c through the κ quantile score of the M-test.671

The comparative analysis of the ETAS model versus the OU and the compound672

OU models also confirmed that the forecast based on the ETAS model outperformed the673

forecasts based on the other two models. This is illustrated in Figure 12, where the quan-674
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tile score α from the R-test is plotted at the end of each forecasting time interval. The675

values of the score above the threshold level 0.025 indicate that the ETAS model out-676

performed the other two models. The similar conclusion is drawn from the plot (Figure 13)677

of the sample information gain IN (Λ2,Λ1). The results of the T-test confirmed that the678

ETAS model provided a statistically significant information gain with respect to the mod-679

els based on the OU or compound OU rates except for the last forecasting interval end-680

ing at 38.4284 days, where the ETAS model and the model based on the compound OU681

rate performed similarly. For the last forecasting time interval ending at Te + ∆T =682

38.4284 days, there were only three events above magnitude m ≥ 3.2. The compound683

OU model produced relatively close results when computing the probabilities for the oc-684

currence of the largest expected earthquakes (Figure 9).685

One limitation of the above tests (M-, R-, T-) based on the computing of the joint686

log-likelihoods, Eq. (14), is that they assume that the distribution of the number of earth-687

quakes in the forecasting time interval is Poisson. This is true for the both point pro-688

cess models based on the OU law. However, the ETAS model deviates from the Pois-689

son assumption. This was already demonstrated in Shcherbakov et al. (2019) when com-690

puting the Bayesian predictive distribution. Therefore, the application of these tests to691

the ETAS based models has to be considered approximate.692

The above tests implemented in this work used the MCMC sampling of the pos-693

terior distribution of the model parameters. This allowed to incorporate the stochastic694

variability of the model parameters and the uncertainties associated with the prior in-695

formation on the model parameters into the computation of the resulting probabilities696

and when performing the statistical tests. The consistency of the Bayesian predictive dis-697

tribution was evaluated by estimating the Bayesian pB-value, Eq. (16). The values of pB698

within a reasonable range (say [0.05, 0.95]) indicate that a model is expected to repro-699

duce a specific aspect of the data given by the test quantity T (y). Whereas, the values700

close to 0 or 1 signify that this aspect of the data is not captured by the model. All the701

three models were consistent in reproducing the observed largest earthquakes in each fore-702

casting time interval.703

The analysis of the 2019 Ridgecrest earthquake sequence showed that the Bayesian704

predictive framework combined with the ETAS model outperformed more traditional ap-705

proaches based on the Omori-Utsu type models when using the extreme value distribu-706
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tion to compute the probabilities for the occurrence of the largest events. The latter ap-707

proach uses point estimates of the model parameters to compute the corresponding prob-708

abilities. However, large uncertainties associated with these model parameters can re-709

sult in significant underestimation/overestimation of the probabilities for the largest ex-710

pected events or the numbers of earthquakes above a certain magnitude during the fore-711

casting time intervals. This is particularly evident for the Omori-Utsu law, where the712

productivity of the process is controlled by the Ko parameter, which is typically estimated713

with large uncertainties (Marsan & Helmstetter, 2017; Shebalin et al., 2020). On the other714

hand, the Bayesian framework fully incorporates these model uncertainties into the com-715

putation of the probabilities. It also allows to account for the correlations among the model716

parameters. In addition, the Bayesian approach provides a flexible way of separating those717

uncertainties into epistemic and aleatory types (Kiureghian & Ditlevsen, 2009; Gersten-718

berger et al., 2020). It allows to control the epistemic uncertainties through the prior in-719

formation of the model parameters and incorporates the aleatory variability of the stochas-720

tic process through the earthquake rate models and the frequency-magnitude distribu-721

tions.722

6 Conclusions723

The 2019 Ridgecrest earthquake sequence was characterized by the complex clus-724

tering of seismicity with earthquakes occurring on a distributed fault network. It also725

presented a good opportunity to analyze the sequence retrospectively in order to test sev-726

eral statistical approaches to study the sequence in temporal and magnitude domains727

and to forecast the occurrence of the largest expected aftershocks during the evolution728

of the sequence.729

Two approaches were used to compute the probabilities of having the largest ex-730

pected earthquakes to be above certain magnitudes after specified time intervals and dur-731

ing the fixed forecasting time interval ∆T = 7 days. For the first approach, the EVD (8)732

with the OU law (4) or the compound OU formula (5) was used. In the second approach,733

the Bayesian predictive distribution, Eq. (11), combined with the OU law or the ETAS734

model (6) was used. The comparison of these approaches are illustrated in Figure 9.735

Applying these two approaches to the 2019 Ridgecrest earthquake sequence revealed736

that the incorporation of the foreshock sequence for the subsequent computation of the737
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probabilities to have the largest expected aftershocks above a certain magnitude was im-738

portant. This was also relevant to the choice of the model to approximate the earthquake739

rate. Specifically, the compound OU law (5) and the ETAS model (6) provided a bet-740

ter approximation for the earthquake rate than the OU law (4) applied separately to the741

foreshock and aftershock sequences during the forecasting time intervals. These conclu-742

sions have been verified by several statistical tests. In addition, a new test based on the743

Bayesian pB-value was implemented and applied to check the consistency of the Bayesian744

predictive distribution. Overall, the ETAS model passed the tests most of the time and745

was successful in reproducing the observed number of earthquakes and the distribution746

of magnitudes. As a result, the computed probabilities using the Bayesian predictive dis-747

tribution (Figure 8) for the largest expected earthquake during the evolution of the 2019748

Ridgecrest sequence can be considered accurate.749

Data and Resources750

The Southern California Seismic Network database, SCSN (2020), https://service751

.scedc.caltech.edu/eq-catalogs/date\ mag\ loc.php, was used to download the seis-752

mic catalog (last accessed on December 1, 2020).753

U.S. Geological Survey and California Geological Survey quaternary fault and fold754

database for the United States , USGS (2006), was downloaded from the USGS web site:755

https://earthquake.usgs.gov/hazards/qfaults/ (last accessed on June 1, 2020).756

The data analysis was performed using computer scripts written in Matlab and can757

be requested from the author.758

The Supporting Information for this article includes Tables S1-S3 with the param-759

eters of the Gamma distribution, which was used as a prior distribution for the param-760

eters of the three models considered in the work. It also includes plots illustrating the761

fit of the compound OU (Figure S1) and the ETAS (Figure S2) models. The MCMC sam-762

pling of the model parameters for the OU (Figures S4-S5), the compound OU (Figures S6-763

8), the ETAS (Figures S9-S11) models are provided for one specific training and fore-764

casting time intervals. The forecast evolution during 330 days after the occurrence of the765

M7.1 mainshock is given in Figure S12. The additional quantile scores of the plots are766

given in Figures S13-S16.767
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Introduction

The Supporting Information for this article includes Tables S1-S3 with the parameters

of the Gamma distribution, which was used as a prior distribution for the parameters of

the three models considered in the work. It also includes plots illustrating the fit of the

compound OU (Figure S1) and the ETAS (Figure S2) models. The MCMC sampling of

the model parameters for the OU (Figures S4-S5), the compound OU (Figures S6-S8),

the ETAS (Figures S9-S11) models are provided for one specific training and forecasting

time intervals. The forecast evolution during 330 days after the occurrence of the M7.1

mainshock is given in Figure S12. The additional quantile scores of the plots are given in

Figures S13-S16.

The data analysis was performed using computer scripts written in Matlab and can be

requested from the author.

December 21, 2020, 5:52pm



: X - 3

List of figures

The compound Omori-Utsu (OU) model
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c2 = 0.034 ± 0.015
p2 = 1.59 ± 0.37
LL = 3478.737395; AIC = -6945.474790 
gof = 0.008026

b)

Figure S1. The fitting of the compound Omori-Utsu law, equation (5), to the 2019 Ridgecrest

sequence. T0 = 0 corresponds to the occurrence of M6.4 foreshock on 2019/07/04 (17:33:49

UTC). a) The cumulative number of earthquakes is plotted as solid symbols. The corresponding

fit of the compound Omori-Utsu law to the cumulative numbers is given as solid curve during

the time interval [T0, Te] = [0, 8.407] days. This includes 7 days of aftershocks after the M7.1

mainshock. b) The number of earthquakes is plotted in transformed time. All earthquakes above

magnitude m ≥ 3.2 were used.
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The Epidemic Type Aftershock Sequence (ETAS) model
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 = 2.10 ± 0.28
LL = 3277.177705; AIC = -6544.355411 
gof = 0.012987

b)

Figure S2. The fitting of the ETAS model, equation (6), to the 2019 Ridgecrest sequence.

T0 = 0 corresponds to the occurrence of M3.98 foreshock on 2019/07/04 (17:02:55 UTC). a)

The cumulative number of earthquakes is plotted as solid symbols. The corresponding fit of

the ETAS model to the cumulative numbers is given as solid curve during the time interval

[Ts, Te] = [0.03, 8.428] days. This includes 7 days of aftershocks after the M7.1 mainshock. b)

The number of earthquakes is plotted in transformed time. All earthquakes above magnitude

m ≥ 3.2 were used.
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Markov Chain Monte Carlo sampling

The Omori-Utsu (OU) model parameters
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Figure S3. The MCMC chains of the OU model parameters sampled from the posterior

distribution for the Ridgecrest sequence during one day of aftershocks above magnitude mc = 3.2

and starting from the occurrence of the M7.1 mainshock. The total number of MCMC 200,000

steps were generated and 100,000 steps were discarded as burn-in.
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Prior: mean = 2.18, var = 0.05
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Figure S4. The distribution of the OU model parameters computed from the MCMC chains

given in Figure S3. The corresponding mean, standard deviation, and 95% Bayesian confidence

bounds for the parameters are provided in the legend. The solid curves represent the prior

Gamma distribution for each model parameter.
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Figure S5. The matrix plot of the pairs of the OU model parameters computed from the

MCMC chains given in Figure S3 and showing the correlation structure of the parameters.
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The compound OU model parameters
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Figure S6. The MCMC chains of the compound OU model parameters sampled from the

posterior distribution for the Ridgecrest sequence during [T0, Te] = [0, 2.407] target time inter-

val with aftershocks above magnitude mc = 3.2 and starting from the occurrence of the M6.4

foreshock. The total number of MCMC 200,000 steps were generated and 100,000 steps were

discarded as burn-in.
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Figure S7. The distribution of the compound OU model parameters computed from the

MCMC chains given in Figure S6. The corresponding mean, standard deviation, and 95%

Bayesian confidence bounds for the parameters are provided in the legend. The solid curves

represent the prior Gamma distribution for each model parameter.
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Figure S8. The matrix plot of the pairs of the compound OU model parameters computed from

the MCMC chains given in Figure S6 and showing the correlation structure of the parameters.
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The ETAS model parameters
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Figure S9. The MCMC chains of the ETAS parameters sampled from the posterior distribution

for the 2019 Ridgecrest sequence [Ts, Te] = [0.03, 2.428] target time interval with aftershocks

above magnitude mc = 3.2 and starting from the occurrence of the M6.4 foreshock. The total

number of 150,000 steps were generated and 50,000 steps were discarded as burn-in.
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Figure S10. The distribution of the ETAS parameters computed from the MCMC chains

given in Figure S9. The corresponding mean, standard deviation, and 95% Bayesian confidence

bounds for the parameters are provided in the legend. The solid curves represent the prior

Gamma distribution for each model parameter.
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Figure S11. The matrix plot of the pairs of the ETAS parameters computed from the MCMC

chains given in Figure S9 and showing the correlation structure of the simulated parameters.
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Figure S12. The probabilities for the largest expected earthquake to be above the magni-

tudes mex ≥ 4.5, 5.0, 6.1, 6.4, 7.1 and during the progressively increasing time intervals since

2019/07/04 (17:02:55 UTC). The probabilities are estimated using the BPD combined with the

ETAS model for the earthquake rate during the forecasting time interval ∆T = 7 days and plot-

ted in a logarithmic scale. The earthquake magnitudes of the 2019 Ridgecrest sequence are

plotted as open diamonds for all events above magnitude m ≥ 3.2. The fit of the ETAS model

is shown as a solid curve.

December 21, 2020, 5:52pm



: X - 15

0 5 10 15 20 25
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

m
ag

ni
tu

de
, m

 

t, days

a)

0.001

0.01

0.1

1
 OU
 compound OU
 ETAS
 0.05 quantile
 0.025 quantile

 1

0 5 10 15 20 25
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

m
ag

ni
tu

de
, m

 

t, days

b)

0.001

0.01

0.1

1
 OU
 compound OU
 ETAS
 0.05 quantile
 0.025 quantile

 2

Figure S13. Plot of the quantile scores a) δ1 (N-test), b) δ2 (N-test), and c) κ (M-test)

for the performance of the aftershock forecasts based on the three point process models. The

scores are computed at the end of each forecasting time interval. The end of the training time

interval is fixed at Te = 3.428 days while the forecasting time interval is increasing as ∆T =

1, 2, 5, 7, 10, 14.
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Figure S13. Continued.
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Figure S14. Plot of the quantile score α (R-test) for the comparative test of the ETAS model

versus the forecast based on the OU model and on the compound OU model. The scores are

computed at the end of each forecasting time interval as in Figure S13.
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Figure S15. The sample information gain for the pairs of the models. The solid squares

correspond to the comparison of the forecasts based on the ETAS model versus the forecasts

based on the OU model. The solid diamonds correspond to the comparison of the forecasts

based on the ETAS model versus the forecast based on the compound OU model. The 95%

confidence intervals are given.
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Figure S16. Plot of the Bayesian predictive distribution p-value for the three models. The

p-values are computed at the end of each forecasting time interval as in Figure S13.
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Tables for the model prior parameters

The Omori-Utsu model

Table S1. Summary of the parameters used for the prior distribution of the OU model

{θ, ω} = {β, Ko, co, po}. For the priors π({θ, ω}) the Gamma distribution was used with the

mean and variance specified for each parameter.

Prior for β Ko co po
mean 2.18 40.0 0.05 1.5
Var 0.05 1.0 1e-3 0.05

The compound Omori-Utsu model

Table S2. Summary of the parameters used for the prior distribution of the compound OU

model {θ, ω} = {β, K1, c1, p1, K2, c2, p2}. For the priors π({θ, ω}) the Gamma distribution was

used with the mean and variance specified for each parameter.

Prior for β K1 c1 p1 K2 c2 p2
mean 2.18 20.3 0.0024 0.96 38.9 0.046 1.63
Var 0.05 1.0 1e-6 0.005 1.0 1e-4 0.01

The Epidemic Type Aftershock Sequence (ETAS) model

Table S3. Summary of the parameters used for the prior distribution of the ETAS model

{θ, ω} = {β, µ, K, c, p, α}. For the priors π({θ, ω}) the Gamma distribution was used with the

mean and variance specified for each parameter.

Prior for β µ K c p α
mean 2.3 0.05 1.3 0.03 1.5 2.1
Var 0.05 1e-4 0.02 1e-4 0.02 0.05
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