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Jesús Carrera5

1Associated Unit: Hydrogeology Group (UPC-CSIC)
2Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya
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Abstract

We describe a formulation to solve reactive transport problems. The basic idea is to represent transport as mixing water instead

of individual solute concentrations, hence the Water Mixing Approach (WMA) name. This representation simplifies calculations

as it decouples transport from chemical calculations. Transport is first solved in terms of water mixing ratios (λ), which is

feasible for any transport solution method. Chemical calculations can then be written as reactive mixing calculations, which

may be non-linear but local, so that they do not need to iterate with transport. We have implemented the WMA to a mixed

Eulerian-Lagrangian method transport solver with streamline-oriented grid and constant travel time between sequential cells

(isochronal grid), which is free of numerical dispersion. We test the WMA on two reactive transport cases. First, an existing

analytical solution of binary system case is used compared to test accuracy of the using of mixing ratios. Second, a calcite

dissolution case compared the WMA to the Direct Substitution Approach to test both accuracy and computational cost (CPU).

Results confirm the high accuracy and efficiency (low CPU cost) due decoupling transport and chemical steps, especially for

a refined grid was. Transport through highly heterogeneous media remains a challenge, but the definite separation of mixing

processes in WMA opens a new path for reactive transport modelling.
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represent transport as mixing water instead of individual solute concentrations, hence 18 

the Water Mixing Approach (WMA) name. This representation simplifies calculations 19 

as it decouples transport from chemical calculations. Transport is first solved in terms of 20 

water mixing ratios (λ), which is feasible for any transport solution method. Chemical 21 

calculations can then be written as reactive mixing calculations, which may be non-22 

linear but local, so that they do not need to iterate with transport. We have implemented 23 

the WMA to a mixed Eulerian-Lagrangian method transport solver with streamline-24 

oriented grid and constant travel time between sequential cells (isochronal grid), which 25 

is free of numerical dispersion. We test the WMA on two reactive transport cases. First, 26 

an existing analytical solution of binary system case is used compared to test accuracy 27 

of the using of mixing ratios. Second, a calcite dissolution case compared the WMA to 28 

the Direct Substitution Approach to test both accuracy and computational cost (CPU). 29 

Results confirm the high accuracy and efficiency (low CPU cost) due decoupling 30 

transport and chemical steps, especially for a refined grid was. Transport through highly 31 

heterogeneous media remains a challenge, but the definite separation of mixing 32 

processes in WMA opens a new path for reactive transport modelling. 33 
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1. Introduction 36 

 37 

The study of geochemical processes in porous media is critical in many engineering 38 

fields (e.g., clean-up of contaminated aquifers, geological storage of CO2, nuclear waste 39 

storage, mining or other geoenvironmental problems). In all of these, solute transport 40 

mechanisms such as advection and dispersion need to be coupled to chemical reactions 41 

(e.g., complexation, adsorption, biodegradation or precipitation), leading to reactive 42 

transport (RT). Fully coupled RT is needed to assess the rate of chemical reactions, their 43 

location, or the conditions under which they occur (Rezaei et al., 2005). Although 44 

analytical solutions exist for particular conditions and problems (Donado et al. 2009; 45 

Haberman 1998; Cirpka and Valocchi 2007; De Simoni et al. 2005), numerical methods 46 

are needed in most cases.  47 

Numerical solution of reactive transport involves coupling transport PDEs for each 48 

species to algebraic equations representing chemical reactions (basically mass action 49 

law for fast reactions and kinetic laws for slow reactions), which leads to a nonlinear set 50 

of equations. Nonlinearity often causes RT to become complex and non-trivial and 51 

requires iterative solution methods. Both Picard (e.g., the Sequential Iteration Approach, 52 

SIA or Operator splitting approach), and Newton-Raphson methods (e.g., the Direct 53 

Substitution Approach, DSA or Global implicit) have been used to solve RT problems 54 

(reviews of RT are given by  Steefel and MacQuarrie, 1996, Steefel, 2019; or Liu et al., 55 

2019). It should be noted, that SIA and DSA become identical when explicit schemes 56 

are used. Examples of model codes that use SIA include those of  Nardi et al. (2014); 57 

Parkhurst and Appelo (1999); Parkhurst et al. (2010); Samper et al. (2003); Šimůnek et 58 

al. (2008); Xu et al. (2011); Yeh and Li (2004). Examples of model codes that use DSA 59 

include those of Mayer et al. (1999); Mills et al. (2005); Pruess (2005); Saaltink et al. 60 

(2004); Steefel and Yabusaki (1996). See Steefel et al. (2015) for a review. Figure 1a 61 

and 1b provide the calculation flow algorithm of SIA and DSA, respectively. 62 

Actually, the key to accurate reactive transport is proper simulation of (1) mixing, 63 

which control the rate of fast reactions (Rezaei et al. 2005; De Simoni et al. 2005; 64 

Sanchez-Vila et al. 2007), and (2) residence times, which control the rate of slow 65 

reactions. The latter is well reproduced by most simulation methods. Therefore, the 66 

challenge is to develop an approach that reproduces mixing properly. 67 



In this paper, we propose a reactive transport methodology to simplify and effectively 68 

decouple transport from chemical calculations by formulating reactive transport as a 69 

reactive mixing calculation of waters at every time step. Therefore, we term it Water 70 

Mixing Approach (WMA).  71 

 72 

 73 

2. Governing equations 74 

 75 

2.1. The ADE as a Water Mixing Equation 76 

 77 

The standard formulation for solute reactive transport relies on representing transport 78 

through the Advection Dispersion equation (ADE), which expresses the mass balance of 79 

each aqueous species (Saaltink et al. 1998; Yeh and Tripathi 1989) as 80 

𝜙
𝜕𝑐

𝜕𝑡
= ∇ ⋅ (𝐃∇𝑐) − 𝐪 · ∇𝑐 + 𝑏(𝑐𝑒 − 𝑐) + 𝑓𝑄 (1) 

where c [M/L
3
] is concentration, 𝜙 [-] is porosity, 𝑡 [T] is time, 𝐃[L

2
/T] is the 81 

hydrodynamic dispersion tensor, 𝐪[L
3
/L

2
/T] is the Darcy flux, 𝑏 represent sink/sources 82 

of water with concentration 𝑐𝑒(when 𝑏 > 0) or directly the resident concentration 𝑐 83 

(when 𝑏 < 0) and 𝑓𝑄 [M/L
3
/T] includes the contributions of chemical reactions to the 84 

mass balance of the species. This equation applies to aqueous species. The full reactive 85 

problem needs to be complemented with the mass balance of immobile species 86 

(minerals and sorbed species), the mass action law for equilibrium reactions, and 87 

appropriate expressions for kinetic reactions (See, e.g., Bethke 1996, Parkhurst and 88 

Appelo, 1999 or  Saaltink et al., 1998  for details).  89 

The ADE expresses that the rate at which concentration change (left hand side of Eq. 90 

(1)) results from dispersion, advection, chemical reactions, and sinks and sources. 91 

Insight on dispersion can be gained from perturbation approaches, typical of stochastic 92 

formulations. In these formulations, variables are split as the sum of an (ensemble) 93 

mean plus a zero-mean perturbation (i.e., 𝑐 = 𝑐̅ + 𝑐′, 𝐪 = 𝐪̅ + 𝐪′). Assuming that the 94 

ADE is valid at some microscopic scale, the “hydromechanical” dispersive flux 95 

becomes 𝐪′𝑐′̅̅ ̅̅ ̅, and the total (“hydrodynamic”) dispersive flux is 96 



𝐉𝐷 = 𝐪′𝑐′̅̅ ̅̅ ̅ − D𝑚𝛁𝑐 (2) 

where D𝑚 is the molecular diffusion coefficient. Eq. (2) expresses that the solute is 97 

spread by molecular diffusion and by velocity fluctuations with respect to the mean. 98 

Gelhar and Axness (1983) demonstrated that this dispersive flux can be approximated 99 

by a fickian term (𝐃𝛁𝑐) for large scale transport, but the choice of a fickian form for 100 

dispersion is much older (Bear, 1972). Dispersion represents that, when the plume 101 

advances, the high permeability portions of the porous medium (i.e., where 𝐪 is larger 102 

than the mean) will likely be invaded by the (upstream) water (i.e., where c is larger 103 

than the mean), whereas the low 𝐪 portions will remain with downstream water. That is, 104 

dispersion represents exchange between the upstream and downstream waters. Since the 105 

difference in upstream and downstream concentrations can be approximated by 𝛁𝑐 106 

times a characteristic exchange distance (𝐿𝐷), the fickian form emerges naturally. 107 

However, it might have been equally natural to keep the water exchange formulation, 108 

that is: 109 

𝐉𝐷 = 𝐪′𝑐′̅̅ ̅̅ ̅ − D𝑚𝛁𝑐 ≃ −𝐃𝛁𝑐 = 𝐪D𝑐̅̅ ̅̅ ̅ (3) 

where 𝐪D is the water flux that exchanges around the mean flux (similar to 𝐪′, but 110 

accounting also for molecular diffusion) and we have chosen to write 𝑐, instead of 𝑐′, in 111 

the last term to emphasize that it is the whole water parcel (not only the concentration 112 

perturbation) what is exchanging around the mean flux. The water exchange instead of 113 

net flux of solute is why no concentration gradient appears in Eq. (3) (see Figure 2). 114 

In the following we will adopt a WMA form of the ADE, by assuming (3) to be valid, 115 

so that (1) can be written as:  116 

𝜙
𝜕𝑐

𝜕𝑡
= −∇ ⋅ (𝐪D𝑐̅̅ ̅̅ ̅) − 𝐪 · 𝛁𝑐 + 𝑏(𝑐𝑒 − 𝑐) + 𝑓𝑄 (4) 

 117 

Several remarks can be made regarding this equation. First, when 𝐪D𝑐 represents 118 

Fickian dispersion term, then Eq. (4) is just another form of the ADE. But other forms 119 

of dispersion may be adopted and Eq. (4) would still be valid. We write it here in this 120 

way both for generality and, especially, to highlight that mixing can be viewed as 121 

occurring in response to water flux fluctuations. The latter is convenient for reactive 122 



transport, but they are identical provided that 𝐷𝐿 = q𝐷𝐿𝐿𝐷𝐿 and 𝐷𝑇 = q𝐷𝑇𝐿𝐷𝑇, where 123 

subscripts 𝐿 and 𝑇 stand for longitudinal and transverse, respectively (in fact, we will 124 

assume that 𝐷𝐿 and 𝐷𝑇 are known to define the water exchange rates). Therefore, Eq. 125 

(4) represents a possibly crude approximation of reality because, at the microscopic 126 

scale, 𝐪′𝑐′̅̅ ̅̅ ̅ spreads solutes but does not produce mixing, but equating mixing and 127 

spreading is a feature of the ADE. If all species have the same dispersion coefficient,  128 

Eq. (4) can be extended to transport of a concentrations vector 𝑐 = 〈𝑐1, 𝑐2, … , 𝑐𝑛𝑠〉 129 

where ns is the number of species. In this case, Eq. (4) could be seen as a water 130 

transport equation. However, it might be argued that mixing (if viewed as dissipation of 131 

concentration gradients) is species dependent in at least two cases: (1) when diffusion is 132 

acknowledged to be species dependent, or (2) when advection is slowed down by fast 133 

adsorption. In the first case, it is possible to correct Eq. (4) for the species dependent 134 

molecular diffusion (and we will show how to do it in Section 2.4). However, species 135 

dependent diffusivity implies also a species dependent dispersion (Chiogna et al. 2010), 136 

for which a proper formulation is lacking. While the issue may be important for neutral 137 

compounds, it is usually disregarded for ionic species on the basis that the resulting 138 

electrical imbalance tends to compensate the relative displacements of one species with 139 

respect to another (but this remains to be proven). Adsorption is strictly a chemical 140 

reaction and, as such, its role is included in the reaction rates term. The fact that the 141 

reaction rate is proportional to 𝜕𝑐 𝜕𝑡⁄  causes the velocity of concentration fronts to 142 

depend on the retardation coefficient, but this effect is properly represented in Eq. (4), 143 

although it may complicate numerical solution.  144 

 145 

 146 

2.2. Generic numerical formulation.  147 

 148 

The ADE and WMA can be solved with a broad range of numerical methods (Finite 149 

Element Method, Finite Volumes or Finite Differences among others), but all of them 150 

lead to equations of the form (e.g.,Huyakorn 1983): 151 

𝜙𝑖𝑉𝑖

𝑐𝑖
𝑘+1 − 𝑐𝑖

𝑘

∆𝑡
= ∑ 𝐹𝑖𝑗(𝑐𝑗 − 𝑐𝑖)

𝑁𝑐𝑜𝑛𝑛

𝑗≠𝑖

+ 𝑏𝑖𝑉𝑖(𝑐𝑒𝑖 − 𝑐𝑖) + 𝑉𝑖  𝑓𝑄𝑖            (5) 



where 𝑘 identifies the time step and typically, 𝑉𝑖 represents the volume associated to 152 

numerical target (i.e., nodes, cell or elements) 𝑖, ∆𝑡 is the time increment, Nconn is the 153 

number of all targets 𝑗 connected to 𝑖 (i.e.: 𝐹𝑖𝑗 ≠ 0). Note that the first term on the right 154 

hand side of Eq. (5) represents the contributions associated to water exchanges 155 

(including both advective and dispersive exchanges) from targets. The second term 156 

represents mass input from inflowing water. Note also that we have left purposefully 157 

undefined the time at which concentrations are evaluated in the right hand side of Eq. 158 

(5). In traditional numerical formulations, this time can be 𝑘, 𝑘 + 1, or any time in 159 

between, which leads to explicit, fully implicit or time centered schemes, respectively.  160 

Regardless of the time integration scheme, transport is linear, so that concentrations 161 

at time step 𝑘 + 1 can be written as a linear combination of those at time step 𝑘, plus the 162 

possibly non-linear reactions term, which reads:  163 

𝑐𝑖
𝑘+1 = ∑ λ𝑖𝑗𝑐𝑗

𝑘

𝑁𝑐𝑜𝑛𝑛+1

𝑗

+
𝑓𝑄𝑖

𝜙𝑖
∆𝑡 (6) 

where the sum now includes not only targets connected to 𝑖, but also target 𝑖 and 164 

external waters. Note that ∑ λ𝑖𝑗𝑗 = 1, to ensure that when all 𝑐𝑗
𝑘 are equal and in the 165 

absence of reactions, 𝑐𝑖
𝑘+1 is equal to the same value. Therefore, Eq. (6) can be viewed 166 

as a reactive mixing equation (e.g., Pelizard et al., 2017) and it is natural to call λ𝑖𝑗 a 167 

mixing ratio, although it represents not only mixing but also advection (it is simply the 168 

fraction of water in target i that started in target j at the beginning of the time step). 169 

 While this equation can represent any transport formulation, its terms are easiest to 170 

obtain for explicit integration schemes (otherwise inversion of the full system matrix or 171 

subblocks is required). In such case, Eq. (6) can be obtained by dividing Eq. (5)  by the 172 

volume of parcel i (water content associated to the numerical target i, i.e., 𝜙𝑖𝑉𝑖) and 173 

multplying by the time step ∆𝑡. Therefore,λ𝑖𝑗 = ∆𝑡 𝐹𝑖𝑗 𝜙𝑖𝑉𝑖⁄  for connected parcels or 174 

λ𝑖𝑗 = ∆𝑡 𝑏𝑖 𝜙𝑖⁄  for external waters. Note that mixing ratio is expressed as a fraction of 175 

the parcel volume i. The latter differs from the use of mixing ratios of end members 176 

proposed by (De Simoni et al. 2007; Cirpka and Valocchi 2007; Ginn et al. 2017).  177 

Some observations can now be made about Eq. (6). First, c can be extended to a 178 

vector of only concentrations of aqueous species with the result that it can be regarded 179 



as a definition of a water zone. Thus, Eq. (6) indicates that solute transport can be 180 

reproduced as a consequence of mixing between connected waters and/or external 181 

sources waters. In other words, Eq. (6) could be understood as a fluid mass balance that 182 

takes into account water diffusion (Harris and Woolf 1980; Spyrou 2009), which has no 183 

effect on water flux phenomenon but can reproduce the solute diffusion. This is 184 

important because it reduces the number of transport equations from ns (the number of 185 

aqueous species) to 1: 186 

𝑊𝑖
𝑘+1 = ∑ λ𝑖𝑗𝑊𝑗

𝑘

𝑁𝑐𝑜𝑛𝑛+1

𝑗

 (7) 

 where 𝑊𝑖 is the water parcel definition (or water solution) of cell i. Moreover, the 187 

equation is very simple. Now concentrations are considered just attributes of W (like 188 

Temperature, viscosity or density). This way, chemistry is separated from transport 189 

because transport is defined entirely by the water mixing ratio term λ. Thus, the WMA 190 

only iterates at chemical step (unlike DSA or SIA) because concentration becomes 191 

solely a chemical variable (see Figure 1). Chemical effects are produced by 𝑓𝑄𝑖 which is 192 

calculated as described in section 2.3. 193 

The use of water as a transport of solute has already been applied by (Konikow, 2010; 194 

Winston, Konikow and Hornberger, 2018), althought it was not formulated as an 195 

equation. 196 

 197 

 198 

2.3. Chemical Calculations 199 

 200 

The evaluation of the chemical sink/source term, 𝑓𝑄𝑖, or directly, the computation of 201 

concentrations can be viewed as the mass balance resulting from reactive mixing of 202 

waters connected to parcel 𝑖, with mixing ratios λ𝑖𝑗, given by 203 

[
𝐜𝑎𝑖

𝑘+1

𝐜𝑖𝑚𝑖
𝑘+1] =

[
 
 
 

∑ λ𝑖𝑗𝐜𝑎𝑗
𝑘

𝑁𝑐𝑜𝑛𝑛+1

𝑗

𝐜𝑖𝑚𝑖
𝑘 ]

 
 
 

+ 𝐒𝑒𝑖
𝑡 𝐫𝑒𝑖

∆𝑡

𝜙𝑖
+ 𝐒𝑘𝑖

𝑡 𝐫𝑘𝑖

∆𝑡

𝜙𝑖
+ [

𝐟𝑖
𝑐

𝟎
] (8) 



where the top row represents the mass balance of aqueous (mobile) species (vector of 204 

concentrations 𝐜𝑎𝑖 at parcel 𝑖) and the bottom row represents the mass balance of 205 

immobile species (vector of concentrations 𝐜𝑖𝑚𝑖), 𝐒𝑒𝑖 and 𝐒𝑘𝑖 are the stoichiometric 206 

matrices for equilibrium and kinetic reactions, which depends on 𝑖 because the number 207 

and types of reactions may change depending on the minerals and sorption surfaces 208 

available (Rubin, 1983), 𝐫𝑒𝑖 and 𝐫𝑘𝑖 are the vectors of equilibrium and kinetic reaction 209 

rates, respectively, and 𝐟𝑖
𝑐 is the vector of correction terms for species dependent 210 

dispersion. These equations need to be complemented with the mass action law for 211 

equilibrium reactions and with kinetic rate laws for kinetic reactions. 212 

Note that, except for the separation between mobile and immobile species and the 213 

inclusion of the correction term, 𝐟𝑖
𝑐, Eq. (8) is a conventional set of reactive mixing 214 

equations (similar to, e.g., Eq. (5.57) of Parkhurst and Appelo, 1999, or Eq. (8) of 215 

Pelizardi et al. 2017). Numerous methods are available to solve this type of equations 216 

(Fang et al. 2003; Friedly and Rubin 1992; Kräutle and Knabner 2005, 2007; Molins et 217 

al. 2004; Saaltink et al. 1998; De Simoni et al. 2005; Yeh and Tripathi 1989). Here, we 218 

multiply the concentration vector by a full-ranked components matrix U (Steefel, 219 

MacQuarrie 1996; Lichtner 1985) to eliminate the rates of equilibrium reactions and by 220 

a matrix E (Saaltink et al. 1998) to eliminate constant activity species. Saaltink et al. 221 

1998 discussed six of such formulations to reduce the number of chemical equations. 222 

Any of the six formulations would be valid for WMA. We use their fifth formulation. 223 

[
𝐄𝑖𝐔𝑎𝑖𝐜𝑎𝑖

𝑘+1

𝐄𝑖𝐔𝑠𝑖𝐜𝑠𝑖
𝑘+1] =

[
 
 
 

∑ λ𝑖𝑗𝐮𝑎𝑗
𝑘

𝑁𝑐𝑜𝑛𝑛+1

𝑗

𝐮𝑠𝑖
𝑘 ]

 
 
 

+ ∑𝐄𝑖𝐔𝑖𝐒𝒌𝒊𝒏
𝑡

𝑗

𝐫𝒌𝒊𝒏(𝐜𝑗
𝑘)

∆𝑡

𝜙𝑖
+ [

𝐄𝑖𝐔𝑎𝑖𝐟𝑖
𝑐

𝟎
] (9) 

where Ua and Us are submatrices of components matrix U referring to aqueous and 224 

sorbed species, respectively, and where ua and us are the aqueous and sorbed 225 

component concentrations (ua = Uaca, us = Uscs).  Note that if there are no kinetic and 226 

no adsorption reactions, rkin and us disappear and component ua may be found by 227 

solving the system as a conservative solute problem. Concentrations of the next time 228 

step (ca,i
k+1

 and cs,i
k+1

) can be solved from Eq.(9) and the mass action laws for the 229 

equilibrium reactions. Note that the right-hand side of Eq.(9) is calculated entirely from 230 

the concentrations of the previous time step. However, other time schemes can also be 231 

used. Calculation of ca,i
k+1

 and cs,i
k+1

 constitutes the only non-linear part of the proposed 232 



method, and is therefore the costliest part of the calculations with respect to CPU time. 233 

However, Eq.(9) can be solved for each parcel independently, thereby reducing the size 234 

of the non-linear system to the number of chemical components. The concentration of 235 

the minerals can also be calculated by formulating a mass balance similar to Eq.(9) but 236 

without eliminating the minerals. Solving Eq. (9) is a standard chemical speciation 237 

calculation and any speciation code may be used.  238 

 239 

 240 

2.4. Isochronal formulation for WMA. 241 

 242 

For the sake of generality, section 2.1 formulates ADE as water mixing terms (i.e. 243 

WMA) in Eulerian form. Then, a general discretization valid for any numerical method 244 

was presented in section 2.2 . However, standard ADE models tend to overpredict 245 

solute mixing (Ginn et al. 1995; Kitanidis 1988, 1994; MacQuarrie and Sudicky 1990; 246 

Molz and Widdowson 1988) in part because modellers adopting Eulerian transport 247 

formulations are forced to either use large dispersion coefficients (which affects mixing 248 

ratios in Eq. (6)) or to accept numerical dispersion. The latter can be explained because 249 

Eq. (6) includes advection, so that that the “mixing ratios” for parcels downstream of 𝑖 250 

will tend to be negative, which is appropriate to represent advection, but not for mixing 251 

calculations (pointing that mixing is a dissipative process, while advection is not). 252 

These problems can be overcome by adopting Eulerian-Lagrangian formulations (e.g., 253 

Bell and Binning, 2004 ; Cirpka et al., 1999b; Batlle et al., 2002; Ramasomanana et al., 254 

2012; Zhang et al., 2007), which allows modelling advection dominated problems. In 255 

these formulations, the time variation of concentration in a flowing parcel of water is 256 

written with the material derivative 𝐷𝑐 𝐷𝑡⁄ = 𝜕𝑐 𝜕𝑡⁄ + (𝐪 𝜙⁄ ) · 𝛁𝑐.  Using this 257 

definition in Eq. (4) leads to 258 

𝜙
𝐷𝑐

𝐷𝑡
= −∇ ⋅ (𝐪D𝑐̅̅ ̅̅ ̅) + 𝑟(𝑐𝑒 − 𝑐) + 𝑓𝑄 (10) 

Written this way, the equation expresses that flowing water concentration changes 259 

only due to mixing and reactions, thus highlighting that advection does not produce 260 

mixing and therefore does not produce change in the concentrations of flowing water. 261 

The material derivative can be approximated as 262 



𝐷𝑐

𝐷𝑡
=

𝑐𝑖
𝑘+1 − 𝑐𝑖−

𝑘

∆𝑡
 (11) 

where i- refers to the location in the previous time step of the center of the water 263 

parcel that ended in parcel i at time k+1. Note that Eqs. (5), (6) and (7) may still be 264 

valid, except that (1) now the sum is extended over the concentrations that were at 265 

locations i- at the end of the previous time step, and (2) only dispersive processes are 266 

included within Fij, which ensures that λ𝑖𝑗 are positive (a sufficient condition of 267 

stability for all conventional numerical methods).  268 

To facilitate numerical evaluation of the material derivative and water mixing fluxes, 269 

we adopt a streamline oriented grid (Cirpka et al 1999a; Frind 1982; Crane and Blunt 270 

1999; Thiele et al. 1997; Di Donato et al. 2003; Yabusaki et al. 1998; Herrera et al. 271 

2010). This choice reduces significantly numerical dispersion (Cirpka et al. 1999a) and 272 

facilitates the use of finite volumes methods. Still, some smoothing may remain because 273 

concentrations at locations i- need to be interpolated from the surrounding parcels.  274 

To eliminate interpolation errors, we define isochronal grids by ensuring that location 275 

i- must coincide with a cell center (see Figure 3). That is, a downstream position 𝑗 exists 276 

such that 277 

𝑥𝑗 = 𝑥𝑖−  =  𝑥𝑖 − 𝐯∆𝑡 (12) 

where 𝐯 is the velocity (𝐪 𝜙⁄ ) upstream of cell i.  278 

Eq. (12) implies that the initial mesh must be recalculated if either time step 279 

simulation or flow (velocity) change. Appendix A shows the building procedure of the 280 

proposed isochronal grid. This grid also facilitates the computation of the mixing ratios 281 

λ𝑖𝑗. Transport terms are calculated from concentrations of the previous time step in 282 

explicit schemes. Explicit schemes are fast, but they are subject to stability criteria that 283 

require dispersion coefficients to be small. Therefore, mixing ratios equal zero except 284 

for the following cases: 285 

λ𝑖𝑗 =
𝐷𝐿𝑤𝑖𝑗∆𝑡

𝜙𝑖𝑉𝑖𝐿𝑖𝑗
 if  𝑖 and 𝑗 are adjacent along a streamline (13a) 



𝜆𝑖𝑗 =
𝐷𝑇𝑤𝑖𝑗∆𝑡

𝜙𝑖𝑉𝑖𝐿𝑖𝑗
 𝑖𝑓  𝑖 𝑎𝑛𝑑 𝑗  be𝑙𝑜𝑛𝑔  to 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑡𝑟𝑎𝑚𝑙𝑖𝑛𝑒𝑠 (13b) 

𝜆𝑖𝑗 =
𝑟𝑖∆𝑡

𝜙𝑖
 𝑖𝑓   𝑗  represents an external inflow (13c) 

𝜆𝑖𝑖 = 1 − ∑ λ𝑖𝑗

𝑁𝑎𝑑𝑗

𝑗≠𝑖

 (13d) 

where 𝑤𝑖𝑗 is the width of the interface between cells 𝑖 and 𝑗, 𝐿𝑖𝑗 is the distance between 286 

cell centers in (13a) or the mean distance between streamlines in (13b), and 𝐷𝐿 and 𝐷𝑇 287 

are the longitudinal and transverse, respectively, dispersion coefficients. Note that, for 288 

𝜆𝑖𝑖 to be positive, Eq. (13d) requires ∑ λ𝑖𝑗𝑗≠𝑖 < 1, which is a stability condition for any 289 

explicit method. Otherwise, the parcel volume entering the cell would be larger than 290 

that in the cell. 291 

The obtained formulation can be viewed as a generalization of the mixing-cells 292 

approach of Campana (1975), which was extended to reactive transport by Appelo and 293 

Willemsen (1987), and is now widely used in 1-D as part of PHREEQC (Parkhurst and 294 

Appelo 1999). However, one can use it in 2D problems (see Eq. (13b)). 295 

It must be stressed that these mixing ratios are identical for all species provided that 296 

the dispersion coefficients are. We obtain the following expression 297 

𝑐𝑖
𝑘+1 = ∑ λ𝑖𝑗𝑐𝑗−

𝑘

𝑁𝑎𝑑𝑗+1

𝑗−

+
𝑓𝑄𝑖

𝜙𝑖
∆𝑡 (14) 

where Nadj is the number of all parcels 𝑗 adjacent to 𝑖. If dispersion coefficients are 298 

species dependent, the transport equation can be corrected as follows 299 

𝑐𝑖
𝑘+1 = ∑ λ𝑖𝑗𝑐𝑗−

𝑘

𝑁𝑎𝑑𝑗+1

𝑗−

+
𝑓𝑄𝑖

𝜙𝑖
∆𝑡 + 𝑓𝑖

𝑐 (15) 

Where 𝑓𝑖
𝑐 = ∑ λ𝑖𝑗

𝑐
𝑗− 𝑐𝑗−

𝑘  is a species dependent correction, with λ𝑖𝑗
𝑐

 given by Eq. 300 

(13), except that 𝐷’s in (13a) and (13b) are substituted by (𝐷 − 𝐷𝑐), where 𝐷𝑐 is the 301 

dispersion coefficient of each species. As discussed in section 2.1, this correction should 302 

be small for ionic species.  303 



3. Applications 304 

 305 

We test here the accuracy and efficiency of the WMA by comparison to both 306 

analytical solutions (section 3.1) and computational results from the literature (section 307 

3.2). While the WMA could be implemented in any transport simulator, we test it on the 308 

formulation presented in section 2.4 in all cases. An explicit scheme is used. We 309 

employed the chemical library CHEPROO in both WMA and DSA models. CHEPROO 310 

is an object oriented code for geochemical calculations (Bea et al., 2009). Soler-Sagarra 311 

et al. (2016) also tested the WMA in multi-porosity cases and reaction localizations. 312 

 313 

 314 

3.1. Half injection domain 315 

 316 

This test aims at verifying that the WMA performs well in cases of transverse 317 

dispersion and equilibrium reactions, which are particularly relevant for the amount of 318 

mixing and reaction rate  (see e.g., Werth et al. 2006; De Simoni et al. 2005). We 319 

consider the steady-state analytical solution of De Simoni et al. (2007) for reactive 320 

transport, based on the analytical solution of Haberman (1998) for conservative 321 

transport. Flow occurs in a 2D homogeneous domain with velocity aligned along the x 322 

axis. Two end member waters enter the domain at the inflow boundary (𝑥 = 0), creating 323 

a transverse mixing zone. Longitudinal dispersion is neglected. We consider a binary 324 

chemical system consisting of two species, Ca
2+

 and SO4
2-

, in equilibrium with gypsum. 325 

The physical problem is defined in Table 1. The analytical solution for aqueous 326 

component concentration, considering the end members with u values of 1 and 0, is the 327 

follow 328 

𝑢𝑎(𝑥, 𝑦) =
1

2
(1 − 𝑒𝑟𝑓 [

𝜂

2
]) (16) 



Where 𝜂 = √𝑃𝑒 𝑦 𝑥⁄  is a similarity variable, representing a normalized transverse 329 

coordinate with dependency of x and y space coordinates and Peclet number Pe=v·x/𝐷𝑇. 330 

v is the velocity. erf[·] is the error function. The analytical expression of reaction rate is 331 

giving as 332 

𝑟(𝑥, 𝑦) = 𝜙
𝑣

𝑥

𝜕2𝑐𝐶𝑎2+

𝜕𝑢2
(
𝑑𝑢

𝑑𝜂
)
2

 (17) 

Where 𝑑𝑢 𝑑𝜂⁄ = −1 (2√𝜋)⁄ 𝑒𝑥𝑝[−𝜂2 4⁄ ] and 𝜕2𝑐𝐶𝑎2+ 𝜕𝑢2⁄ =2K/(u2+4K)3/2. K is 333 

the equilibrium constant. Although the analytical solution is steady state, WMA is 334 

solved as a transient problem. 335 

Figure 4 shows the cross sections along the y axis of (a) reaction rates and (b) u 336 

component at three different x values. Analytical and numerical solutions appear to be 337 

very similar. Nevertheless, errors are slightly larger close to the injection boundary 338 

where concentration gradients are highest. This may be attributed to the poor 339 

reproduction of concentration gradient at this stage, which may violates the criterion of 340 

5 elements across a front suggested by Kinzelbach (1986). Close to the injection 341 

boundary, the size of the transverse front is too small with respect to element size. 342 

Because no concentration gradient is defined in mixing term of Eq. (4) neither in Eq. 343 

(6), the WMA formulation supplies a complementary explanation. The conservative 344 

form of Eq. (14) tells us that the error comes from either the mixing rationsλ𝑖𝑗or the 345 

previous step concentration distribution 𝑐𝑗−
𝑘 . It is easy to check that λ is constant at any 346 

time step because all the terms of Eq. (13b) are also constants. That is, only a small 347 

portion of solute near the interface does actually exchange. Therefore, approximating it 348 

by the mean parcel concentration is poor close to the injection boundary, when 349 

concentration varies sharply within the cell. In short, a proper discretization is needed 350 

for an accurate solution. The discretization is sufficient when concentrations are 351 

smooth. Despite the previous discussion, the results are very acceptable even near the 352 

injection boundary.  353 

 354 

  355 



 356 

3.2. The CAL case 357 

 358 

Accuracy and efficiency of WMA for reactive transport performance are tested in this 359 

section by comparison with the DSA method. DSA method has been preferred because 360 

it is more robust than SIA. We tests the chemical system of Saaltink et al. (2001) termed 361 

CAL, which consists of the injection of calcite subsaturated water in a domain with 362 

initial saturated water and the consequent dissolution of calcite. Both, equilibrium and 363 

kinetic cases are tested. Transport and chemical details are shown in Table 2.  364 

The transport part of the DSA method is performed by TRACONF code (Carrera et 365 

al. 1993). Both compared codes use the same chemical library, CHEPROO (Bea et al., 366 

2009). Therefore, the differences between the two methods are due to the treatment of 367 

transport. TRACONF transport formulation has two main differences from the 368 

formulation defined in section 2.4. First, time integration of TRACONF transport is 369 

calculated with implicit scheme which involves concentrations at the next time step. 370 

Although this implies the use of full system matrix, it is free of time instabilities, unlike 371 

faster explicit schemes. Second, an Eulerian formulation (Eq. (1)) is applied instead of 372 

mixed Eulerian-Lagrangian formulation (Eq. (10)). Eulerian solution approaches need 373 

to meet spatial stability criteria. To avoid complications with stability, the stability 374 

criteria are met in all tested models.  375 

First, we compare the CPU time as a function of the number of numerical targets. We 376 

perform a 2D simulation (see Table 2). A calculation proposed by Saaltink et al. (2001) 377 

is used to predict the CPU time for more refined grids. We assumed that the CPU time 378 

consumed by DSA is the sum of that of the chemical calculations, the LU 379 

decomposition and the construction of the Jacobian matrix expressed by subscripts 380 

chem, dec and jac, respectively. Then the CPU
DSA

 time can be calculated as  381 

𝐶𝑃𝑈𝐷𝑆𝐴 = 𝐶𝑃𝑈𝑐ℎ𝑒𝑚
𝐷𝑆𝐴 + 𝐶𝑃𝑈𝑑𝑒𝑐

𝐷𝑆𝐴 + 𝐶𝑃𝑈𝑗𝑎𝑐
𝐷𝑆𝐴 ( 18) 

𝐶𝑃𝑈𝑐ℎ𝑒𝑚
𝐷𝑆𝐴 = 𝑘𝑐ℎ𝑒𝑚

𝐷𝑆𝐴 𝑁𝑛𝑜𝑑 ( 19) 



𝐶𝑃𝑈𝑗𝑎𝑐
𝐷𝑆𝐴 = 𝑘𝑗𝑎𝑐

𝐷𝑆𝐴𝑁𝑛𝑜𝑑𝑁𝑐𝑜𝑛 
( 20) 

𝐶𝑃𝑈𝑑𝑒𝑐
𝐷𝑆𝐴 = 𝑘𝑑𝑒𝑐

𝐷𝑆𝐴(𝑁𝑏𝑎𝑛)2𝑁𝑛𝑜𝑑 = 𝑘𝑑𝑒𝑐
𝐷𝑆𝐴𝑚(𝑁𝑛𝑜𝑑)2 ( 21) 

Where Nnod is the number of nodes and Nban is the semi-bandwith. As we work with 382 

rectangular grids (because the medium is homogeneous), Nban is proportional to the 383 

square root of Nnod times m (m being the ratio between the number of rows and 384 

columns). k are constants that only depend on the test case. Ncon is the maximum 385 

number of nodes connected to a particular node including itself (which equals 7 for 386 

regular grids of triangular finite elements). 387 

Since we use an explicit scheme for the WMA transport part, the module does not 388 

need to solve a system of equations. Almost all CPU time is consumed by the 389 

calculation of the chemistry. However, unlike DSA, the spatial discretization affects the 390 

time discretization because of the isochronal mesh (see Figure 3). To calculate the CPU 391 

time we assumed the number of chemical systems to be solved to be proportional to the 392 

number of nodes and the number of time steps. Therefore, the consumption of CPU 393 

time can be expressed as: 394 

𝐶𝑃𝑈𝑊𝑀𝐴 = 𝐶𝑃𝑈𝑐ℎ𝑒𝑚
𝑊𝑀𝐴 = 𝑘𝑐ℎ𝑒𝑚

𝑊𝑀𝐴𝑁𝑛𝑜𝑑𝑁∆𝑡 ( 22) 

Where NΔt is the number of time steps, which is proportional to the number of 395 

columns (Figure 3). This, together with the definition of m, leads to: 396 

𝐶𝑃𝑈𝑊𝑀𝐴 = 𝑘𝑐ℎ𝑒𝑚
𝑊𝑀𝐴(𝑁𝑛𝑜𝑑)1.5 ( 23) 

The results are plotted in Figure 5. As can be observed, the measured CPU time is 397 

consistent with the calculated CPU time for DSA cases. Kinetic case is slightly costlier 398 

though equal convergence criteria are employed. Regarding WMA, calculations using 399 

equation ( 23) do not fit well the measured CPU time. The measurements fit better an 400 

exponent of 1.2 instead of 1.5. This can be attributed to the fact that less iterations are 401 

employed to solve chemical systems with finer grids. In both cases the differences 402 

between WMA and DSA become important when large numbers of nodes are 403 

employed. It may therefore be concluded that the WMA outperforms the DSA in both 404 

equilibrium and kinetic problems.  405 



Second, the absence of numerical dispersion as evidenced in section 2.4 should be 406 

confirmed. To this end, 1D simulations were performed (see Table 2) using the previous 407 

WMA and DSA codes. Three different time steps were used for both methods (3 408 

months, 1.5 month and 22 days). Because of the mesh definition (see Figure 3), the 409 

WMA needs 20, 40 and 80 parcels, respectively whereas the DSA mesh is composed by 410 

101 nodes in all models. Results are plotted in Figure 6. Note that results of the DSA 411 

using an implicit scheme depend on the time step indicating numerical dispersion. On 412 

the other hand, the WMA isochronal method presents no numerical dispersion even 413 

when the isochronal grid employs a smaller number of nodes.  414 

DSA is also performed and plotted with Crank-Nicholson time integration in Figure 415 

6a. Crank-Nicholson provides a second order error, unlike the first order error of 416 

explicit and implicit scheme. Theoretically, this should be without numerical dispersion. 417 

Indeed, it gives almost identical results to the WMA. 418 

 419 

 420 

4. Conclusions 421 

 422 

We have presented a new reactive transport formulation and modeling method based 423 

on water mixing which we term the Water Mixing Approach (WMA). The basic idea 424 

behind the approach is to restrict the coupling between chemistry and transport only to 425 

the terms that matter: residence time (relevant for kinetic reactions) and mixing 426 

(relevant for fast reactions). These are strictly transport concepts. The resulting reactive 427 

transport problem is restricted to the computation of a sequence of reactive mixing 428 

calculations, which is simpler and more efficient than traditional reactive transport 429 

methods. Effectively, the method implies modelling the transport of water volumes 430 

instead of components or species. This decouples transport from chemistry. 431 

Two cases have tested the satisfactory accuracy and computational rfficiency of 432 

WMA. The approach can be employed in any existing transport approach, although the 433 

proper definition and computation of mixing ratios is an important issue. This is why 434 

the WMA method has been tested using a streamline oriented isochronal grid, which 435 

allows for numerical simulations free of numerical dispersion even for coarse grids. In 436 

particular, mixing ratios definition should be especially relevant for transport 437 



formulations in heterogeneous media. In this article we have discussed only cases with 438 

uniform flow. Nevertheless, the results suggest that the WMA will also perform well for 439 

2D or 3D heterogeneous cases with non-uniform flow. This is shown by the fact that the 440 

WMA becomes increasingly more competitive to the Eulerian methods of DSA for 441 

grids of higher dimension and larger number of targets. 442 

 443 

 444 

Appendix A: Example of streamline oriented isochronal 445 

mesh building procedure 446 

 447 

The procedure to build the isochronal grid consists of the following steps (Figure A 1: ): 448 

1. Solve the flow equation using any available method to compute the flux field. Here 449 

we used the finite elements code TRACONF (Carrera et al. 1993).  450 

2. Compute 2N+1 streamlines, N being the number of flowtubes. Again, any method 451 

may be appropriate. Here we used the method of Cordes and Kinzelbach (1992). The 452 

one of Pollock (1988) would have been appropriate for finite differences. 453 

3. Define “isochronal” points (Figure A1b), starting at the inflow points of even 454 

streamlines and separated a distance ∆𝑠 = ∆𝑡 · 𝑞 𝜙⁄  along stream lines. 455 

4. Finally, build the cells by any of two options: (a) by joining points with the same 456 

travel time from the inflow, which is best for regular geometry boundaries; or (b) by 457 

joining points with the same head (Figure A 1: c and Figure A1d).  458 

 459 



Note that, using the isochronal grid, advection is perfectly reproduced by the water 460 

parcels moving from cell to cell during each time step. 461 

 462 
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Figures and Tables captions 659 

 660 

 661 
Figure 1: Algorithm flow to solve reactive transport time step simulation using: a) SIA, 662 

b) DSA and c) applied WMA formulation to reactive transport 663 

 664 

 665 



Figure 2: Graphical scheme of dispersion process in ADE and WMA formulations. LD 666 

[M] is the length scale of the dispersion process 667 

 668 

 669 

 670 

Figure 3: Advection within a dual stream-tube in the proposed isochronal grid 671 

 672 



 673 

Figure 4: Profiles at different x positions of reaction rate and component concentration 674 

of numerical and analytical solutions for the half injection domain. 675 



 676 

Figure 5: Measured and calculated CPU times as a function of the total number of nodes 677 

for both WMA and DSA for (a) equilibrium CAL case and (b) kinetic CAL case. 678 

 679 



 680 

Figure 6: Spatial distribution of pH at 1 pore volume (5 years) for WMA using 681 

isochronal mesh, DSA in implicit scheme and DSA in Crank-Nicolson scheme using 3 682 

different time steps for (a) equilibrium CAL case and (b) kinetic CAL case. 683 

 684 



 685 

 686 

Figure A 1: Construction methodology of an isochronal grid 687 

Table 1: Solute transport parameters of half injection domain 688 

Transport Chemistry 

 q (m/d) 0.142857  K = 10
-2

 (Temperature 25 ⁰C) 

 Δx (m) 0.25 
Injection water 1 

(kg/m
3
) 

Injection water 2 
(kg/m

3
) 

 Δy (m) 0.25 𝑐𝐶𝑎2+  9.902·10
-3 𝑐𝐶𝑎2+  0.1 

  𝜙 0.3 𝑐𝑆𝑂4
2−  1.009902 𝑐𝑆𝑂4

2−  0.1 

 Δt (d) 0.525 ua 1 ua 0 

 αt (m) 0.02 

 Pe   12.5 

 689 

 690 



Table 2: Physical and chemical parameters of the CAL case in both equilibrium and 691 

kinetic reactions. Equilibrium constant is taken from the program EQ3NR (Wolery, 692 

1992) 693 

CAL case 

Transport Chemistry 

q (m/yr) 2 Mineral Calcite 
Rate Constant 

(mol·m
-2

s
-1

) 
4.64·10

-7 

𝜙 0.1 
 Initial conc. of primary 

species (log mol l-1) 
 Initial conc. of primary 

species (log mol l-1)  

1D problem 𝐻+  -7.978 𝐻+  -5.496 

L (m) 100 𝐻𝐶𝑂3
− -3.018 𝐻𝐶𝑂3

− -5.421 

α (m) 0.6 𝐶𝑎2+ -3.019 𝐶𝑎2+ -4.398 

2D problem Kinetic case Initial reactive 
surface (m-1) 

6.8·10
-5

 

Lx (m) 280 
    Ly (m) 100 
    αx (m) 1.2 
    αy (m) 1.2 
     694 


