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Abstract

Tropical Cyclone Precipitation (TCP) is one of the major triggers of flash flooding and landslide in eastern Mexico. The

interactions between the topography of the Sierra Madre Occidental and the TCP of storms from the Gulf of Mexico are still

poorly understood. We apply multiple statistical techniques to a 99 year daily TCP record and an elevation data with high

spatial resolution. Correlation analysis for the whole dataset is dominated by the strong inland-to-ocean gradient of both TCP

and topography. Clusters defined by grids’ distances to the coast show significant positive correlations between TCP variables

and topographic complexity variables (Range, Standard Deviation, and Slope). The quantile analysis demonstrates that the

most extreme TCPs are more likely to locate in grids with higher amounts of topographic complexity (Range and Standard

Deviation) than the median and the trivial TCPs. The Random Forest (RF) model is an excellent tool to disentangle complex

relationships between TCP and topography. The models show that the grid’s location and aspect of the slope aspect are the

two most important variables that affect the TCP statistics. TCP in eastern Mexico is sensitive within two zones: (1) Low

lying coastal regions with lower elevation and less topographic complexity. (2) The mountainous region with higher elevation

and topographic complexity, especially with the slope facing the windward direction to the Gulf. All results support that the

topography in eastern Mexico has an enhancing effect on the TCP.

Evaluating Variations in Tropical Cyclone Precipitation (TCP) in Eastern Mexico using Ma-
chine Learning Techniques

L. Zhu1, P. G. Aguilera2

1 Department of Geography, Environment, and Tourism, Western Michigan University, Kalamazoo, MI,
USA.

2 Department of Physics, Western Michigan University, Kalamazoo, MI, USA.

Corresponding author: Laiyin Zhu (laiyin.zhu@wmich.edu)

Supplement 1. List of variables used in the Random Forest Modeling

# Variable Name Short Description Category Unit

1 AMTCP Annual Mean TCP at each grid Dependent Variable mm
2 MaxETCP Historical Maximum Event TCP at each grid Dependent Variable mm
3 ETCP Event TCPs at each grid Dependent Variable mm
4 ETCP90 All TCP events with precipitation greater than the 90 percentile of the ETCP. Dependent Variable mm
5 Mean Mean elevation within each 0.25° grid box Independent Variable, Static Meter
6 Max Maximum elevation within each 0.25° grid box Independent Variable, Static Meter
7 Min Minimum elevation within each 0.25° grid box Independent Variable, Static Meter
8 Range Difference between Max and Min Independent Variable, Static Meter
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# Variable Name Short Description Category Unit

9 StanDev Standard Deviation for elevations within each 0.25° grid box Independent Variable, Static Meter
10 Slope The ratio between the rise and the run (tan θ) for each 0.25° grid box Independent Variable, Static NA
11 Aspect The Slope’s major orientation angle from the normal (north as 0°) for each 0.25° grid box Independent Variable, Static Degree
12 Distant to Track Nearest sphere distance from each precipitation grid to the storm track Independent Variable, Dynamic Km
13 Track Cluster Track Cluster defined by the regression mixture model by Gaffney et al. (2007) Independent Variable, Dynamic NA
14 Lon Longitude of each 0.25° grid Independent Variable, Static Degree
15 Lat Latitude of each 0.25° grid Independent Variable, Static Degree
16 Distance to Coast Nearest sphere distance from each precipitation grid to the Gulf of Mexico Coast Independent Variable, Static KM
17 Month Month when each TCP event happened Independent Variable, Dynamic NA
18 Forward U Speed A vector for the mean of east-west (east as positive sign) component of the storm movement for each TCP event Independent Variable, Dynamic Knot
19 Forward V Speed A vector for mean of the north-south (north as positive sign) component of the storm movement for each TCP event Independent Variable, Dynamic Knot
20 Forward Speed The magnitude of vector U plus vector V Independent Variable, Dynamic Knot
21 Forward Speed Variance Variance of the Forward Speed for each TCP event Independent Variable, Dynamic Knot
22 Forward Speed Angle The direction of the Forward Speed measured clockwise starting from the north for each TCP event Independent Variable, Dynamic Degree
23 Forward Speed Angle Variance Variance of the Forward Speed Angle for each TCP event Independent Variable, Dynamic Degree
24 Stalled A dummy variable that indicates whether the storm is stalled or not (stalled storms move toward south in this case are defined as 1 and other storms are defined as 0) Independent Variable, Dynamic NA
25 Event Duration How long a TCP event last Independent Variable, Dynamic Days
26 ATCP Cluster The clusters of TCP grids defined by the anomaly of their annual mean TCP Independent Variable, Static NA

Supplement 2a. Correlation between the Event TCP and Environmental Variables for Cluster 2 TCP Grids

Track Cluster Distance to Coast Lon Lat Mean Max Min Range Std Slope Aspect

1 0.00* 0.05* -0.15* -0.17* -0.07* -0.23* 0.20* 0.18* 0.19* 0.05*
2 -0.07* 0.11* -0.03* -0.08* -0.04* -0.10* 0.04* 0.03* 0.03* -0.01
3 0.01 -0.14 0.00* 0.06* 0.08* 0.03* 0.09* 0.08* 0.07* 0.01*

* indicates correlation with p<0.01

Supplement 2b. Correlation between the Event TCP and Track Variables for Cluster 2 TCP Grids

Track Cluster Distance to Track Forward U Speed Forward V Speed Forward Speed Forward Speed Variance Forward Speed Angle Forward Speed Angle Variance

1 -0.47* 0.07* -0.13* -0.14* 0.02* 0.18* -0.02
2 -0.43* -0.03* -0.16* -0.09* -0.04 0.17* -0.10*
3 -0.45* -0.09* -0.24* -0.07* -0.02* 0.17* -0.04*

* indicates correlation with p<0.01

Supplement 3a. Correlation between the Event TCP and Environmental Variables for Cluster 1 TCP Grids

Track Cluster Distance to Coast Lon Lat Mean Max Min Range Std Slope Aspect

1 -0.16* 0.21* -0.14* -0.24* -0.16* -0.26* 0.12* 0.12* 0.13* 0.00
2 -0.07* 0.15* -0.11* -0.10* -0.03* -0.14* 0.09* 0.06* 0.06* 0.01
3 -0.01 -0.08* -0.06* 0.06* 0.08* 0.03* 0.09* 0.08* 0.07* 0.01

* indicates correlation with p<0.01
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Supplement 3b. Correlation between the Event TCP and Track Variables for Cluster 1 TCP Grids

Track Cluster Distance to Track Forward U Speed Forward V Speed Forward Speed Forward Speed Variance Forward Speed Angle Forward Speed Angle Variance

1 -0.37* -0.08* -0.01 0.04* 0.01 0.12* 0.11*
2 -0.45* -0.17* -0.05* 0.04* 0.01 0.22* 0.03*
3 -0.43* -0.18* -0.21* -0.05* -0.06* 0.20* -0.05*

* indicates correlation with p<0.01

Supplement 4. The Variation of Model Performance for the AMTCP from all possible combinations of
variable subsets, calculated by the Recursive Feature Selection (RFE) algorithm using three repeated 10
folds cross validations.

Number of Variables RMSE R2 MAE Selected

1 5.74 0.94 3.08
2 4.25 0.97 1.89
3 3.57 0.98 1.39 *
4 3.80 0.97 1.54
5 4.36 0.96 1.80
6 4.08 0.97 1.55
7 4.29 0.96 1.66
8 4.49 0.96 1.79
9 4.34 0.96 1.66
10 4.48 0.96 1.73

Supplement 5. The Variation of Model Performance for the MAXETP from all possible combinations of
variable subsets, calculated by the Recursive Feature Selection (RFE) algorithm using three repeated 10
folds cross validations.

Number of Variables RMSE R2 MAE Selected

1 90.08 0.33 62.57
2 40.82 0.86 18.93
3 39.88 0.87 18.60 *
4 40.77 0.86 19.64
5 42.36 0.85 20.75
6 41.18 0.86 19.66
7 41.89 0.86 20.24
8 42.37 0.85 20.63
9 41.83 0.86 20.11
10 42.40 0.85 20.43

Supplement 6. The Variation of Model Performance for the ETCP from all possible combinations of variable
subsets, calculated by the Recursive Feature Selection (RFE) algorithm using three repeated 10 folds cross
validations.

Variables RMSE R2 MAE Selected

1 35.73 0.12 21.57

3
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Variables RMSE R2 MAE Selected

2 32.79 0.21 19.55
3 23.63 0.61 13.52
4 21.64 0.69 12.27
5 17.07 0.82 8.95
6 14.17 0.86 6.66
7 14.88 0.85 7.06
8 15.49 0.83 7.45
9 14.34 0.85 6.73
10 14.69 0.85 6.96
11 14.93 0.84 7.12
12 14.13 0.86 6.63
13 14.25 0.86 6.72
14 14.30 0.86 6.76
15 13.88 0.86 6.52
16 13.92 0.86 6.57
17 13.71 0.87 6.45
18 13.51 0.87 6.36 *
19 13.51 0.87 6.39
20 13.52 0.87 6.41
21 13.52 0.87 6.41
22 13.56 0.87 6.43

Supplement 7. The Variation of Model Performance for the ETCP90 from all possible combinations of
variable subsets, calculated by the Recursive Feature Selection (RFE) algorithm using three repeated 10
folds cross validations.

Variables RMSE R2 MAE Selected

1 54.90 0.01 37.56
2 53.05 0.03 36.22
3 51.58 0.08 34.92
4 51.30 0.10 34.62
5 46.36 0.27 30.94
6 37.87 0.51 24.69
7 36.15 0.56 23.47
8 34.33 0.62 22.15
9 32.78 0.64 20.97
10 32.75 0.64 20.92
11 32.85 0.64 20.99
12 32.56 0.65 20.80 *
13 32.81 0.64 21.02
14 33.04 0.64 21.21
15 32.90 0.64 21.13
16 33.08 0.64 21.28
17 33.22 0.63 21.38
18 33.05 0.64 21.26
19 33.08 0.63 21.28
20 33.08 0.63 21.28
21 32.92 0.64 21.16
22 32.97 0.64 21.19
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Supplement 8. Partial Dependence Plot for static variables in the Whole Model for the ETCP90

5
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Supplement 9. Partial Dependence Plot for dynamic variables in the Whole Model for the ETCP90

Supplement 10. Comparison of the median values for the extreme (> 90th percentile, P90) TCP and the
median range (between 45th percentile and 55th percentile) TCP samples

Storm Hurricane Alex Hurricane Alex Hurricane Igrid Hurricane Igrid Hurricane Beulah Hurricane Beulah

Quantile P90 TCP P45 to P55 TCP P90 TCP P45 to P55 TCP P90 TCP P45 to P55 TCP
Cluster 1 71.03 25.83 52.40 22.06 91.53 37.10
Cluster 2 167.55 78.70 208.99 65.67 205.19 60.04
Cluster 3 171.58 70.55 129.98 55.02 292.67 113.44

*Clusters are defined by K-Means of the Annual Mean TCP Anomaly.

Supplement 11. Comparison of median of elevation standard deviation for the extreme (> 90th percentile,
P90) TCP and the median range (between 45th percentile and 55th percentile, P50) TCP samples

Storm Hurricane Alex Hurricane Alex Hurricane Igrid Hurricane Igrid Hurricane Beulah Hurricane Beulah

Quantile P90 TCP Elevation Std P45 to P55 TCP Elevation Std P90 TCP Elevation Std P45 to P55 TCP Elevation Std P90 TCP Elevation Std P45 to P55 TCP Elevation Std
Cluster 1 190.85 144.13 674 630 174.08* 88.24
Cluster 2 22.37 18.98 1294* 512 1807* 903.5
Cluster 3 172.08 204.09 275* 115 278 961*

6
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*Clusters are defined by K-Means of the Annual Mean TCP Anomaly.

Supplement 12. Comparison of the median elevation range for the extreme (> 90th percentile, P90) TCP
and the median range (between 45th percentile and 55th percentile, P50) TCP samples

Storm Hurricane Alex Hurricane Alex Hurricane Igrid Hurricane Igrid Hurricane Beulah Hurricane Beulah

Quantile P90 TCP Elevation Range P45 to P55 TCP Elevation Range P90 TCP Elevation Range P45 to P55 TCP Elevation Range P90 TCP Elevation Range P45 to P55 TCP Elevation Range
Cluster 1 972 926.5 674 630 1021* 580
Cluster 2 127 130 1294* 512 275* 115
Cluster 3 1102.5 1146 1807* 903.5 278 961

*Clusters are defined by K-Means of the Annual Mean TCP Anomaly.
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Key Points: 9 

• Tropical Cyclone Precipitation (TCP) variations are evaluated using statistical and 10 

machine learning methods based on a 99-year climatology. 11 

• The RF model has an excellent fitting and predicting skill in TCP, and it captures 12 

complex and nonlinear relationships controlling the TCP. 13 

• The annual mean TCP is determined by locations, while the event TCP is determined by 14 

interactions of multiple dynamic and static variables.  15 
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Abstract 16 

Tropical Cyclone Precipitation (TCP) is one of the major triggers of flash flooding and landslide 17 

in eastern Mexico. We apply different statistical and machine learning techniques to study a 99 18 

year TCP climatology in high resolution. Strong correlations exist between location variables 19 

and annual mean TCP, as well as between dynamic variables and event TCP. Topographic 20 

variables observe mixed signals with the elevation variances positively correlated with TCP. The 21 

Random Forest (RF) model is a powerful tool with excellent fitting and predicting skills for TCP 22 

variations. It has a very small out of sample cross-validation error and well captures the spatial 23 

variations of historical TCP events. Only three location variables are needed to construct the best 24 

model for the annual mean TCP while the best model needs 18 variables to explain the complex 25 

variations in the event TCP. The distance to the track is the most important variable for the event 26 

TCP model and many other factors contribute to the TCP collectively and nonlinearly, which 27 

can’t be captured fully by the previous correlation analysis. They include translation 28 

characteristics of the storms, locations of the precipitation grid, and topography. Event TCP is 29 

generally larger in storms with slower translation speed and more variance in their tracks. While 30 

the lower coastal area generally has a higher probability of TCP, the higher inland has elevation 31 

variances that enhance less frequent but extreme TCP events. The RF algorithm is an efficient 32 

machine learning approach showing potentials for future Quantitative Precipitation Forecasting 33 

(QPF). 34 

 35 

 36 

 37 
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1 Introduction 38 

Tropical Cyclone Precipitation (TCP) is one of the major triggers of flooding and 39 

landside. The TCP processes are complex and influenced by many factors, which include the 40 

moisture and energy that the storm brought from the ocean, the shape and size (Matyas, 2007; 41 

Zhou et al., 2018), the translation speed, the intensity of the storm, the surface conditions of the 42 

land (moisture and energy), land use and cover, interactions with other weather systems, and the 43 

topographic features (Arndt et al., 2009; Kimball, 2008; Tuleya, 1994; Zhang et al., 2018). 44 

Different studies (Emanuel, 2017; Knutson et al., 2019; Risser & Wehner, 2017; Trenberth et al., 45 

2018) have argued that anthropogenic global warming may increase the chance of extreme TCP 46 

events like Hurricane Harvey in 2017 and the majority of the modeling community holds high or 47 

medium-to-high confidence that the rain rate for TCs is going to increase by 14% with 2°C of 48 

warming (Knutson et al., 2020). This is consistent with the Clausius-Clapeyron equation. TCP 49 

over the land has high spatial variability (Skok et al., 2013; Zhu & Quiring, 2013). TC track is an 50 

important factor controlling the storm precipitation. Slower moving storms are contributing to 51 

more local rainfalls with longer duration of rain events and possibly higher rain rates (Chan, 52 

2019; Kossin, 2018). The boundary layer condition is significantly changed when TCs make 53 

landfall. Increases in land surface roughness can enhance topographic advection (Arndt et al., 54 

2009; Kimball, 2008; Tuleya, 1994; Zhang et al., 2018) and introduce more TCP by influencing 55 

the low-level convergence (Kepert, 2001; Langousis & Veneziano, 2009; Shapiro, 1983). Many 56 

modeling and observation studies proved that topography has an enhancing effect on TCP 57 

(Huang et al., 2020; Li et al., 2007; Ramsay & Leslie, 2008; Wu et al., 2002) based on different 58 

dynamic processes. Houze (2012) provided a physical mechanism for the lifting effect of tropical 59 

cyclones by the topography. While TCs are over the ocean they tend to be moist neutral and the 60 
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uniform warm ocean boundary makes the flow slightly unstable. The lifting over the 61 

mountainside releases this instability and triggers the convective cells on the windward side and 62 

then interacts with the gravity wave on the lee side of the mountain. Sometimes the TCP process 63 

is further complicated by the interactions of the storm track, land/ocean distributions, and 64 

topography over the land. Topography has been reported to deflect TC tracks and change their 65 

precipitation intensity over the land (Huang et al., 2012; Lin et al., 2005; Lin et al., 2002). 66 

Mexico is a country with a complex topography and long coastal lines prone to TCs on 67 

both sides. Existing works on precipitation in Mexico are focused on general precipitation 68 

(Mascaro et al., 2014; Pineda-Martinez & Carbajal, 2009), North American Monsoon (Vivoni et 69 

al., 2007) and TCP mechanisms on the Pacific Coast (Farfán & Cortez, 2005; Farfán & Zehnder, 70 

2001; Zehnder, 1993). TCP can contribute 0 to 40% of the annual precipitation across Mexico, 71 

which is estimated from the satellite precipitation product TMPA 3B42 from 1998 to 2013 72 

(Agustín Breña-Naranjo et al., 2015). Franco-Díaz et al. (2019) used the same product and 73 

estimated that TCs contribute 10 to 30% of July to October precipitation and they are associated 74 

with 40 to 60% of coastal daily extreme rainfall (> 95th percentile) in Mexico. Extreme TCP 75 

events in Mexico are triggers of severe flooding with massive disruption to society and intense 76 

economic losses (Agustín Breña-Naranjo et al., 2015). Two TCs (Tropical Storm Manuel and 77 

Hurricane Ingrid) made landfall in Mexico between September 13 and 20 in 2013. Flooding from 78 

extreme precipitation has damaged 45000 homes with $900 million of insured losses and $5.7 79 

billion in total economic losses. Therefore, it is necessary to systematically evaluate the 80 

variations of the TCP on the east side of Mexico and the factors that influence it. Our analysis is 81 

based on a 99-year daily gridded TCP record derived from a large number of rain gauges. It is 82 

possibly the longest climatological record that can be discovered for the region with acceptable 83 



Manuscript submitted to Journal of Geophysical Research: Atmospheres 

5 

 

details. We will evaluate the relationships by using multiple statistical and data mining 84 

techniques including cluster analysis, correlations, and the Random Forest (RF) models. We will 85 

develop the optimal Random Forest models for variations in both annual mean and event TCP 86 

and evaluate their fitting and predicting skills from out-of-sample cross-validations.  87 

The article is organized as follows. Section 2 will introduce the data and methods of the 88 

analyses with more details. In Section 3, we will present the results from different statistical and 89 

data mining methods and a case study focused on the three most extreme historical events. We 90 

will summarize and discuss our findings in Section 4.  91 

2 Data and Methods 92 

2.1. Precipitation 93 

The TCP is extracted from daily rain gauges and locations of the TC for both the U.S. 94 

and Mexico from 1920 to 2018. The Daily Global Historical Climatology Network (GHCN-D) 95 

covers both the U.S and Mexico with 35161 gauges. The GHCN-D has decent spatial density for 96 

spatial interpolation into 0.25° grids inside the U.S. but is not dense enough for Mexico. 97 

Therefore, we collect a second source of daily precipitation from 2526 gauges provided by the 98 

National Weather Service of Mexico. We define daily TCP boundaries by connecting moving 99 

circles with a radius of 800 km, which are centered by the 6-hour locations provided by the 100 

International Best Track Archive for Climate Stewardship (IBTrACS). We use the same 101 

approach as Zhu and Quiring (2017), which gives the optimal estimation of 0.25° gridded TCP 102 

by correcting possible wind introduced under-catches in rain gauges and optimizing the Inverse 103 

Distance Weighting (IDW) parameters for the spatial interpolation. The algorithm was validated 104 

with the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis 105 

product 3B42 (TMPA 3B42). The daily TCP grids are then clipped by daily boundaries defined 106 
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by the connected 500 km radii. The 500 km radii are the final boundaries of the daily TCP and 107 

the previous 800 km circles are used to avoid bias in the IDW spatial interpolation, particularly 108 

near the 500 km boundary edges. We have identified 4373 TCP days for the whole North 109 

American Continent and 1442 TCP days for Mexico between 1920 and 2018. Figure 1a shows 110 

that we have enough rain gauge density in the study are for the IDW algorithm: the numbers of 111 

gauges are far more than the final interpolated grids in eight decades after 1940. The decade with 112 

the lowest number of gauges is 1920 to 1929, which still has an average gauge/grid ratio of 113 

greater than 1/2. 114 

  115 

Figure 1. Statistics for (a) the total number of gauges and interpolated grids (0.25°) for daily TCP 116 

(b) percentage of grids in different elevation ranges. 117 
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The daily TCPs are also aggregated into storm total TCP, which yields 399 TCP events. 118 

Annual Mean TCP, Maximum Event TCP, and the 90th Percentile (P90) TCP are also calculated 119 

for comparison and modeling purposes. Because there is a generally decreasing gradient of TCP 120 

probability from the coast locations to the inland locations, we define three clustered regions of 121 

our grids based on their annual TCP anomaly (Figure 2) using the K-Means clustering method. 122 

The reason is that variables that influence the TCP are also determined by their locations. One 123 

case is that the topography also has the coast-to-inland gradient. The three clusters demonstrate a 124 

clear separation pattern from coast to inland and they will be used in the subsequent correlation 125 

analysis and RF modeling. 126 

 127 

Figure 2. K-Means Clusters of grids calculated based on their annual mean TCP anomaly. 128 

2.2. Topography and Location Variables 129 

 We obtain the raw elevation data from the Global 30 Arc-Second Elevation (GTOPO30) 130 

offered by the Earth Resources Observation and Science (EROS) Center of the United States 131 

Geological Survey. The GTOPO30 has a 1 km resolution and was derived from a variety of 132 

sources in 1996. We calculate seven elevation variables from ~ 750 GTOPO30 points within 133 
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each 0.25° grid box. We estimate the mean, maximum, minimum, and standard deviation of the 134 

elevations for each box. The range is defined as the difference between the highest and the 135 

lowest elevation inside each box. The slope and its’ aspect are calculated by the algorithm 136 

(Burrough et al., 2015) provided by the ESRI ArcGIS zonal statistics package. The slope is the 137 

mean steepness for each 0.25° box and the aspect is the slope’s direction measured clockwise 138 

from 0° (due north). We will analyze how those topographic variables are related to the TCP. 139 

Figure 1b also shows that we have decent amounts of grids within each elevation range for all 140 

ten decades, which adds confidence to our subsequent data analysis for the elevation and TCP. 141 

We also calculate the centroid longitude and latitude for each 0.25° grid and the sphere distance 142 

from each centroid to the nearest coastline of the Gulf of Mexico (distance to the coast) because 143 

they may all influence the spatial variations of TCP. 144 

2.3. TC Tracks and Characteristics 145 

TC track characteristics are important factors that determine the amount of individual 146 

storm precipitation. Here we take all TC track sections (locations recorded at 6-hour intervals) 147 

that impacted Mexico with precipitation (the parts of tracks overland or near the land) and define 148 

them into 3 different clusters using the storm track clustering technique developed by Gaffney et 149 

al. (2007). This clustering technique uses the functions of the cyclone positions conditioned on 150 

an independent variable time as the conditional density components for the regression mixture 151 

model framework (Camargo et al., 2007). Details for the algorithm can be found from the Matlab 152 

toolbox that is freely available at http://www.datalab.uci.edu/resources/CCT. Figure 2 shows that 153 

those clusters have different spatial patterns. The cluster 1 tracks are more located in the south 154 

part of Mexico with a curve feature for their cluster mean track. The cluster 2 tracks are more 155 

likely to penetrate through Mexico in the middle. The cluster 3 tracks are more located in the 156 

http://www.datalab.uci.edu/resources/CCT
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northern part of Mexico bordered to Texas, U.S with a curve feature as well. We will use these 157 

track clusters in our following analysis. 158 

 159 

Figure 3. Clusters of TC tracks for storms generating precipitation in Mexico, colored lines 160 

are actual TC tracks, and the black line is the cluster mean track estimated by the model. 161 

 162 

In addition to the spatial clustering of tracks, other TC properties may also determine the 163 

amount of TCP in each event. We calculate several different properties for all 399 events. The 164 

distance to track is defined as the closest sphere distance (km) between each precipitation grid 165 

and the storm track. The forward U speed (kt) is defined as a vector of the mean of the east-west 166 

(east as positive sign) component of the storm movement, while the forward V speed (kt) is the 167 

vector for the mean of the north-south (north as positive sign) component of the storm 168 

movement. The forward speed (kt) is the magnitude of vector U plus vector V, and the forward 169 

speed angle is the direction of the forward speed measured in degrees clockwise from the north. 170 

We also calculate the variances for both the forward speed and its angle along each of the storm 171 

track to capture changes in its movement. We define a dummy variable that indicates whether the 172 

storm is stalled or not (stalled storms are defined as ‘1’ if they ever moved toward the south 173 

while other storms are defined as 0). Finally, we also calculate the event durations by summing 174 

all TCP days for each event. 175 

2.4. Data Analysis and Model Development 176 



Manuscript submitted to Journal of Geophysical Research: Atmospheres 

10 

 

 We apply the pairwise correlations (Spearman's ρ) with p-values (<0.01) (Best & 177 

Roberts, 1975) to explore the relationships between the TCP and factors that may influence it.  178 

We also apply percentile analysis to compare samples in the TCP data using the Mann-Whitney 179 

U-test (Mann & Whitney, 1947) to compare the sample mean of elevation characteristics for 180 

different TCP groups. Traditional statistical techniques like correlation or linear regressions are 181 

straightforward for the interpretation of the signals. However, they lack the ability in capturing 182 

combined effects from multiple independent variables and nonlinear relationships, as well as 183 

suffer issues like collinearity. And they are not able to deal well with variables with specialized 184 

distributions (e.g., slope aspect with a cyclic change from 0 to 360°).  185 

The RF model is a powerful machine learning algorithm (Breiman, 2001; Breiman et al., 186 

1984) with a much less stringent requirement for distribution or type of independent variables. 187 

The algorithm fits a large number (K=500 in our study) of regression trees by using bootstrapped 188 

training samples. The data are recursively partitioned into two groups based on a subset of 189 

explanatory variables in each tree until the terminal nodes reach minimum size. The model 190 

prediction is based on the ensemble of K regression trees. The randomness in both the bootstrap 191 

sampling and the selection of subset predictors at each node of the trees results in the reduction 192 

of the correlation between trees (Nateghi et al., 2014). The RF algorithm is easy to implement. It 193 

can capture the complex nonlinear feature of the data and offer excellent prediction accuracy. 194 

The TCP is a complex process determined by multiple factors together and many of those 195 

variables are not normally distributed. We believe that the RF algorithm is an excellent candidate 196 

to explore those relationships and can potentially yield powerful prediction models.  197 

We will develop two sets of RF models for TCP in Mexico, using the TCP metrics and 198 

explanatory variables we developed in sections 2.1 to 2.3. A detailed list of all dependent and 199 
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independent variables can be found in Supplement 1. The first set of models are focused on the 200 

aggregated TCP statistics for the entire 99 years. We will model the Annual Mean TCP 201 

(AMTCP) and Historical Maximum Event TCP (MAXETCP) at each grid. The independent 202 

variables are all static (Variable # 5-11, 14-16 in Supplement 1). The second set of models are 203 

focused on event TCP (ETCP) and > P90 event TCP (ETCP90), which are developed from both 204 

static and dynamic independent variables totaled by 22. 205 

Samples for both AMTCP and MAXETCP contain 2775 records. The ETCP sample has 165667 206 

records and the ETCP90 sample has 16567 records. Because of the large data volume, both 207 

ETCP and ETCP90 models are trained and validated by using the High-Performance Computing 208 

(HPC) facility (Pitzer Clusters from the Ohio Supercomputer Center). We develop two models 209 

for each of the four dependent variables: (1) a whole model that includes all explanatory 210 

variables and all data. (2) a “best” model that uses the Recursive Feature Elimination algorithm 211 

to select an optimal subset of explanatory variables that gives the best cross-validation result in 212 

out of sample prediction. The whole model (1) is developed to show the partial dependence plots 213 

(pdp) for all explanatory variables. The pdp explains the marginal effect of each explanatory 214 

variable on the response variable while effects from other explanatory variables are averaged out 215 

(Hastie et al., 2009). It is an effective tool to explain the contribution from each explanatory 216 

variable by capture its variability and particularly the non-linear relationships with the dependent 217 

variable. The R package for the pdp is freely available from the internet (https://cran.r-218 

project.org/web/packages/pdp/). The best model (2) is developed for the best cross-validation 219 

performance, we separate the whole sample into 80% training data and 20% testing data. Then 220 

we use the “caret” R package (available at https://cran.r-project.org/web/packages/caret/) to train 221 

our RF models. The model is trained by using the repeated cross-validation approach, which 222 

https://cran.r-project.org/web/packages/pdp/
https://cran.r-project.org/web/packages/pdp/
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randomly selects 10 folds of the training data to construct the model and use the remaining of 223 

training data to validate the model. And this process is repeated three times and all error statistics 224 

are summarized. We use the Recursive Feature Selection (RFE) function to choose the optimal 225 

subset of variables to be included in the final model by testing all possible combinations of 226 

variables. The criteria for final model selection is based on the ensemble mean Root Mean 227 

Squared Error (RMSE). We also use the best model to make predictions for the 20% testing data 228 

that has not participated in the model fitting. We will report performance statistics for the 20% 229 

testing sample, the 80% training sample (fro repeated cross-validation), and the whole sample. 230 

Those performance statistics include the RMSE, the Mean Absolute Error (MAE), and R2. The 231 

RF model can give the value and rank of the Variable Importance (VI) in the model and reveal 232 

relationships and sensitivities between independent variables and response variables (Greenwell, 233 

2017). The VI is computed as the usefulness of each independent variable in splitting the data at 234 

each node of the regression tree and a “pure” node is preferred. The VI is measured by the 235 

increase of Gini impurity, calculated based on the reduction in the sum of squared errors 236 

whenever a variable is chosen to split (Strobl et al., 2007). We then normalize the VI based on a 237 

0-100 scale for easier comparison across models (McRoberts et al., 2018). 238 

3. Results 239 

3.1. Spatial Patterns and Summary Statistics 240 

Figure 4 shows the maps for the mean elevation, elevation range, AMTCP and 241 

MAXETCP for Mexico. Mexico has mountainous areas higher than 3000 meters in the central 242 

and areas below 500 meters on the coast (Figure 4a). Transition zones with large elevation 243 

changes (range) are located between the coast and inland area (Figure 4b). The AMTCP (Figure 244 

4c) shows a strong decreasing gradient from the coast to inland. This gradient still exists for the 245 
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MAXETCP (Figure 4d) but not as strong as AMTCP. The MAXETCP also has scattered local 246 

maximums over inland locations, which may indicate the topographic enhancement of TCP. 247 

 248 

Figure 4. Spatial patterns in Elevation (Mean Elevation and Elevation Range) and TCP 249 

characteristics (AMTCP and MAXETCP) in Mexico 250 

 251 

Correlations between environment variables and AMTCP and MAXETCP are shown in 252 

Table 1. Both AMTCP and MAXETCP are most sensitive to location variables and they show 253 

the strongest correlations. Higher TCP generally corresponds to locations nearer the coast, as 254 

well as at more eastern and southern positions. The elevation variables are showing mixed 255 

results. For cluster 1 locations in more mountainous areas, the elevation variables are 256 

demonstrating more positive correlations with the TCP, which again indicates the enhancing 257 

effect of TCP from the topography. However, cluster 2 and particularly cluster 3 locations are 258 

showing negative correlations for many elevation variables. The distance to the coast also 259 

determines spatial changes of elevation. Coastal areas are mostly associated with lower 260 
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elevations but have a higher general probability of TCP. The correlations in aspect are hard to 261 

interpret because of their cyclic distribution. 262 

Table 1. Correlation between TCP variables and Environmental Variables. 263 

Var 
Clu

ster 

Distanc

e to 

Coast 

Lon Lat Mean Max Min Range Std Slope Aspect 

AMT

CP 

 

1 -0.74* 0.76* -0.61* 0.24* 0.23* 0.24* 0.05 0.11* 0.09* -0.13* 

2 -0.51* 0.09 -0.16* -0.14* -0.15* -0.17* -0.11* -0.10 -0.12* 0.13* 

3 -0.74* 0.45* -0.05 -0.24* -0.17* -0.30* 0.04 0.02 0.05 -0.12 

MA

XET

CP 

1 -0.54* 0.59* -0.62* -0.06* 0.04 -0.11* 0.21* 0.22* 0.28* -0.02 

2 -0.27* 0.16* 0.06 -0.06 -0.10 -0.06 -0.09 -0.06 -0.06 0.08 

3 -0.25* 0.26* 0.19* -0.55* -0.41* -0.55* -0.04 -0.07 -0.07 -0.21* 

* indicates correlation with p<0.01, Clusters are defined by K-Means of the AMTCP anomaly in Figure 2 264 

 265 

 We also conduct correlation analyses between event TCP (ETCP) and selected 266 

explanatory variables. The ETCP contains 165667 observations and has far more variance than 267 

the aggregated records (AMTCP and MAXETCP) so we expect more complex relationships. 268 

Here we show an example of correlations for cluster 1 grids in table 2a and 2b, results for the 269 

other two clusters are demonstrated in supplement 2 and 3. Because of the much larger sample 270 

size, most of the correlations are significant with p<0.01. The distance to coast, longitude, and 271 

latitude have a similar relationship with the ETCP as they have with the AMTCP (Table 1), but 272 

with lower correlation values. The mean, max, and min elevation are showing negative 273 

correlations with the ETCP for storms with cluster 1 and 2 tracks, but they have positive 274 

correlations for storms with cluster 3 tracks. Storms with cluster 3 tracks tend to make landfall in 275 

northern Mexico, and the elevation is relatively higher there and possibly enhance the TCP. The 276 

range, standard deviation and slope are all showing positive correlations with the TCP for all 277 

track clusters, which demonstrates that the elevation variances have consistent positive 278 

contributions to more TCP. If we look at the track variables in Table 2b, the distance to track has 279 

the strongest negative correlation with ETCP among all variables. It also generally shows that 280 
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the slower-moving storms are generating more ETCP. This relationship is particularly strong for 281 

the north-south direction (forward V speed) of storm movement. Those relationships are similar 282 

for Cluster 2 and 3 grids (Supplement 2 and 3) with some variations. 283 

Table 2a. Correlations between the Event TCP and Static Variables for Cluster 1 TCP Grids 284 

Track 

Cluster 

Distance 

to Coast 
Lon Lat Mean Max Min Range Std Slope Aspect 

1 -0.19* 0.22*  -0.23* -0.14* -0.09* -0.18* 0.11* 0.11* 0.12* 0.03* 

2 -0.07* 0.12* -0.08* -0.07* -0.02* -0.11* 0.07* 0.06* 0.06* 0.01 

3 0.00 -0.12* -0.02* 0.05* 0.08* 0.02* 0.09* 0.08* 0.07* 0.02* 

* indicates a correlation with p<0.01 285 

Table 2b. Correlations between the Event TCP and Track Variables for Cluster 1 TCP Grids 286 

Track 

Cluster 

Distance to 

Track 

Forward 

U Speed 

Forward V 

Speed 

Forward 

Speed 

Forward 

Speed 

Variance 

Forward 

Speed 

Angle 

Forward 

Speed 

Angle 

Variance 

1 -0.36* -0.07* -0.05* 0.05* -0.02* 0.18* -0.01* 

2 -0.41* -0.11* -0.22* 0.04* 0.00 0.18* -0.10* 

3 -0.44* -0.06* -0.29* -0.14* -0.08* 0.14* -0.14* 

* indicates a correlation with p<0.01 287 

3.2 Random Forest Model 288 

3.2.1. The AMTCP and MAXETCP 289 

 RF models are developed for both AMTCP and MAXETCP using locations and 290 

topographic information as independent variables. The RF models show very high fitting and 291 

predicting skills for the AMTCP and MAXETCP. The AMTCP models generally have less error 292 

and higher R2 values than the MAXETCP models. The whole models are fitting the entire data 293 

better but have worse performance in predicting the subsets of the data (testing and training 294 

samples). The best models are trained only from the training sample and have better out of 295 

sample performance (testing sample). Interestingly, the AMTCP and MAXETCP best models 296 

have only three identical participating variables: distance to coast, longitude, and latitudes. They 297 
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are all location variables and can explain most of the variance in AMTCP and MAXETCP in 298 

Mexico and offer better error statistics than the whole models fitted by 10 Variables. 299 

Table 3. Model Performance Summary for the Whole Model and the Best Model of the 300 

AMTCP and the MaxETCP 301 

 AMTCP MaxETCP 

Model Whole Model Best Model Whole Model Best Model 

Sample Test Train Whole Test Train* Whole Test Train Whole Test Train* Whole 

RMSE 2.13 4.59 1.92 2.09 3.57 2.03 34.28 44.99 22.34 33.84 39.88 26.69 

MAE 1.08 1.69 0.71 1.07 1.39 0.86 34.27 20.73 10.11 17.89 18.60 12.39 

R2 0.99 0.96 0.99 0.99 0.98 0.99 0.90 0.83 0.96 0.90 0.87 0.94 

* indicates that statistics are calculated from the RFE multiple cross-validation routine. 302 

Table 4. Variable Importance (VI) Summary for the Whole Model and the Best Model of the 303 

AMTCP and the MaxETCP 304 

 AMTCP  MaxETCP 

 Whole Model Best Model Whole Model Best Model 

Rank Name VI Name VI Name VI Var Name VI 

1 Distance to Coast 100 Distance to Coast 38.28 Distance to Coast 100 Lat 37.11 

2 Lon 44.43 Lon 34.75 Lon 66.51 Lon 32.50 

3 Lat 8.18 Lat 29.33 Lat 21.75 Distance to Coast 30.13 

4 Max 2.04   Min 9.41   

5 Min 1.85   Mean 5.74   

6 Mean 1.18   StanDev 1.40   

7 StanDev 0.56   Max 1.21   

8 Slope 0.21   Aspect 0.52   

9 Range 0.20   Range 0.14   

10 Aspect 0.00   Slope 0.00   

 305 

 306 
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3.2.2. The ETCP and ETCP90 307 

 Both the Event TCP (ETCP) and the Event TCP greater than 90 percentile (ETCP90) 308 

include more variabilities than the AMTCP and MAXETCP. All storm events vary in their 309 

characteristics, such as track, moisture content, interactions with the land surface, etc. Those 310 

factors determine how much precipitation they can generate over land. Our ETCP and ETCP90 311 

models are constructed from 22 potential explanatory variables. Their fitting and predicting skills 312 

are slightly worse than the AMTCP and MAXETCP models, but they have much higher model 313 

complexity and variability. Table 5 shows that the best models have more consistent 314 

performance than the whole models, particularly for the testing and training samples. The best 315 

model for the ETCP can explain equal or more than 87% of the variance for different data 316 

samples with very low RMSE (8.21 to 13.51 mm) and MAE (3.51 to 6.36 mm). The ETCP90 317 

models are constructed for the most extreme TCP and their performances are worse than the 318 

ETCP models. However, the best model for the ETCP90 can still explain 65% to 88% of sample 319 

variance with 20.22 to 32.48 mm in RMSE and 11.72 to 20.41mm in MAE.  320 

 321 

Table 5. Model Performance Summary for the Whole Model and the Best Model of the 322 

ETCP and the ETCP90 323 

 ETCP ETCP90 

Model Whole Model Best Model Whole Model Best Model 

Sample Test Train Whole Test Train* Whole Test Train Whole Test Train* Whole 

RMSE 13.02 14.16 7.87 13.32 13.51 8.21 33.48 34.35 19.92 32.48 32.56 20.22 

MAE 6.10 6.77 3.33 6.23 6.36 3.51 20.71 22.20 11.28 20.41 20.80 11.72 

R2 0.88 0.85 0.96 0.87 0.87 0.95 0.63 0.60 0.88 0.66 0.65 0.88 

* indicates that statistics are calculated from the RFE multiple cross-validation routine. 324 

 325 
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There are 18 variables in the best model for the ETCP, which shows much higher diversity than 326 

the only three location variables chosen by the AMTCP best model. The dynamic variables in the 327 

ETCP best model include the distance to track (the most important variable to ETCP), six storm 328 

translation parameters (e.g,. forward V speed), track cluster, event duration, and month. Those 329 

dynamic variables play the most important role in the model and they are showing higher VI in 330 

Table 6. Location variables are the second important variable groups. Latitude, longitude, and 331 

distance to coast rank second, fourth and 17th respectively in the VI. We also have five 332 

topographic variables participating in the best model: aspect, standard deviation, range, slope, 333 

and maximum elevation. 334 

Table 6. The Variable Importance (VI) for the Whole Model and the Best Model of the ETCP 335 

 Whole Model Best Model 

Rank Name V Name VI 

1 Distance to Track 100.00 Distance to Track 100.00 

2 Forward V Speed 57.20 Lat 65.51 

3 Lon 41.37 Forward V Speed 54.18 

4 Lat 30.51 Lon 42.92 

5 Forward Speed Angle Variance 26.73 Forward Speed Angle Variance 38.51 

6 Forward Speed Variance 26.45 Forward Speed Variance 36.96 

7 Distance to Coast 20.22 Forward U Speed 34.67 

8 Forward U Speed 17.51 Forward Speed 27.26 

9 Forward Speed 17.39 Forward Speed Angle 26.56 

10 Forward Speed Angle 17.37 Track Cluster 25.66 

11 Event Duration 16.85 Aspect 24.56 

12 Min 10.23 Event Duration 24.21 

13 Range 6.50 StanDev 22.74 

14 Aspect 6.19 Range 22.60 
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15 Mean 5.97 Month 22.11 

16 Slope 5.45 Slope 21.34 

17 Month 5.35 Distance to Coast 19.75 

18 StanDev 5.20 Max 17.14 

19 Max 5.16   

20 ATCP Cluster 4.49   

21 Track Cluster 2.76   

22 Stalled 0.00   

 336 

The VI ranking for the ETCP90 models (table 7) is demonstrating some differences from 337 

the ETCP models. The best model has 17 variables and they show less difference between each 338 

other in their VIs. The dynamic variables and the location variables are still demonstrating their 339 

high importance. Elevation variables have higher VIs than they have in ETCP models, indicating 340 

that the elevations play more important roles in determining the most extreme precipitation 341 

generated by TCs. The minimum, mean elevation, and the slope aspect rank as 4th, 8th, and 10th 342 

important variable in the model, respectively. 343 

Table 7. The Variable Importance (VI) for the Whole Model and the Best Model of the ETCP90 344 

 Whole Model Best Model 

Rank Name VI Name VI 

1 Distance to Track 100.00 Lon 100.00 

2 Lon 63.27 Distance to Track 96.10 

3 Lat 62.10 Lat 94.42 

4 Distance to Coast 38.33 Min 61.97 

5 Forward Speed Variance 34.52 Distance to Coast 56.09 

6 Aspect 34.28 Forward Speed Angle 55.76 

7 Forward Speed Angle 32.60 Forward Speed Variance 53.71 
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8 Forward V Speed 32.30 Mean 50.78 

9 Forward Speed Angle Variance 31.75 Forward Speed Angle Variance 50.62 

10 Forward Speed 30.21 Aspect 50.00 

11 StanDev 27.06 Event Duration 49.80 

12 Range 24.75 Max 49.79 

13 Min 24.33 Forward V Speed 48.86 

14 Mean 24.02 StanDev 48.80 

15 Forward U Speed 21.48 Range 48.64 

16 Slope 20.98 Slope 48.16 

17 Max 19.22 Forward U Speed 47.22 

18 Event Duration 16.22   

19 Track Cluster 5.64   

20 Month 5.33   

21 Stalled 3.47   

22 ATCP Cluster 0.00   

 345 

Lastly, although the ECTP best model provides a nice overall prediction accuracy (Figure 5a), 346 

the model’s skills deteriorate for the most extreme TCP events (> 69.47 mm, P90) shown in 347 

Figure 5b. The R2 changes from 0.95 to 0.85, and the RMSE increases from 8.21 mm to 22.21 348 

mm. The ETCP90 best model is developed only from a much smaller extreme TCP events 349 

sample. It has significant improvement in R2, RMSE and MAE values if compared with the 350 

ETCP best model, Figure 5c also shows many of those improvements happen in the range 351 

between 70 mm and 300 mm. All best models have small systematic under-prediction bias across 352 

all ranges of TCP, the bias are larger in the most extreme TCP events (> 450 mm). 353 
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 354 

Figure 5. Scatter plots between observation and prediction for the (a) ETCP Best Model for the 355 

Whole Sample, (b) ETCP Best Model for the Sample with TCP > 90 percentile, (c) ETCP90 356 

Best Model for the Whole Sample. 357 

 358 

3.3 Model Interpretation 359 

Partial dependence plots (pdp) are used to interpret the marginal contribution of each explanatory 360 

variable to the response variable of the RF model with the remaining explanatory variables 361 

averaged out. We can observe the response variable changes as a continuous function of each 362 

explanatory variable independently. This is particularly useful in interpreting the nonlinear 363 

relationships inside a complex RF model. We display the pdps of the whole model for both 364 

ETCP (Figure 6 and 7) and ETCP90 (Supplement 8 and 9) and they both include all 22 potential 365 

explanatory variables. Those 22 variables can be separated into static variables and dynamic 366 

variables. The ETCP generally drops when the distance to the coast is less than 400 km but 367 

slightly increases when it is between 500 to 1000 km (Figure 6a).  The ETCP is generally higher 368 

when the longitude is changing from -110° to -95° (Figure 6b), which represents the increase of 369 

TCP from the inland to coast (west to east). After a dip, the TCP increases again when longitude 370 

is more eastern than -91°, which reflects the TCP received by the Yucatan Peninsular in the most 371 
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east side of Mexico. The ECTP has the most sensitivity with the latitude (Figure 6c) among all 372 

10 static variables. The TCP generally decreases when the latitude increases but increases after 373 

the latitude is greater than 20°. The decrease is caused by the general decrease of TC energy 374 

when it moves from south to north. The subsequent increase is possibly caused by the change in 375 

orientation of the coastal line in northern Mexico and southern Texas and higher mountains in 376 

northern Mexico, which leads to more chances of heavy TCP from landfalling storms. Part of 377 

this result agrees with what we have found in the elevation/TCP correlation for cluster 3 tracks. 378 

The event TCP has non-linearly responses to all first three location variables. The elevation 379 

variables (Figure 6d-j) are demonstrating mixed patterns. The TCP generally decreases as the 380 

mean elevation increases (Figure 6d) particularly from 0 to 1000 m, but it starts to increase when 381 

the elevation is greater than 2000 m. The maximum elevation has a similar pattern of change but 382 

the TCP increases with a larger magnitude at higher maximum elevations (> 2500 m). The TCP 383 

generally decreases monotonically with the minimum elevation (Figure 6f). The topography 384 

variables’ influences on the TCP are more evident and consistent for range, standard deviation, 385 

and slope (Figure 6g, h, i). They are all showing a strong positive relationship with the TCP. All 386 

three variables describe different types of elevation variances within each 0.25° grid cell. Our RF 387 

models reflect that there is more TCP at places where the elevation is changing fast with large 388 

variance. The aspect of the slope (Figure 6j) is also demonstrating a nonlinear relationship with 389 

the TCP: the higher amount of TCP is observed for slopes that are facing the ocean (with aspect 390 

angle < 100° or > 250°, if we consider the profile of the coastline of Mexico) while less TCP is 391 

at the lee side slopes. In summary, the RF model well captures the combined and nonlinear 392 

influences from the locations and the topography to the ETCP variations. The pdps for the 393 

ETCP90 (Supplement 8) are showing similar patterns. The TCP show higher sensitivity to the 394 
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longitude for more inland locations (< -100°). The range, standard deviation, and slope are all 395 

showing steeper curves within certain ranges (Supplement 8g, h, i). It indicates that the most 396 

extreme TCP events are possibly more sensitive to the topography changes, particularly where 397 

large local variations happen.  398 

 399 

Figure 6. Partial Dependence Plot for static variables in the Whole Model for the ETCP 400 

 401 
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Pdps are demonstrating more variations for twelve dynamic variables (Figure 7 and 402 

Supplement 9). The distance to track is the most important variable in both ETCP and ETCP90 403 

models. The TCP is very sensitive to its changes and the range is very large (~ 50 mm in Figure 404 

7a and ~ 40 mm in Supplement 9a). The track cluster 3 storms produce the highest TCP, 405 

followed by track clusters 1 and 2 (Figure 7b). February to May have the highest event TCP 406 

while another peak happens between September and October (Figure 7c). Normally, the Atlantic 407 

hurricane season peaks in September, but it is also possible that the very rare storms not 408 

officially in the hurricane season have produced heavy precipitation and are reflected by the RF 409 

model. In the model for ETCP90 (Supplement 9c), October and November have the highest 410 

TCP. We have six variables representing the movement pattern of each storm. The forward U 411 

speed shows that more TCP is associated with storms with strong westward movement (Figure 412 

7d). Storms with higher westward translation speed may have higher chances to make landfall in 413 

Mexico and the larger momentum to penetrate deeper inland and generate more precipitations. 414 

The TCP shows higher sensitivity to the forward V speed (30 mm in Figure 7e) than the U speed 415 

(10 mm in Figure 7d), which indicates that the north-south component of storm movement has a 416 

bigger impact on the event TCP than the east-west movement. Supplement 9e also shows that 417 

storms with a V speed between -5 to 5 knots are generating the most amount of extreme TCP. 418 

The forward Speed (Figure 7f) is a combination of both U Speed and V Speed and demonstrates 419 

more complex patterns. High TCP values are observed in storms moving below 5 knots but also 420 

in storms moving above 15 knots. The pdp plots of U, V, and mean forward speed for the 421 

ECTP90 (Supplement 9d, e, f) have similar patterns. The forward speed (Supplement 9f) shows a 422 

more consistent signal that more extreme TCP is associated with slow-moving storms (< 5 423 

knots). The ETCP’s response to the angle of the forward speed has two peaks at 305° and 320° 424 
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with a dip at ~ 310° (Figure 7h). The ETCP90 only has a higher value when the forward speed 425 

angle is between 290° to 310° (Supplement 9h). Those might be caused by the profile of the 426 

Mexico coastal line and the patterns in TC translation when they make landfall (e.g., angle to the 427 

coastlines when making landfall). Figures 7g and 7i show that more variances in the forward 428 

speed and its angle are likely to generate more TCP over the land. Variations in the storm tracks 429 

may be caused by TC’s translations steered by the prevailing wind, the Beta effect, and 430 

interactions with other synoptic weather systems (Atallah et al., 2007) or track deflection from 431 

topography (Lin et al., 2002). Storms with complex tracks are reported to be big generators of 432 

the precipitation historically (e.g., Hurricane Harvey). It also shows that stalled storms generally 433 

make more precipitation than those not stalled (Figure 7k). Based on the annual TCP anomaly 434 

(Figure 2), the coastal grids (cluster 3) generally have a higher probability of receiving more 435 

ETCP than the inland grids (cluster 1 and 2) in Figure 7j. Finally, the Figure 7l confirms that the 436 

storms with longer durations are generating more TCP. 437 

  438 
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 439 

Figure 7. Partial Dependence Plot for Dynamic Variables in the Whole Model for the ETCP 440 

 441 

3.4 Extreme Cases 442 

 Since the most extreme TCP events generated the largest damages, this section is focused 443 

on three storm events with the most extreme TCP in 99 years of climatology in Mexico. They are 444 

Hurricane Alex in 2010, Hurricane Igrid in 2013 and Major Hurricane Beulah in 1967. Alex and 445 

Igrid are originated from tropical disturbances from the Gulf of Mexico or the Caribbean Sea and 446 
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experienced rapid intensification in a short translation distance before they made landfall. Beulah 447 

was originated from the Atlantic Ocean and gathered a large amount of energy through its long 448 

translation distance before it became the major hurricane that made landfall first in Texas. All 449 

three storms have produced > 400 mm precipitation at some locations (Figure 8a, d, and g) and 450 

those extreme precipitations caused massive flooding and landslides with losses of lives and 451 

infrastructures. The ETCP best model captures the spatial patterns of the TCP distributions very 452 

well for all three extreme cases (Figure 8b, e, h). Their scatter plots with the true observations 453 

agree very well with the y=x line and demonstrate high R2 and low RMSE and MAE. The model 454 

still underpredicts > 300 mm TCP and they are mostly shown in Hurricane Alex and Igrid. 455 

 456 

Figure 8. The precipitation of the three most intense TCP events from the observation and the 457 

Best ETCP Model 458 

 We also compared the extreme (> 90th percentile, P90) TCP and the median range 459 

(between 45th percentile and 55th percentile) TCP samples and elevation variables associated 460 

with them. This comparison is finished for all three TCP anomaly grid clusters and all three 461 

storms. There are significant differences in the medians between the extreme and the median 462 
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range TCP groups, ranging between 30 mm and 179 mm (Figure 9a, Supplement 10) with the 463 

maximized differences obtained by Hurricane Beulah. In most cases, the extreme TCP sample 464 

related elevation range and standard deviation have statistically significant larger median than 465 

those for the median range TCP sample (Figure 9b and c, Supplement 11 and 12, verified by 466 

Mann-Whitney Test at 95% level). This pattern is particularly stronger for cluster 1 and 2 467 

locations, which are more inland and mountainous. In some cases, median range TCP samples 468 

have a larger elevation range and standard deviation than the extreme TCP samples. They are 469 

mostly happening in cluster 3 regions (coastal) in Hurricane Alex and Hurricane Beulah. The 470 

case study proves again that local topography variations have a strong enhancing effect for 471 

extreme TCP in Mexico, particularly over more inland regions. 472 

  473 
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 474 

Figure 9. The comparison of topographic variables between locations with extreme TCP greater 475 

than the 90th Percentile (> P90) and median range TCP (between P45 and P55), separated by three 476 

annual TCP grid clusters. 477 

4 Conclusion and Discussion 478 

 Many factors are influencing precipitation generated by TCs, which include their energy 479 

and moisture budget, storm size, and track characteristics, etc. Mexico is prone to strikes from 480 

heavy TCP events because of its long coastal lines and its complex terrain. However, how TCP 481 

changes spatially and temporally over Mexico and how different factors influence the overland 482 

TCP have not been thoroughly studied, particularly at the windward side of the Sierra Madre 483 
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Oriental. Our analysis is based on the longest available record from gauge observed daily TCP 484 

for Mexico since 1920 and we apply multiple data-mining approaches to understand this topic.  485 

Strong decreasing gradients show in the annual mean TCP (AMTCP) and historical 486 

maximum event TCP (MAXETCP) from coast to inland. The clustered correlation analysis 487 

demonstrates that location variables have the most consistent and strongest correlations with the 488 

AMTCP and MAXETCP. Elevation variables show mixed correlations with the TCP, diversified 489 

by locations and elevation variable types. The elevation range, standard deviation and slope 490 

show positive correlations with the TCP, particularly for inland areas, while the mean, max and 491 

min elevations show more negative correlations for coastal areas. The reason is that the 492 

elevations are also highly correlated with their locations in Mexico. The clustered correlation 493 

have filtered out some impacts from the locations to elevation’s impact to TCP but are not able 494 

to completely filter them out. Indeed, locations’ influences on AMTCP and MAXETCP are so 495 

strong that the best RF models only choose three location variables (latitudes, longitude, and 496 

distance to the coast) and can explain most of the variance in AMTCP and MAXETCP with very 497 

little cross-validation error.  498 

While three location variables can explain most of the variance in AMTCP and 499 

MaxETCP, we have more variables (both static and dynamic) to model the much more complex 500 

variations in event TCP. Although there are high diversity and complexity in the variables used 501 

by the best models for the ETCP (18 variables) and ETCP90 (17 variables), most of the 502 

relationships with the TCP can be explained well by their VI and partial dependence plots. Many 503 

variables show a similar pattern of influences to TCP as demonstrated by the correlation 504 

analysis, but with additional details and non-linear relationships. We find that the distance to the 505 

track is the most important factor that determines the event TCP in our model. It ranks highest in 506 
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variable importance and the event TCP has a very high sensitivity to it. Longitude, latitude, and 507 

distance to the coast are the three most important static variables in the model. There is a strong 508 

decreasing gradient in the possibility of TCP from the coastal area to inland, and the TCP 509 

probability is changing with latitude and longitude, controlled by both the decaying of the TC 510 

energy, the profile of the coastal line, and the moving direction of the TC. The translation 511 

characteristics of the storm are another group of dynamic variables that are important to the 512 

event TCP variations. Slower moving storms (particularly in the north-south direction) are 513 

generally producing heavier event TCP because there is a longer duration of the storm at a 514 

specific location. Many slower-moving storms have generated the worst inland flooding event 515 

and Kossin (2018) shows that the TCs were moving slower globally in recent years and possibly 516 

generated more precipitation. Our model also shows that more variations in the storm moving 517 

speed and angle are contributing more event TCP and stalled TCs are also likely to generate 518 

more TCP. Stalled storms are special cases and are sometimes particularly dangerous because the 519 

convection is lifted suddenly by other synoptic systems, which speeds up the condensation of 520 

water vapor. And they may also stay longer with their bent tracks and generate more 521 

precipitation. Hall and Kossin (2019) also demonstrate that the Atlantic TCs have been stalled 522 

more frequently in recent years, which may introduce more probability of extreme precipitation 523 

events with long duration like Hurricane Harvey. Finally, the topographic variables also play 524 

important roles in our RF models, particularly for extreme cases. We show nonlinear 525 

relationships between elevation variables and the TCP in our models. Higher TCP cases are most 526 

likely located at coastal areas with lower mean elevation, while regions with higher elevation are 527 

also likely to have less frequent but very high TCP events. The range, standard deviation and 528 

slope are demonstrating a monotonically enhancing relationship with the TCP. This relationship 529 
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demonstrates both in the correlation and the RF analyses but particularly stronger over more 530 

inland areas. Lastly, more windward slopes have higher TCP than leeward ones. 531 

The RF model is an effective machine learning tool to explore important factors that 532 

influence the TCP overland and their complex relationships in the process. Our model results at 533 

both annual and event scale demonstrate that the RF model excels in the fitting and prediction 534 

skills than traditional statistical models. Our best RF models obtain 95% explained variances of 535 

the Event TCP (ETCP) and 98% explained variance of the AMTCP, both estimated from 536 

multiple cross-validations. They have significantly improved the previously reported 537 

performance of the linear regression model for the annual precipitation in different mountainous 538 

areas (31 to 75% variance explained) around the world (Basist et al., 1994). The ETCP model 539 

shows excellent error statistics (MAE and RMSE) when making out of sample predictions, and 540 

the ETCP90 model improves the prediction skills of the ETCP model for the extreme TCPs. The 541 

ETCP model can also predict extreme event TCP cases with good agreement to the observed 542 

spatial patterns.  543 

Our study shows a promising future for the application of this type of machine learning 544 

technique in operational TCP forecasting, which relies on the accuracy of ensemble TC track 545 

forecasting and other available information as inputs. The execution of our current RF model is 546 

very efficient so it can give skillful predictions of the TCP with a short preparation and waiting 547 

time, which provides valuable preparation and response time for incoming extreme TCP related 548 

disasters. Our current study looks at factors including locations, topography, storm tracks, storm 549 

translation pattern, storm duration, etc. We believe that there are many more dynamic factors 550 

contributing to the TCP variations at different scales, which may include the sea surface 551 

temperature, the El Niño–Southern Oscillation (ENSO), energy and moisture budget over the 552 
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land, vertical wind shear, extratropical transition (ET) of the TC, and TC’s interactions with 553 

other synoptic systems. It will be interesting to develop machine learning models at other 554 

temporal scales (annual, daily, or hourly) using other independent precipitation datasets. The 555 

current RF model still needs improvements in skills of predicting the most extreme TCP cases. 556 

 557 
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