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Abstract

Governments restricted mobility and effectively shuttered much of the global economy in response to the COVID-19 pandemic.

Six San Francisco Bay Area counties were the first region in the United States to issue a “shelter-in-place” order asking non-

essential workers to stay home. Here we use CO2 observations from 35 Berkeley Environment, Air-quality and CO2 Network

(BEACO2N) nodes and an atmospheric transport model to quantify changes in urban CO2 emissions due to the order. We

infer hourly emissions at 900-m spatial resolution for 6 weeks before and 6 weeks during the order. We observe a 28% decrease

in anthropogenic CO2 emissions during the order and show this decrease is primarily due to changes in traffic (-44%) with

pronounced changes to daily and weekly cycles; non-traffic emissions show small changes (-8%). These findings provide a

glimpse into a future with reduced CO2 emissions through electrification of vehicles. (submitted to GRL: 2020-07-24 16:49:19)
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Abstract16

Governments restricted mobility and effectively shuttered much of the global economy17

in response to the COVID-19 pandemic. Six San Francisco Bay Area counties were the18

first region in the United States to issue a “shelter-in-place” order asking non-essential19

workers to stay home. Here we use CO2 observations from 35 Berkeley Environment, Air-20

quality and CO2 Network (BEACO2N) nodes and an atmospheric transport model to21

quantify changes in urban CO2 emissions due to the order. We infer hourly emissions22

at 900-m spatial resolution for 6 weeks before and 6 weeks during the order. We observe23

a 28% decrease in anthropogenic CO2 emissions during the order and show this decrease24

is primarily due to changes in traffic (-44%) with pronounced changes to daily and weekly25

cycles; non-traffic emissions show small changes (-8%). These findings provide a glimpse26

into a future with reduced CO2 emissions through electrification of vehicles.27

Plain Language Summary28

This work uses atmospheric observations to quantify the changes in urban CO2 emis-29

sions from different sectors in response to COVID-19 mobility regulations.30

1 Introduction31

Carbon dioxide (CO2) is an atmospheric trace gas responsible for most of the growth32

in anthropogenic radiative forcing (IPCC, 2013). Mitigating long-term climate change33

necessitates drastic reductions to our CO2 emissions. Specifically, limiting global mean34

warming to 1.5◦C requires reaching net-zero anthropogenic CO2 emissions by 2050 (IPCC,35

2018). Over 70% of these anthropogenic CO2 emissions in the United States are attributable36

to urban areas (EIA, 2015; Hutyra et al., 2014); as such, it is important to be able to37

accurately quantify the emissions from these regions to support regulatory policies aimed38

at CO2 reduction and provide citizens with metrics indicating their effectiveness.39

The abrupt shuttering of the global economy in response to the COVID-19 global40

pandemic presents an opportunity to evaluate methods for quantifying urban CO2 emis-41

sions, to assess our ability to attribute emissions to specific source sectors, and to de-42

scribe the changes in emissions from different sectors. Understanding the changes that43

occurred during the COVID-19 period will allow us to identify: 1) the magnitude and44

subset of CO2 emissions that respond to changes in our travel to/from workplaces on45

short time scales and 2) the sectors whose emissions persist irrespective of changes in46

urban travel patterns. Recent research used changes in activity data to predict the im-47

pact of COVID-19 on global CO2 emissions and inferred a -17% (-11% to -25%) change48

in global daily CO2 emissions (Le Quéré et al., 2020). This prediction has yet to be con-49

firmed with measurements of atmospheric CO2.50

The focus of this study is the San Francisco Bay Area in Northern California as51

it was the first region in the United States to enact regulations on mobility through a52

“shelter-in-place” (SIP) order on March 16, 2020 (Contra Costa County Health Officer,53

2020). We use a dense network of CO2 observations across the north eastern region of54

the San Francisco Bay Area to quantify the impacts of the SIP order on urban CO2 emis-55

sions. Figure 1A shows the spatial coverage of our ground-based network of in situ sen-56

sors: the Berkeley Environmental Air-quality & CO2 Network (BEACO2N; Shusterman57

et al., 2016; Turner et al., 2016; Kim et al., 2018; Shusterman et al., 2018). We exam-58

ine data from the study period between February 2, 2020 and May 2, 2020, during which59

35 sensors were operational.60
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Figure 1. Observational network in the San Francisco Bay Area. Panel A shows the

location of instruments in the Berkeley Environmental Air-quality & CO2 Network (BEACO2N;

yellow stars). Panel B shows the cumulative influence to the network derived from STILT foot-

prints for observations in March 2020. White contour in both panels indicates the region that

contains the largest 40% of the total network influence (referred to as the “BEACO2N Domain”).

2 Atmospheric Inversion Framework61

Figure 2 shows a comparison of the network-wide CO2 concentrations averaged for62

each day-of-week for six weeks before and during the SIP order. We observe a 5-50 ppm63

decrease in mid-week CO2 concentrations with the most pronounced changes on Mon-64

day through Thursday during the morning rush-hour (∼07:00 local time). Weekend con-65

centrations show small differences in the median between the two time periods, although66

the variability is somewhat larger before the SIP. These observations suggest: 1) large67

reductions in CO2 emissions occurred due to the SIP order and 2) marked changes to68

both the daily and weekly cycle of emissions due to shifts in human activity. Quantify-69

ing and attributing changes in CO2 concentrations to emissions requires accounting for70

the coupling of meteorology and emissions.71

We use the Stochastic Time-Inverted Lagrangian Transport model (STILT; Lin et72

al., 2003; Fasoli et al., 2018) with meteorology from the NOAA High Resolution Rapid73

Refresh (HRRR; Kenyon et al., 2016) to both estimate the sensitivity of each measure-74

ment to upwind emission sources and estimate the concentration upwind of our domain.75

Each measurement (yi) has a unique surface sensitivity (hi) and background concentra-76

tion (bi). The measurements are related to the surface CO2 emissions (x) as: yi = hix+77

bi and we use Bayesian inference to obtain hourly CO2 emissions at 900-m spatial res-78

olution from the atmospheric measurements. Prior fluxes are adapted from previous work (Turner79

et al., 2016; McDonald et al., 2014) but now use a biosphere derived from measurements80

of solar-induced chlorophyll fluorescence (SIF; Turner et al., 2020). Additionally, we man-81

ually inspected the 20 largest point sources to ensure they were spatially allocated to plau-82

sible locations. Errors are assumed to be Gaussian and include off-diagonal terms in both83

error covariance matrices. Following Rodgers (1990), we solve for the hourly posterior84

fluxes at 900-m spatial resolution as:85

x̂ = xa + (HB)
T (

HBHT + R
)−1

(y −Hxa) (1)

–3–
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Figure 2. Weekly CO2 concentrations before and during shelter-in-place order.

Solid lines show the median across the BEACO2N network and the shaded region indicates the

16th to 84th percentile. Purple shows 6 weeks of data before shelter-in-place (February 2, 2020

through March 14, 2020) and green is 6 weeks during shelter-in-place (March 22, 2020 through

May 2, 2020). Blue/yellow background shading is based on cosine of the solar zenith angle with

white indicating dawn and dusk.

where x̂ (m× 1) is the posterior fluxes, xa (m× 1) is the prior emissions, y (n× 1) is86

the BEACO2N observations, H (n×m) is the matrix of footprints from HRRR-STILT,87

R (n×n) is the model-data mismatch error covariance matrix, and B (m×m) is the88

prior error covariance matrix (see Supplemental Section S4 for additional details).89

Posterior fluxes will reflect the prior fluxes in regions with low sensitivity from the90

measurements. This can be clearly seen by looking at the gain matrix G = (HB)
T (

HBHT + R
)−1

91

and Eq. 1. We can see that x̂ → xa in Eq. 1 as G → 0, indicating that our posterior92

solution will not deviate from the prior in regions of low sensitivity. As such, we focus93

our study on regions with high sensitivity because those are the regions that our obser-94

vations can robustly constrain. Figure 1B shows the region of influence for the BEACO2N95

network. We find the network to be most sensitive to the eastern portion of the San Fran-96

cisco Bay Area with upwind influence extending east across the bay to San Francisco.97

The white contour in Figure 1B encapsulates the top 40% of the total of the network sen-98

sitivity, hereafter referred to as the “BEACO2N Domain”, where we expect strong con-99

straints from the measurements.100

3 High Resolution Posterior Fluxes101

The resulting posterior fluxes inferred using BEACO2N observations are shown in102

Figure 3. Figs. 3A and 3B show the spatial patterns before and during the shelter-in-103

place order, respectively, while Fig. 3C shows the difference. Changes on roadways are104

evident in the pattern of differences. Changes to other sectors are more subtle. We have105

high confidence in the fluxes within the BEACO2N Domain because this is the region106

the BEACO2N network is strongly sensitive to, fluxes outside of this region will revert107

to the prior emissions. Two spatial features that immediately stand out in Fig. 3C are:108

a 0.4 tC km−2 hr−1 decrease in emissions over urban areas within the BEACO2N Do-109

main and a modest decrease (0.15 tC km−2 hr−1) across most of the San Francisco Bay110

Area. We are able to attribute these observed changes to particular sectors because of111

the: 1) high spatial resolution obtained here, 2) satellite observations to constrain the112

biosphere, and 3) detailed prior information available in the region. We find that the mod-113

est regional decrease is due to the biosphere and the large changes in urban areas are114

predominantly due to decreases in traffic.115

–4–
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Figure 3. Spatial patterns of CO2 fluxes in the San Francisco Bay Area. Panel

A shows the average CO2 fluxes for 6-weeks before shelter-in-place (February 2, 2020 through

March 14, 2020). Panel B shows the average over 6-weeks during shelter-in-place (March 22,

2020 through May 2, 2020). Panel C is the difference. Black contour in all panels is the 60th per-

centile of total network influence (BEACO2N Domain). Cross hatching indicates regions with low

sensitivity to the BEACO2N nodes.

Estimating CO2 fluxes from observations during spring is complicated by the on-116

set of photosynthesis which results in a decrease in atmospheric concentrations. In North-117

ern California, this begins with the grasslands and chaparral in land surrounding the ur-118

ban core. As mentioned above, we use high-resolution satellite observations of SIF to con-119

strain the biospheric activity during this time of year (see Turner et al., 2020), which have120

been shown to correlate strongly with photosynthetic activity (e.g., Frankenberg et al.,121

2011; Yang et al., 2015, and others). These space-borne SIF measurements indicate a122

252% (26 tC/hr) increase in daytime CO2 uptake from the biosphere across the BEACO2N123

Domain when comparing before and during the SIP order. This increase in biospheric124

activity inferred from space-borne SIF measurements drives the regional decrease in CO2125

fluxes shown in Figure 3C.126

The large changes within the BEACO2N Domain coincide with major freeways in127

the San Francisco Bay Area. In particular, the largest decreases are observed over In-128

terstate 880 (I-880) that runs north-south from San Jose to Oakland. Our observational129

network is only sensitive to the northern half of I-880, but the entirety of that section130

shows decreases in CO2 fluxes in excess of 0.4 tC km−2 hr−1. I-880 is a crucial freeway131

for workers commuting to San Francisco. Other freeways that serve commuters also show132

large decreases in CO2 fluxes (e.g., Interstates 80 and 580).133

We leverage the high spatial resolution obtained here to partition our posterior CO2134

fluxes to specific sectors because sources spatially separate as the resolution increases.135

For example, McDonald et al. (2014) demonstrated that 1-kilometer spatial resolution136

was necessary to distinguish freeways from arterial roads. Here, we classify grid cells that137

have the majority of prior emissions coming from a single sector (e.g., we classify a grid138

cell as “traffic” if more than 50% of the prior emissions come from the traffic sector). See139

Supplemental Section S5 for more details.140

Figure 4 attributes the posterior CO2 emissions within the BEACO2N Domain to141

three sectors, 1) vehicle traffic, 2) industrial point sources, home heating, and other non-142

vehicle related anthropogenic emissions, and 3) biogenic. On weekdays before the SIP143

order, vehicles are the largest source of CO2 during daytime, while on pre-SIP weekends144

“other anthropogenic” are the largest daytime source. After the SIP order, “other an-145

thropogenic” is always the largest source. We observe the highest CO2 emissions dur-146

ing the morning rush hour in the middle of the week. This peak is only present during147

the weekdays. Daily average emissions increase from Sunday to their maximum on Wednes-148

–5–
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day and then decrease from Wednesday to Saturday. In contrast, daily average emissions149

during SIP have more subtle differences between weekdays and weekends, as suggested150

by the day of week variation in the concentrations of CO2 shown in Figure 2. Weekday151

emissions start earlier than on weekends before and after the SIP order. After the SIP,152

rush hour emissions are lower but they still extend emissions earlier and later than seen153

on weekends, resulting in a flatter weekday daytime emissions profile than on weekends.154

Emissions from vehicles at night pre-SIP averaged ∼150 tC/hr and during SIP the night-155

time emissions averaged ∼60 tC/hr. This represents a 61% decrease in nighttime emis-156

sions and a 39% decrease during daytime (245 to 157 tC/hr).157

Figure 4. Weekly cycle of CO2 fluxes before and during shelter-in-place order.

Solid lines are the weekly mean CO2 fluxes over the BEACO2N Domain (40th percentile shown in

Fig. 1) and shading is 1-σ. Black are the total fluxes. Orange are the traffic emissions. Purple are

other anthropogenic emissions: industrial point sources, residential heating, and other non-vehicle

anthropogenic sources. Green are the biosphere fluxes (Net Ecosystem Exchange; NEE). Panel A

shows emissions before shelter-in-place (February 2, 2020 through March 14, 2020) and panel B

shows emissions during shelter-in-place (March 22, 2020 through May 2, 2020).

We find a -44% change (-91 tC/hr) in the weekly average CO2 emissions from grid158

cells that are classified as freeway whereas emissions from non-traffic anthropogenic sources159

(“Other Anthro.” in Figure 4) only decreased by 8% (-13 tC/hr). Much of this decrease160

in non-traffic anthropogenic sources occurs at night. Independent data from the Cali-161

fornia Department of Transportation also indicates a 41% and 34% decrease in vehicle162

miles traveled by cars and trucks, respectively, for road segments in the BEACO2N Do-163

main (Caltrans, 2020). The posterior emissions indicate a small diurnal cycle in this sec-164

–6–
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tor that is largely absent before the SIP order and is not present in the prior emissions.165

Such sectoral changes are possible to observe here due to the densely spaced nodes in166

the BEACO2N network, allowing us to obtain sub-kilometer spatial resolution and re-167

solve different sectors.168

4 Conclusions169

This unnatural experiment conducted in response to COVID-19 has demonstrated170

the subset of CO2 emissions that are elastic and those that are more entrenched. Emis-171

sions from traffic are highly elastic and could be rapidly mitigated in response to either172

technological advances or regulations. In contrast, the non-traffic emissions (e.g., indus-173

trial sources and residential heating) showed minimal changes in response to the shelter-174

in-place order. This implies that those sources are more entrenched and will require longer-175

time scales to mitigate if we hope to limit future warming. These findings provide a glimpse176

into a future where CO2 emissions from vehicle traffic are reduced through the electri-177

fication of the vehicle fleet, which would also have air quality co-benefits; observing these178

CO2 emission changes from such a transition will require sustained measurements as the179

changes will be more subtle than the abrupt 45% changes seen here.180

Acknowledgments181

We thank B. Fasoli for recent developments to the STILT model and sharing pre-processing182

code, P. Vannucci and A. Lall for feedback, and former members of the BEACO2N project183

for establishing the network: A. A. Shusterman, V. Teige, and K. Lieschke. We thank184

the participants of the Keck Institute for Space Studies workshop on COVID-19 and Earth185

System Science for feedback. We are grateful to the team that has realized the TROPOMI186

instrument, consisting of the partnership between Airbus Defence and Space, KNMI, SRON,187

and TNO, commissioned by NSO and ESA. Funding: AJT was supported as a Miller188

Fellow with the Miller Institute for Basic Research in Science at UC Berkeley. This re-189

search was funded by grants from the Koret Foundation and University of California,190

Berkeley. This research used the Savio computational cluster resource provided by the191

Berkeley Research Computing program at the University of California, Berkeley (sup-192

ported by the UC Berkeley Chancellor, Vice Chancellor for Research, and Chief Infor-193

mation Officer). Author contributions: AJT and RCC wrote the text with feedback194

from all authors. JK, HF, CN, KW, KC, and PJW collected CO2 data. PK and CF per-195

formed the TROPOMI SIF retrieval. AJT conducted the numerical modeling, analysis,196

downscaled SIF data, and drafted figures. Competing interests: The authors declare197

no competing interests. Data and materials availability: CO2 is available at http://beacon.berkeley.edu/.198

Code has been deposited in GitHub, https://www.github.com/alexjturner/BEACON XXXX.199

References200

Caltrans. (2020). Performance Measurement System Data Source. California Depart-201

ment of Transportation. Retrieved from http://pems.dot.ca.gov202

Contra Costa County Health Officer. (2020). Contra Costa County Shelter-in-203

Place Order. Contra Costa County. Retrieved from https://cchealth.org/204

coronavirus/pdf/HO-COVID19-SIP-0316-2020.pdf205

EIA. (2015). Emissions of Greenhouse Gases in the U.S. (Tech. Rep.). U.S. Energy206

Information Administration.207

Fasoli, B., Lin, J. C., Bowling, D. R., Mitchell, L., & Mendoza, D. (2018). Sim-208

ulating atmospheric tracer concentrations for spatially distributed receptors:209

updates to the Stochastic Time-Inverted Lagrangian Transport model’s R210

interface (STILT-R version 2). Geoscientific Model Development , 11 (7), 2813-211

2824. doi: 10.5194/gmd-11-2813-2018212

Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi, S. S., Lee, J.-E.,213

–7–



manuscript submitted to Geophysical Research Letters

. . . Yokota, T. (2011). New global observations of the terrestrial carbon cycle214

from GOSAT: Patterns of plant fluorescence with gross primary productivity.215

Geophys Res Lett , 38 (17). doi: 10.1029/2011gl048738216

Hutyra, L. R., Duren, R., Gurney, K. R., Grimm, N., Kort, E. A., Larson, E., &217

Shrestha, G. (2014). Urbanization and the carbon cycle: Current capabilities218

and research outlook from the natural sciences perspective. Earth’s Future,219

2 (10), 473-495. doi: 10.1002/2014ef000255220

IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution221

of Working Group I to the Fifth Assessment Report of the Intergovernmental222

Panel on Climate Change (Tech. Rep.). Author.223

IPCC. (2018). Global Warming of 1.5◦C. An IPCC Special Report on the im-224

pacts of global warming of 1.5◦C above pre-industrial levels and related global225

greenhouse gas emission pathways, in the context of strengthening the global226

response to the threat of climate change, sustainable development, and efforts227

to eradicate poverty (Tech. Rep.). Author.228

Kenyon, J. S., Moninger, W. R., Smith, T. L., Peckham, S. E., Lin, H., Grell, G. A.,229

. . . Manikin, G. S. (2016). A North American Hourly Assimilation and Model230

Forecast Cycle: The Rapid Refresh. Monthly Weather Review , 144 (4), 1669-231

1694. doi: 10.1175/mwr-d-15-0242.1232

Kim, J., Shusterman, A. A., Lieschke, K. J., Newman, C., & Cohen, R. C. (2018).233

The BErkeley Atmospheric CO2 Observation Network: field calibration and234

evaluation of low-cost air quality sensors. Atmospheric Measurement Tech-235

niques, 11 (4), 1937-1946. doi: 10.5194/amt-11-1937-2018236
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