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Abstract

Atmospheric rivers (AR) are large and narrow filaments of poleward horizontal water vapor transport. Because of its direct

relationship with horizontal vapor transport, extreme precipitation, and overall AR impacts over land, the AR size is an

important characteristic that needs to be better understood. Current AR detection and tracking algorithms have resulted in

large uncertainty in estimating AR sizes, with areas varying over several orders of magnitude among different detection methods.

We develop and implement five independent size estimation methods to characterize the size of ARs that make landfall over the

west coast of North America in the 1980-2017 period and reduce the range of size estimation from ARTMIP. ARs that originate

in the Northwest Pacific (WP) (100$ˆ\circ$E-180$ˆ\circ$E) have larger sizes and are more zonally oriented than those from

the Northeast Pacific (EP) (180$ˆ\circ$E-240$ˆ\circ$E). ARs become smaller through their life cycle, mainly due to reductions

in their width. They also become more meridionally oriented towards the end of their life cycle. Overall, the size estimation

methods proposed in this work provide a range of AR areas (between 7x10$ˆ{11}$m$ˆ2$ and 10$ˆ{13}$ m$ˆ2$) that is several

orders of magnitude narrower than current methods estimation. This methodology can provide statistical constraints in size

and geometry for the AR detection and tracking algorithms; and an objective insight for future studies about AR size changes

under different climate scenarios.
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Key Points:8

• Multiple independent estimates show atmospheric rivers areas are between 7x1011
9

and 1013 m2, with several orders of magnitude lower sizes range than ARTMIP10

estimates11

• Landfalling atmospheric rivers originating in the Northwest Pacific are larger and12

more zonally oriented than those from the Northeast Pacific13

• In general, atmospheric rivers tend to decrease in size and become more meridion-14

ally oriented through their life cycles15
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Abstract16

Atmospheric rivers (AR) are large and narrow filaments of poleward horizontal water va-17

por transport. Because of its direct relationship with horizontal vapor transport, extreme18

precipitation, and overall AR impacts over land, the AR size is an important characteristic19

that needs to be better understood. Current AR detection and tracking algorithms have re-20

sulted in large uncertainty in estimating AR sizes, with areas varying over several orders21

of magnitude among different detection methods. We develop and implement five indepen-22

dent size estimation methods to characterize the size of ARs that make landfall over the23

west coast of North America in the 1980-2017 period and reduce the range of size esti-24

mation from ARTMIP. ARs that originate in the Northwest Pacific (WP) (100◦E-180◦E)25

have larger sizes and are more zonally oriented than those from the Northeast Pacific (EP)26

(180◦E-240◦E). ARs become smaller through their life cycle, mainly due to reductions in27

their width. They also become more meridionally oriented towards the end of their life28

cycle. Overall, the size estimation methods proposed in this work provide a range of AR29

areas (between 7x1011m2 and 1013 m2) that is several orders of magnitude narrower than30

current methods estimation. This methodology can provide statistical constraints in size31

and geometry for the AR detection and tracking algorithms; and an objective insight for32

future studies about AR size changes under different climate scenarios.33

Plain Language Summary34

Atmospheric rivers (AR) are a meteorological phenomenon with strong poleward35

water vapor transport. ARs have positive and negative impacts over the regions where36

they make landfall, particularly for West Coast US water resources. AR size (length, width,37

and area) is an important characteristic that needs to be studied, and could directly relate38

to the impacts of AR over land. There are large differences in size estimation between39

current detection methods, with areas varying over several orders of magnitude. Our work40

focuses on characterizing AR size using five different methods independent of the AR de-41

tection algorithm. We find that North American landfalling ARs originated in the North42

Pacific have areas between 7x1011m2 and 1013 m2 (between 1 and 11 times the area of43

California), and their lengths are on average four times their widths. ARs originating from44

the Northwest Pacific (WP)(100E-180E) are bigger and more parallel to the equator than45

those from the Northeast Pacific (EP)(180E-240E). Our methods provide a narrower range46

of size estimation than the current methods and could be used to constrain current and fu-47

ture AR detection methods, and it could be used in future studies to understand how AR48

size could vary under climate change scenarios.49

1 Introduction50

Atmospheric rivers (ARs) are long and narrow filaments of poleward water vapor51

transport from the tropics (Newell et al., 1992; Zhu & Newell, 1998; Ralph et al., 2018),52

that carry over 90% of the meridional moisture transport from the tropics to higher lat-53

itudes but may occupy only about 10% of the total longitudinal length (Zhu & Newell,54

1998). Mid-latitude continental regions around the world have large amounts of precipi-55

tation associated with ARs (Ramos et al., 2015; Neiman et al., 2008; Lavers & Villarini,56

2013b; Waliser & Guan, 2017; Viale et al., 2018). ARs are associated with up to half of57

the extreme events in the top 2% of the precipitation and wind distribution across most58

mid-latitude regions (Waliser & Guan, 2017). Moreover, landfalling ARs are associated59

with about 40-75% of extreme wind and precipitation events over 40% of the world’s60

coastlines (Waliser & Guan, 2017). ARs can have both positive and negative effects in61

continental regions. Their absence can lead to droughts (M. D. Dettinger, 2013), whereas62

numerous ARs can lead to flooding and other hydrological hazards (Ralph et al., 2006;63

M. Dettinger, 2011; Ralph & Dettinger, 2011; Lavers & Villarini, 2013a). Ultimately, ARs64

have important consequences in the hydrological cycle of regions like California. They65
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contribute to the accumulation of the snowpack and the reservoir level and water availabil-66

ity (Dirmeyer & Brubaker, 2007; Guan et al., 2010; Kim et al., 2013; Goldenson et al.,67

2018; Eldardiry et al., 2019).68

Along with horizontal vapor transport, AR size (length and width) is an important69

characteristic that needs to be better understood. Nevertheless, a robust connection be-70

tween AR size and their impacts over land and intensity scale still has to be studied and71

determined. Ralph et al. (2019) introduced a scale to categorize AR strength based on72

vapor transport intensity and landfall duration and show that there are beneficial and haz-73

ardous impacts associated with AR events. If ergodicity relates AR size and duration, AR74

size could be directly related to the benefits and hazards associated with them. Therefore,75

in addition to integrated vapor transport (IVT) and AR duration, the question “how large76

are atmospheric rivers?” represents a key aspect of research in the atmospheric river re-77

search community.78

The Atmospheric River Tracking Method Intercomparison Project (ARTMIP) has79

made an international effort to understand whether and how our scientific understanding of80

ARs may depend on the detection algorithm. The different ARTMIP detection and track-81

ing algorithms are designed to answer different questions, and they produce differences in82

AR climatology (Shields et al., 2018; Rutz et al., 2019; Lora et al., 2020); therefore, there83

are differences in their detected shape and size. It has become clear that AR detection and84

tracking are heavily influenced by how researchers have quantitatively defined this phe-85

nomenon, for example, the use of 250 kg m−1s−1 minimum threshold for IVT, which does86

not account for size but only for the concentration of flow and moisture levels. These dif-87

ferent rules and algorithm thresholds have resulted in large uncertainty in estimating the88

AR size, with areas varying over several orders of magnitude among different detection89

methods (see Figure 1).90

The definition of the boundaries and size quantification of ARs are ongoing research91

questions, and therefore a great uncertainty among methods is expected. Some recommen-92

dations made after the formal AR definition in the Glossary of Meteorology in 2018 were93

“to keep the definition as short as possible and to leave specifications of how the bound-94

aries of an AR are to be quantified open for future and specialized developments" (Ralph95

et al., 2018).96

The research described in this manuscript works toward the development and im-97

plementation of five independent AR size estimation methods. Since we do not develop98

a new AR detection algorithm, and the methods described here are not directly related99

to any existing AR detection or tracking algorithm, we argue that they collectively pro-100

vide a robust and objective way to estimate AR size with a lower range of AR sizes than101

ARTMIP. The methods presented in this work does not preclude the possibility that the102

parameter choices are made by the same group people. Nevertheless, we used statistical103

quantities to estimate ARs size and objectively tested these methods’ sensitivity to the104

chosen parameters. For this work, we analyze the winter (November-April) North Amer-105

ican coast landfalling ARs and create a composite for the 1980-2018 period, to objectively106

estimate the size of ARs using the IVT from ERA5 reanalysis data (European Centre for107

Medium-Range Weather Forecasts, 2019).108

2 Data109

In this work, we use the AR detection results from three different ARTMIP methods110

(Shields et al., 2018; Rutz et al., 2019): CASCADE_BARD_v1 (O’Brien, T. A. et al., 2020),111

Lora_global (Lora et al., 2017), and Mundhenk_v3 (Mundhenk et al., 2016). Employing112

these three different detection algorithms allows us to broadly sample ARs in the North113

Pacific Ocean. Each of these methods generates a binary flag: 1 for “AR conditions exist”114

and 0 for “AR conditions do not exist”; for each latitude-longitude grid point. AR binary115

–3–
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Figure 1. White background: AR area calculated from different methods in ARTMIP, ordered by median
area (01-28). Colored background: AR area calculated in this work using the ClimateNet ARTMIP campaign
(CN), Lagrangian Tracers method (LT), Principal Component Analysis of IVT (PC), KS-test between the
IVT of AR and the background IVT field (BG), and the statistical overlapping of the conditional probability
distribution of IVT given distance to the center of AR and the background IVT probability density function
(SO): see Sections 3.1-3.4 for details. For BG and SO methods, triangles represent the composite of AR with
Northeast Pacific origin (EP) and circles represent the composite of AR with Northwest Pacific origin (WP).
Blue, orange, and green markers account for the 25, 50, and 75% of the AR life cycle, respectively. For the
BG method, we show the results from the two-tailed and one-tailed KS-test. For the SO method, we show the
results using IVT��1 and IVT��2 , that correspond to a ? ≥ f+ at 179.5 and 193.9 kg m−1s−1B, respectively.
(Algorithm names are included in the supporting information Table S1 for reference).

flags were calculated using thermodynamic and dynamical fields from the Modern-Era116

Retrospective Analysis for Research and Applications Version 2 (MERRA-2) reanalysis117

(Gelaro et al., 2017) as a part of the ARTMIP Tier 1 experiment (Shields et al., 2018). In118

the methods section, we describe how we use these binary flags to create the AR compos-119

ite.120

The column-integrated water vapor (IWV) and IVT, are the two main variables121

used to define and characterize ARs (Ralph et al., 2018). For this work, we focus on IVT122

and calculate it using the vertically integrated eastward and northward water vapor flux123

[ ¤@G , ¤@H] (kg m−1s−1) provided by the ERA5 reanalysis. IVT is defined as124

IVT =
√
¤@2
G + ¤@2

H , (1)

where125

¤@G = −
1
6

∫ ?C

?1

@ D 3?, (2)

¤@H = −
1
6

∫ ?C

?1

@ E 3?, (3)

@ is the specific humidity [kg kg−1], D and E the zonal and meridional wind velocity [m126

s−1] over the pressure surface ?, %1 is 1000 hPa, %C is 200 hPa, and 6 is the gravitational127

acceleration. We also use D and E for the Lagrangian in subsection 3.3. ERA5 data have128

a temporal resolution of 1 hour and a horizontal resolution of 0.25 degrees. We focus our129

work on the 1980-2017 period.130
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Following O’Brien, T. A. et al. (2020), in order to avoid the large contiguous re-131

gions of high IVT near the tropics associated with the intertropical convergence zone132

(ITCZ), we spatially filter the IVT field as133

IVT′ = IVT · (1 − e
−H2

2ΔH2 ), (4)

where IVT’(G, H) is the filtered IVT field, G and H are the longitude and latitude, respec-134

tively, and ΔH is half-width at half-maximum of the filter. We use ΔH = 15◦, which effec-135

tively damps the IVT to zero within the ITCZ. Hereon we refer to the filtered field as IVT136

for simplicity.137

This analysis focuses on 37 wet seasons (November-April) in the 1980-2017 period138

over the North American coast. We focus on landfalling ARs and effectively restrain the139

study domain to the North Pacific Basin (0◦N-90◦N, 100◦E-240◦E).140

Furthermore, since this work’s primary focus is to study the size of ARs, we only141

utilize output from the three ARTMIP algorithms to obtain a broad and robust sample of142

AR occurrences (time and approximate location). With the exception of the areas shown143

in Figure 1, we explicitly avoid using the exact shape or size determined by any detection144

and tracking algorithm.145

3 Methods146

We apply the AR life cycle tracking algorithm from Zhou et al. (2018) to the AR147

binary flag data (from the three detection methods used in this work) and record each de-148

tected AR position and timestamp. To ensure we sample over the highest possible number149

of ARs and avoid double-sampling events, we start by taking all the ARs detected from150

one tracking method. We add the AR events from the second tracking method that are151

not detected by the first, and finally, we add the ones from the third method that are not152

in the first or the second. It is essential to note that we only record the AR time stamp153

and center coordinates of each object through its life cycle (calculated using Equations 7154

and 8), and we do not infer the shape or size of ARs from these detection algorithms. Our155

size-estimating methods later use the recorded AR center as a first guess on the time and156

location of an AR.157

In this fashion, we create a 1980-2017 wet season (November-April) dataset of North158

American coast landfalling AR objects. Each object corresponds to one instantaneous159

snapshot of an AR and contains its center’s timestamp and location through its life cy-160

cle. The dataset is divided into two parts, based on AR origin location (Northwest Pacific161

“WP” 100◦E-180◦E vs. Northeast Pacific “EP” 180◦E-240◦E); and classified by its life cy-162

cle stage, at 25%, 50%, and 75% of the AR total life cycle. All subsequent analyses and163

methods in this work are applied separately for each of these six sub-datasets.164

3.1 Principal Component Analysis of IVT (PC Method)165

Recognizing that ARs are associated with ridge-like structures in the IVT field,166

the principal components (PC) method is designed to estimate AR size by modeling AR167

shapes as Gaussian. For each object, we apply principal component analysis (PCA) to168

the high IVT cluster closest to the AR object’s center (or first guess) and compute the169

weighted covariance matrix �F (Price, 1972) of latitude and longitude170

�F =
Σnx
8=1Σ

ny
9=1IVT8 9 (G8 9 − G)

) (H8 9 − H)
Σnx
8=1Σ

ny
9=1IVT8 9

, (5)

where G8 9 and H8 9 are the longitude and latitude of the ERA5 grid, G, H are the spatial171

zonal and meridional mean, and the weight is given by the IVT8 9 at each grid point. �F172
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is a 2x2 matrix, such that173

�F

(
®B0
®B1

)
=

(
_0 ®B0
_1 ®B1

)
, (6)

where the eigenvectors ®B0,®B1 are the principal components of the IVT field, and _0,_1 are174

the eigenvalues. The principal components represent the directions of maximum variance175

of the IVT field near the AR. The largest eigenvalue represents the direction that explains176

the largest IVT variance, hence the longest AR axis (along the AR, ®B0), while the smallest177

would represent the shortest AR axis (across the AR, ®B1).178

To filter the IVT field that is far from one AR object, we use a 2-step iterative method.179

First, we find the IVT cluster closest to the first guess location and define the AR “core”180

as the points where IVT is greater than 0.5 times the local maximum IVT. We apply PCA181

to the AR core and use the eigenvalues and eigenvectors to create a 2D Gaussian func-182

tion using Equation (11). Then, we filter all the points from the original ERA5 IVT field183

where the core Gaussian function is less than 10−3 (we found this value worked well for184

the ARs objects analyzed in this work). We then apply PCA to the filtered IVT field and185

use the results to estimate the size of the AR object.186

We define the length (width) of the AR as twice the magnitude of ®B0 (®B1), and its187

area as the ellipse whose axes are the principal components ®B0 and ®B1 (white solid lines188

and ellipse in Figure 2). The AR orientation \ is defined as the angle between ®B1 and the189

equator. Estimating the area of an AR as an ellipse is an idealization that allows us to190

simplify the problem and avoid the introduction of more rules and thresholds that would191

essentially result in a new detection algorithm. We realize that this will affect the calcu-192

lation of areas with more highly irregular AR shapes. However, in a case-by-case inspec-193

tion, we find that this is a good approximation for the average AR in this work. Moreover,194

an overlap plot of all the AR events (Figure 8) shows that, on average, this is an adequate195

idealized model representation of ARs, which becomes particularly relevant for the statisti-196

cal methods described in section 3.2. We utilize fastKDE (O’Brien et al., 2014, 2016) to197

calculate probability density functions (PDF) of length, width, area, and orientation, using198

all the AR objects in our six sub-datasets (https://github.com/LBL-EESA/fastkde/199

releases/tag/v1.0.18). The method described in this section –applying PCA to the200

IVT field and define length and width– is labeled PC throughout this work.
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Figure 2. Principal component analysis method. White lines represent the PC of the AR, and the white
contour is the area estimated from the ellipse whose axes are the PC. The red lines represent directions along
and across AR used to sample IVT for SO and BG methods (dashed/solid represent the first/second PC).

201
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3.2 Estimating AR Size from Composites and Background IVT Field (BG and SO202

Methods)203

To estimate the AR length and width, we use two different statistical methods for204

determining the distance at which the AR composite becomes indistinguishable from the205

background IVT field (from now on referred only as background for simplicity). We cre-206

ate an AR composite from a total of 1,150 (980) AR objects for the WP (EP) in the 1980-207

2017 wet seasons. We randomly sub-sample 300 AR objects (from each region) to ensure208

independence between each AR object used to create the composite and increase the sta-209

tistical robustness of these methods.210

The statistical overlapping method (SO) looks at the overlapping between the back-211

ground PDF and the composite as a function of the distance to the AR center. On the212

other hand, the background method (BG) uses a Kolmogorov–Smirnov test (KS-test) to213

look at the difference between the background cumulative distribution function (CDF) and214

the conditional probability distribution (CPD) of the composite IVT given the distance to215

the AR center. We describe both methods in §3.2.2 and §3.2.3. For the SO and BG meth-216

ods, we calculate the AR composite area by modeling the shape of ARs as ellipses, whose217

axes are the length and width calculated by each method.218

We define the AR center coordinates (G, H) for every AR object within the compos-219

ite as the IVT-weighted center of mass:220

G =
Σ=G
8=1Σ

=H

9=1IVT8 9G8 9
Σ=G
8=1Σ

=H

9=1IVT8 9
, (7)

H =
Σ=G
8=1Σ

=H

9=1IVT8 9 H8 9
Σ=G
8=1Σ

=H

9=1IVT8 9
. (8)

We then sample IVT along the direction of the principal components (see Section 3.1)221

through all the domain (represented by the red lines in Figure 2), and calculate the dis-222

tance 3 of each point along this line to the AR center223

3 = | | (G ′, H′) − (G, H) | |, (9)

where (G ′, H′) represent the coordinates of the points along each of the principal compo-224

nents’ direction. In this fashion, we create a joint distribution of IVT and 3 for the AR225

composite, and utilize fastKDE to calculate the CPD of IVT given 3: %(IVT | 3).226

3.2.1 Estimation of the Background227

We estimate the PDF and CDF of the background by randomly sampling IVT from228

ERA5 reanalysis data through the North Pacific Ocean in the period of study. Since the229

definition of ‘background’ is somewhat ambiguous, we calculate two separate backgrounds:230

IVT1:1 , where the grid cells inside an AR are masked at the time of sampling (AR grid231

cells not used to calculate the background); and IVT1:2 , where ARs are not masked at the232

time of IVT sampling. Despite the fact that IVT1:2 includes high-IVT points inside some233

ARs, we remark that both backgrounds are statistically indistinguishable with a confidence234

level of 95% according to a two-sample KS-test. The CDF of the background is higher235

than 0.84 (? ≥ f+, where f+ is the value of CDF at +1 standard deviation) at 179.5 kg236

m−1s−1B and 193.9 kg m−1s−1B for IVT1:1 and IVT1:2 respectively, which are later used237

for the SO and BG methods (§3.2.2 and §3.2.3) and referred to in the text label in Fig-238

ure 1.239

3.2.2 Statistical Overlapping of IVT With the Background Field PDF (SO)240

One way to estimate the AR composite’s length and width is by looking at the over-241

lap of the background PDF and the composite IVT conditional probability distribution242
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given the distance to the center of AR (CPD(d)). We define the statistical boundary of243

the AR composite as the distance where the CPD(d)=0.16 contour is greater or equal to244

background IVT value at CDF=0.16. In other words, where CPD(d) at -1 standard devi-245

ation (f1) intersects with the background PDF at +1 standard deviation (f+) (where the246

lower boundary of the shading contour intersects the dotted line in Figure 3). With this247

method, we determine the AR extent by determining the distance 3 where the overlap be-248

tween the composite PDF and the background PDF is less than two standard deviations.249

This method is referred to as SO throughout this work.
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Figure 3. Conditional probability distribution of IVT given the distance to the center of the AR. Red colors
represent the transverse direction (across AR), black colors represent the longitudinal direction (along AR).
The 0.5 conditional probability � is represented in solid thick lines. The shading corresponds to probabilities
between 0.16 and 0.84. According to the statistical overlapping method, the AR is delimited by those dis-
tances where the dashed line (background IVT ? ≥ 0.84) intersects the 0.16 CPD contour (marked in red and
black dots). For example, for the Northwest Pacific composite (WP) in panel (a), these intersections occur at
approximately from -1,500 and 1,200 km along the AR, and -600 and 400 km across the AR. The triangles
mark these distances of overlapping with the background.

250

3.2.3 K-S Statistics Between AR Composite and the Background CDF (BG)251

The KS-test is used to determine at which distance the CDF of the composite IVT is252

indistinguishable from the background CDF. This method assumes that the IVT distribu-253

tion within ARs differs from the background.254

From the CPD(d), we calculate the CDF of the composite IVT at different distances255

along and across the AR composite (CDF(d)). We compare the CDF(d) against the back-256

ground CDF (4) and apply two-tailed and one-tailed KS-tests (KS1 and KS2, respec-257

tively). For the KS1, we define the AR boundaries at the distance where the background258

CDF is significantly lower than the background at the 95% confidence level. For the KS2,259

the AR boundaries are delimited by those distances at which the KS-statistic reaches a260

minimum value, i.e. where the CDF(d) and the background CDF are most similar. Fig-261

ure 4 shows how the CDF(d) (colored dashed lines) converges to the background CDF262

(solid black line) far from the center of the AR composite (3 = 0 km, represented by263

the most transparent dashed lines). Both BG and SO methods provide a robust statisti-264

cal estimation of the AR composite size. In the supporting information, we show a test265

of the sensitivity of the SO method to changes in the background PDF and to changes in266

the CPD(d) overlapping values; we also test the sensitivity of the BG method to changes267

in the statistical level of significance for the one-tailed BG method (Text S1 and Figures268

S1(a-b)).269
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Figure 4. Colored lines show the CDF of IVT for the AR composite, at different distances from the AR
center (CDF(d)); less transparent dashed lines represent a farther distance to the AR center. The black solid
line shows the CDF of the background. The KS-test evaluates where the composite IVT and the background
are statistically indistinguishable (for the two-tailed test) or where the composite IVT CDF is statistically
lower than the background CDF (for the one-tailed test).

3.3 Lagrangian Tracers for Area Estimation (LT)270

Previous work by Garaboa-Paz et al. (2015) suggests that ARs relate to attracting271

Lagrangian Coherent Structures (LCS) in the 2D and 3D flow fields. With this in mind,272

we hypothesize that Lagrangian tracers can be used to estimate AR area from a fluid dy-273

namics point of view. The association of ARs with LCS implies that tracers inside the AR274

are more likely to preserve spatial coherence through backward and forward trajectory in-275

tegration. Furthermore, tracers near the boundaries and outside of the AR, compared with276

those inside the AR, would be more likely to disperse and end up at a final location far-277

ther from its initial location.278

To do so, we use a 2D passive Lagrangian tracer advection model. Tracers are ad-279

vected over pressure surfaces using 2D velocity fields from ERA5 reanalysis following a280

stochastic advection equation281

3G8 = (D8 +
√

2D8 F8)3C, (10)

where 8 represents the zonal or meridional directions, D the 2D velocity over pressure282

surfaces, D8 is the root mean square of the local velocity near the tracer (Sawford, 1991;283

Griffa et al., 1995; Rodean, 1996; LaCasce, 2008), and F8 is a random perturbation with284

zero mean and unit variance (i.e., a Wiener process). This random nudging in the tracer285

position at each step helps represent diffusion, turbulence, and other processes not resolved286

by the model. In the supporting information Text S2 and Figure S2, we show a test of the287

sensitivity of AR area to changes of the scaling velocity
√

2D8 . We solve Equation (10)288

using the Euler method with a time-step of 1 hour (same as the ERA5 resolution, thus289

avoiding the need for time interpolation). The model uses bilinear interpolation in space290

to estimate the velocity at the tracer location.291

We select the tracers’ initial positions in the vicinity of a given AR by randomly292

selecting 2000 points from the entire study domain (-80S to 80N, 180W to 180E), with a293

probability given by a 2D Gaussian function centered in the AR294

6(G, H) = exp(−(0(G − G)2 + 21(G − G) (H − H) + 2(H − H)2)), (11)
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where295

0 =
cos2 (\)

2_2
0
+ sin2 (\)

2_2
1
, (12)

1 =
sin(2\)

4_2
0
− sin(2\)

4_2
1
, (13)

2 =
sin2 (\)

2_2
0
+ cos2 (\)

2_2
1

, (14)

_0 and _1 are the eigenvalues of the covariance matrix in Equation (5), G and H are the296

longitude and latitude of the AR center, and \ is the angle between the along the AR axis297

(®B1 from Equation (5)) and the equator. We observe that for fewer than 500 tracers, the298

AR area might not be correctly resolved since, for larger ARs, there might be regions in-299

side the AR without initial tracers. We find that, in general, 2,000 is a sufficient number300

of initial tracers and allows a spatial distribution that concentrates in the vicinity of the301

IVT blob and extends further from it. Our results do not vary for larger number of trac-302

ers. In this fashion, we ensure that the initial position of tracers is distributed inside and303

outside of the AR, but no tracers (or a negligible number) are far from the AR (the tracers304

initial position distribution is represented by the black dots in Figure 5 (a)). Additionally,305

we simulate 50 tracers for each initial position, resulting in 50 different trajectories due306

to the random term in Equation (10). This is equivalent to repeating the experiment 50307

times, thus increasing the statistical robustness of the results. We find similar results using308

a higher number of repetitions.309

The area estimation is done as follows. Starting from the initial position (black310

dots), we compute trace trajectories five days backward in time (resulting in the orange311

dots in Figure 5 (a)). We then use these new locations to calculate the forward in time312

five days trajectory (resulting in the blue dots in Figure 5 (a)). We compute this process313

for all pressure levels between the surface and 500 hPa and record the tracers’ final po-314

sition at each level. We choose five days because we need a timescale longer than the315

boundary layer and convective timescales, and we want a timescale as long as possible316

without exceeding the Rossby timescale by too much. Moreover, other works have found317

that few ARs have a longer duration than five days (Payne & Magnusdottir, 2016; Zhou et318

al., 2018).319

We gather the final tracers from all levels and calculate the bivariate PDF of the320

final tracer latitudes and longitudes. We estimate the AR area as the size of the largest321

contiguous contour of PDF=0.68 (the PDF of the final position within two standard devia-322

tions), corresponding to the thicker green contour if Figure 5 (b). Supporting information323

Text S2 and Figure S3 show a sensitivity test of AR area relative to PDF value changes.324

3.4 ClimateNet Method (CN)325

We use ClimateNet Climate Contours (https://www.nersc.gov/research-and326

-development/data-analytics/big-data-center/climatenet/, http://labelmegold327

.services.nersc.gov/climatecontours\_gold/tool.html), which is a guided user328

interface for annotating climate events, facilitating the collection of hand-labeled weather329

datasets (Kashinath et al., 2020).330

We use the data generated using the ClimateNet labeling tool during the 3rd ART-331

MIP workshop (http://www.cgd.ucar.edu/projects/artmip/meetings.html) in332

October 2019. Half a day out of a 2.5-day workshop was devoted to this task, includ-333

ing over 15 workshop participants who labeled 660 time slices of data during the session334

(O’Brien et al., 2020). A total of 1822 AR detections were made over the whole globe,335

and 378 were made in the North Pacific Ocean region (which will be referred to as global336

and NP, respectively) using an Atmospheric Model Intercomparison Project (AMIP) sim-337

ulation performed with the Community Atmosphere Model (version 5) running at 25-km338
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Figure 5. (a) Initial position (black), after five days backward advection (orange), and five days forward
advection from the orange tracer locations (blue).The cyan contour shows the region with most (68%) of the
tracers after the the five-day forward advection. (b) IVT (filled contours) and PDF of the tracers’ final position
(contours). Thicker cyan contour at ? = 0.68 area is used to estimate the AR size in the Lagrangian tracers
method (LT).

resolution (Wehner et al., 2014). We calculate the area and orientation of each of these339

hand-labeled ARs. Unlike the methods described in Sections 3.1-3.3, this method does not340

distinguish between the AR-genesis location or life cycle.341

3.5 AR Size Calculation Methods Summary342

To help the reader keep track of the various methods used in this work, Table 1343

summarizes a description for each method and the short names used throughout this work.344

Table 1. Methods for AR size estimation used in this work.

Acronym Description Section

PC Principal components analysis of atmospheric river inte-
grated vapor transport field.

§3.1

SO Statistical overlapping of AR composite conditional proba-
bility distribution of IVT given the distance to the AR center
and the PDF of the background IVT field.

§3.2.2

BG Comparison of the IVT CDF of AR composite with the CDF
of the background IVT field.

§3.2.3

LT PDF of Lagrangian tracers final position near an AR after
backward and forward 5 days advection.

§3.3

CN Hand-labeled ARs using CLIMANET contours labeling tool
by a group of experts at the 2019 ARTMIP workshop.

§3.4

345

4 Results346

We focus on the size of North American landfalling ARs. Our results are consistent347

among methods: with AR areas within the 1011 to 1012 m2 range in four of the five meth-348

ods: PC, LT, BG, and SO; and between 1011 to 1013 m2 for CN. Our results have a nar-349

rower range of AR area than the ARTMIP ensemble (Figure 1), with order-of-magnitude350

consistency with the majority of the algorithms used in ARTMIP. The novel statistical351

methods in this study (PC, SO, BG, and LT) are in good agreement with the manually352

labeled AR sizes from the ClimateNet method. Table 2 contains a summary of the length,353
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width, and area for all four methods, depending on the AR genesis location and life cycle.354

Figure 8 shows a visual representation of the size results for PC, LT, BG, and SO methods355

for WP and WP at 50% life cycle.356

4.1 AR Length and Width357

Figure 6 (a-c) shows the PDF of length and width calculated by PC. The PDF ex-358

hibits the typical “long and narrow” AR shape, from 2.3 to 4.5 times longer than the359

width (Table 3). According to PC, ARs have a median width of 844 km (90% of the cases360

were between 520 and 1386 km), and length of 3842 km (90% between 2495 and 5816361

km) for the AR with WP origin; and median width of 814 km (90% of the cases were be-362

tween 6477 and 1476 km), and length of 3413 km (90% between 2321 and 5400 km) for363

the ARs with EP Origin.364

According to PC, WP has larger and wider ARs than EP. The differences in length365

are statistically significant at a 99% confidence level, however differences in width are not.366

Concerning the life cycle, the WP composite has the smallest AR size at 25% and the367

largest at 50% of its life cycle, nevertheless only the differences in length are statistically368

significant. The EP composite length does not change much through the life cycle. How-369

ever, the width decreases monotonically through its life cycle, with differences statistically370

significant at a 99% confidence level.371

Consistently with PC, BG, and SO methods show larger ARs originated in the WP.372

According to BG, the ARs composite length (width) at 50% life cycle is 4019 (1121) km373

for the WP and 3275 (501) km for the EP. The SO’s composite length (width) at 50%374

life cycle is 2751 (916) km for the WP and 2107 (646) km for the EP. It is possible that375

the EP and WP ARs’ size differences might come from the landfall condition and that376

focusing on landfall means that we are preferentially looking at that type of AR, since this377

work is focused specifically on landfalling ARs. The difference in size between WP and378

EP ARs and of non-land-falling ARs could be explored in future work.379

The lengths determined by the BG and SO methods exhibit little variation through-380

out the life cycle. In contrast, AR width decreased by a factor of 0.67 (WP) and 0.60381

(WP) for BG, and 0.85 (WP) 0.69 (EP) for SO. These results suggest that the AR area382

difference through the life cycle is mainly due to changes in width.383

4.2 AR Area384

Figure 6 (d-e) show the PDFs of the AR area, calculated by PC method (solid lines)385

and LT (dashed lines). For the WP ARs, the area has a median of 2.47x1012m2 and 2.75x1012m2
386

for PC and LT, respectively. For the EP ARs, the area has a median of 2.23x1012m2 and387

2.33x1012m2 for PC and LT, respectively. The WP composite has larger areas than the388

EP at a 99% confidence level. EP ARs do not show a significant difference in the area389

through the life cycle, while WP ARs attain maximum area at their mid-life cycle for both390

the PC and LT methods.391

The one-tailed KS-test (one-tailed BG) estimates the AR composite area as 3.67x1012m2
392

and 1.40x1012m2 for WP and EP, respectively (at 50% life cycle). SO estimates a compos-393

ite area of 1.75x1012m2 and 8.74x1011m2 for WP and EP, respectively (at 50% life cycle),394

with more extensive (both width and length) AR from WP when compared with the EP395

AR.396

BG results show a decrease the AR composite area decreases through the life cy-397

cle by a factor of 0.68 and 0.54 for the WP and EP, respectively (decrease of ∼0.83 and398

∼0.62 according to SO). These changes come mainly from differences in width.399
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Figure 6. (a-c) PDF of AR length (dashed lines) and width (solid lines) using the principal components
method (PC), at 25, 50, and 75% of the AR life cycle. WP composite in blue lines, EP composite in orange
lines. (d-f) PDF of AR area for the PC method in solid lines, and the LT method in dashed lines. Lines colors
are the same as in (a-c).

CN results show a median area of 3.34x1012m2 (90% of data between 6.15x1011
400

and 7.70x1012m2) in the North Pacific region. Figure 7(a) shows larger AR areas for the401

global analysis 4.29x1012m2 (90% of data between 9.43x1011 and 1.09x1013m2). All the402

other methods (PC, LT, BG, and SO) are consistent with the CN area result, which are in403

fact hand-labeled AR by experts, demonstrating that these methods give reasonable es-404

timates for AR size. If so, our results using ClimateNet might be on the larger side in405

terms of AR area, which could be related to the specific shapes the user can determine,406

or where the user exactly locates the AR “boundary” polygon at the time of labeling, how-407

ever, these details are outside of the scope of this study.408

The sensitivity tests (supporting information Text S1 and S2, and Figures S1 to S3)409

show that for the SO method, variations in the overlapping background PDF and compos-410

ite CPD values from (PDF, CPD)=(0.05,0.95) (minimum overlapping) to (PDF, CPD)=(0.5,0.5)411

(large overlapping) result in area changes from 2.84x1011 to 9.9712 m2. The one-tailed BG412

sensitivity test to the significance level (? = 0.8 to ? = 0.99) shows a change in AR area413

from 2.2612 to 1.4812 m2. For BG and SO, AR length shows more sensitivity to variations414

in the parameters than width.415

The LT sensitivity test shows that using 0.68 as the PDF contour to define AR size,416

variations in the scaling velocity (from 0.125 times to 4 times
√
D) result in an area changes417
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from 1.5312 to 4.1612 m2. Variations in the PDF value used (ranging from 0.4 to 0.93) re-418

sult in area changes between one and two orders of magnitude (Supporting information419

Text S2 and Figure S2). All the sensitivity analysis described here are computed for the420

WP at 50% life cycle. We find similar results for different stages of the life cycle and for421

EP.

(a)
(b)

Figure 7. (a) PDFs of AR area (PDFs are not normalized for visualization). PDFs from the PC and LT
methods are calculated using data from WP and EP at 50% life cycle. The lowest to highest obtained values
from the BG (SO) methods are represented in the shaded grey area (between solid grey lines) for comparison.
(b) PDF of AR orientation with respect to the equator from the PC method at 50% of the AR life cycle for the
WP (blue line), EP (orange line), and the North Pacific ClimateNet (green line) composites.

422

4.3 AR Orientation423

Figure 7(b) shows the PDF of the AR orientation with respect to the equator \, cal-424

culated using PC and CN methods. PC method results show that ARs originating in the425

WP are more zonally orientated than those originating in the EP. WP ARs have a median426

\ of 13.7◦ (with 90% of the data between 7.7◦ and 99.8◦). EP ARs have a median \ of427

49.1◦ (with 90% of the data between 10.4◦ and 142.6◦). CN results show a median \ of428

26.5◦ (with 90% of the data between 6.9◦ and 157.2◦) for the North Pacific AR.429

With respect to the AR life cycle, both WP and EP show an increase in the median430

\: 28◦ to 37◦ for the WP, and 46◦ to 53◦ for the EP. Table 2 summarizes the results of431

length, width, and area of the AR composite from all the methods in this work. AR geo-432

metrical characteristics (aspect ratio and orientation) are summarized in Table 3.433

5 Discussion and Conclusions434

Figure 8 color contours show the superimposition of IVT from all the AR objects435

in this study for WP and EP at 50% AR life cycle. We present Figure 8 as a summary of436

the PC, SO, BG, and LT methods. We aim to illustrate the methods together and make437

them more clear to the reader. To generate this plot, we rotated all the AR objects to the438

same frame of reference. The angle of orientation \ of each AR represents the median439

angle with respect to the equator, and the dotted angle is the -1 and +1 standard deviations440

of \. EP ARs are not only more zonally oriented, but they also have greater variance in441

\ than WP ARs. The break grey lines represent the 5th, 50th, and 95th percentile of the442

PC method. The golden and red bars represent the SO and BG length and width. The443

solid cyan line represents the LT method and was created by rotating the final position444

of tracers to the same system of reference of the plot and then calculating the bivariate445

PDF (cyan contour corresponds to ?=0.68). We can see that BG, SO, PC and LT are very446
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consistent in estimating the AR width. On the other hand, AR length seems to have more447

variability among methods (in the supporting information, we show that AR length shows448

to be more sensitive than width to parameter variations). The results from LT show an449

asymmetric contour with an elongated tail to the southwest end of the AR. They suggest450

that an AR detection algorithm based on “fluid dynamics” could be helpful to determine451

the AR boundaries independently of thresholds or parameter choices and other variables452

such as IVT. This is worthy of exploring in future works.453

Table 2. Summary of AR size statistics by method.

Northwest Pacific Northeast Pacific
0.25 0.5 0.75 0.25 0.5 0.75

Method Length [km]
PC 3553 3842 3757 3366 3413 3425
5-95% 2168-5984 2495-5816 2608-5562 2239-5596 2321-5454 2315-5400
BG 2783 2932 2813 2431 1640 1764
SO 2422 2650 2532 1986 1944 1580

Method Width [km]
PC 823 844 838 845 814 809
5-95% 520-1386 530-1405 510-1366 513-1550 477-1476 454-1516
BG 664 912 769 465 882 355
SO 850 812 771 625 582 394

Method Area [1012 m2]
PC 2.32 2.60 2.49 2.26 2.24 2.19
5-95% 1.02-5.29 1.23-5.22 1.26-4.98 1.03-5.30 1.03-5.09 0.97-5.22
LT 2.55 2.91 2.74 2.35 2.34 2.32
5-95% 1.52-4.54 1.49-4.47 1.59-3.88 1.26-4.32 1.25-3.97 1.09-4.01
BG 1.45 2.10 1.70 0.88 1.13 0.49
SO 1.61 1.69 1.53 0.97 0.89 0.48
CN 3.34
5-95% 0.61-7.70

In previous works, two main areas of AR-genesis have been identified: over the454

subtropical Northwest Pacific and the Northeast Pacific (Sellars et al., 2017; Zhou et al.,455

2018). Here, we find robust evidence of a statistically significant difference in size of456

landfalling ARs, depending on their region of genesis, with longer and broader ARs from457

the Northwest Pacific relative to those originating over the Northeast Pacific. This result458

may be related to the dynamical process driving the AR formation. It has previously been459

suggested that WP ARs have a stronger association with a thermally driven jet over the460

North Pacific Ocean; while EP ARs are thought to be more associated with extratropi-461

cal cyclone activity and to the commonly known phenomenon “Pineapple Express” (Li &462

Wettstein, 2012; Cordeira et al., 2013; Zhang et al., 2019; Zhou & Kim, 2019; Zhang &463

Ralph, 2021). We also found evidence WP ARs tend to have more zonal orientation than464

those originating in the EP, which we believe could also relate to the dynamical feature465

driving the AR. This difference in AR size and orientation between the EP and WP may466

have implications for where moisture transport occurs.467

PC, BG, and SO methods agree on the typical “long and narrow” shape from the468

AR literature, with a median aspect ratio of approximately 4 (length/width). Other de-469

tection algorithms could use these findings as geometrical constraints in the future. The470
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Figure 8. Summary of results and graphical comparison for the different size estimation methods. In color
contours we superimpose (with transparency of 0.1%) the IVT field of all the AR objects available at 50% life
cycle for (a) Western Pacific and (b) Eastern Pacific. Each AR object is rotated to the median angle of orien-
tation, and the distance to the center is calculated to make this plot. The dotted “fan” represents two standard
deviations for the AR orientation with respect to the equator. The red and gold lines represent the length and
width estimated using the SO and BG methods respectively. Grey dashed lines, represent the results of the PC
method for the 5th, 50th and 95th percentile. The cyan solid line represents the results of the LT method. It is
the 0.68 probability contour of the final position for all the AR cases gathered and rotated to the same frame
of reference.

Table 3. Summary of AR geometry statistics by method.

Northwest Pacific Northeast Pacific
0.25 0.5 0.75 0.25 0.5 0.75

Method Aspect ratio [width/length]
PC 4.2 4.5 4.4 3.9 4.2 4.3
5-95% 2.3-7.6 2.3-7.7 2.6-7.3 2.3-7.1 2.3-7.4 2.4-7.5
BG 4.1 3.2 3.6 5.2 1.8 4.9
SO 2.8 3.2 3.2 3.1 3.3 4.0

Method Orientation [deg]
PC 28.9 29.5 35.7 49.9 53.1 53.6
5-95% 8.1-80.2 7.3-89.2 8.5-111.8 9.5-136.5 12.3-130.1 12.1-149.6
CN 26.5
5-95% 6.9-157.2

AR orientation difference between WP and EP could also directly affect the precipitation471

associated with landfalling AR, depending on the relative angle to the coastal mountain472

range, and hence the orographic lifting (Hu et al., 2017). More meridionally oriented AR473

towards the end of the life cycle might modify the effects of orographic lifting and AR474

impacts over the coast. Furthermore, the steepening of the AR orientation with life cy-475

cle supports the hypothesis that most–if not all–ARs are intrinsically related to midlati-476

tude cyclones. During the growth phase of the AR, the AR would form along the south-477

ern portion of a midlatitude cyclone, in the location of the dominant moisture source; the478

predominantly westerly flow would cause developing ARs to have a more zonal orienta-479

tion. As the AR matures and its moisture is entrained into the cyclone, more of the va-480

por transport would occur along the eastern flank of the cyclone, giving the AR a steeper,481

more meridional orientation. If there is a relationship between size, duration, propagation482
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speeds, and orientation, this could influence the AR landfalling conditions and its impacts,483

which is a question worthy of further investigation.484

It is worth noting that the AR width at the end of life cycle (75%) obtained from485

SO and BG, (355 and 394 km respectively) is in good agreement with airborne and satel-486

lite observations from the 1997/1998 winter ARs, where they find an average width scale487

based in IWV of 417.3 km (Ralph et al., 2004). Moreover, our result on orientation of488

EP ARs at the end of the life cycle (53.6◦) agrees with the 17-case composite observation489

from dropsondes, where Ralph et al. (2004) find an average wind direction of the low-490

level jet of 216.7◦ (corresponding to 53.3◦ from our methodology’s frame of reference).491

We also observe a monotonic decrease in AR width through the life cycle, which492

could be associated with a systematic loss of moisture, or it could be associated with fron-493

togenesis and sharpening of the frontal zone. These results could be explored in future494

studies, especially ones using a tracer technique.495

The sensitivity tests suggest that for the statistical size estimation methods (SO and496

BG), length is more sensitive to the choice of parameters than width. We hypothesize that497

this is related to the difficulty of statistically distinguishing the AR “tail” (or southwest498

end or AR) from the high water vapor and IVT in the vicinity of the ITCZ. We observe499

(in a case by case exploration) that sometimes the IVT field does not have a clear bound-500

ary with respect to the ITCZ, resulting in a noisier CPD in the left side of the AR com-501

posite for large probability contours (� > 0.9). It is possible that this would also have an502

impact in the detection and tracking algorithms and their ability to objectively determine503

the AR boundary.504

Furthermore, this raises the question about a possible link between AR size and505

duration, and how the size of AR might be directly related to hydrological impacts over506

landfalling regions. Do we need to explicitly include size in addition to IVT intensity and507

duration in the categorization scale for AR (Ralph et al., 2019) and their impacts? We508

often assume ergodicity, but if larger ARs have systematically slower/faster propagation509

speeds, then the AR size-life cycle (and possibly landfalling duration) relationship would510

not be ergodic. Our future research will work toward answering these questions.511

In Figure 1, we can observe a high spread in the size of AR among AR detection512

methods (white background part). Our results show values with much less spread (colored513

background part) relative to the current methods. It is important to notice that some of514

these conclusions could be reached by analysis of existing ARTMIP data, with the caveat515

that such conclusions would depend on the heuristic AR detection algorithms employed in516

ARTMIP. The novel analytical contributions introduced in this manuscript –use of PCA517

of the IVT field, statistical estimation of AR composite size (BG and SO methods), and518

the use of Lagrangian tracers to determine AR size– allow us to reach these conclusions519

and can provide a statistical constraint on AR size for other detection methods. This could520

also allow us to incorporate size into the ARs categorization in coastal regions and their521

impacts.522

We speculate that different algorithms within ARTMIP detect different parts of the523

AR since each algorithm defines different rules and relatively-unconstrained thresholds, as524

it has been shown before by Lora et al. (2020). For example, since algorithms 01 to 04525

are outside the range of areas estimated in this study, we can confidently argue that these526

algorithms are not detecting the same part of ARs as our methods or as algorithms 11-28.527

The AR research community may need to define more than one term, with different def-528

initions depending on what particular meteorological feature of AR is being studied. We529

acknowledge that different algorithms are created with different objectives and study goals530

in mind. However, future studies could benefit from the definition of three potential new531

terms: “AR core” (algorithms 1-4), “dynamical envelope” (LT method and maybe 9-17532

methods), and “thermodynamic envelope” (PC, BG, SO, CN and algorithms 18-28). Al-533

–17–
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though the dynamical and thermodynamical envelopes are indistinguishable here, they may534

not be in studies of future AR size. This could help understanding what is the extent of535

the consistency in AR detection among different algorithms, particularly with respect to536

size. The importance of changes in AR statistics in the future has been demonstrated be-537

fore. Previous studies have shown that AR frequency will increase by ∼50% globally, AR538

intensity will increase by ∼25%, and that the ARs will be ∼25% longer and ∼25% wider539

(Espinoza et al., 2018; Massoud et al., 2019). In future simulations using CMIP5/CMIP6540

models, AR detection algorithms project a global increase in AR frequency and sizes,541

specially along the western coastlines of the Pacific and Atlantic oceans, and it has been542

demonstrated that the choice of the detection algorithm can have a major impact on the543

results of the climate change AR studies (O’Brien et al., 2021).544

We will continue to examine the relation between AR size and duration. Moreover,545

the direct relationship we found between AR origin location and size, the life cycle and546

size, motivates us to apply our methodology to understand how the AR size would change547

under global warming scenarios. Current detection methods may require adjusting the pa-548

rameters and thresholds when studying different climate scenarios, making the objective549

study of change in AR size a challenging problem for future projections. Our approach550

could provide an objective insight for future works into the possible changes and hydro-551

logical impacts due to AR size and climate change.552
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In Text S1 to S2 and Figures S1 to S3, we present the sensitivity analysis of three of

our AR size estimation methods: Statistical Overlapping of IVT With the Background

Field PDF (SO), K-S Statistics Between AR Composite and the Background CDF (KS),

and Lagrangian tracers method (LT).
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For reference, Table S1 shows the labels in Figure 1 from the main text to the respective

ARTMIP detection and tracking algorithm used to calculate the AR areas.

Text S1. Sensitivity analysis: BG and SO methods.

We calculate a sensitivity test for the Statistical overlapping of AR composite condi-

tional probability distribution of IVT given the distance to the AR center and the PDF

of the background IVT field (SO), and the comparison of the IVT cumulative distribu-

tion function (CDF) of AR composite with the CDF of the background IVT field (BG)

method.

For the SO method, we vary the overlapping PDF intersection value to define the AR

composite size: the background IVT PDF value σ− from 0.05 to 0.5, and the conditional

probability distribution (CPD) value of the AR IVT composite σ+ from 0.95 to 0.5. The

values used to calculate the results shown in the main text are σ−=0.16 and σ+=0.84.

For the BG method, we test the sensitivity of the one-tailed Kolmogorov–Smirnov test

by varying the p-value used to estimate the size of the AR composite, from p = 0.80 to

p = 0.99.

Figures S1(a-b) and S1(c-d) show the results of these sensitivity tests for the Northwest

(WP) and Northeast Pacific (EP) ARs at 50% life cycle. Similar results 25% and 75% of

the AR life cycle.

It is important to notice that the dependence on the free parameters for the SO and BG

methods is as expected. SO dimensions and areas should increase as σ− decreases and σ+

increases (so the AR becomes “indistinguishable ” from the background). This is shown

in Figure S1(a-b). Moreover, in the BG method areas should decrease as p increases (a

more stringent condition), as Figure S1(c-d) shows.

June 15, 2021, 11:37pm
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Text S2. Lagrangian tracers method (LT) sensitivity analysis

We explore the sensitivity the LT method to the stochastic component and the scaling

of the horizontal-velocity used for the velocity used for tracer advection. We calculate the

trajectory of the tracers using a modification of Equation (10) from the main text of this

work

dxi = (ui + α
√

2uiwi) dt, (1)

where we use the parameter α to modify the magnitude of the scaling velocity, from 1/8

times
√

2ui to 4 times
√

2ui (α = 1 represents the value used to calculate the results

shown in the main text of this work).

Additionally, we vary the PDF threshold value used to define the AR area from p = 0.4

to p = 0.93, where p = 0.68 represents the value used to estimate the AR area for the

results of this work.

Figure S2 shows the sensitivity test results for WP and EP AR composites at 50% life

cycle. Similar results 25% and 75% of the AR life cycle.

Results for the LT sensitivity test are as expected. Increasing p should decrease the

area for a given value of alpha, as shown in Figure S2. The increase in area for a given

p value is certainly plausible – in the limit of α → ∞, the sample points from the AR

should insteadly spread over the whole globe after the first time step, thereby maximizing

the area.

June 15, 2021, 11:37pm
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Figure S1. WP (a) and EP (b) sensitivity background for the one-tailed KS-test method

(BG). AR area is shown in blue (left vertical axis). AR length and width are shown in orange

and green, respectively (right vertical axis). p is the statistical significance level for the one-tailed

KS-test. The results presented in the main text of this work are generated using p = 0.95. WP

(c) and EP (d) sensitivity test for the statistical overlapping method (SO). σ− and σ+, are the

PDF value of the IVT background and the CPD value of the IVT composite with distance,

respectively. AR area is shown in blue (left vertical axis). AR length and width are shown in

orange and green, respectively (right vertical axis). The results presented in the main text of

this work are generated using σ− = 0.16 and σ+ = 0.84.
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Figure S2. Sensitivity test for the Lagrangian tracers method (LT). Colored contours show

AR area, α is the multiplication factor of the scaling velocity
√

2ui from equation (1), and p-value

is the final tracer position PDF value at which we define the AR size. Black contours represent

-2, -1, 1, and 2 standard deviations of the AR area calculated using the LT method (from main

text Figure 1). The black star represents α = 1.0 and p = 0.68, which are the values used to

calculate the main work results.
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Table S1. List of ARTMIP algorithms used to generate Figure 1.

Label Algorithm name
01 Lavers
02 PNNL AR detection ALG#2 v1
03 wille IWV
04 Brands v3
05 Tempest T2CNTL
06 CASCADE IVT
07 tempest ivt250
08 tempest ivt700
09 tempest ivt500
10 CASCADE IWV
11 Payne Magnusdottir
12 wille vIVT
13 Gershunovetal2017 v1
14 PNNL AR detection ALG#1 v1
15 Reid500
16 Mundhenk v3
17 Guan Waliser v2
18 TDA ML
19 Walton v1
20 SAIL v1
21 Rutz
22 Lora v2
23 Reid250
24 PanLu
25 Viale SAmerica
26 Goldenson v1-1
27 cascade bard v1
28 ARCONNECT
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