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Abstract

Atmospheric rivers (ARs) are long and narrow filaments of vapor transport responsible for most poleward moisture transport

outside of the tropics. Many AR detection algorithms have been developed to automatically identify ARs in climate data. The

diversity of these algorithms has introduced appreciable uncertainties in quantitative measures of AR properties and thereby

impedes the construction of a unified and internally consistent climatology of ARs. This paper compares eight global AR

detection algorithms from the perspective of AR life cycles following the propagation of ARs from origin to termination in the

MERRA2 reanalysis over the period 1980-2017. Uncertainties related to lifecycle characteristics, including number, lifetime,

intensity, and frequency distribution are discussed. Notably, the number of AR events per year in the Northern Hemisphere can

vary by a factor of 5 with different algorithms. Although all algorithms show that the maximum origin (termination) frequency

locates over the northwestern (northeastern) Pacific, significant disagreements occur in regional distribution. Spreads are large

in AR lifetime and intensity. The number of landfalling AR events produced by the algorithms can vary from 16 to 78 events

per cool season, i.e. by almost a factor of five, although the agreement improves for stronger ARs. By examining the AR’s

connection with the Madden-Julian Oscillation and El Niño Southern Oscillation, we find that the overall responses of ARs

(such as changes in AR frequency, origin, and landfalling activity) to low-frequency climate variabilities are consistent among

algorithms.
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Key Points 17 

• Detection algorithms introduce uncertainties in AR lifecycle characteristics such as event 18 

number, lifetime, intensity, and frequency. 19 

• Agreement in landfalling AR activity among detection algorithms increases with stronger ARs.  20 

• Uncertainties may be smoothed out when investigating AR activity at a time scale longer than 21 

ARs (such as intraseasonal and interannual).   22 
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Abstract 23 

Atmospheric rivers (ARs) are long and narrow filaments of vapor transport responsible for 24 

most poleward moisture transport outside of the tropics. Many AR detection algorithms have been 25 

developed to automatically identify ARs in climate data. The diversity of these algorithms has 26 

introduced appreciable uncertainties in quantitative measures of AR properties and thereby 27 

impedes the construction of a unified and internally consistent climatology of ARs. This paper 28 

compares eight global AR detection algorithms from the perspective of AR life cycles following 29 

the propagation of ARs from origin to termination in the MERRA2 reanalysis over the period 30 

1980-2017. Uncertainties related to lifecycle characteristics, including number, lifetime, intensity, 31 

and frequency distribution are discussed. Notably, the number of AR events per year in the 32 

Northern Hemisphere can vary by a factor of 5 with different algorithms. Although all algorithms 33 

show that the maximum origin (termination) frequency locates over the northwestern (northeastern) 34 

Pacific, significant disagreements occur in regional distribution. Spreads are large in AR lifetime 35 

and intensity. The number of landfalling AR events produced by the algorithms can vary from 16 36 

to 78 events per cool season, i.e. by almost a factor of five, although the agreement improves for 37 

stronger ARs. By examining the AR’s connection with the Madden-Julian Oscillation and El Niño 38 

Southern Oscillation, we find that the overall responses of ARs (such as changes in AR frequency, 39 

origin, and landfalling activity) to low-frequency climate variabilities are consistent among 40 

algorithms.        41 

 42 

  43 
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Plain Language Summary 44 

Atmospheric rivers (ARs) are strong moisture transport in the atmosphere that is one of the 45 

dominant processes conveying water vapor from the tropics to high latitudes. ARs are also 46 

important water sources to coastal regions like the west coast of North America. Many studies 47 

have developed their own detection algorithms to study ARs. However, conclusions from these 48 

studies may differ because of different algorithm designs. Here we select an ensemble of eight 49 

detection algorithms and analyze the disagreement in AR characteristics across the ensemble 50 

including AR size, number, lifetime, intensity, and landfalling activity applied to a single dataset 51 

describing meteorological conditions in the recent past. Results suggest that basic AR 52 

characteristics vary significantly depending on the detection algorithm. Meanwhile, the large 53 

spread may be smoothed out when examining AR behavior in the intraseasonal and interannual 54 

time scale. 55 

 56 

 57 

 58 

  59 
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1. Introduction 60 

Atmospheric rivers (ARs) are meteorological phenomena with a long and narrow 61 

filamentary structure of poleward moisture transport outside of the tropics. ARs are essential to 62 

the global hydrological cycle and are often linked to weather and climate extremes (Newell et al., 63 

1992; Zhu & Newell, 1994). Due to their crucial role in water resources (Dettinger, 2013; Dettinger 64 

et al., 2011; Gorodetskaya et al., 2014) and their hydrological impacts of heavy precipitation and 65 

flooding (Lavers et al., 2011; Lavers et al., 2014; Neiman et al., 2013; Neiman et al., 2008; Ralph 66 

et al., 2006; Waliser & Guan, 2017), numerous studies have extensively investigated different 67 

aspects of ARs in the past two decades, including landfalling activity (Hu et al., 2017; Rutz et al., 68 

2014), connections with low-frequency modes of climate variability (Gershunov et al., 2017; Guan 69 

& Waliser, 2015; Kim et al., 2017; Mundhenk et al., 2016; Payne & Magnusdottir, 2014), 70 

subseasonal-to-seasonal prediction  (DeFlorio, Waliser, Guan, Lavers, et al., 2018; DeFlorio, 71 

Waliser, Guan, Ralph, et al., 2018; Lavers et al., 2014; Zhou & Kim, 2017), and future projections 72 

(Lavers et al., 2013; Payne & Magnusdottir, 2015; Radic et al., 2015; Shields & Kiehl, 2016b).   73 

The American Meteorological Society (AMS) Glossary of Meteorology qualitatively 74 

defines an AR as “a long, narrow, and transient corridor of strong horizontal water vapor transport 75 

that is typically associated with a low-level jet stream ahead of the cold front of an extratropical 76 

cyclone”, with no extant quantitative definition. Therefore, a great diversity of AR detection 77 

algorithms has emerged from research groups targeting different scientific questions. For example, 78 

in order to measure the impacts of AR’s in-land penetration over North America, Rutz et al. (2014) 79 

defines an AR as regions where the magnitude of vertically-integrated moisture flux (IVT) exceeds 80 

250 kg m-1 s-1 with lengths longer than 2000 km. Likewise, to understand global AR activity, Guan 81 

and Waliser (2015) defines an AR by applying a relative threshold on IVT (exceeding 85th 82 
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percentile) that varies spatially with other criteria on geometric shapes. However, the variety of 83 

AR detection algorithms introduces uncertainties in AR measures and understanding of AR 84 

activity. For example, Huning et al. (2017) show a 20% difference in ARs contribution to seasonal 85 

cumulative snowfall over the Sierra Nevada when using an IVT-based versus integrated water 86 

vapor (IWV)-based definition. To quantify and understand uncertainties that arise from different 87 

AR detection algorithms, the Atmospheric River Tracking Method Intercomparison Project 88 

(ARTMIP) was formed as an ad hoc, international collaboration (Shields et al., 2018). ARTMIP 89 

includes over 30 (and growing) AR detection algorithms and is dedicated to providing guidance 90 

on the most suitable algorithms for particular scientific applications. Ralph et al. (2018) 91 

investigates ARs that made landfall in northern California using outputs from 10 AR detection 92 

algorithms and concludes that the number of ARs can vary by a factor of two across this 93 

representative set of algorithms. By examining the role of ARs in the western US watershed, Chen 94 

et al. (2019) compares six detection algorithms and shows that the major difference from detection 95 

algorithms is the precipitation amount, while the temperature changes in AR events are consistent 96 

among algorithms. The ranges in AR climatological properties, including landfalling frequency 97 

and duration, as well as seasonality, arising from the differences among ARs identified using 19 98 

detection algorithms have been discussed in detail in Rutz et al. (2019).  99 

These studies mainly focus on uncertainties in landfalling AR activity and related 100 

hydrological impacts. Uncertainties in measures of AR origination and evolution over the ocean, 101 

including frequency and propagation before landfall, have not been well-documented. Thus, in the 102 

framework of ARTMIP, the goal of the present study is to understand uncertainties in ARs 103 

stemming from detection algorithms within the context of AR life cycles. The life cycle of an AR 104 

event records the complete propagation of AR-associated moisture transport from its origin to 105 
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termination. To track ARs spatiotemporally, an object-based automated AR tracking algorithm has 106 

been developed in Zhou et al. (2018) that can assemble the AR life cycles from the single time-107 

level masks produces by different detection algorithms. With this tool in hand, we will address 108 

two questions: (1) To what degree are AR lifecycle characteristics (number, lifetime, intensity, 109 

and distributions of AR origin and termination) sensitive to the choice of AR detection algorithms? 110 

(2) Are the correlations between AR life cycles and various modes of climate variability (such as 111 

the Madden-Julian Oscillation (MJO) and El Niño Southern Oscillation (ENSO)) robust to the 112 

choice of detection algorithms? This study will be the first to apply a common tracking method 113 

across various AR detection algorithms and examine the associated uncertainties. It also provides 114 

a benchmark for AR life cycle sensitivities across detection algorithms. Further, this study has 115 

implications for improving prediction of AR activity by providing the degree of agreements among 116 

detection algorithms based on AR intensities and for reducing uncertainties in AR changes in the 117 

future climate by accessing the potentially well-suited algorithms in the context of projected AR 118 

life cycles. 119 

In section 2, the AR detection algorithms selected from ARTMIP and the Zhou et al. (2018) 120 

AR life cycle tracking algorithm are introduced. Uncertainties in lifecycle characteristics are 121 

discussed in section 3. In sections 4 and 5 we investigate the sensitivity of AR connections with 122 

the MJO and ENSO respectively. Summary and discussion are provided in section 6.     123 

 124 

2. Data and methods 125 

2.1 Tracking AR life cycles from different detection algorithms  126 

To investigate the uncertainty in AR life cycle stemming from detection algorithms, we 127 

use 15 of the global AR detection algorithms from the ARTMIP Tier 1 collection (Table 1) that 128 
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were available at the time of analysis. A more detailed description of participating ARTMIP Tier 129 

1 algorithms and AR catalogues are provided in Shields et al. (2018). In ARTMIP Tier1, all 130 

participants apply their algorithms to the 3-hourly 0.5-degree latitude by 0.625-degree longitude 131 

Modern Era Retrospective analysis for Research and Applications, version 2 (MERRA2) 132 

reanalysis from 1980-2017 (Gelaro et al., 2017). Note that some algorithms can be tuned for 133 

particular scientific applications (such as Tempest), the included algorithms in this study are in 134 

their default settings. As shown in Table 1, each algorithm has different thresholds on IVT or IWV 135 

to detect ARs. There are two major kinds of thresholds: absolute thresholds specified by spatially 136 

and temporally invariant values (e.g. AR-CONNECT and Rutz), and relative thresholds specified 137 

by fixed percentiles of spatiotemporal varying IVT or IWV (e.g. Guan_Waliser and Lora_global). 138 

Additional thresholds frequently employed by detection algorithms include geometric constraints 139 

and machine learning techniques (e.g. TECA_bard_v1). We further largely focus our analysis on 140 

the Northern Hemisphere.       141 

We adopt the automated tracking algorithm developed by Zhou and Kim (2019); Zhou et 142 

al. (2018) to identify the life cycle of AR events. The term “detection” and “tracking” are 143 

sometimes used interchangeably by previous literature to describe AR identification. In this study, 144 

we use “detection” for recognition of instantaneous AR conditions (i.e. AR objects, explained later) 145 

and “tracking” for spatiotemporally tracing the life cycle of AR events. Therefore, we refer to the 146 

selected ARTMIP algorithms as AR “detection” algorithms and the Zhou et al. (2018) algorithm 147 

as the “tracking” algorithm. We define an AR object as an enclosed two-dimensional (latitude and 148 

longitude) instantaneous area that meets the criteria of AR conditions. The life cycle of an AR 149 

event is tracked by connecting the spatiotemporal overlapping AR objects (more details in section 150 

3) from origin to termination.  151 
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2.2 Climate variability indices 152 

We investigate the robustness of the relationships between ARs and low-frequency climate 153 

variabilities with a focus on the MJO and ENSO. The Real-time Multivariate MJO index (RMM, 154 

(Wheeler & Hendon, 2004)) is obtained to describe the MJO phase and amplitude. The MJO is 155 

distinguished into eight phases depending on the location of enhanced convection using two RMM 156 

components (Supplemental Figure S1). We define an MJO day when the RMM amplitude 157 

(√RMM12 + RMM22 ) exceeds 1.0. We use daily interpolated 20-100-day-filtered outgoing 158 

longwave radiation (OLR) (Liebmann & Smith, 1996) to indicate the location of MJO convection.  159 

We use the ENSO Longitude Index (ELI, Williams and Patricola (2018)) to identify El 160 

Niño and La Niña events. The ELI index is an SST-based metric that captures the average 161 

longitude of Pacific tropical deep convection. We used ELI because it is able to characterize the 162 

diversity of ENSO events in a single index (Williams & Patricola, 2018) and because it better 163 

describes seasonal variations in western U.S. winter precipitation compared with other ENSO 164 

indices (Patricola et al., 2020). For each month, the ELI index is calculated by first averaging the 165 

sea surface temperature between 5°S-5°N. Next, a binary mask is created where equatorial 166 

gridpoints with meridionally-averaged-SST exceeding the convection threshold (tropics-wide 167 

averaged SST) are assigned a value of 1 and otherwise 0. Finally, the ELI index is the average of 168 

longitudes of all the equatorial gridpoints with masks equaling 1. The ELI index is constructed 169 

using monthly 2-degree Extended Reconstructed SST v5 (Huang et al., 2017) from December to 170 

February from 1980-2016. The ENSO event is categorized by the absolute value of the ELI index. 171 

We select the El Niño and La Niña years following the years of moderate and strong ENSO events 172 

in Patricola et al. (2020) (in their Table 1). The same analysis is conducted with Niño 3.4 index 173 

and SOI index and the results are consistent with the ELI index (not shown).     174 
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Acronyms  Reference Type Detection thresholds Region 

AR-CONNECT Shearer et al. (2020) Track IVT = 300 kg m-1 s-1, time-stitching for minimum 24 

hours  

Global 

CONNECT500 Sellars et al. (2015); Sellars et 

al. (2013) 

Track IVT = 500 kg m-1 s-1 Global 

CONNECT700 IVT = 700 kg m-1 s-1 

TECA_bard_v1 O'Brien et al. (2020) Condition Relative threshold (based on spatial percentile for 

each timestep). An inverted Gaussian filter is applied 

at the equator to damp out the ITCZ 

Global 

Cascade_ivt Experimental Condition Convolutional neural network to replicate ARTMIP 

mean; Threshold free; use IVT as input 

Global 

Cascade_iwv Same as above, but use IWV as input Global 

Guan_Waliser Guan and Waliser (2015) Condition 85th percentile IVT; Absolute minimum requirement 

designed for polar locations: 100 kg m-1 s-1 IVT 

Global 

Mundhenk_v3 Mundhenk et al. (2016) Condition IVT percentiles and/or anomalies both temporal and 

spatial 

Global 

Rutz Rutz et al. (2014) Condition IVT (surface to 100mb) = 250 kg m-1 s-1 Global 

Sail_v1 Project: Atmospheric rivers 

identification, tracking and 

climatology assessment 

Condition 80th percentile IVT; length-width ratio exceeds 5 Global 

Lora_global Lora et al. (2017) Condition Length >= 2000km; IVT 100kgm-1s-1 above 

climatological area means for the North Pacific  

Global 

Lora_v2 Length >= 2000km; Relative to 30-day running mean 

of background IWV 

Global 

Tempest_ivt250 Rhoades et al. (2020); 

McClenny et al. (2020) 

Track 2 IVT <= -4e4 kg m-1 s-1 rad-2, IVT >=250 kg m-1 s-1 Global, 

latitude 

≥15° 
Tempest_ivt500 2 IVT <= -4e4 kg m-1 s-1 rad-2, IVT >=500 kg m-1 s-1 

Tempest_ivt700 2 IVT <= -4e4 kg m-1 s-1 rad-2, IVT >=700 kg m-1 s-1 

Table 1. List of selected AR detection algorithms. More information is listed on 175 

http://www.cgd.ucar.edu/projects/artmip/algorithms.html. Algorithms marked with asterisk are adopted for extended analysis. 176 

http://www.cgd.ucar.edu/projects/artmip/algorithms.html
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 177 

3. Life-cycle characteristics 178 

Figure 1 shows the distributions of number, size, and overlapping ratio of AR objects 179 

identified by 15 detection algorithms using global 3-hourly AR objects from the year 2016 (total 180 

of 2928 time steps). We arbitrarily select the year 2016 to examine the characteristics of AR objects. 181 

The average number of objects per time step varies from 6 to 42 (Figure 1a), where the lowest 182 

number is from TECA_bard_v1 which includes a set of “plausible” AR detectors and the highest 183 

number is from CONNECT500 which captures some tropical disturbances that may not be 184 

associated with ARs or are entrained by ARs over their life cycle (e.g., tropical cyclones) (not 185 

shown). About 10 algorithms detect 10-20 global AR objects at any given time step, which is 186 

consistent with the number from a manual analysis by Newell et al. (1992) and the number range 187 

of expert-identified global AR objects (O'Brien et al., 2020).  188 

The probability distributions of object size and overlapping ratio vary among algorithms 189 

(Figure 1b-c). The object size is represented by the number of gridpoints (0.5°×0.625°) within an 190 

object. The overlapping ratio is a key parameter in the tracking algorithm, which is calculated as 191 

the ratio of overlapping area with the object at previous time step t-1 to the total area of object at t 192 

(Zhou et al., 2018). A zero overlapping ratio of an object indicates the origin of an AR event. 193 

Figures 1b-c suggest two types of distribution curves. The first type demonstrates a higher 194 

percentage of smaller objects (less than 800 gridpoints) with a wider spread in overlapping ratio, 195 

which may be due to identification of non-AR tropical disturbances that are usually smaller in size 196 

(such as CONNECT500 and CONNECT700); or recognition of an IVT core that is smaller in size 197 

(such as the Tempest family). The Cascade_iwv and Cascade_ivt algorithms determine an AR 198 

object based on a machine learning algorithm trained on the consensus of all ARTMIP algorithms, 199 
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which makes them prone to identify primarily the IVT core, resulting in relatively smaller AR 200 

objects. Algorithms showing the second type of distribution curve mostly capture the general long 201 

and narrow shape of ARs (wider spread in object size) and present higher spatiotemporal 202 

connectivity with more than 80% of overlapping ratio exceeding 0.7. However, some algorithms 203 

detect objects with more than 5000 gridpoints (such as Rutz and Sail_v1), which may include the 204 

Inter Tropical Convergence Zone (ITCZ). To exclude the impacts from ITCZ and tropical 205 

disturbances, we narrow the selected algorithms down to eight algorithms for further analysis 206 

(Table 1, marked with asterisks).   207 

 208 

Figure 1. (a) Average number of global AR objects per time step. Probability distribution of (b) 209 

object sizes and (c) overlapping ratio. Data: 3-hourly AR objects from the year 2016. 210 

 211 
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3.1 Climatology 212 

Variations in the number and size of AR objects are reflected in the annual mean AR 213 

frequency (Figure 2). The AR frequency is calculated as, for each year, the gridpoint-accumulated 214 

number of AR objects normalized by the number of time steps (unit: percent of time steps). All 215 

algorithms show that in the Northern Hemisphere, high AR frequency appears over the ocean basin, 216 

where regions between 20°N-40°N are impacted by AR conditions about 10-30% of the time. AR 217 

frequency over the northwestern ocean basin is generally higher than that over the northeastern 218 

ocean basins. Due to higher IVT thresholds, the Tempest family naturally detects smaller AR 219 

objects and therefore shows a weaker amplitude of AR frequency (Figure 2g-h).  220 

The origin (termination) object is defined as the first (last) object of an AR life cycle. The 221 

overall distribution of origin frequency is consistent among algorithms, with the maximum over 222 

the northwestern ocean between 20°N-40°N, which may be associated with more moisture by 223 

warmer sea surface temperature and more tropical cyclones. The disagreement between algorithms 224 

lies in the amplitude and regional distribution which are largely affected by the choice of threshold. 225 

The maximum termination frequency is concentrated over the eastern ocean and the west coast of 226 

North America and Europe. The termination frequency spreads more broadly in Guan_Waliser 227 

because more inland-penetrating AR activity being captured. Guan_Waliser also detects moisture 228 

transport activity over western Asia and the Arabian Peninsula, which may be linked to Somali Jet 229 

(Halpern & Woiceshyn, 1999). Overall, algorithms show agreement in the distributions of AR 230 

total, origin, and termination frequency. However, the uncertainties from algorithms may be large 231 

when it comes to regional studies, such as estimating the hydrological impacts from landfalling 232 

ARs (Rutz et al., 2019; Shields et al., 2018).               233 
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 234 

Figure 2. Annual mean total AR frequency (shading), origin (red contour), and termination 235 

frequencies (violet contour). Unit is percent of time steps. Note that shading intervals are not 236 

constant. Contour interval: (a-f) 0.2 percent of time steps and (g-h) 0.1 percent of time steps, zero 237 

lines are omitted.     238 

 239 

The lifetime of an AR event represents how long an event lasts, which is calculated as the 240 

number of time intervals within the life cycle multiplied by the time interval (3 hours). All 241 

algorithms show that about 40-50% of North Pacific ARs (originated between 100°E-240°E) last 242 

less than 4 days (Figure 3a). About 40% of ARs detected by Guan_Waliser and Mundhenk_v3 last 243 

less than 2 days, which may be due to that one complete AR life cycle is identified as multiple life 244 

cycle pieces with shorter lifetimes because of some missing objects by these algorithms. This is 245 

reflected in Figure 3b which indicates the spatiotemporal connectivity by showing the mean AR 246 

lifetime and the annual number of North Pacific AR events. Algorithms closer to the lower right 247 
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corner suggest a relatively lower spatiotemporal connectivity – with a similar number range of AR 248 

objects per time step (Figure 1a), a greater number of AR events with shorter lifetime implies a 249 

higher chance of discontinuous life cycles. Algorithms closer to the upper left corner indicate 250 

higher spatiotemporal connectivity. These algorithms have more concentrated distributions of 251 

origin and termination frequency (Figure 2), suggesting more AR events originate over the 252 

northwestern Pacific, travel across the ocean, and terminate over the northeastern Pacific. The 253 

distribution of North Atlantic AR lifetimes is similar to that of the North Pacific ARs 254 

(Supplemental Figure S2). On average, North Atlantic ARs last one day shorter than the North 255 

Pacific ARs in most algorithms, which is mostly due to the shorter travel distance in the North 256 

Atlantic basin comparing with that in the North Pacific (Supplemental Figure S3). The travel 257 

distance of an AR event represents how long an AR event propagates during its life cycle, which 258 

shows a positive correlation with AR lifetime. The mean travel distance of North Pacific ARs can 259 

range from 5×103 km (Tempest_ivt700) to 15×103 km (Lora_v2). Generally, algorithms suggest 260 

that more than 80% of North Pacific and North Atlantic ARs travels within 25× 103 km 261 

(Supplemental Figure S3).       262 

The propagation speed is calculated by dividing the travel distance with AR lifetime, which 263 

shows how fast an IVT centroid travels during the life cycle (Figure 4a). The location of IVT 264 

centroid is determined by the mass-weighted averaged longitude and latitude within an object. 265 

Therefore, the propagation speed is impacted by the geometric consistency of AR objects in a life 266 

cycle – a sudden deformation of objects between two consecutive time steps can result in a spurious 267 

change in propagation speed. The Tempest family consistently detects the IVT core, which shows 268 

the most concentratedly distributed propagation speed with an average of about 59 km/hr. Other 269 

algorithms, with a broader range in object sizes (Figure 1b), present wider spread in propagation 270 
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speeds with averages ranging from 70-90 km/hr. Nearly identical distribution is shown with North 271 

Atlantic ARs (Supplemental Figure S4a).  272 

 273 

Figure 3. (a) Percentage distribution of North Pacific AR lifetime. (b) Scatter plot of the number 274 

of North Pacific AR events per year and their mean lifetime.  275 

 276 

The lifecycle intensity is calculated as the mean of domain averaged IVT magnitude (|IVT|) 277 

within AR objects in the life cycle. Most algorithms detect lifecycle intensity in the range of 300-278 

800 kg m-1 s-1 (Figure 4b). Variations within this range can be due to subtle inconsistencies in the 279 



Manuscript submitted to Journal of Geophysical Research 

16 
 

binary masks of AR objects; wider (narrower) objects will tend to sweep up more points with 280 

lower (higher) IVT values. Guan_Waliser shows the largest spread in lifecycle intensity because 281 

their relative percentile threshold includes objects over land and the polar regions which possess 282 

weaker |IVT|. Spread is smaller in AR-CONNECT, Lora_global, and TECA_bard_v1. The 283 

lifecycle intensities of Tempest_ivt500 and Tempest_ivt700 are much stronger than other 284 

algorithms. The lifecycle intensity of North Atlantic ARs shows a similar distribution as the North 285 

Pacific ARs but with a smaller spread in most algorithms (Supplemental Figure S4b).   286 

 287 

Figure 4. Distribution of (a) propagation speed (km/hour) and (b) lifecycle intensity (kg m-1 s-1) 288 

for North Pacific AR events.  289 

 290 
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By comparing the number, lifetime, travel distance, propagation speed, and lifecycle 291 

intensity of AR events, we find that detection algorithms can introduce uncertainties in 292 

understanding the life cycle of AR events. The spatiotemporal connectivity plays a crucial role in 293 

determining the number and lifetime of AR events, and can further affect the distribution of AR 294 

origins and terminations, which can be problematic for examinations on AR’s dynamical processes. 295 

The spread in lifecycle intensity may raise uncertainties in quantifying AR’s contribution to the 296 

global hydrological cycle.  297 

3.2 Landfalling ARs over North America 298 

Although uncertainties in landfalling ARs have been extensively discussed within the 299 

ARTMIP literature, here we investigate the agreement of algorithms in the life cycle of landfalling 300 

ARs. We focus on the landfalling ARs over the west coast of North America (30°N-60°N) from 301 

November to March, which is the most active season of landfalling activity detected by the 302 

algorithms (not shown). We categorize the landfalling AR events into five categories following 303 

Ralph et al. (2019). The AR scaling criteria account for both landfalling duration and maximum 304 

landfall |IVT|. The AR category 1-5 is defined by maximum |IVT| of 250-1250 kg m-1 s-1 and by 305 

|IVT| exceeding 250 kg m-1 s-1 for 24-72 hours. Ralph et al. (2019) additionally recognizes 306 

landfalling ARs with |IVT| between 250-500 kg m-1 s-1 and duration less than 24 hours as weak 307 

ARs. From a water resources perspective, the weak ARs and Category 1-3 ARs (maximum |IVT| 308 

between 250-1000 kg m-1 s-1) are generally beneficial and Category 4-5 ARs (maximum |IVT| 309 

between 1000-1250 kg m-1 s-1) are mostly harmful primarily due to the risk of flooding and 310 

landslides. In Ralph et al. (2019), the determination of AR category is gridpoint-based, so the 311 

category for the same landfalling AR may vary depending on the location. Here, one AR event is 312 

categorized into one category with the maximum |IVT| over gridpoints and the landfall duration 313 
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of the entire event. Therefore, this study may overestimate the AR categories comparing to Ralph 314 

et al. (2019).   315 

With the exception of the Tempest family, which misses the weaker categories due to more 316 

restrictive parameter selections, the number of landfalling AR events ranges from 37 to 78 events 317 

per season among algorithms (Figure 5a), with the highest number in Guan_Waliser, which 318 

captures the most in-land AR activity (Figure 2c). Interestingly, although there is a large 319 

discrepancy in landfalling event numbers, percentages in each AR category are similarly 320 

distributed among algorithms. Weak and Category 1-2 ARs take up about 20% of total landfalling 321 

events respectively for most algorithms. About 15-17% of landfalling ARs are Category 3 and the 322 

percentage drops to 12-14% for Category 4. About 4-7% of landfalling ARs are attributed to 323 

Category 5. No weak ARs (weak & Category 1 ARs) are identified with Tempest_ivt500 324 

(Tempest_ivt700). Percentages of Category 4 and 5 ARs are lower in Tempest algorithms, which 325 

may be due to a shortened landfall duration caused by relatively higher IVT thresholds than other 326 

algorithms.     327 

How does the agreement in algorithms change in different AR categories? For each AR 328 

category and each algorithm, we create a time series with landfalling stamps: a day is marked as 1 329 

if it is a landfalling day and 0 otherwise. Next, for each AR category, we add the time series of all 330 

algorithms to calculate the number of algorithms agreeing on the same landfalling days. For 331 

example, if the number equals 5, it means five algorithms detect a landfalling AR on that day. Note 332 

that the number of algorithms in agreement can change during the same landfalling AR event 333 

because the landfall duration may vary by algorithms. The percentage in Figure 5b is calculated as 334 

the number of algorithms in agreement divided by the total number of landfalling days in each 335 

category. The number of algorithms in agreement increases with AR category. 70% of landfalling 336 
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days by weak ARs are only detected by one algorithm, indicating that most algorithms are not 337 

detecting the same weak ARs. On the other hand, about 50% of landfalling days affected by 338 

Category 5 ARs are detected by at least three algorithms. Although the inclusion of the two 339 

Tempest algorithms may potentially underestimate the number percentage, the result suggests that 340 

the uncertainty among algorithms is much smaller with stronger ARs.     341 

 342 

Figure 5. (a) (Line, left y-axis) Number of landfalling AR events per winter season over the west 343 

coast of North America. (Bar, right y-axis) Percentage of landfalling events in each AR category. 344 

(b) Percentage of the number of algorithms in agreement. Numbers in (a-b) annotate the percentage.  345 

 346 
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4. MJO-AR connections 347 

Previous studies have discussed how ARs may be impacted by the MJO, including 348 

associated landfalling activity, AR-related hydrological impacts, and subseasonal AR prediction 349 

(Baggett et al., 2017; Guan et al., 2013; Guan & Waliser, 2015; Guan et al., 2012; Mundhenk et 350 

al., 2016; Mundhenk et al., 2018; Payne & Magnusdottir, 2014; Ralph et al., 2011). Here, we 351 

examine the linkage between ARs and the MJO from the lifecycle perspective to evaluate the 352 

robustness of such linkages. To investigate the MJO’s influence on AR life cycles, we select AR 353 

events that originate concurrently with the MJO phases. In each MJO phase, the composite for 354 

each algorithm is calculated by subtracting the respective winter climatology (Supplemental Figure 355 

S5) and dividing by the number of MJO days in that phase. For a clear comparison, all composites 356 

are normalized to show the relative percentage changes.  357 

Figure 6 shows the percentage changes in AR lifecycle frequency during MJO phase 2, 358 

when enhanced (suppressed) convection is located over the Indian Ocean (western Pacific). For 359 

each AR event, the lifecycle frequency is calculated as the summation of binary mask for each AR 360 

object within the event and therefore summarizes the overall area impacted by an AR life cycle. 361 

During MJO phase 2, a geopotential high anomaly persists over the North Pacific (Supplemental 362 

Figure 1b) and induces an anticyclonic flow with equatorward and westward flow over the 363 

northeastern Pacific and poleward and eastward flow over the northwestern Pacific (Stan et al., 364 

2017). Algorithms overall present similar changes in lifecycle frequency during MJO phase 2, with 365 

about 10-30% decrease over the subtropical and northeastern Pacific, and approximately 30-50% 366 

increase near eastern Asia. Most algorithms suggest reduced AR activity over North America, 367 

where Guan_Waliser shows the strongest reduction, with a nearly 10-30% decrease of in-land 368 

lifecycle frequency between 30N-60N. Over the North Atlantic, an approximately 10% increase 369 
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of lifecycle frequency occurs between 25N-60N, which may be associated with the increased 370 

tropical cyclone activity during MJO phase 2 (Barnston et al., 2015; Maloney & Hartmann, 2000; 371 

Mo, 2000). The increased lifecycle frequency over the North Atlantic is stronger in 372 

Tempest_ivt500 and Tempest_ivt700, which implies that responses in North Atlantic ARs to the 373 

MJO may be stronger for ARs with greater intensity.   374 

 375 

Figure 6. Shading: percentage changes in cool-season AR lifecycle frequency during MJO phase 376 

2. Dots mark areas of different p-values. Contour in (a): 20-100-day-filtered OLR anomaly 377 

(blue/orange means negative/positive value, 5 W m-2 interval, zero line is omitted).  378 

 379 

Algorithms show qualitatively similar changes in AR origin frequency over the North 380 

Pacific during the MJO phases 1-8 (Figure 7). The origin frequency is meridionally averaged 381 

between 20N-40N which is the latitudinal range of maximum origin frequency (Figure 2). All 382 
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algorithms capture the increased origin frequency between 100E-120E during phases 1-2 when 383 

the MJO convection is over the Indian Ocean, with an average increase of 35%, excluding the 384 

Tempest_ivt700 which shows an increase of 200%. The large increase in Tempest_ivt700 may be 385 

due to its weakest winter climatology among algorithms (Supplemental Figure S5h). The increased 386 

origin frequency extends eastward to 140 E as the MJO convection propagates eastward to the 387 

west lateral of the Maritime Continent during phase 3. The increased origin frequency may be 388 

related to increased moisture content coupled with enhanced tropical convection (Bretherton et al., 389 

2004; Holloway & Neelin, 2009). Meanwhile, decreased origin frequency emerges near 140E-390 

160E during phases 1-3. Changes in origin frequency over the northwestern Pacific are associated 391 

with a Gill type response to MJO forcing (Bao & Hartmann, 2014; Gill, 1980). Additionally, 392 

decreased origin frequency occurs near 140W during phase 2, which is associated with the 393 

anomalous high over the northeastern Pacific (Supplemental Figure 1b). On average, the origin 394 

frequency over the northeastern Pacific (170E-140W) is decreased by 30%.  395 

Roughly opposite changes in origin frequency emerge during MJO phase 5-6 when the 396 

enhanced convection is over the western Pacific (Figure 7e-g). Decreased origin frequency occurs 397 

over eastern Asia and the northwestern Pacific and increased origin frequency emerges between 398 

140E-160E. The maximum increase in origin frequency is over the northeastern Pacific, which 399 

is impacted by the anomalous low anomaly during MJO phase 7 (Stan et al., 2017; Supplemental 400 

Figure S1g). This is consistent with previous studies suggesting that AR activity is likely to 401 

increase when enhanced tropical convection is over the western Pacific (phase 6-7) (Guan et al., 402 

2012; Payne & Magnusdottir, 2014; Spry et al., 2014). Changes during phases 4 and 8 are relatively 403 

weaker and noisier comparing to other MJO phases. The same calculation is done with North 404 

Atlantic AR life cycles (Supplemental Figure S6). Similar changes among algorithms appear 405 
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during MJO phases 1-2 with increased origin frequency over the northeastern Atlantic which is 406 

consistent with Figure 6. Overall, for both the North Pacific and North Atlantic, changes in AR 407 

origin and lifecycle frequency by the MJO are qualitatively agreeable among detection algorithms, 408 

although regional disagreement exists due to uncertainties in identifying the origin of AR events 409 

and determining object sizes.    410 

To evaluate the robustness of the MJO’s impact on landfalling ARs, we calculate the 411 

domain average of landfalling AR frequency along the west coast of North America. A mask with 412 

10 longitudinal width is created following the coastline. Three domains are selected including 413 

California, Oregon and Washington, and British Colombia. Figure 8 shows the lagged composites 414 

of percentage changes in landfalling AR frequency over California by MJO phases. For example, 415 

day 0 is when the MJO is in-phase and day 6 represents six days after day 0. The MJO’s impact 416 

on landfalling ARs is persistent during the MJO’s lifecycle. AR activity over California is 417 

significantly decreased (about 30-45%) from lag 12-24 days after phase 1 to lag 5-14 days after 418 

phase 3 in all algorithms. From lag 13-18 days after phase 5 to lag 0-5 days after phase 7, an 419 

approximate increase of 25-35% in AR frequency emerges. A similar pattern is shown in 420 

Mundhenk et al. (2018). Responses in Tempest_ivt700 are particularly intense, with an 421 

approximate 70% decrease during phases 1-3 and a nearly 80% increase during phases 5-7. This 422 

could be because Tempest_ivt700 has a relatively weaker climatology because of the higher IVT 423 

threshold (Supplemental Figure S5h); alternatively, stronger ARs may be more sensitive to the 424 

MJO. Similar but shifted patterns appear in the lagged composites of Oregon and Washington as 425 

well as British Colombia (Supplemental Figure S7-8).  426 
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 427 

Figure 7. Percentage changes in North Pacific origin frequency during (a-h) MJO phase 1-8.428 
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 429 

Figure 8. Percentage changes in landfalling AR frequency over California during MJO phase 1-8. 430 

The x-axis represents the days after an in-phase MJO. The dot marks the day that exceeds the 95% 431 

significant level of a one-sample t-test. 432 

 433 

5. ENSO-AR connections 434 

How ENSO modulates AR activity has been examined in several studies (e.g., Guan & 435 

Waliser, 2015; Kim et al., 2017; Mundhenk et al., 2016; Patricola et al., 2020; Payne & 436 

Magnusdottir, 2014; Ryoo et al., 2013), especially over the northeastern Pacific. During El Niño 437 

winters when the anomalously warm SST gathers over the tropical eastern Pacific (Figure 9a), a 438 

deepened Aleutian Low prevails over the northeastern Pacific, which is associated with the 439 

equatorward-shifted and eastward-extended subtropical jet (not shown). Previous studies have 440 

concluded that correspondingly, more zonal moisture transport occurs during El Niño winter, 441 
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which is represented by increased AR activity over the northeastern Pacific and the west coast of 442 

U.S. around 30°N-45°N (e.g., Kim et al., 2017; McGuirk et al., 1987; Patricola et al., 2020).  443 

Here, we calculate the changes in lifecycle frequency to evaluate the robustness of the 444 

ENSO-AR connection. All algorithms show a zonal band of increased lifecycle frequency between 445 

20°N-40°N with two maximum centers over the northeastern and northwestern Pacific. Changes 446 

in AR activity over the northeastern Pacific are closely modulated by the deepened Aleutian Low 447 

(Kim et al., 2017). All algorithms demonstrate a 10-30% increase of lifecycle frequency between 448 

30°N-45°N which is associated with the northeastward IVT anomaly at the south branch of the 449 

intensified Aleutian Low (e.g. Figure 2a in Kim et al. (2017)). The maximum decrease in lifecycle 450 

frequency between 40°N-60°N is associated with the southwestward IVT anomaly at the north 451 

branch of the anomalous low. Over the northwestern Pacific, the AR origin frequency is 452 

significantly increased by at least 30% over eastern Asia. The decreased origin frequency near 453 

20°N is linked to the decreased lifecycle frequency over the subtropical central Pacific. 454 

Mechanisms associated with the changes in AR origin frequency over the northwestern Pacific 455 

have not been discussed extensively by previous studies. Possible hypotheses include impacts from 456 

the subtropical jet and geopotential height pattern (Patricola et al., 2020), or the joint impact from 457 

the MJO and ENSO (Lau & Chan, 1988; Moon et al., 2011), which we will investigate in the future 458 

study. Significant changes also appear over the North Atlantic: all algorithms show the increased 459 

origin and lifecycle frequency along the U.S. east coast, which is likely associated with the 460 

increased extratropical cyclone activity during El Niño (Chang et al., 2002; Eichler & Higgins, 461 

2006; Hirsch et al., 2001).    462 
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 463 

Figure 9. Shading: percentage changes in AR lifecycle frequency during El Niño years. Dots mark 464 

the areas of different p-values. Blue/red solid triangle markers indicate areas with 465 

increased/decreased origin frequency exceeding 30% and passing the 95% confidence level of a 466 

one-sample t-test. Contours in (a) indicate the SST anomaly during El Niño. 467 

 468 

A nearly opposite pattern of changes in lifecycle frequency is shown during La Niña 469 

winters when cold SST anomaly concentrates in the central and eastern Pacific (Figure 10a). 470 

Changes in lifecycle frequency present consistent patterns over the northeastern Pacific in all 471 

algorithms. Decreased frequency, with a peak of 70%, appears near the U.S. west coast. Increased 472 
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lifecycle frequency occurs between 40°N-60°N over the central Pacific, which is associated with 473 

the northeastward IVT anomaly at the northwest branch of the anomalous high. Opposite responses 474 

in AR origins and lifecycle frequency emerge over the northwestern Pacific but in a weaker 475 

amplitude comparing to El Niño. The asymmetry between El Niño and La Niña is discussed in 476 

previous studies (e.g., An et al., 2005; An & Jin, 2004; Gershunov & Barnett, 1998; Hoerling et 477 

al., 1997). Interestingly, a regional increase in lifecycle frequency occurs over the western US 478 

coast near 30°N during La Niña in some algorithms (Figure 10c-f), which tends to be similar during 479 

El Niño. Also, a roughly 50% decrease in lifecycle frequency is shown over the North Atlantic 480 

between 20°N-40°N and extends eastward to the southern part of the west coast of Europe.     481 

 482 

Figure 10. Same as Figure 9 but for La Niña years.  483 
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 484 

6. Summary and discussion 485 

It has been a community effort to understand and quantify the uncertainties in AR research 486 

caused by detection algorithms. In this study, we specifically investigate the uncertainties of AR 487 

life cycles stemming from detection algorithms including their characteristics and connections to 488 

climate variabilities. Eight global algorithms are selected from the ARTMIP Tier 1 dataset. Results 489 

suggest that uncertainties in lifecycle characteristics (such as number of events, lifetime, travel 490 

distance, propagation speed, and intensity) can be large among algorithms. Such uncertainties are 491 

mainly caused by discrepancies in object sizes and spatiotemporal connectivity due to different 492 

algorithm design (e.g., choice of threshold and geometric constraint). Previous literature discussed 493 

the sensitivity of AR characteristics to detection methods concerning algorithm development (e.g., 494 

Guan & Waliser, 2015; Mundhenk et al., 2016; Rutz et al., 2014), our study extends this discussion 495 

to multiple algorithms with the perspective of AR life cycles.  496 

Because of the significant hydrological impacts of ARs, the spread in landfalling AR 497 

activity over the west coast of North America by detection algorithms has been extensively 498 

discussed by previous ARTMIP publications (references in Section 1). We evaluate the spread in 499 

number of landfalling AR events and the agreement on landfalling AR category impact scaling 500 

among algorithms. The number of landfalling AR life cycles can vary from 15 events per winter 501 

to 78 events per winter by different algorithms. Results suggest that algorithms’ agreement in AR 502 

landfalling days increases with higher AR categories although the lifecycle characteristics may 503 

vary. For example, Figure 11 shows the propagation tracks identified by different algorithms of a 504 

Category 5 AR that made landfall over California around February 7, 2015, which is in association 505 

with hourly precipitation amounts > 8 mm/hr (Cordeira et al., 2017). All eight algorithms detected 506 
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this landfalling AR. However, while most algorithms identify the origin of this AR event between 507 

25°N, 170°E-160°W and show the northeastward propagation of moisture transport, two 508 

algorithms suggest different origin locations near 35°N, 150°W, which is likely due to merging of 509 

objects during propagation. The propagation tracks start to wobble when approaching to the coast 510 

because the shape and size of AR objects may change quickly as rapid depletion of IVT via 511 

precipitation upon landfall. Figure 11 indicates that when focusing on the physical processes such 512 

as mechanisms for AR origins and the path along which the AR propagates, the uncertainty 513 

introduced by detection algorithms may impede the understanding and interpretation of AR 514 

activity. For the same moisture transport event, the points of origin and termination vary by 515 

algorithms. This could be problematic when predicting the evolution of ARs or forecasting AR-516 

related precipitations.  517 

 518 

Figure 11. Example of propagation tracks of a landfalling AR event in early February 2015. Solid 519 

triangles mark the locations of AR origins detected by algorithms. 520 

 521 

Additionally, the robustness of the MJO-AR and ENSO-AR connections across different 522 

algorithms is discussed. The overall AR responses to the MJO and ENSO are maintained despite 523 

differences in detection algorithms, indicating that the uncertainties in AR life cycles by detection 524 

algorithms may be smoothed out when investigating AR activity in a time scale longer than ARs 525 
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(such as connections with the MJO and ENSO). However, disagreements in regional distribution 526 

of origin and total frequency imply the challenges in quantifying AR’s response to climate 527 

variabilities.  528 

Although there is a lack of consensus for a quantitative definition of ARs, various studies 529 

have quantitatively defined ARs for analysis and modeling, which primarily leads to uncertainties 530 

in AR measures (Rutz et al., 2019; Shields et al., 2018) including the spread in AR life cycles 531 

discussed in this study. Such uncertainties could also cause variations in quantifying changes of 532 

future ARs such as object sizes, frequency, and other lifecycle characteristics (Espinoza et al., 533 

2018; Radic et al., 2015; Shields & Kiehl, 2016a). A better understanding of the physical processes 534 

associated with different stages in AR life cycle (such as origin, propagation, landfall, and 535 

termination) is crucial to mitigate uncertainties in AR-related research. This study provides a 536 

useful tool to analyze the mechanisms associated with each stage of AR life cycles and to conduct 537 

uncertainty analysis with multiple algorithms. An effort like this could help to pave the way toward 538 

a quantitative theory of AR origins and terminations, which has great implications on improving 539 

AR predictions and advancing the understanding of future ARs.       540 

 541 

  542 
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 23 

S1. Composite of 20-100-day filtered OLR anomaly (contours, W m-2) and 500 hPa geopotential 24 

height anomaly (shading, m) for the (a-h) MJO phase 1-8.  25 

 26 



 27 

S2. (a) Percentage distribution of North Atlantic AR lifetime. (b) Scatter plot of the number of 28 

North Atlantic AR events per year and their mean lifetime.  29 

 30 

  31 



 32 

S3. Percentage distribution of travel distance (103 km) for (a) North Pacific and (b) North Atlantic 33 

AR events. 34 

 35 
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 37 

S4. Distribution of (a) propagation speed (km/hr) and (b) lifecycle intensity (kg m-1 s-1) for North 38 

Atlantic AR events.  39 

 40 

 41 

 42 
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 44 

S5. Winter mean total AR frequency (shading), origin (red contour), and termination frequencies 45 

(violet contour). Unit is percent of time steps. Note that shading intervals are not constant. 46 

Contour interval: (a-f) 0.2 percent of time steps and (g-h) 0.1 percent of time steps.     47 
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S6. Percentage changes in North Atlantic origin frequency during (a-h) MJO phase 1-8.  



 

S7. Percentage changes in landfalling AR frequency over Oregon and Washington during MJO 

phase 1-8. The x-axis represents the days after an in-phase MJO. The dot marks the day that 

exceeds the 95% significant level of a one-sample t-test.  

 

  



 

S8. Same as Figure S7 but for domain average over British Columbia.  

 

 

 


