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Abstract

Rooting depth is an ecosystem trait that determines the extent of soil development and carbon cycling. Recent hypotheses

propose that human-induced changes to Earth’s biogeochemical cycles propagate deeply due to rooting depth changes from

agricultural and climate-induced land cover changes. Yet, the lack of a global-scale quantification of rooting depth responses to

human activity limits knowledge of hydrosphere-atmosphere-lithosphere feedbacks in the Anthropocene. Here we use land cover

datasets to demonstrate that global rooting depths have become shallower in the Anthropocene, and are likely to become yet

shallower this century. Specifically, globally averaged depths above which 99% of root biomass occurs (D99) are 8.7%, or 16 cm,

shallower relative to those for potential vegetation. This net shallowing results from agricultural expansion truncating D99 by 82

cm, and woody encroachment linked to anthropogenic climate change extending D99 by 65 cm. Projected land cover scenarios

in 2100 suggest further D99 shallowing of 63 to 72 cm, exceeding that experienced to date and suggesting that the pace of root

shallowing will quicken in the coming century. Losses of Earth’s deepest roots—soil-forming agents—suggest unanticipated

changes in fluxes of water, solutes, and carbon. Our work constrains rooting depth distributions for global models, allowing the

land modeling community to explore cascading effects of rooting depth changes on water, carbon, and energy dynamics, and

can guide design of field-based efforts to quantify deep anthropogenic influences. Understanding human influence on biota’s

reach into Earth’s subsurface will improve predictions of interactive functioning of the biosphere, lithosphere, and hydrosphere.
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Key Points: 12 

 Globally averaged rooting depths have become shallower by 16 cm in the Anthropocene 13 

and will be truncated by up to 72 cm by 2100. 14 

 In agricultural lands, the depth to which 99% of crop roots extend is shallower by up to 15 

82 cm compared to natural systems. 16 

 Where woody encroachment is occurring, analogous rooting zones are deepened by up to 17 

65 cm compared to previous dominant vegetation. 18 
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Abstract 20 

Rooting depth is an ecosystem trait that determines the extent of soil development and carbon 21 

cycling. Recent hypotheses propose that human-induced changes to Earth’s biogeochemical 22 

cycles propagate deeply
 
due to rooting depth changes from agricultural and climate-induced

 
land 23 

cover changes. Yet, the lack of a global-scale quantification of rooting depth responses to human 24 

activity limits knowledge of hydrosphere-atmosphere-lithosphere feedbacks in the 25 

Anthropocene. Here we use land cover datasets to demonstrate that global rooting depths have 26 

become shallower in the Anthropocene, and are likely to become yet shallower this century. 27 

Specifically, globally averaged depths above which 99% of root biomass occurs (D99) are 8.7%, 28 

or 16 cm, shallower relative to those for potential vegetation. This net shallowing results from 29 

agricultural expansion truncating D99 by 82 cm, and woody encroachment linked to 30 

anthropogenic climate change extending D99 by 65 cm. Projected land cover scenarios in 2100 31 

suggest further D99 shallowing of 63 to 72 cm, exceeding that experienced to date and 32 

suggesting that the pace of root shallowing will quicken in the coming century.  Losses of 33 

Earth’s deepest roots—soil-forming agents—suggest unanticipated changes in fluxes of water, 34 

solutes, and carbon. Our work constrains rooting depth distributions for global models, allowing 35 

the land modeling community to explore cascading effects of rooting depth changes on water, 36 

carbon, and energy dynamics, and can guide design of field-based efforts to quantify deep 37 

anthropogenic influences. Understanding human influence on biota’s reach into Earth’s 38 

subsurface will improve predictions of interactive functioning of the biosphere, lithosphere, and 39 

hydrosphere.  40 

Plain Language Summary 41 

The depth of plant roots helps determine the extent of nutrient, carbon and water cycling beneath 42 

Earth’s surface. Human activities, including land use and climate change, can change the 43 

distribution of plant roots and their activities across the globe. Here, we used global land cover 44 

datasets in combination with field-generated rooting depth equations to estimate global scale 45 

changes to roots both now and into the future. Globally, roots are shallower than they would be 46 

in the absence of human activity due to extensive land conversion to agriculture. In some 47 

regions, human-promoted woody encroachment induces root elongation, but this effect is 48 

overwhelmed by the spatial extent of agricultural conversion. In the future, roots will become 49 
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shallower at an even faster pace. In both contemporary and future projections, deep roots are 50 

especially vulnerable to loss, suggesting that the extent of element and water cycles may get 51 

shallower in the future, too. This opens numerous questions for additional field- and modeling-52 

based studies about the ways nutrients, carbon, and water will cycle in a future with fewer deep 53 

roots. We provide a foundation for those questions by demonstrating humans’ influence on the 54 

roots that shape the character of Earth’s skin.  55 

1 Introduction 56 

Roots are subsurface engineers, and their depth distributions drive ecosystem-scale processes 57 

(Maeght et al., 2013; Pierret et al., 2016) such as soil development (Brantley et al., 2017; 58 

Hasenmueller et al., 2017; Austin et al., 2018), release of mineral-bound nutrients (Jobbagy and 59 

Jackson, 2001; Hasenmueller et al., 2017; Austin et al. 2018), subsoil water flow paths and 60 

residence time (Zhang et al., 2015; Fan et al., 2017) , and deep C fluxes (Richter and Markewitz, 61 

1995; Schenk, 2007; Pierret et al., 2016; Fan et al., 2017; Billings et al., 2018). The dominant 62 

drivers of rooting depths are plant functional type  (PFT, Jackson et al., 1996) 
 
and variation in 63 

water availability (Schenk, 2007; Nippert et al., 2007; Fan et al., 2017), both of which are 64 

changing in response to anthropogenic land cover conversion and altered atmospheric 65 

composition (Edgeworth et al, 2001; Cramer et al., 2010; Ellis et al., 2010). This observation 66 

suggests that rooting depth distributions should be undergoing changes due to human activities in 67 

the critical zone (CZ, Earth’s living skin, Jordan et al., 2001).  68 

 69 

In spite of widespread recognition of the importance of root depth (Maeght et al., 2013; Pierret et 70 

al., 2016) and a growing recognition of the great depths to which roots can penetrate (Nepstad et 71 

al., 1994; Canadell et al., 1996), large-scale responses of rooting depths to anthropogenic 72 

perturbations of the biosphere have been poorly characterized. This knowledge gap is due in part 73 

to the challenges of accessing relatively deep soil horizons (Maeght et al., 2013), as well as the 74 

challenge of unraveling the vast complexity of Earth’s subsurface systems. One consequence of 75 

poorly defined rooting depths at large spatial scales is generalized representations of rooting 76 

parameters in Earth Systems Models (ESMs; Smithwick et al., 2014; Clark et al., 2015). Given 77 

the plethora of CZ functions influenced by roots (Maeght et al., 2013; Pierret et al., 2016), poor 78 

characterization of rooting depths likely limits the accuracy of projected responses of the coupled 79 

terrestrial water, energy, and carbon cycles to climate in the Anthropocene.   80 
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 81 

Quantifying large-scale, human-induced changes to rooting depths and how they may differ 82 

regionally is a critical step towards a greater understanding of how roots govern large-scale, sub-83 

surface and surface processes. For example, a recent hypothesis proposes that anthropogenic 84 

changes to land cover that modify rooting depth distributions can alter natural elemental cycles 85 

deep belowground in ways important for soil and ecosystem development (Billings et al., 2018). 86 

Testing this hypothesis on a regional or global scale requires global-scale estimates of changes in 87 

rooting depths due to human activities. If explicitly calculated, these estimates would be a key 88 

component of projecting material fluxes via land surface models, and for elucidating the most 89 

critical foci for future laboratory and field efforts necessary to enhance our understanding of 90 

global change agents.  91 

 92 

Two Anthropocene phenomena occur at sufficient magnitude to alter rooting depths in ways 93 

complicating their quantification. First, many regions have experienced conversion to annual row 94 

crops (Ramankutty and Foley, 1999; Ellis et al., 2010), a process that induces mortality of deep 95 

perennial root systems and replaces them with relatively shallow roots (Billings et al., 2018).  In 96 

contrast, climate change and increasing atmospheric CO2 concentrations are linked to root 97 

extension of extant woody plants (Iversen, 2010), and shifting ecoregion ranges may increase 98 

rooting depths where more deeply rooted woody vegetation becomes increasingly abundant in 99 

grasslands and tundra (Jackson et al., 1996; Harsch et al., 2009; Stevens et al., 2017; Wang et al., 100 

2019). Studies exploring rooting depth typically focus on absolute rooting depths and their 101 

responses to climate or atmospheric CO2 (Kleidon and Heimann, 1998; Kleidon, 2003) or, 102 

separately, land cover changes in specific regions of interest (Jeremillo et al., 2003; Hertel et al., 103 

2009; DuPont et al., 2010). Despite known changes in global land cover (Ellis et al., 2010) that 104 

are associated with distinct rooting depths
 
(Jackson et al., 1996), to date, no one has directly 105 

quantified the net change in contemporary root depth distributions at the global scale as a 106 

consequence of these opposing human activities.  107 

 108 

Here, we estimate the extent to which rooting depths increase or decrease in response to land use 109 

and climate change. We also project how rooting depths may change throughout the 21
st
 century 110 

as more land is converted to agricultural and urban use, and as biome ranges continue to shift 111 
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with changing climate. We emphasize that our focus is not on maximum rooting depths. Indeed, 112 

there is a growing appreciation of the great depths to which vegetation can root (Maeght et al., 113 

2013; Pierret et al., 2016; Fan et al., 2017), though the true maximum rooting depth may never 114 

be known in some systems (Kleidon, 2003; Pierret et al., 2016; Fan et al., 2017). Instead, we 115 

focus on the depths to which most or half (i.e., 99%, 95%, and 50%) of ecosystems’ root biomass 116 

extends, metrics that highlight very deep roots as well as the depths at which most roots reside, 117 

both of which are functionally consequential measures. These metrics represent those for which 118 

much data exist, and facilitate the cross-system comparisons necessary to estimate the extent of 119 

rooting depth changes in the Anthropocene. Our work thus reveals how anthropogenic, global-120 

scale changes in rooting depth metrics have influenced, and will continue to influence, spatially 121 

varying patterns of the belowground activities of ecosystems, thereby illuminating critical next 122 

steps to help us understand future CZ functioning.  123 

2 Materials and Methods 124 

We estimated potential (i.e., no human influence), contemporary, and projected root distributions 125 

at the global scale by combining biome-specific rooting depth functions derived from empirical 126 

studies (described below) with spatially explicit land cover datasets. We used satellite-derived, 127 

potential vegetation representing 15 land cover classes (Haxeltine and Prentice, 1996) and their 128 

potential global distribution in the absence of human activity at a 5-minute spatial resolution 129 

(Ramankutty and Foley, 1999). We compared potential vegetation classes to contemporary land 130 

cover as defined by the Global Land Cover 2000 (GLC2000) dataset (Bartolome and Belward, 131 

2005). GLC2000 represents 22 land cover types, which are designated according to plant 132 

functional types ascribed to satellite images and ground-truthed by regional analysts. We aligned 133 

contemporary vegetation classifications with potential vegetation classes according to previously 134 

published frameworks for ecoregion designation (Bartolome and Belward, 2005), and augmented 135 

these classes to include a class for permafrost regions where rooting depth may be limited. These 136 

efforts resulted in 25 distinct land cover types for which rooting depths were assigned. Projected 137 

vegetation classes were similarly developed for four Shared Socioeconomic Pathway (SSP) and 138 

Representative Concentrations Pathway (RCP) scenarios using spatial projections of gridded, 139 

0.5° x 0.5° resolution land covers for the year 2100
 
(Hurtt et al., 2011).  140 

 141 
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For all vegetation datasets except those above 60°N latitude (described below), we estimated 142 

biome-specific rooting depths by assigning rooting depth functions derived from empirical data
 

143 

(Zheng, 2001). Specifically, we estimated the depths by which rooting systems exhibit 50% 144 

(D50), 95% (D95) and 99% (D99) of their total biomass in each land cover type. Invoking these 145 

functions
 
(Zheng 2001) assumes that rooting depth distributions remain similar for each 146 

vegetation functional type in the potential, contemporary, and future scenarios. The merit of this 147 

assumption may vary with time, but keeping each biome’s rooting depth consistent across the 148 

Holocene and into the future allows us to parse the influence of land cover change on rooting 149 

depths from that of less well-characterized phenomena.   150 

 151 

We modified the estimated rooting depth distributions for four of the 25 land covers.  First, the 152 

land cover datasets combine both polar and mid-latitude deserts into a single desert category 153 

based on hydrologic regimes, yet rooting depths in polar deserts are often constrained by 154 

permafrost. We thus separated these two desert regions, reassigning deserts in polar regions to 155 

the ‘tundra’ classification above 60 degrees north, a point above which frozen soils often limit 156 

deep root development (Zhang et al., 2008). Second, because many remote sensing-based studies 157 

omit large, lower latitude desert regions from their analyses due to the lack of quantifiable 158 

ecosystem productivity in these systems (Zhao et al., 2005), we omitted true deserts from rooting 159 

depth averages reported in the main text. Instead, we present rooting depth metrics that 160 

incorporate mid-latitude deserts’ potential contribution to global root averages in Table 1 of the 161 

Supporting Information.  Comparison of these results with those reported in the text reveal an 162 

inflated influence of mid-latitude desert rooting depth estimates on global averages that likely 163 

does not represent reality due to the low density of plants in true deserts
 
(Whitford and Duval, 164 

2019).  Finally, we reassigned evergreen forest and mixed vegetation classes above 50°N to the 165 

‘boreal’ vegetation classification, and ecoregions above 60°N to the class ‘tundra.’ We gave all 166 

classes above 60°N a rooting depth specific to permafrost-underlain regions, where roots 167 

typically do not penetrate deeper than 30 cm (Billings et al., 1997; Boike et al., 2018).  168 

 169 

To assess potential effects of global-scale perturbations projected by the year 2100 on rooting 170 

depth distributions, we examined multiple SSP and RCP land cover projections from the 171 

Intergovernmental Panel on Climate Change (IPCC). Projected vegetation classes were 172 
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developed for 4 SSP RCP scenarios (SSP2 RCP4.5, SSP1 RCP2.6, SSP4 RCP6.0, SSP5 173 

RCP8.5). Landuse harmonization datasets designate land cover classes more coarsely than either 174 

GLC2000 or potential vegetation datasets, delineating primary and secondary forest regions, 175 

primary and secondary non-forest regions, 5 agricultural classes, pasture land, rangeland, and 176 

urban regions (Hurtt et al., 2011). We assigned a rooting depth equation derived from 177 

agricultural croplands (Zheng, 2001) to all 5 agricultural classes in the landuse harmonization 178 

dataset. For secondary non-forests, we assigned rooting depth equations representing herbaceous 179 

and grassland systems, and pastures and rangeland were assigned rooting depth equations 180 

derived from C4 grasslands and pastures (Zheng, 2001). Because most secondary forests in these 181 

scenarios were in the boreal region, we assigned the average root depth value of mixed forests 182 

(240 cm) and boreal forests (119 cm) to secondary forests. Reflecting anticipated warming, root 183 

depths assigned in all future scenarios removed permafrost constraints (Lawrence and Slater, 184 

2005).   185 

 186 

Using R’s raster package (RStudio Team, 2017; Hijmans et al., 2019) we assigned rooting depth 187 

values to each land cover classification of the potential, contemporary, and projected vegetation 188 

maps, and calculated global means of each depth metric.  We then compared metrics across time 189 

using 95% confidence intervals of the mean estimates of global rooting depth metrics. We 190 

performed correlated t-tests on pairs of rasters (i.e. potential vs. contemporary, and contemporary 191 

vs. projected) to determine whether differences between these estimated rooting depth metrics 192 

are significantly different from zero. Data were assessed to ensure they met the assumptions of 193 

correlated t-tests. 194 

3 Results 195 

Comparisons of potential and contemporary land cover (Figures 1a and b) and their estimated 196 

rooting depths (Figures 1c and d) suggest that spatially averaged, global values of D99 are up to 197 

8.7% shallower (16 cm) under contemporary land cover distributions than if potential vegetation 198 

cover types covered Earth’s terrestrial surface (t = -128.08, P < 0.0001; Figures 1c and d, Table 199 

S1). Values of D95 for contemporary land cover also express trends of root shallowing, though 200 

less so than D99 (7.8% or 8 cm; t = -85.342, P < 0.0001; Figures S1a and b). Depth to 50% root 201 

biomass (D50), by comparison, displays relatively little variation between contemporary and 202 
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potential land cover, becoming less than 1 cm shallower (2.5%; t = - 111.75, P < 0.0001) on 203 

average (Figure S2). The comparatively small change in globally averaged D50 values is a 204 

consequence of relatively rapid root establishment in shallow horizons of cultivated systems.  205 

 206 

Figure 1. Land cover and associated rooting depths under potential vegetation in the absence of human influence 207 

(left column) and today’s vegetation distribution (right column). (a) Potential vegetation cover in the absence of 208 

human activity modified to accommodate permafrost regions, where all plants regardless of functional type are 209 

depth-limited by frozen soils. (b) Contemporary land cover distribution from Global Land Cover 2000 (GLC2000), 210 

modified to correspond to potential vegetation land cover classifications. Subsequent maps depict depths by which 211 

99% of rooting biomass occurs (D99) under potential (c) and contemporary (d) land cover types. Inset histogram 212 

displays rooting depth distributions. Blue histograms reflect potential vegetation data, and red histograms 213 

contemporary land cover. Dashed lines represent means. Appearance of a distinct line at 50°N in potential 214 

vegetation rooting depth coverages is an artifact of restricted maximum rooting depth assignments to reflect 215 

limitations imposed by frozen soils. Note that most of Greenland is assigned a rooting depth of zero in all maps 216 

because of ice cover, which is denoted in white and grey in potential and contemporary root coverages, respectively. 217 

 218 
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Agricultural land conversion serves as the dominant influence on these global trends (Figures 2 219 

and 3). Where perennial vegetation has been converted to agricultural land (defined here as 220 

annual crops and managed pasture), D99 has decreased by as much as 35% (82 cm) across 2.4 x 221 

10
9 
ha (15% of Earth’s terrestrial surface). In contrast, where woody encroachment is evident in 222 

contemporary land cover data, D99 increased relative to potential vegetation by up to 52% (65 223 

cm). This result is likely an overestimate of current root depths because we assigned rooting 224 

depths derived from well-established systems (Zheng, 2001) although woody plants in recently 225 

encroached systems likely have not yet achieved such depths (Stevens et al., 2017; Billings et al., 226 

2018). In spite of this possible overestimation, root deepening via woody encroachment does not 227 

overcome the effect of root shallowing in agricultural lands because of the smaller fraction of 228 

Earth’s terrestrial surface experiencing woody encroachment (9.3 x 10
7 
ha, or 0.6%).  229 

 230 

Figure 2. Representation of rooting depth elongation due to woody encroachment (a and b) and rooting depth 231 

truncation due to agricultural expansion (d and d). Blue region in B demonstrates the belowground increase in roots 232 

shown in blue in Figure 3. Red region in D exemplifies loss of rooting system depth for red regions in Figure 3.  233 

 234 
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235 
Figure 3. Mapped differences between potential and contemporary rooting depths. Red cells indicate a decrease in 236 

the depth to 99% of rooting biomass (D99) while blue cells indicate an increase in D99 resulting from contemporary 237 

vegetation distributions.  238 

 239 

Projections for the year 2100 suggest that the scenario with the largest cropland increase and 240 

relatively low radiative forcing enhancement from current levels (SPP1 RCP2.6, Figure 4a) 241 

generates the most extreme shallowing of deep roots, truncating values of D99 by 72 cm (t 242 

= 419.91, P <  0.0001). The smallest decline in D99, a shallowing of 63 cm (t = 370.35, P < 243 

0.0001), occurs under a scenario of moderate cropland increase and stabilization of moderate to 244 

high radiative forcing at 6 Wm
-2

 by 2100 (SPP4 RCP6.0, Figure 4b). The highest emissions 245 

scenario (SSP5 RCP8.5) produces an intermediate D99 shallowing of 64 cm, the result of 246 

extensive conversion of forests into cropland (Figure S4) and root elongation in boreal and high-247 

elevation regions (compare Figure 3 and Figure S4). Widespread, substantial root shallowing is 248 

evident in many regions but is particularly evident across the Amazon basin, consistent with 249 

multiple projections of rapidly transitioning vegetation cover in that region (Hurtt et al., 2011).   250 

 251 
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252 
 253 

 254 

Figure 4. Projected changes of depth to 99% rooting biomass (D99) by the year 2100 relative to contemporary 255 

rooting depth distributions. Projections are based on land use and emissions changes under two combinations of 256 

Shared Socioeconomic Pathways (SSP) and Representative Concentration Pathways (RCP), SSP1 RCP2.6 (a) and 257 

SSP4 RCP6.0 (b). These two maps represent the scenario of greatest projected change and least projected change. 258 

Grey and red colors indicate root depth truncation and blue indicates elongation. 259 

 260 

Values of D50 for the year 2100 also reflect a consistent response to the rapidly transitioning 261 

vegetation that likely drives projected changes in D99 and D95, leading to a D50 shallowing of 5 262 

to 6 cm across all assessed scenarios (t = 416.2, P < 0.0001; Figure S5). Though small relative to 263 

changes in deep root systems, this D50 shallowing is 4 to 5 cm more severe than that occurring 264 

during the previous ~10,000 y
 
(Gupta, 2004) of anthropogenic land conversion to agriculture 265 

(Figure S6).  266 

4 Discussion 267 

Our rooting depth estimates suggest that the portion of rooting biomass most vulnerable to 268 

human influence is, counterintuitively, deep in the soil profile (Figures 2 and 3). Although 269 

maximum rooting depths are poorly characterized and are likely deeper than is typically 270 

appreciated (Maeght et al., 2013; Pierret et al., 2016; Fan et al., 2017), we demonstrate that 271 

metrics of most or half of all rooting biomass (i.e., D99, D95, and D50), no matter their absolute 272 

value, are currently a reflection of human-induced, global-scale changes in land cover (Figure 1).  273 

We further demonstrate that the globally-averaged estimate of a 16% shallowing of D99 values 274 
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is the net result of root shallowing in agricultural regions and root elongation in regions of 275 

woody encroachment, with the area represented by agriculture dominating the effect.  276 

 277 

With atmospheric CO2 anticipated to continue increasing in the coming decades, we might 278 

expect woody encroachment’s elongating effects on D99, D95, and D50 to effectively mitigate 279 

the root shallowing effect of land conversion to agriculture. However, the four IPCC scenarios 280 

explored here suggest that by 2100, rooting distributions may become yet shallower relative to 281 

contemporary rooting depths (Figures 3, S4 and S5). As observed for comparisons between 282 

potential and contemporary land cover, the deeper rooting metrics (D99 and D95) display greater 283 

changes in their global mean than D50 when comparing contemporary and projected land cover. 284 

Thus, both comparisons suggest that the deepest roots are the most vulnerable to loss via 285 

anthropogenic changes. 286 

 287 

Unlike contemporary vs. potential vegetation comparisons, D50 metrics in future scenarios are 288 

considerably shallower than contemporary scenarios. These results highlight that 289 

anthropogenically-induced changes in surficial soil horizons’ root abundances in the coming 290 

decades will likely exceed those of the past several millennia. They also emphasize that even 291 

relatively shallow soil horizons (i.e., those expressed by D50), where both natural and 292 

agricultural species root, will undergo redistribution in the coming decades.  293 

 294 

There are myriad feasible consequences of altered rooting depths for biogeochemical and 295 

hydrological fluxes that prompt hypotheses for future research efforts. For example, roots 296 

beneath the zone of maximum rooting density are attributed with developing the soils that mantle 297 

Earth’s surface, so much so that they are referred to as the planet’s biotic weathering front, where 298 

life – roots and microbes – promotes the dissolution of bedrock (Richter and Markewitz, 1995; 299 

Berner et al., 2003; Brantley et al., 2012; Pawlik, 2013; Dontsova et al., 2020). Results from the 300 

current study suggest that these biotic weathering forces in many regions do not reach as deeply 301 

into the regolith as they did prior to human influence, prompting the hypothesis that the intensity 302 

of biotic modes of soil formation at the bottom of the soil profile have declined in the 303 

Anthropocene. Further, if a smaller volume of soil is explored by rooting systems, it is plausible 304 
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that soil water storage capacity, nutrient replenishment and solute losses from freshly weathered 305 

material could decline (Swank, 1986; Nepstad et al., 1994; Berner, 1998). 306 

  307 

Such implications emphasize the importance of future numerical and empirical experiments 308 

exploring the climate and biogeochemical feedbacks of deep root losses.  Because terrestrial 309 

vegetation exerts a fundamental global control on land-atmosphere exchanges of water, energy, 310 

carbon, and other elements, improved representation of rooting distributions in global land 311 

models such as the Community Land Model (Lawrence et al., 2019) is of critical importance. 312 

This is particularly true as more sophisticated aboveground and belowground vegetation and 313 

biogeochemical processes are incorporated into these models (e.g., Tang et al., 2013; Fisher et 314 

al., 2017; Kennedy et al., 2019). With improved fidelity to biophysical and biogeochemical 315 

processes comes the corresponding opportunity to explore the potential consequences of changes 316 

in global rooting depths on land-atmosphere exchanges of water, energy, and carbon, and the 317 

large-scale ramifications that changes in rooting depths have for climate. Well-designed 318 

numerical experiments would be able to elucidate the relative impacts of exogenous (e.g., 319 

agricultural conversion, woody encroachment) versus endogenous (e.g., water and nutrient 320 

limitation) changes in rooting depths on terrestrial cycling of water, energy, and carbon.  321 

 322 

Future empirical studies examining the contribution of deep roots to soil structure, C and nutrient 323 

fluxes, and water flow paths also offer opportunities to characterize the biogeochemical 324 

consequences of shallowed rooting systems. More extensive empirical work can generate more 325 

accurate parameters for representing subsurface biogeochemical fluxes in ESMs, where highly 326 

non-linear feedbacks between these changes and climatic conditions can be examined. 327 

Specifically, leveraging of on-going climate experiments (e.g., Caplan et al., 2019), naturally 328 

existing climatic gradients (e.g., Ziegler et al. 2017), and chronosequences (e.g., Billings et al. 329 

2018) could reveal quantitative relationships between rooting depth distributions and their 330 

impacts on soil formation processes, especially at depth. Given deep root contributions to soil C, 331 

nutrient and water fluxes, as well as soil formation (Maeght et al., 2013; Pierret et al., 2016; 332 

Rasse et al., 2005), revealing rooting depth feedbacks to Earth’s biogeochemistry is critical for 333 

understanding the current and future function of Earth’s critical zone.  334 
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5 Conclusion 335 

Losses of relatively deep roots suggest an overlooked and subtle mechanism by which humans 336 

alter soil and ecosystem development.  It is well established that humans accelerate losses of 337 

surface soil via erosion, which can result in a thinning of Earth’s skin of soil
 
(Wilkinson and 338 

McElroy, 2007).  In contrast, altered rooting depths deep in soil profiles due to anthropogenic 339 

land use and climate change suggest a means by which human actions may govern soil thickness 340 

near the bottom of soil profiles. These shifts in root distributions support the idea that signals of 341 

the Anthropocene penetrate deeply into the subsurface even in naturally occurring elemental 342 

cycles (Billings et al., 2018).  Indications of widespread human transformation of land cover 343 

across millennia
 
(Edgeworth et al., 2015) imply that reductions in deep root abundances have 344 

been underway in multiple regions for a similarly lengthy time. Though improving process 345 

representation in land models continues apace (Fisher and Koven, 2020), the representation of 346 

rooting depth distributions remains largely a static function of only PFT (although see Drewniak, 347 

2019 for an important counterexample).  We present an opportunity to advance the 348 

representation of roots in land models by better constraining how rooting depth distributions vary 349 

with global change, as well as by identifying specific ecological processes particularly suited to 350 

better quantifying the dynamics of rooting, both past and future (e.g., regions of woody 351 

encroachment). Future co-designed modeling, field and lab studies are needed to help clarify the 352 

consequences of rooting depth changes for contemporary and future CZ development. These 353 

studies will elucidate the ways that surficial anthropogenic activities radiate deep within Earth’s 354 

subsurface, altering the developmental pace and character of Earth’s critical zone.  355 
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