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Abstract

Hourly precipitation extremes can intensify with temperature at higher rates than expected from thermodynamic increases

explained by the Clausius-Clapeyron (CC) relationship (˜6.5%/K), but local scaling with surface air temperature is highly

variable. Here we use daily dewpoint temperature, a direct proxy of absolute humidity, to estimate at-gauge local scaling across

six macro-regions for a global dataset of over 7000 hourly precipitation gauges. We find scaling rates from CC to 2xCC at

more than 60% of gauges, peaking in the tropics at a median rate of ˜1.5CC. Moreover, regional scaling rates show surprisingly

universal behaviour at around CC, with higher scaling in Europe. Importantly for impacts, hourly scaling is persistently higher

than scaling for daily extreme precipitation. Our results indicate greater consistency in global scaling than previous work,

usually at or above CC, with positive scaling in the (sub)tropics. This demonstrates the relevance of dewpoint temperature

scaling to understanding future changes.
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Abstract 6 

Hourly precipitation extremes can intensify with temperature at higher rates than expected from 7 

thermodynamic increases explained by the Clausius-Clapeyron (CC) relationship (~6.5%/K), but local 8 

scaling with surface air temperature is highly variable. Here we use daily dewpoint temperature, a 9 

direct proxy of absolute humidity, to estimate at-gauge local scaling across six macro-regions for a 10 

global dataset of over 7000 hourly precipitation gauges. We find scaling rates from CC to 2xCC at 11 

more than 60% of gauges, peaking in the tropics at a median rate of ~1.5CC. Moreover, regional 12 

scaling rates show surprisingly universal behaviour at around CC, with higher scaling in Europe. 13 

Importantly for impacts, hourly scaling is persistently higher than scaling for daily extreme 14 

precipitation. Our results indicate greater consistency in global scaling than previous work, usually at 15 

or above CC, with positive scaling in the (sub)tropics. This demonstrates the relevance of dewpoint 16 

temperature scaling to understanding future changes.    17 

1 Introduction  18 

Short-duration precipitation extremes can cause flash floods, landslides, and debris flows with little or 19 
no warning, leading to serious socioeconomic impacts (Fadhel et al., 2018). Hence, they are highly 20 
relevant in the design of water resource and stormwater drainage infrastructure systems, especially in 21 
urban areas due to their strong surface impermeability (Ali & Mishra, 2017). Insight into the impacts 22 
of warming on sub-daily (particularly hourly to 3-hourly) extreme precipitation may, therefore, be 23 
crucial for societal decision-making for climate adaptation (Bader et al., 2018). Studying changes to 24 
historical precipitation extremes can aid the understanding of potential future changes to extreme 25 
precipitation (Allen & Ingram, 2002). Previous studies have reported that climate warming and 26 
urbanisation are intensifying observed daily precipitation extremes globally (Alexander, 2016; Ali et 27 
al., 2018; R. Barbero et al., 2017; Westra et al., 2014) with some evidence suggesting enhanced 28 
increases in observed extreme hourly precipitation intensities (Guerreiro et al., 2018; Li et al., 2020).  29 

The intensification of precipitation extremes with warming can be explained thermodynamically from 30 
the increase in humidity, or water vapour, of the atmosphere. The Clausius-Clapeyron (CC) 31 
relationship has therefore been used as a benchmark to interpret change to extreme precipitation 32 
(Fischer & Knutti, 2016; O’Gorman, 2015). This relation links air temperature and atmospheric 33 
humidity when the air is saturated, giving an increase in humidity of 6-7% per degree warming 34 
(Trenberth et al., 2003). Under the assumption of constant relative humidity, which is partly supported 35 
by climate modelling results and physical reasoning at least over (relatively) wet surfaces, the actual 36 
humidity of the air increases at the same rate.  37 

Recent studies have confirmed an approximately CC rate of increase in long-term trends in 38 
observations and projections of daily extreme rainfall (Fischer & Knutti, 2016; Guerreiro et al., 2018; 39 
Rajczak & Schär, 2017; Scherrer et al., 2016) when averaged globally or over large regions and 40 
mostly using large-scale temperature rise or even global temperature rise. To investigate the 41 
relationship between warming and the intensification of rainfall extremes, however, a common 42 
approach uses scaling between surface air temperature (SAT) and precipitation extremes. This 43 
approach, here called “apparent” scaling following the terminology introduced by Bao et al. (2017), 44 



employs short-term variations in temperature and precipitation, mostly caused by day-to-day synoptic 45 
variability up to seasonal variations, to derive dependencies of precipitation extremes on temperature.  46 

Results of studies using apparent scaling have shown a wide range of behaviour. Often, behaviour 47 
close to the CC rate is obtained (Ali et al., 2018; Gao et al., 2018; Wasko et al., 2016). However, for 48 
some regions signs of super-CC behaviour, exceeding the CC rate, have been found for sub-daily 49 
(mostly hourly) precipitation (Peter Berg et al., 2013; Lenderink et al., 2011; Lenderink & Van 50 
Meijgaard, 2010; Park & Min, 2017). On the other hand, negative scaling rates, signifying decreases 51 
in precipitation intensity with warming have been found for subtropical and tropical regions 52 
(Hardwick Jones et al., 2010; Vittal et al., 2016). Where scaling rates with SAT deviate significantly 53 
from CC (Ali et al., 2018; Hardwick Jones et al., 2010; Zhang et al., 2017) this has been shown to be a 54 
result of confounding factors such as local cooling effects (Ali & Mishra, 2017; Bao et al., 2017), 55 
moisture limitations at higher temperatures (Barbero et al., 2018; Gao et al., 2018; Lenderink et al., 56 
2018; Trenberth & Shea, 2005), temperature seasonality (Ali et al., 2018; Zhang et al., 2017), 57 
statistical methods and inappropriate modelling assumptions (Pumo et al., 2019; Wasko et al., 2015) 58 
and mixing of different rainfall types (Berg & Haerter, 2013; Molnar et al., 2015). Moreover, the 59 
localised effects of large-scale circulation patterns enhanced local moisture availability through 60 
upward motions and moisture convergence, and local-scale dynamics can influence scaling rates (Ali 61 
& Mishra, 2018; Guerreiro et al., 2018; G. Lenderink et al., 2017; Pfahl et al., 2017). 62 

This diversity of behaviour, and the complexity of the physical processes involved, has led to a large 63 
debate in the literature on the potential use of apparent scaling, and how it could be related to climate 64 
change. Here, we show that a considerable part of this controversy can be resolved when using dew 65 
point temperature (DPT), which measures the actual humidity of the air instead of the humidity at 66 
saturation, extending several recent studies (Ali & Mishra, 2017; Barbero et al., 2017, 2018; Gao et 67 
al., 2018; Geert Lenderink & Attema, 2015). Ali et al. (2018) showed consistent global scaling of 68 
daily extreme precipitation at the CC rate using DPT as a scaling variable instead of SAT. While we 69 
fully acknowledge the complexity issues described above, we also note that there is some evidence of 70 
surprising similarities in scaling dependencies between different areas and links between longer-term 71 
variations in DPT and hourly precipitation extremes (Lenderink et al., 2011; Lenderink & Attema, 72 
2015).  73 

Therefore, in this paper, we focus on the following questions. Are negative scaling rates, in particular 74 
for subtropical and tropical areas, an artefact of the use of SAT in most scaling studies? Do we find 75 
more universal behaviour across the globe using DPT, and how much could this behaviour deviate 76 
from CC rates? How widespread is super-CC behaviour in hourly extremes, and do scaling rates of 77 
hourly extremes exceed those of daily extremes?  78 

Here we use gauge observations of hourly precipitation (PPT) from the Global Sub-Daily Rainfall 79 
(GSDR) dataset (Lewis et al., 2019) and daily DPT from HadISD (Dunn et al., 2012, 2016) to 80 
establish, for the first time, the scaling relationship between extreme hourly precipitation and daily 81 
DPT at a global scale. We examine six main regions: the USA, Australia, Europe, Japan, India and 82 
Malaysia with a total of 7088 gauges which have at least 12 years of data (Barbero et al., 2019a) (start 83 
and end year varies between 1979-2014). We estimate scaling rates across these selected regions at 84 
different spatial scales. For every gauge, we estimate the scaling using the classic binning method 85 
(Lenderink & Van Meijgaard, 2008) (BM) and check the consistency of our results against other 86 
scaling methods (quantile regression, QR; Ali et al., 2018) and removing the seasonality in DPT 87 
(Zhang et al., 2017) (ZM)). The Methods section provides details on the datasets, their quality control, 88 
and the methods used to estimate scaling relationships at these different spatial scales.  89 

2 Data and Methods: 90 

PPT and DPT data 91 



We obtained hourly precipitation data (PPT) from the Global Sub-Daily Rainfall (GSDR) dataset 92 
(Lewis et al., 2019) which was compiled under the Global Water and Energy Exchanges (GEWEX) 93 
Hydroclimatology Panel INTENSE project (Blenkinsop et al., 2018) and has been used in many 94 
recent studies (Barbero et al., 2017, 2019a, 2019b; Guerreiro et al., 2018; Li et al., 2020; Moron et al., 95 
2019). The GSDR data has been quality-controlled using 25 different checks to identify and remove a 96 
range of errors, such as physical and spatial consistency issues, spikes and flat lines (streaks) 97 
(Blenkinsop et al., 2017; Lewis et al., 2018). We selected six macro-regions where data was available: 98 
The United States of America (US), Australia, Europe, Japan, India and Malaysia to provide a 99 
comprehensive global study covering different climate zones with large latitudinal and elevation 100 
ranges. The gauges in the USA were of mixed-precision (0.25 mm and 2.54mm), therefore, all the 101 
gauges in the USA were explicitly processed to have a consistent 2.54 mm precision (Barbero et al., 102 
2019b). Although the spatial and temporal coverage of the GSDR dataset is not uniform, we ensured a 103 
sufficient length of precipitation data for estimating scaling. Therefore, we only considered PPT 104 
stations which have at least 12 years of data with less than 20% missing hours in any given year (start 105 
and end year varying between 1979-2014; Fig. S4).  106 

We obtained daily dewpoint temperature data (DPT) from the Met Office Hadley Centre observations 107 
dataset: HadISD (version 2.0.2.2017f) (Dunn et al., 2019, Lewis et al., 2019). This is a global dataset 108 
(8103 stations) spanning 1/1/1931 to 12/12/2017 and is based on the Integrated Surface Dataset (ISD) 109 
from the National Oceanic and Atmospheric Administration’s (NOAA’s) National Climatic Data 110 
Center (NCDC). 111 

The details on quality-control of DPT data, pairing DPT with PPT data, and pooling PPT-DPT pairs is 112 
mentioned in Supplemental Information. 113 

Methods: 114 

We used three methods for estimating scaling: (a) Binning Method, (b) Quantile regression, and (c) 115 
Zhang et al. (2017) method (ZM). 116 

To apply the BM, we first considered all wet hours (with precipitation ≥ 0.1mm, except for the US 117 
and Japan for which the minimum amount was 2.5mm and 1mm respectively) for each station’s PPT-118 
DPT pair. We then placed data into 12 bins of equal size, sorted from the lowest to highest DPT, and 119 
estimated the 95th/99th percentile of PPT (P95/P99) and the mean DPT for each temperature bin. We 120 
excluded the first and last bins from the scaling estimate to avoid any noise or absurd DPT values 121 
which may be outliers to climatology resulting from very specific circulations. We fitted a linear 122 
regression on the logarithm of P95 and mean DPT for the second bin to the second last bin (2to2last) 123 
and from the second bin to the bin where the maximum of P95 occurred (2toBP), which is given by: 124 

                                                     log(𝑃95) = 𝛼 + 𝛽𝑇                                      (1) 125 

Then scaling (dP95(%)/K) was then estimated using an exponential transformation of the regression 126 
coefficient (β) given by: 127 

                                           𝑑𝑃95(%)/𝐾 = 100. (𝑒𝛽 − 1)                                (2) 128 
 129 
 130 

QR is similar to BM except there is no assumption of the number and size of bins. The scaling was 131 
estimated using equations 1 and 2 for all wet hours for paired PPT-DPT data for a given percentile 132 
(99th percentile in our study). 133 

To ensure that the increase in extreme precipitation with DPT is not dominated by seasonal trends in 134 
DPT, we also removed the seasonality from the DPT data to estimate the scaling (Ali et al., 2018; 135 
Zhang et al., 2017). In the ZM method, we first identify the four months which receive the highest 136 
PPT in a year for each location and then estimate the DPT anomalies for these four months. For the 137 



same four months, we normalised the maximum hourly PPT amount by the median of the maximum 138 
hourly PPT (for the whole time series for these top four months). We then fitted a Generalized 139 
Extreme Value distribution (GEV) to these normalised maximum hourly PPT data using the 140 
corresponding DPT anomalies as a covariate on the location parameter in the GEV model (as in Ali et 141 
al., 2018).  142 

Moreover, we also examined the latitudinal variation in scaling, and the difference in scaling between 143 
dry and wet regions (defined in Donat et al., 2016) and constructed scaling curves for larger regions 144 
by pooling all locations within similar climate zones, based on the Koppen-Geiger classification 145 
system. We distributed the available 7088 gauges into 5-degree width latitudinal bands (Fig 3a) and 146 
estimated the median scaling for each band. Moreover, we grouped the available gauges into dry and 147 
wet regions following the classification of Donat et al. (2016). They (Donat et al., 2016) calculated 148 
precipitation indices (annual maximum precipitation, Rx1day; and total precipitation, PRCTOT) for 149 
each grid cell and normalised them by dividing by the average of the base period (1951-1980). The 150 
grid cells with the 30 per cent lowest normalised precipitation index values were labelled as dry and 151 
the 30 per cent highest values were labelled wet, respectively. We also constructed scaling curves for 152 
the selected regions by pooling all stations with an elevation greater than and less than 400m within a 153 
Climate Zone. The choice of the 400m threshold is somewhat arbitrary but is motivated to avoid the 154 
mixing of DPT from different altitudes (Lenderink et al. (submitted)). High altitudes have lower DPT 155 
than lower altitudes and the mixing of DPT may produce a statistical artefact to artificially flatten the 156 
scaling curves. The absolute number of stations pooled within each climate zone is mentioned at the 157 
top of each upper panel in Fig 4. All the wet hour PPT-DPT pairs were placed in 2℃ wide bins, 158 
ranging from 0℃ up to 28 ℃. From this binned data we then computed the 95th, 99th and 99.9th 159 
percentile of the distribution of the wet events (as Lenderink et al., 2017).  160 

 161 

3 Results 162 

3.1 Extreme precipitation scaling at station-level and pooled regions 163 

We first examine the scaling rates at individual gauges. We find that the relationship between hourly 164 
precipitation and dewpoint temperature is generally consistent with CC (6.5%/K) scaling at most 165 
locations across the selected regions. Although spatial variability in scaling is high across regions, a 166 
small majority of 60% of gauges show scaling at greater than the CC rate (Fig. 1). The highest 167 
regional median scaling rates are observed for Malaysia (11.8%/K) and Australia (8.5%/K). More 168 
noteworthy is that around 10% (22%) of locations in Australia (Malaysia) show greater than 2×CC 169 
scaling. Using other methods to estimate scaling rates gives consistent results (Fig. S1 and S2). The 170 
scaling rates are slightly higher for the warm season (Jun-Aug, except for Dec-Feb for Australia) (Fig. 171 
S3). 172 

We now move on to assess whether the record length for an individual hourly precipitation gauge may 173 
lead to any bias in scaling rate, by pooling P-DPT pairs for three neighbouring gauges within 30 km 174 
distance with elevation difference no greater than 50m (Fig. S4). Note that there is a chance that the 175 
same DPT station observations are paired to two or more precipitation gauges. Notwithstanding this 176 
limitation, we observe that the pooled median scaling rates are still higher than CC for all regions 177 
(Fig. S5), although slightly lower than those for individual gauges (Fig. 1). These show consistently 178 
strong relationships between hourly precipitation extremes and dewpoint temperature. 179 

Accumulating the hourly precipitation data to daily totals produces scaling rates consistent with those 180 
of Ali et al. (2018) (Fig. 2 and S6), at approximately CC or lower. The results for daily totals from 181 
different methods are consistent except for in tropical regions (Malaysia and India). Tropical regions 182 
show relatively low-temperature variability, e.g., all hourly precipitation extremes in Malaysia occur 183 
in a DPT range of just 20-26 ℃ (Fig. S8). Since BW and QR methods can be affected by seasonality, 184 



in particular, if the DPT range is small, ZM provides a better method to estimate scaling in the tropics 185 
(Ali et al., 2018) and this produces consistently higher scaling rates in the tropics (Fig. 2).  186 

We now examine the latitudinal distribution of scaling from hourly precipitation using 5-degree width 187 
latitudinal bands, except for 10-20 degrees North (with only 3% of total 7088 gauges), with the 188 
distribution of gauges in each latitudinal band shown in Fig 3a. We find that the median scaling is 189 
mostly at (or slightly above) the CC rate for all latitudes (Fig. 3b), and that scaling peaks in the 190 
Tropics at over 1.5CC. We also examine the difference in overall scaling between wet and dry 191 
regions, as classified by Donat et al. (2016). It is important to note that their classification is based 192 
only on precipitation (extreme precipitation: annual maximum precipitation, Rx1day; or total 193 
precipitation, PRCTOT) and does not account for differences in temperature, humidity, etc. Based on 194 
the Rx1day extreme precipitation index and using the 30% highest/lowest gauges to define wet 195 
(extreme; blue)/dry (less extreme; red)(Donat et al., 2016), the scaling for the less extreme region 196 
(median 9.11%/K) is greater than for the more extreme region (median 7.9%/K). However, classifying 197 
based on total precipitation (PRCTOT), we find the scaling is higher for the wet region. The 198 
differences between the classification based on the two indices are mainly due to gauges in Europe 199 
(which show generally higher scaling rates) falling into different regions in each case. The results are 200 
the same when a higher threshold (40%) is used for the classification into wet and dry regions (Fig. 201 
S7). 202 

3.2 Scaling curves  203 

We now examine the scaling relation for different climate zones by constructing scaling curves for 204 
selected regions. Scaling curves can help visualise the scaling relationship within the full DPT range, 205 
unlike scaling rates (Fig. 1 and 2) which are the single values of linear slope (coefficient) across the 206 
DPT range. We first split the data into locations higher and lower than 400m altitude (to avoid effects 207 
of differences in DPT with altitude), and then pool PPT-DPT pairs within the same climate zone, 208 
based on the Koppen-Geiger classification system (Kottek et al., 2006) (Table S2). We use the same 209 
methodology as previously to construct scaling curves for each regional climate zone (Fig. 4, upper 210 
panels) and compare these to the distribution of scaling rates at individual gauges from Fig. 1 (Fig. 4, 211 
lower panels). For the Temperate climate zone C (common to five from six regions where hourly 212 
precipitation gauge data is available), scaling curves follow at least the CC rate in all regions (Fig. 4). 213 
To summarise, scaling curves for hourly precipitation over large climate regions tend to the CC rate or 214 
above, although scaling curves are flatter for gauges at greater height (>400m) compared to lower 215 
altitude gauges (<400m).  Strikingly, we find that scaling curves for Europe follow 2×CC beyond 216 
12℃ (Fig. 4c) which supports the findings of Lenderink and Meijgaard (2008) for the Netherlands. 217 
What is also remarkable is that scaling curves are almost universal for the different regions; that is, for 218 
a given DPT the values of the different percentiles are very close. The scaling rates derived from these 219 
pooled data are also similar, at close to the CC rate or slightly above, with exceptions for the lowest 220 
and highest dew point temperatures. However, there are some systematic differences, such as the 221 
relatively low intensities in the low DPT range (<10 °C) in Europe.  222 

Examining the distribution of scaling rates estimated at gauge-level, most stations exceed the CC rate, 223 
and a small fraction of stations even exceed 2×CC in all four regions for the C climate zone (Fig. 4b, 224 
d, f and h). The at-gauge scaling distribution within the C climate zone is similar for locations higher 225 
and lower than 400m MSL for Australia and Japan (Fig. 4d, f). On the contrary, there is a significant 226 
(p<0.05) difference in the at-gauge scaling for Europe, where lower altitude gauges (<400m MSL) 227 
show much higher scaling than gauges above 400m MSL (Fig. 4d). In tropical Malaysia (A climate 228 
zone), with a very low range in DPT (~21-26℃), scaling curves follow at least the CC rate (Fig. S8). 229 
Scaling curves for the US (C and D climate zones) also follow the CC rate beyond 12℃ (Fig. S9). 230 
Since the measurement precision for rain gauges in the USA is much coarser (2.54 mm) we did not 231 
include these results in the main figures.  232 



4 Conclusions and discussion 233 

In this study, we have used observed hourly precipitation and daily DPT to estimate scaling over six 234 
macro-regions. At gauge level, we found that scaling rates ranged between CC and 2×CC for more 235 
than 60% of gauges. We note that comparatively lower scaling rates at US gauges may be due to their 236 
coarse measurement resolution. To remove spatial variability in at-gauge estimates of scaling, from 237 
short record lengths and local modes of variability, we assessed various pooling methods. Pooling 238 
data for three neighbouring gauges produced reduced scaling rates but with a scaling range between 239 
CC and 2×CC for more than 50% of gauges. Moreover, the median scaling is greater than CC for 240 
gauges in wet and dry regions. When we further pooled gauges across selected regions within the 241 
same Koppen-Geiger climate zone, we found that regional scaling curves consistently follow the CC 242 
rate. The exception to this is for Europe where regional scaling for climate zone C is significantly 243 
higher than the CC rate for temperatures above 12°C, consistent with findings for the Netherlands 244 
(Lenderink & Van Meijgaard, 2008). Our results suggest that by pooling data the influence of local 245 
dynamics producing super-CC behaviour is averaged out, resulting in lower scaling rates from the 246 
pooled data analyses than from the individual gauges. These local dynamics produce higher super-CC 247 
sensitivities in most of the gauges analysed globally. For instance, excess latent heat released during 248 
intense short-duration rainfall may enhance scaling (Haerter & Berg, 2009); other mechanisms 249 
include intensifying upward within-cloud motions (Lenderink et al., 2017), and increases in moisture-250 
convergence producing larger storms (Pfahl et al., 2017); but see Fowler et al. (submitted) for a 251 
comprehensive review. Our results highlight the importance of understanding the thermodynamic and 252 
dynamic processes governing precipitation extremes at different spatial scales when estimating future 253 
changes. 254 

In summary, we have shown that the scaling of hourly extreme precipitation consistently follows at 255 
least the CC rate at a regional scale, and often a super-CC rate at the gauge-level, across regions 256 
where hourly data is available. This is a much stronger scaling than that for daily extreme 257 
precipitation and adds critical information to the debate on how precipitation extremes may change in 258 
the warming climate, particularly pertinent for impacts. Of interest is whether we expect changes to be 259 
regionally or locally constrained or enhanced, and why regions like Europe show super-CC scaling 260 
rates. It is an open question whether these observed scaling rates are indicative of rates of future 261 
change with warming but some evidence from high-resolution convection-permitting modelling now 262 
suggests that they may be (Lenderink et al. submitted). Of course, scaling rates may further increase 263 
(or decrease) due to other dynamical processes, including changes to large-scale circulation patterns 264 
(Pfahl et al., 2017), cloud size and the spatial extent of rainfall events (Lochbihler et al., 2017), storm 265 
type (Molnar et al., 2015), and changes to long-term moisture transport patterns (Pfahl et al., 2017). 266 
We emphasize that these factors have not been considered explicitly in our scaling approach and 267 
further studies are still needed both to understand the processes governing precipitation extremes at 268 
different temporal and spatial scales and the potential future changes to these processes. Meanwhile, 269 
the observed strong and the surprisingly universal relationship between hourly precipitation extremes 270 
and dewpoint temperature has implications for the design of stormwater infrastructure systems, and 271 
perhaps provides a way of updating such estimates.  272 
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 434 

Figure Captions 435 

Fig. 1. Scaling rates (% K-1) estimated using hourly precipitation (PPT) from the GSDR dataset (Lewis 436 
et al., 2019) and daily dewpoint temperature (DPT) from the HadISD dataset (Dunn et al. 2019). 437 

Scaling is estimated using the binning method at the 99
th

 percentile for 7088 gauges which have at least 438 
12 years of hourly precipitation data. The number in blue indicates the number of gauges (NS) in each 439 
region and the number in black indicates the median scaling (% K-1) for each region. The numbers 440 
below each panel indicate the percentage of gauges within each region which show scaling rates 441 
ranging from 0-0.5CC (green), 0.5CC-CC (orange), CC-1.5CC (brown), 1.5CC-2CC (pink), and 442 
greater than 2CC (red) respectively, where CC is 6.5%/K. This figure and subsequent figures were 443 
plotted using Generic Mapping Tool (GMT). 444 
   445 
Fig. 2. Scaling rates (% K-1) estimated using hourly precipitation (PPT) from the GSDR dataset (Lewis 446 
et al., 2019) and daily dewpoint temperature (DPT) from the HadISD dataset (Dunn et al. 2019). The 447 

scaling is estimated using the Zhang et al. [2017] method at the 99
th

 percentile for 7088 locations which 448 
have at least 12 years of daily precipitation data. The number in blue indicates the number of gauges 449 
(NS) in each region and the number in black indicates the median scaling (% K-1) for each region. The 450 
numbers below each panel indicate the percentage of gauges within each region which show scaling 451 



rates ranging from 0-0.5CC (green), 0.5CC-CC (orange), CC-1.5CC (brown), 1.5CC-2CC (pink), and 452 
greater than 2CC (red) respectively, where CC is 6.5%/K.    453 
 454 
Fig. 3 (a) Latitudinal distribution of the 7088 hourly precipitation gauges (5-degree window size), (b) 455 
latitudinal variation of scaling, where red bars show median scaling for each 5-degree window and 456 
error bars show range of one standard deviation from the median scaling, (c) location of gauges that 457 
lie in wet (blue) and dry (red) regions based on annual maximum precipitation (R1xday) index (see 458 
Donat et al. 2016), (d) median scaling for wet and dry regions where error bars show one standard 459 
deviation from mean scaling, and (e-f) same as (c-d) but for wet and dry region classification based 460 
on total precipitation amount (PRCTOT) index. The dashed line shows the (6.5%/K) CC rate. The 461 
numbers in blue (red) indicate the number of stations lying in wet (dry) regions for the different 462 
classifications. 463 

Fig. 4 (a, c, e, g). Scaling curves showing the dependency of extreme percentiles (95th, cyan; 99th, 464 
blue; 99.9th pink) of the distribution of hourly precipitation on daily dewpoint temperature pooled for 465 
the C climate zone based on the Koppen-Geiger Climate classification. Note the logarithmic y-axis. 466 
Solid colour lines are percentiles computed for gauges at less than 400 m elevation, whereas dashed 467 
lines are for gauges at greater than 400m elevation. The horizontal lines at the bottom show 468 
interquartile ranges of DPT (1, 5, 25, 50, 75, 95, and 99%) for precipitation thresholds of 0.1mm 469 
(blue), 5mm (yellow), 20mm (red), and 50mm (pink) respectively). Dotted lines are the exponential 470 
relations given for 1 (black) and 2 (dark red) times CC scaling, and (b, d, f, g) probability distribution 471 
frequency (pdf) of scaling (99th percentile) at individual gauges (solid lines for gauges at less than 472 
400m elevation, and dotted lines for gauges at greater than 400m) within the specific region. The 473 
number at the top of the lower panels represents the median at-gauge scaling for the region. 474 
Statistical significance was estimated using KS tests for the distribution of the scaling. 475 

 476 

 477 

 478 
 479 
 480 



 481 

Fig. 1. Scaling rates (% K-1) estimated using hourly precipitation (PPT) from the GSDR dataset (Lewis 482 
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Fig. 2. Scaling rates (% K-1) estimated using hourly precipitation (PPT) from the GSDR dataset (Lewis 493 
et al., 2019) and daily dewpoint temperature (DPT) from the HadISD dataset (Dunn et al. 2019). The 494 

scaling is estimated using the Zhang et al. [2017] method at the 99
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 percentile for 7088 locations which 495 

have at least 12 years of daily precipitation data. The number in blue indicates the number of gauges 496 
(NS) in each region and the number in black indicates the median scaling (% K-1) for each region. The 497 
numbers below each panel indicate the percentage of gauges within each region which show scaling 498 
rates ranging from 0-0.5CC (green), 0.5CC-CC (orange), CC-1.5CC (brown), 1.5CC-2CC (pink), and 499 
greater than 2CC (red) respectively, where CC is 6.5%/K.    500 
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Fig. 3 (a) Latitudinal distribution of the 7088 hourly precipitation gauges (5-degree window size), (b) 504 
latitudinal variation of scaling, where red bars show median scaling for each 5-degree window and 505 
error bars show range of one standard deviation from the median scaling, (c) location of gauges that 506 
lie in wet (blue) and dry (red) regions based on annual maximum precipitation (R1xday) index (see 507 
Donat et al. 2016), (d) median scaling for wet and dry regions where error bars show one standard 508 
deviation from mean scaling, and (e-f) same as (c-d) but for wet and dry region classification based on 509 
total precipitation amount (PRCTOT) index. The dashed line shows the (6.5%/K) CC rate. The 510 
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 520 

Fig. 4 (a, c, e, g). Scaling curves showing the dependency of extreme percentiles (95th, cyan; 99th, 521 
blue; 99.9th pink) of the distribution of hourly precipitation on daily dewpoint temperature pooled for 522 
the C climate zone based on the Koppen-Geiger Climate classification. Note the logarithmic y-axis. 523 
Solid colour lines are percentiles computed for gauges at less than 400 m elevation, whereas dashed 524 
lines are for gauges at greater than 400m elevation. The horizontal lines at the bottom show 525 
interquartile ranges of DPT (1, 5, 25, 50, 75, 95, and 99%) for precipitation thresholds of 0.1mm 526 
(blue), 5mm (yellow), 20mm (red), and 50mm (pink) respectively). Dotted lines are the exponential 527 
relations given for 1 (black) and 2 (dark red) times CC scaling, and (b, d, f, g) probability distribution 528 
frequency (pdf) of scaling (99th percentile) at individual gauges (solid lines for gauges at less than 529 
400m elevation, and dotted lines for gauges at greater than 400m) within the specific region. The 530 
number at the top of the lower panels represents the median at-gauge scaling for the region. Statistical 531 
significance was estimated using KS tests for the distribution of the scaling. 532 
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