Soil Microbes Transform Inorganic Carbon into Organic Carbon by Dark Fixation Pathways in Desert Soil

Zhen Liu¹, Yuqing Zhang², Yanfei Sun², Wei Feng², Zongrui Lai², and Shugao Qin²

¹Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences ²Beijing Forestry University

November 22, 2022

Abstract

Soil inorganic carbon (SIC) represents the main soil carbon pool in drylands with a high geologic residence time for carbon sequestration. Recent studies have shown that SIC is not stable as previously supposed, and can be employed by certain microbes and transformed into organics in soils; however, this transformation remains largely unexplored. We performed *in situ* ¹³C tracing in desert bulk soil and employed metagenomics to predict the microbial metabolic processes associated with carbon transformation. The tracing data showed that the ¹³C signature profile in soil organic carbon (SOC) originated from SIC with a ¹³C-SOC content of 6.881 mg m⁻² during the feeding periods. Metagenomic analysis identified genes encoding enzymes related to microbial CO_2 and HCO_3^- fixation, accounting for 0.448% (based on Kyoto Encyclopedia of Genes and Genomes database) and 0.668% (based on Evolutionary genealogy of genes: Non-supervised Orthologous Groups database) of all ascertained genes. Our results confirmed that a considerable portion of the determined genes and taxa were responsible for heterotrophic fixation. The microbes involved in dark microbial fixation, particularly chemoautotrophic and heterotrophic pathways, were from a broad taxonomic range. Although the amount of SOC derived from the dark microbial fixation process was not assessed, the present study highlights a neglected carbon transformation process mediated by soil microbes in drylands and provides insights into carbon transformation of SIC to SOC in dryland soil.

Hosted file

agusupporting-information.docx available at https://authorea.com/users/538117/articles/ 599529-soil-microbes-transform-inorganic-carbon-into-organic-carbon-by-dark-fixationpathways-in-desert-soil

1	Soil Microbes Transform Inorganic Carbon into Organic Carbon by Dark
2	Fixation Pathways in Desert Soil
3	
4 5	Zhen Liu ^{1,2} , Yanfei Sun ¹ , Yuqing Zhang ^{1,3} , Wei Feng ^{1,3} , Zongrui Lai ^{1,3} , Shugao Qin ^{1,4}
6	
7 8	¹ Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, P. R. China
9 10 11	² Yellow River Delta Modern Agricultural Engineering Laboratory, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences
12 13 14	³ Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, P. R. China
15 16 17	⁴ Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, P. R. China
18 19 20	Corresponding author: Yuqing Zhang (<u>zhangyqbjfu@gmail.com</u>)
21	Key Points:
22	• Soil inorganic carbon may be employed by certain microbes and transformed
23	into organics; however, this remains largely unexplored.
24	• We performed <i>in situ</i> ¹³ C tracing in the desert soil and predict associated
25	metabolisms by metagenomics.
26	• The study highlights a neglected carbon transformation process from inorganic
27	to organic carbon mediated by soil microbes in drylands.

28 Abstract

29	Soil inorganic carbon (SIC) represents the main soil carbon pool in drylands with a
30	high geologic residence time for carbon sequestration. Recent studies have shown that
31	SIC is not stable as previously supposed, and can be employed by certain microbes
32	and transformed into organics in soils; however, this transformation remains largely
33	unexplored. We performed in situ ¹³ C tracing in desert bulk soil and employed
34	metagenomics to predict the microbial metabolic processes associated with carbon
35	transformation. The tracing data showed that the ¹³ C signature profile in soil organic
36	carbon (SOC) originated from SIC with a 13 C-SOC content of 6.881 mg m ⁻² during the
37	feeding periods. Metagenomic analysis identified genes encoding enzymes related to
38	microbial CO ₂ and HCO_3^- fixation, accounting for 0.448% (based on Kyoto
39	Encyclopedia of Genes and Genomes database) and 0.668% (based on Evolutionary
40	genealogy of genes: Non-supervised Orthologous Groups database) of all ascertained
41	genes. Our results confirmed that a considerable portion of the determined genes and
42	taxa were responsible for heterotrophic fixation. The microbes involved in dark
43	microbial fixation, particularly chemoautotrophic and heterotrophic pathways, were
44	from a broad taxonomic range. Although the amount of SOC derived from the dark
45	microbial fixation process was not assessed, the present study highlights a neglected
46	carbon transformation process mediated by soil microbes in drylands and provides
47	insights into carbon transformation of SIC to SOC in dryland soil.

48

49 **1. Introduction**

manuscript submitted to JGR: Biogeosciences

50	Drylands are ecosystems that cover more than 40% of the terrestrial surface
51	(Reynolds et al., 2007; Safriel & Adeel, 2005). These regions represent the major pool
52	of soil inorganic carbon (SIC) and account for 15.5% of the world's soil organic
53	carbon (SOC) storage (Lal, 2009), wherein the SIC pool is ten-fold higher than the
54	SOC storage (Emmerich, 2003; Shi et al., 2012; Zamanian et al., 2016). Given that the
55	carbon in SIC (85,000 years) has a longer mean residence time compared to SOC (35
56	years), vegetation (10 years), and atmosphere (5 years) (Monger et al., 2015), the
57	dynamics of SIC in drylands may be of particular importance in the carbon cycles of
58	terrestrial ecosystems, especially in the context of increased anthropogenic activity
59	and global climate change (Gao et al., 2018; Zamanian et al., 2018). In addition,
60	studies of soil organic matter in terms of formation, decomposition, transformation,
61	and stabilization in drylands are relevant because of the mounting interest in
62	investigating global carbon sequestration and soil nutrient condition in oligotrophic
63	environments (Alonso-Sáez et al., 2010; Bay et al., 2018; Liang et al., 2017).
64	Therefore, the dynamics and fate of the soil carbon pools in drylands are an essential
65	and important topic of research.
66	A growing body of research reveals that carbon transformation processes occur
67	between these two carbon pools (SOC and SIC), which is significant for
68	understanding the formation, turnover, and stability of soil carbon pools in drylands
69	(Liang et al., 2017; Liu et al., 2018 and 2020). Therein, soil microbes serve as a
70	"microbial carbon pump" to regulate soil carbon dynamics via various metabolic
71	pathways (Liang et al., 2017). In certain areas of drylands, SIC accumulation is

72	closely related to SOC accumulation following vegetation rehabilitation (Wang et al.,
73	2015; Gao et al., 2018), which involves a carbon transformation process from SOC to
74	SIC ("SOC \rightarrow SIC"). In the process of "SOC \rightarrow SIC," soil microbes are assumed to link
75	the two carbon pools through the decomposition of organic matter and forming
76	carbonates via certain metabolic pathways (Liu et al., 2018, 2020). As SIC mainly
77	comprises of carbonates, followed by HCO_3^- , CO_3^{2-} , and CO_2 in drylands, recent
78	studies associated with microbial carbon fixation, also hint at a carbon transformation
79	process from SIC to SOC ("SIC \rightarrow SOC") in the soil.
80	Recent studies have shown that autotrophic microbes in drylands contain the
81	genetic potential for incorporating CO_2 and/or HCO_3^- into SOC, and are distributed in
82	a range of natural surroundings, such as grasslands and semiarid deserts (Liu et al.,
83	2018; Lynn et al., 2017; Zhao et al., 2018). The metabolic pathways involved in
84	carbon transformation include both phototrophic and non-phototrophic processes via
85	the operations of the Calvin cycle in the presence of light, and alternative
86	chemoautotrophic pathways such as the reductive citrate cycle (rTCA cycle),
87	hydroxypropionate-hydroxybutylate cycle (3-HP/4-HB cycle), dicarboxylate-
88	hydroxybutyrate cycle (DC/4-HB cycle), 3-hydroxypropionate bi-cycle (3-HP cycle),
89	and reductive acetyl-CoA pathway (WL pathway) (Alonso-Sáez et al., 2010; Bar-
90	Even et al., 2012; Hügler & Sievert 2011; Liu et al., 2018). These pathways were
91	identified based on the occurrence of genes involved in autotrophic pathways.
92	Moreover, heterotrophic microbial CO_2 fixation for internal carbon cycling in the dark
93	has been identified in arctic, cropland, temperate forest, and temperate soils (Miltner

94	et al., 2004; Nel & Cramer 2019; Šantrůčková et al., 2018; Spohn et al., 2020). This
95	process may also contribute to the transformation of "SIC \rightarrow SOC" in drylands;
96	however, it remains largely unexplored in drylands. Taken together, we speculate the
97	occurrence of a microbial transformation process from SIC to SOC in the soil of
98	drylands; that is, soil microbes transform SIC, including soil CO_2 and/or HCO_3^- , into
99	SOC pool via microbial fixation processes. Thus, microbial carbon transformation in
100	drylands ("SIC \rightarrow SOC") needs to be investigated, particularly the possibility of SIC
101	(soil CO_2 and/or HCO_3^-) to be incorporated into SOC via microbial metabolic
102	processes and the associated microbial pathways.
103	We hypothesized that SIC (soil CO_2 and/or HCO_3^-) can be transformed into SOC
104	through dark reactions by microbes in the soil of drylands. Specifically, we expected
105	to detect: (1) the signature of SIC, incorporated by microbial fixation processes, in the
106	SOC; and (2) the related functional and taxonomic potential of soil microbial fixation
107	and carbon transformation. To test the above hypotheses, we performed an <i>in situ</i> 13 C
108	tracing experiment in bulk soil to track the fate of SIC in the Mu Us Desert of
109	northern China. In addition, we used metagenomics to analyze the target genes and
110	microbes that contribute to transforming soil CO_2 and HCO_3^- into SOC.
111	

112 **2. Materials and methods**

113 **2.1. Research site**

We conducted this study on the south-western edge of the Mu Us Desert, China
(37°42′N, 107°13′E; 1509 m above sea level). The study site is characterized by a

116	typical temperate continental climate, with a mean annual precipitation of 275 mm
117	and an annual potential evaporation of approximately 2014 mm. The mean annual
118	temperature is 7.60 $^{\circ}$ C and the frost-free period lasts approximately 128 d. The main
119	soil type is quartisamment (derived from Aeolian sand) with an electric conductivity
120	of 4.84 ds cm ⁻¹ and a pH of 8.90 (Liu et al., 2015, 2018). The 0-20 cm layer of the
121	main soil is composed of 97.04% sand, 11.56% silt, and 1.40% clay (Liu et al., 2020).
122	The SOC, SIC, and soil total nitrogen content at the research site are 3.65 g kg^{-1} , 3.78
123	g kg ⁻¹ , and 0.266 g kg ⁻¹ , respectively (Liu et al., 2015, 2018, 2020). Vegetation in the
124	research site is dominated by shrub species Artemisia ordosica Krasch, Salix
125	psammophila C. Wang & Chang Y. Yang, and Hedysarum mongolicum Turcz. The
126	grass species in the site include Leymus secalinus (Georgi) Tzvelev, Agropyron
127	cristatum (L.) Gaertn, and Pennisetum centrasiaticum Tzvel (Jia et al., 2018).
128	
129	2.2. Determination of soil inorganic carbon transformation to soil organic carbon
130	An <i>in situ</i> ¹³ C tracing experiment was conducted to determine the process of carbon
131	transformation from SIC to SOC by microbial fixation in desert soil. Specifically, in

mid-August of 2016, nine 20 m \times 20 m sites dominated by *A. ordosica*, *S.*

133 *psammophila*, and *L. secalinus* (Figure 1a), were selected as sampling plots within the

134 $2 \text{ km} \times 2 \text{ km}$ area. In each sampling plot, three parallel positions were randomly

selected (Figure1b) for the tracing experiment. Cylindrical iron chambers (20.2 cm

- diameter, 100 cm high, and 0.1 cm thick, with a sealed top; Figure 1c and d) were
- used for feeding 13 CO₂ into the desert soil. The 13 C feeding protocols are described

Figure 1. Selected typical sampling plots (a), parallel positions (b), and ¹³C feeding

152	In each plot, three chambers were inserted into buckets containing 2 L of 6 M
153	NaOH solution (Figure 1c) for 2 h with the rotary vane opened in order to decrease
154	the ambient CO ₂ in the chambers (from 400 to ~280 μ mol mol ⁻¹) and enhance the
155	follow-up effectiveness of 13 CO ₂ feeding. Then, with the rotary vane closed (Figure
156	1d), the chambers were installed onto soil collars pushed 10 cm deep into the soil
157	(Figure 1e). Next, 11.3 mL of 13 CO ₂ gas (concentration > 99.9%) was injected into
158	the chamber via the gas injection hole (Figure 1e) to provide an initial 13 CO ₂ content
159	of approximately 400 μ mol mol ⁻¹ . Then, the rotary vane of the chamber was opened
160	and the soil was exposed to ${}^{13}\text{CO}_2$ for 22 h. Equivalent feeding chambers with
161	ambient CO_2 were installed on the remaining collars as control sets. Subsequently,
162	150 mL of gas in the chambers was extracted using an injection and used for
163	ascertaining the CO ₂ content and components (12 CO ₂ and 13 CO ₂). Then, the chambers
164	were moved away and their inner space was scoured by high-pressure gas to remove
165	the remaining ${}^{13}\text{CO}_2$ and the CO ₂ produced by soil respiration. In total, the feeding
166	process was repeated once a day for 7 days. After feeding, 150 mL of the soil gaseous
167	sample was extracted from each collar using a soil gas sampler (DIK-5520-13; Daiki
168	Rika Kogyo, Saitama, Japan) and stored in aluminum foil bags to determine the soil
169	CO_2 content and components. The CO_2 content and $\delta^{13}C$ of CO_2 of the obtained gas
170	was analyzed using a Model CCIA-EPCO ₂ isotope analyzer (912-0003; Los Gatos
171	Research, Mountain View, CA, USA).

172	After performing the feeding protocols, 200 g of soil samples were collected from
173	each collar using a soil auger. To determine the content of the microbial carbon
174	transformation from SIC to SOC (¹³ C-SOC), 50 g of soil from each collar was air-
175	dried and used for SOC and δ^{13} C analyses. The remaining fresh soil samples (150 g),
176	collected from each collar in the same sampling plot, were mixed together in equal
177	proportions to determine the soil bicarbonate content. The CO_2 content and $\delta^{13}C$ of
178	the obtained soil gas were analyzed using a Model CCIA-EPCO ₂ isotope analyzer
179	(912-0003; Los Gatos Research, Mountain View, CA, USA). To determine the δ^{13} C
180	of SOC, the air-dried sample was ground using an agate mortar, sieved through a
181	0.149 mm mesh, acidified using sulfurous acid ($v:w$, 4:100; Steinbeiss et al., 2008),
182	and dried at 60°C prior to measurement. Then, the $\delta^{13}C$ was determined using an
183	isotope ratio mass spectrometer (Thermo Finnigan Delta V; Thermo Fisher Scientific,
184	Inc., Waltham, MA, USA). The reference substance utilized was Pee Dee Belemnite
185	($R_{st} = 0.0112372$). SOC was determined using the potassium dichromate oxidation
186	method (Walkley & Black, 1934). Soil bicarbonate content was determined using the
187	double-indicator neutral method (Wang et al., 2017).
188	

189 **2.3. Metagenomics prediction for microbial fixation**

From each sampling plot, 12 soil cores were randomly obtained (depth range of 0– 20 cm) using a sterilized soil auger (2.5 cm diameter), and thoroughly mixed as the representative sample. Before sampling, surface litter residues were removed. Each

193	composite sample was sieved through a 2 mm mesh to remove plant residues and
194	roots, then stored at -78.5°C on dry ice for metagenomic analysis.
195	Total microbial DNA was isolated from 1.0 g of each soil sample using the MoBio
196	Power soil DNA isolation kit (MoBio Laboratories, Carlsbad, CA, USA) following
197	the manufacturer's instructions. The DNA sample was tested with regards to
198	degradation degree and potential contamination, purity, and concentration. Then, 1 μ g
199	DNA per sample was used as input material for subsequent metagenomics sample
200	preparation. Sequencing libraries were generated using the NEBNext® Ultra TM DNA
201	Library Prep Kit for Illumina (New England BioLabs, Ipswich, MA, USA), and index
202	codes were added to attribute sequences to each sample. Briefly, the DNA sample was
203	fragmented by sonication to a size of 350 bp; then, DNA fragments were end-
204	polished, A-tailed, and ligated with the full-length adaptor for Illumina sequencing
205	with further polymerase chain reaction (PCR) amplification. Finally, PCR products
206	were purified (AMPure XP system) and libraries were analyzed for size distribution
207	using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA)
208	and quantified using real-time PCR. Clustering of the index-coded samples was
209	performed using a cBot cluster generation system (TruSeq PE Cluster Kit v3-cBot-
210	HS; Illumina, San Diego, USA). The prepared libraries were then sequenced using an
211	Illumina HisSeq platform and paired-end reads were generated. The relative
212	abundance of a gene was defined as the ratio of the sum of sequencing depth of every
213	base in a predicted gene to gene length. To fully determine the functional groups
214	associated with microbial fixation processes, metabolic pathway analyses were

- et al. 2004) and Evolutionary genealogy of genes: Non-supervised Orthologous
- 217 Groups (eggNOG). BLASTP (e-value $\leq 1 \times 10^{-5}$) was used for amino acid alignments
- against the KEGG database (Version: 2015-12-04) and eggNOG database. The
- 219 provided KEGG and eggNOG accession numbers denote the key enzymes used for
- annotation of the carbon transformation by microbial fixation (Table S1). Putative
- 221 microbes were identified based on these KEGG accessions. Metagenomics data were
- submitted to NCBI under biosample accession number SAMN08366930.
- 223

224 **2.4. Numerical and statistical analysis**

225 The ratio of 13 C in SOC was calculated as follows:

226
$$AT = \frac{(1000 + \delta^{13}C) \times R_{st}}{1000 + (1000 + \delta^{13}C) \times R_{st}} \times 100$$
(1)

227 Where, AT is the ratio of ¹³C in SOC (%) and δ^{13} C is the isotopic signature of SOC.

228 The content of microbial transformation of inorganic to organic carbon (¹³C-SOC)

229 during the labeling periods was calculated as follows:

230
$${}^{13}\text{C-SOC} = \frac{C_{\text{soc}} \times B \times V \times (AT_{\text{labelled}} - AT_{\text{control}})}{S \times 100}$$
(2)

231 Where, ¹³C-SOC is the content of the microbial carbon transformation from

inorganic to organic (mg m⁻²),
$$C_{SOC}$$
 is SOC content (g kg⁻¹), B is soil bulk density (g

- 233 cm⁻³), V is soil volume in the soil collar (cm³), S is the area of the soil collar (m²),
- 234 $AT_{labelled}$ is ratio of ¹³C in SOC in the feeding set, and $AT_{control}$ is the ratio of ¹³C in

SOC in the control set.

236	The Mantel test was used to determine the correlation between the genes and
237	composition of microbes facilitating inorganic carbon fixation and ¹³ C-SOC
238	formation. Pearson's correlation analysis was conducted to analyze the relationship
239	between ¹³ C-SOC and bicarbonate, CO ₂ , ¹³ CO ₂ , and ¹² CO ₂ content in the soil.
240	Additionally, data on putative microorganisms encoding carbon fixation genes,
241	identified at sample plots, were analyzed by principal component analysis (PCA)
242	using the vegan package in R, with a linear regression analysis of PC1, PC2, or PC3
243	scores, and ¹³ C-SOC to analyze the relationship between the microbial community
244	composition and microbial carbon transformation. Values were considered
245	statistically significant at $P < 0.05$ and the marginal significance was defined as 0.05
246	< P < 0.10. All statistical analyses were performed using R version 3.6.2 (R Core
247	Team, 2019).

249 **3. Results**

250 **3.1 Transformation of inorganic to organic carbon by microbial fixation**

Subsequent to *in situ* tracing, the 13 C-SOC content in the bulk soil at sampling plots

was detected (Figure 2). The mean 13 C-SOC content in the bulk soil was 6.881 mg m⁻²

during the feeding periods and showed dramatically variation, from 1.047 to 17.433

 $mg m^{-2}$ at the plots (Figure 2). After the feeding protocol, CO₂ content in the feeding

- 255 chambers was 1240.487 μ mol mol⁻¹ (1152.421 μ mol mol⁻¹ of ¹²CO₂ and 88.225 μ mol
- mol^{-1} of mol^{-1} of mol^{-1} of mol^{-1} (1297.629), and CO₂ content in the soil was 1391.611 μ mol mol⁻¹ (1297.629)
- μ mol mol⁻¹ of ¹²CO₂ and 93.983 μ mol mol⁻¹ of ¹³CO₂) (Table 1). On the basis of

differences in 13 CO₂ content in the feeding chambers before and after the tracing

protocol, the total amount of 13 C absorbed by the soil was determined to be 37.443 mg

260 (3.973 mg kg^{-1} in soil).

261

Figure 2. Contents of the microbial carbon transformed from inorganic carbon to organic carbon (¹³C-SOC) among the sampling plots during the feeding periods.

264

265 **Table 1** Contents and components of CO₂ in the feeding chambers and soil after feeding

protocols (mean \pm SD)

	$CO_2 (\mu mol mol^{-1})$	$^{12}CO_2 \ (\mu mol \ mol^{-1})$	¹³ CO ₂ (µmol mol ⁻¹)
Chambers	1240.487 ± 320.005	1152.421 ± 318.331	88.225 ± 21.379
Soil collars	1391.611 ± 380.447	1297.629 ± 377.928	93.983 ± 11.766

267

268 **3.2 Functional and taxonomic characterization of soil microbes associated with**

269 inorganic carbon transformation

270

Figure 3. Relative abundance (a, c) and ratios (b, d) of identified genes encoding
enzymes (EC in KEGG and COG in eggNOG are given) related to microbial fixation
at the sampling plots.

Metagenomic analysis identified genes encoding enzymes related to microbial CO₂ 275 and HCO₃ fixation, which represented 0.448% (KEGG) and 0.668% (eggNOG) of all 276 ascertained genes (Figure 3). The relative abundance of the genes related to HCO_3^- 277 transformation was higher than the genes associated with CO₂ transformation. Of 278 those, genes encoding enzymes of the ribulose-bisphosphate carboxylase, 2-279 oxoglutarate synthase, isocitrate dehydrogenase (NADP⁺), phosphoenolpyruvate 280 carboxylase, pyruvate carboxylase, pyruvate synthase, acetyl-CoA carboxylase, and 281 propionyl-CoA carboxylase were detected in the sampling plots (Figure 3). These 282 enzymes are mainly employed for autotrophic carbon fixation, by which soil CO₂ and 283 HCO_3^- are converted to SOC. The relative abundance of these genes was 0.339% 284

285	(KEGG) and 0.518% (eggNOG) of all identified genes, accounting for 75.644%
286	(KEGG) and 75.298% (eggNOG) of all detected genes for microbial inorganic carbon
287	transformation.
288	Additionally, the genes encoding enzymes that contribute to the biosynthesis of
289	fatty acids and anaplerotic reactions such as methylcrotonoyl-CoA carboxylases,
290	geranoyl-CoA carboxylase, phosphoenolpyruvate carboxykinase, acetone
291	carboxylases, and biotin carboxylases were also found based on KEGG and eggNOG
292	analyses (Figure 3). The presence of such genes suggests the role of heterotrophic
293	pathways for inorganic carbon transformation. As shown in Figure 4, soil microbes
294	encoding enzymes involved in inorganic carbon transformation, such as ribulose-
295	bisphosphate carboxylase (0.030%; total relative abundance of the detected
296	microbes), 2-oxoglutarate synthase (0.180%), isocitrate dehydrogenase (NADP ⁺)
297	(0.180%), phosphoenolpyruvate carboxylase (0.185%), pyruvate carboxylase
298	(0.080%), pyruvate synthase (0.032%), acetyl-CoA carboxylase (0.255%), propionyl-
299	CoA carboxylase (0.098%), methylcrotonoyl-CoA carboxylase (0.033%), and
300	geranoyl-CoA carboxylase (0.003%), were determined in the sampling plots. These
301	microbes mainly belonged to the phyla Actinobacteria, Proteobacteria, Chloroflexi,
302	Acidobacteria, Gemmatimonadetes, Microgenomates, and Nitrospirae (Figure 4). The
303	microbial composition and relative abundance varied depending upon the kind of
304	enzyme.

Figure 4. Relative abundance (a) and ratios (b) of microbes encoding enzymes
(Enzyme Commission numbers (EC) in KEGG are given) at the sampling plots.

310 **3.3 Correlation between ¹³C-SOC and bicarbonate, CO₂, ¹³CO₂, and ¹²CO₂**

311 content in addition to microbes.

312 The 13 C-SOC content significantly correlated with bicarbonate, CO₂, and 12 CO₂

solution content in the soil (P < 0.05), and did not correlate with the ¹³CO₂ content (P > 0.05,

- Figure 5). Additionally, the content of ¹³C-SOC remarkably correlated with genes
- involved in CO₂ transformation, based on KEGG (P = 0.044) and COG (P = 0.047)
- 316 database prediction, whereas it lacked correlation with the gene components involved
- in HCO₃⁻ transformation (P > 0.05) (Table 2). Of all the identified genes, the content
- 318 of 13 C-SOC significantly correlated with the relative abundance of genes encoding

enzymes such as 2-oxoglutarate synthase, pyruvate synthase, and geranoyl-CoA
carboxylase, based on KEGG database; and genes encoding ribulose-bisphosphate
carboxylase, 2-oxoglutarate synthase, and isocitrate dehydrogenase (NADP+) based
on eggNOG database (Table 3).

323

Figure 5. Correlation between ¹³C-SOC content and bicarbonate (a), CO₂ (b), ¹³CO₂
(c), and ¹²CO₂ content (d) in soil.

327

324

¹³C-SOC content and microorganisms harboring acetyl-CoA carboxylase, propionyl-

330 CoA carboxylase, and methylcrotonoyl-CoA carboxylase (P < 0.05; Table 4).

331 Moreover, ¹³C-SOC content marginally correlated with microorganism harboring

- ribulose-bisphosphate carboxylase, 2-oxoglutarate synthase, and isocitrate
- dehydrogenase (NADP+) (0.05 < P < 0.10; Table 4). Further analysis revealed

- 334 significant correlation between ¹³C-SOC content and PC scores of microbes encoding
- carrying the six above-mentioned enzymes (P < 0.05; Figure 6).
- 336

Table 2 Correlation between gene components and ¹³C-SOC content as determined by Mantel

test				
Р				
0.667				
0.095				
0.044				
0.047				
0.695				
0.524				

Table 3 Correlation between the relative abundance of gene components and ¹³C-SOC

aontant

341

			conter	II.				
KEGG numbers	t	r	Р	COG numbers	t	r	Р	-
4.1.1.39	-0.524	-0.159	0.684	COG1850	-3.586	-0.805	0.009	-
1.2.7.3	2.830	0.730	0.025	COG0674	3.767	0.818	0.007	
1.1.1.42	0.118	0.045	0.909	COG1014	7.229	0.939	<0.001	
4.1.1.31	-1.282	-0.435	0.241	COG1013	3.499	0.798	0.010	
6.4.1.1	-1.348	-0.454	0.220	COG1144	-0.391	-0.146	0.707	
1.2.7.1	2.986	0.748	0.020	COG0538	2.472	0.683	0.043	
6.4.1.2	0.581	0.214	0.580	COG2352	-1.246	-0.426	0.253	
6.4.1.3	0.340	0.127	0.744	COG1892	-1.275	-0.434	0.243	
6.4.1.4	-0.553	-0.204	0.598	COG1038	-1.579	-0.512	0.158	
6.4.1.5	4.623	0.868	0.002	COG0439	-0.808	-0.292	0.446	
6.4.1.6	0.167	0.063	0.872	COG0511	0.864	0.310	0.416	
6.3.4.14	-0.061	-0.023	0.953	COG5016	-0.414	-0.155	0.691	

	COG0825	0.240	0.091	0.817
	COG0777	0.284	0.107	0.785
	COG4770	-0.990	-0.350	0.355
	COG4799	-0.136	-0.051	0.896
	COG0146	1.482	0.489	0.182
	COG0145	0.814	0.294	0.442
	COG4647	0.211	0.080	0.839
	ENOG410XN	0.619	0.227	0 556
	SJ	0.018	0.227	0.550

manuscript submitted to JGR: Biogeosciences

Bold numbers indicate statistical significance at P < 0.05.

343

344 **Table 4** Correlation between the community compositions of microbes encoding enzymes

345

and ¹³C-SOC content as determined by the Mantel test

Encoded enzyme	r	Р
Ribulose-bisphosphate carboxylase (4.1.1.39)	0.294	0.062
2-oxoglutarate synthase (1.2.7.3)	0.398	0.066
Isocitrate dehydrogenase (NADP+) (1.1.1.42)	0.255	0.095
Phosphoenolpyruvate carboxylase (4.1.1.31)	0.185	0.221
Pyruvate carboxylase (6.4.1.1)	0.123	0.201
Pyruvate synthase (1.2.7.1)	0.032	0.370
Acetyl-CoA carboxylase (6.4.1.2)	0.400	0.015
Propionyl-CoA carboxylase (6.4.1.3)	0.301	0.048
Methylcrotonoyl-CoA carboxylase (6.4.1.4)	0.698	0.003
Geranoyl-CoA carboxylase (6.4.1.5)	0.100	0.332

346 Numbers in brackets refer to Enzyme Commission numbers of the KEGG database. Bold

numbers indicate statistical significance and marginal significance at P < 0.05 and 0.05 < P < 0.05

348 0.10.

Figure 6. Correlation analysis of principal component scores of microbes encoding
 carbon fixation enzymes (numbers refer to Enzyme Commission numbers) and ¹³C SOC content.

349

354 **4. Discussion**

As anticipated, our results showed that the signature profile of ${}^{13}C$ in SOC 355 originated from 13 CO₂ in the desert soil (Figure 2). In the tracing experiment, a large 356 portion of 13 CO₂ in the chamber was absorbed into the soil (Table 1) and was 357 converted mainly to soil ${}^{13}CO_2$ and $H^{13}CO_3^-$ (Fa et al., 2016a), suggesting that a part 358 of SIC was positively labeled and further participated in the process of microbial 359 transformation from inorganic (CO_2 and HCO_3^-) to organic carbon. Additionally, 360 metagenomics of sample material predicted the microbes poses genetic potential to 361 incorporate CO_2 and HCO_3^- present in the desert soil (Figure 3 and Figure 4); 362 microbial metabolic pathways correlated with ¹³C-SOC content (Table 2, 3, and 4; 363

364	Figure 6). Taken together, these results confirmed that SIC, including soil CO_2 and
365	HCO_3^- , was transformed into SOC via microbial metabolism.

Our results showed that in vivo CO₂ exchange between the chamber and collar, and 366 atmosphere and soil, occurred during the tracing protocols. Approximately four fifths 367 of ¹³CO₂ was introduced into the desert soil (Table 1) and converted to soil CO₂ and 368 HCO_3^- . The ¹³CO₂ content in the soil collars occupied 7.112% of the total CO₂ (Table 369 1). Although no test of ${}^{13}C/{}^{12}C$ in HCO₃ was conducted, a large portion of introduced 370 13 CO₂ is stored in the form of HCO₃⁻ according to previous studies in these regions 371 (Fa et al., 2016a, 2016b; Wang et al., 2019). In addition, the significant relationship 372 between ¹³C-SOC content and soil CO₂ and bicarbonate content (Figure 5) 373 demonstrated that the microbial transformation processes were possibly associated 374 375 with these two forms of inorganic carbon. However, no remarkable correlation was detected with respect to the soil ¹³CO₂ content (Table 1), which may be the result of 376 the relatively low content of soil ¹³CO₂, along with the intense abiotic conversion 377 processes ($CO_2 + H_2O \leftrightarrow H^+ + HCO_3^- \leftrightarrow CO_3^{2-} + 2H^+$). Nevertheless, these labeled 378 soil CO_2 and HCO_3^- can serve as the carbon source for such microbial transformation 379 in the desert soil. 380

As for carbon sources, both soil CO_2 and HCO_3^- is assimilated by microbes and transformed into SOC, which was supported by the functional and taxonomic characterization of soil microbes involved in fixation associated with carbon transformation (Figure 3 and Figure 4), and the linkage between ¹³C-SOC and associated putative genes (Table 2, Table 3, Table 4, Figure 5, and Figure 6).

386	According to the prediction of microbial fixation enzymes, microbes with operating
387	autotrophic and heterotrophic pathways were found in the desert soil (Figure 3).
388	Specifically, microbes harboring these genes mainly contributed toward autotrophic
389	fixation, including rTCA cycle, 3-HP and 3-HP/4-HB cycles, and DC/4-HB cycle; in
390	addition, a few genes contributed to the Calvin cycle, followed by heterotrophic
391	fixation (Figure 3; Figure 4; Table S1; Berg 2011). Microbes harboring similar genes
392	have been found in the desert soil (Liu et al., 2018; Zhao et al., 2018), and many other
393	surroundings, e.g., paddy soils, grasslands, wetlands, carbonate cave, Precambrian
394	continental crust, and subsurface fracture fluids (Ge et al., 2016; Long et al., 2015;
395	Magnabosco et al., 2016; Momper et al., 2017; Nowak et al., 2015; Ortiz et al., 2014).
396	Our results were different from prior studies with incubation experiments showing
397	that the Calvin cycle is responsible for microbial carbon fixation in drylands (Lynn et
398	al., 2017; Zhao et al., 2018). The phototrophic process is probably inhibited because
399	of the combined effects of water deficit and intense UV radiation (Bay et al. 2018).
400	Furthermore, several studies have also demonstrated that phototrophs are not present
401	in Atacama Desert soil (Costello et al. 2009), and the microbial carbon fixation in the
402	dark is speculated to be the origin of energy and organic carbon sources in the soil
403	(Lynch et al. 2012 and 2014; Zhao et al., 2018). Moreover, Zhao et al. (2018)
404	investigated the CO_2 fixation capacity of the autotrophic microbial community via the
405	Calvin cycle in desert and steppe soils; however, the result indicates that alternative
406	carbon fixation pathways account for a portion of the carbon fixation. As discussed
407	above, we conclude that desert soil microbes mainly employ dark microbial fixation

408 pathways (chemoautotrophic and heterotrophic pathways) for SIC transformation into409 SOC.

410	In particular, our results show that a considerable portion of the determined genes
411	and associated taxa were responsible for heterotrophic CO_2 fixation in the desert soil
412	(Figure 3 and 4) and significantly correlated with ¹³ C-SOC content (Table 4 and
413	Figure 6), implying that the existing heterotrophic processes also play an important
414	role in inorganic carbon transformation in desert soil. This finding extended the
415	available knowledge of microbial carbon fixation processes in desert soils (Liu et al.,
416	2018; Lynn et al., 2017; Zhao et al., 2018). Heterotrophs incorporate inorganic carbon
417	using a variety of carboxylation reactions that are part of the core or peripheral
418	metabolic pathways (Šantrůčková et al., 2018). In nutrient-limited desert soils, the
419	importance of this pathway increases because microbes experience carbon limitation
420	on account of the disproportion between carbon demand for energy generation and
421	growth, and its availability (Alonso-Sáez et al., 2010). Thereby, they increasingly rely
422	on anaplerotic fixation and <i>de novo</i> amino acid synthesis (Nel & Cramer, 2019).
423	Given that existing studies have determined dark microbial fixation processes via
424	stable carbon tracing methods and/or stable-isotope probing (Nel & Cramer, 2019;
425	Šantrůčková et al. 2018), the metagenomic analysis strongly enhance the certainty of
426	heterotrophic fixation processes in the soil. Despite the contribution of heterotrophic
427	processes to the total microbial fixation, it cannot be determined solely based on
428	genetic potential. Nevertheless, our results suggest that the desert soil indeed contains
429	microbes with genetic potential for heterotrophic fixation.

manuscript submitted to JGR: Biogeosciences

430	In the present study, different microbial metabolic processes were predicted based
431	on the KEGG and eggNOG databases (Figure 3 and Table 3); the overall trends
432	reflected were the same, i.e., the soil CO_2 and HCO_3^- can be transformed to SOC by
433	desert soil microbes. Further, our results demonstrated that the relative abundance of
434	the genes related to HCO_3^- transformation was higher than the genes related to CO_2
435	transformation (Figure 3), and the different relationships between these two genes and
436	13 C-SOC (Table 2 and 3), indicating that the microbial processes related to CO ₂
437	metabolism is more efficient than that of HCO_3^- metabolism, in case of SIC
438	transformation to SOC.
439	Based on the isotopic tracing method and the metagenomic prediction, the carbon
440	transformation process from SIC into SOC through dark microbial fixation was
441	determined in this study. According to the ratio of ${}^{13}C$ to ${}^{12}C$ in the soil CO ₂ (Table 1)
442	and HCO_3^- , together with the content of labeled SIC (approximately 3.973 mg kg ⁻¹ in
443	soil) after tracing protocols, we estimate that the actual intensity of microbial carbon
444	transformation in the desert soil may be more than 10 times of the intensity obtained
445	by the tracing method (if do not consider the isotopic fractionation effect of microbial
446	conversion). As dead microbial biomass (microbial necromass) is relatively stable in
447	soil compared to plant detritus (Liang et al., 2017), the organic carbon produced
448	through the dark microbial fixation likely remains much longer in the soil compared
449	to the organic carbon that enters the soil from plant detritus. Thus, microbial biomass
450	might substantially contribute to the formation of organic matter in the desert soil
451	(Spohn et al., 2020). This portion of organic matter is of particular importance in the

452	context of low primary production and harsh environment of drylands, as it can
453	contribute to fertility and nutrient supply for biogeochemical cycles in deserts.
454	Moreover, recent studies show that the SIC pool in drylands is not stable as
455	previously estimated (An et al., 2019; Wang et al., 2013; Zamanian et al., 2016) and is
456	probably affected by changes in land utilization, acid deposition, and nitrogen
457	fertilization (An et al., 2019; Yang et al., 2012; Zamanian et al., 2019). These factors
458	give rise to variations and decreased stability of SIC composition, demonstrating that
459	carbon is transformed from carbonates into forms of CO_2 and/or HCO_3^- . Due to the
460	increment of soil CO_2 and HCO_3^- , the dark microbial fixation process in drylands
461	tends to be enhanced (Figure 5), and therefore may offset the soil CO_2 emission from
462	soils of drylands and maintain the function of soil carbon sequestration.
463	Complete evaluation of dark microbial fixation processes, in terms of the long-term
464	quantity and stability of SOC production, with the help of a mathematical model is
465	essential to clearly investigate the contribution of dark microbial fixation for
466	formation of soil organic matter. Overall, our work provides field-based empirical
467	evidence illustrating SIC (soil CO_2 and HCO_3^-) transformation into SOC via the dark
468	microbial fixation pathway in desert soil. This study delineated the process of
469	transformation of different soil carbon pools and the potential function of the
470	inorganic carbon in drylands.

5. Conclusions

473	On the basis of <i>in situ</i> tracing of soil inorganic carbon in bulk soil and predicting
474	the associated microbial metabolic processes on the basis of functional and taxonomic
475	characterization by metagenomic analysis, we demonstrate that soil inorganic carbon
476	can be transformed into organic carbon through dark microbial fixation in the desert.
477	Although we cannot fully ascertain the portion of SOC in the soil derived from dark
478	microbial fixation, the present study suggests an inorganic to organic carbon
479	transformation driven by microbe-mediated metabolic pathways. We highlight a
480	neglected carbon transformation process in soil pools and broadening the knowledge
481	of the potential function of soil inorganic carbon in drylands.
482	

483 Acknowledgments, Samples, and Data

We would like to thank the staff of the Yanchi Research Station for their assistance 484 485 with field and laboratory work. We are also grateful to the anonymous reviewers for their constructive and valuable comments and suggestions that helped us improve this. 486 This work was supported by the National Natural Science Foundation of China 487 [NFSC, grant number 31670709]; the National Key Research and Development 488 Program of China [grant number 2016YFC0500905]; the Fundamental Research 489 Funds for the Central Universities [grant number 2015ZCQ-SB-02]; and a project 490 491 funded by the China Postdoctoral Science Foundation [grant number 2016M600938]. Metagenomics data were submitted to NCBI under biosample accession number 492 493 SAMN08366930. The authors declare no conflicts of interest. Data for this 494 manuscript are available at Figshare (https://figshare.com/s/2f8b42d016e8e1d6db69).

496 **References**

- 497 Alonso-Sáez, L., Galand, P. E., Casamayor, E. O., Pedros-Alio, C., & Bertilsson, S.
- 498 (2010). High bicarbonate assimilation in the dark by Arctic bacteria. *The ISME*
- 499 *journal*, 4(12), 1581-1590. https://doi.org/10.1038/ismej.2010.69
- 500 An, H., Wu, X., Zhang, Y., & Tang, Z. (2019). Effects of land-use change on soil
- 501 inorganic carbon: A meta-analysis. *Geoderma*, 353, 273-282.
- 502 https://doi.org/10.1016/j.geoderma.2019.07.008
- 503 Bar-Even, A., Noor, E., & Milo, R. (2012). A survey of carbon fixation pathways
- through a quantitative lens. *Journal of experimental botany*, 63(6), 2325-2342.
- 505 https://doi.org/10.1093/jxb/err417
- 506 Bay, S., Ferrari, B., & Greening, C. (2018). Life without water: how do bacteria
- 507 generate biomass in desert ecosystems. *Microbiology Australia*, 39, 28-32.
- 508 https://doi.org/10.1071/MA18008
- 509 Berg, I. A. (2011). Ecological aspects of the distribution of different autotrophic CO₂
- fixation pathways. *Applied and environmental microbiology*, 77(6), 1925-1936.
- 511 https://doi.org/10.1128/AEM.02473-10
- 512 Beulig, F., Urich, T., Nowak, M., Trumbore, S. E., Gleixner, G., Gilfillan, G. D.,
- 513 Fjelland, K. E., & Küsel, K. (2016). Altered carbon turnover processes and
- 514 microbiomes in soils under long-term extremely high CO₂ exposure. *Nature*
- 515 *microbiology*, *1*(2), 1-10. https://doi.org/10.1038/nmicrobiol.2015.25

- 516 Costello, E. K., Halloy, S. R., Reed, S. C., Sowell, P., & Schmidt, S. K. (2009).
- 517 Fumarole-supported islands of biodiversity within a hyperarid, high-elevation
- 518 landscape on Socompa Volcano, Puna de Atacama, Andes. Applied and
- 519 Environmental Microbiology, 75(3), 735-747. https://doi.org/10.1128/AEM.01469-08
- 520 Emmerich, W. E. (2003). Carbon dioxide fluxes in a semiarid environment with high
- 521 carbonate soils. *Agricultural and Forest Meteorology*, *116*(1-2), 91-102.
- 522 https://doi.org/10.1016/S0168-1923(02)00231-9
- 523 Fa, K. Y., Zhang, Y. Q., Wu, B., Qin, S. G., Liu, Z., & She, W. W. (2016b). Patterns
- and possible mechanisms of soil CO₂ uptake in sandy soil. *Science of the Total*
- 525 Environment, 544, 587-594. https://doi.org/10.1016/j.scitotenv.2015.11.163
- 526 Fa, K., Liu, Z., Zhang, Y., Qin, S., Wu, B., & Liu, J. (2016a). Abiotic carbonate
- 527 dissolution traps carbon in a semiarid desert. *Scientific reports*, *6*, 23570.
- 528 https://doi.org/10.1038/srep23570
- 529 Gago, G., Diacovich, L., Arabolaza, A., Tsai, S. C., & Gramajo, H. (2011). Fatty acid
- 530 biosynthesis in actinomycetes. FEMS microbiology reviews, 35(3), 475-497.
- 531 https://doi.org/10.1111/j.1574-6976.2010.00259.x
- Gao, Y., Dang, P., Zhao, Q., Liu, J., & Liu, J. (2018). Effects of vegetation
- rehabilitation on soil organic and inorganic carbon stocks in the Mu Us Desert,
- northwest China. Land Degradation & Development, 29(4), 1031-1040.
- 535 https://doi.org/10.1002/ldr.2832

- 536 Ge, T., Wu, X., Liu, Q., Zhu, Z., Yuan, H., Wang, W., Whiteley, A. S., & Wu, J.
- 537 (2016). Effect of simulated tillage on microbial autotrophic CO₂ fixation in paddy and
- upland soils. Scientific reports, 6, 19784. https://doi.org/10.1038/srep19784
- 539 Hügler, M., & Sievert, S. M. (2011). Beyond the Calvin cycle: autotrophic carbon
- fixation in the ocean. Annual review of marine science, 3, 261-289.
- 541 https://doi.org/10.1146/annurev-marine-120709-142712
- 542 Jia, X., Zha, T., Gong, J., Zhang, Y., Wu, B., Qin, S., & Peltola, H. (2018). Multi-
- scale dynamics and environmental controls on net ecosystem CO₂ exchange over a
- temperate semiarid shrubland. *Agricultural and Forest Meteorology*, 259, 250-259.
- 545 https://doi.org/10.1016/j.agrformet.2018.05.009
- 546 Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., & Hattori, M. (2004). The KEGG
- resource for deciphering the genome. *Nucleic acids research*, 32(suppl_1), D277-
- 548 D280. https://doi.org/10.1093/nar/gkh063
- 549 Lal, R. (2009). Sequestering carbon in soils of arid ecosystems. Land Degradation &
- 550 Development, 20(4), 441-454. https://doi.org/10.1002/ldr.934
- 551 Liang, C., Schimel, J. P., & Jastrow, J. D. (2017). The importance of anabolism in
- 552 microbial control over soil carbon storage. *Nature microbiology*, 2(8), 1-6.
- 553 https://doi.org/10.1038/nmicrobiol.2017.105
- Liu, J., Fa, K., Zhang, Y., Wu, B., Qin, S., & Jia, X. (2015). Abiotic CO₂ uptake from
- the atmosphere by semiarid desert soil and its partitioning into soil
- phases. *Geophysical Research Letters*, 42(14), 5779-5785.
- 557 https://doi.org/10.1002/2015GL064689

- 558 Liu, Z., Sun, Y., Zhang, Y., Feng, W., Lai, Z., Fa, K., & Qin, S. (2018). Metagenomic
- and 13C tracing evidence for autotrophic atmospheric carbon absorption in a semiarid
- desert. Soil Biology and Biochemistry, 125, 156-166.
- 561 https://doi.org/10.1016/j.soilbio.2018.07.012
- 562 Liu, Z., Sun, Y., Zhang, Y., Qin, S., Sun, Y., Mao, H., & Miao, L. (2020). Desert soil
- sequesters atmospheric CO_2 by microbial mineral formation. *Geoderma*, 361, 114104.
- 564 https://doi.org/10.1016/j.geoderma.2019.114104
- 565 Long, X. E., Yao, H., Wang, J., Huang, Y., Singh, B. K., & Zhu, Y. G. (2015).
- 566 Community structure and soil pH determine chemoautotrophic carbon dioxide
- 567 fixation in drained paddy soils. Environmental Science & Technology, 49(12), 7152-
- 568 7160. https://doi.org/10.1021/acs.est.5b00506
- 569 Lynch, R. C., Darcy, J. L., Kane, N. C., Nemergut, D. R., & Schmidt, S. K. (2014).
- 570 Metagenomic evidence for metabolism of trace atmospheric gases by high-elevation
- 571 desert Actinobacteria. Frontiers in microbiology, 5, 698.
- 572 https://doi.org/10.3389/fmicb.2014.00698
- 573 Lynch, R. C., King, A. J., Farías, M. E., Sowell, P., Vitry, C., & Schmidt, S. K.
- 574 (2012). The potential for microbial life in the highest-elevation (> 6000 m.a.s.l.)
- 575 mineral soils of the Atacama region. *Journal of Geophysical Research:*
- 576 Biogeosciences, 117(G2). https://doi.org/10.1029/2012JG001961
- 577 Lynn, T. M., Ge, T., Yuan, H., Wei, X., Wu, X., Xiao, K., Kumaresan D., Yu, S. S.,
- 578 Wu, J., & Whiteley, A. S. (2017). Soil carbon-fixation rates and associated bacterial

- 579 diversity and abundance in three natural ecosystems. *Microbial ecology*, 73(3), 645-
- 580 657. https://doi.org/10.1007/s00248-016-0890-x
- 581 Magnabosco, C., Ryan, K., Lau, M. C., Kuloyo, O., Lollar, B. S., Kieft, T. L., van
- 582 Heerden, E., & Onstott, T. C. (2016). A metagenomic window into carbon
- 583 metabolism at 3 km depth in Precambrian continental crust. *The ISME journal*, 10(3),
- 584 730-741. https://doi.org/10.1038/ismej.2015.150
- 585 Miltner, A., Kopinke, F. D., Kindler, R., Selesi, D., Hartmann, A., & Kästner, M.
- 586 (2005). Non-phototrophic CO₂ fixation by soil microorganisms. *Plant and*
- 587 Soil, 269(1-2), 193-203. https://doi.org/10.1007/s11104-004-0483-1
- 588 Miltner, A., Richnow, H. H., Kopinke, F. D., & Kästner, M. (2004). Assimilation of
- 589 CO₂ by soil microorganisms and transformation into soil organic matter. *Organic*
- 590 Geochemistry, 35(9), 1015-1024. https://doi.org/10.1016/j.orggeochem.2004.05.001
- 591 Momper, L., Jungbluth, S. P., Lee, M. D., & Amend, J. P. (2017). Energy and carbon
- 592 metabolisms in a deep terrestrial subsurface fluid microbial community. *The ISME*
- *journal*, 11(10), 2319-2333. https://doi.org/10.1038/ismej.2017.94
- 594 Monger, H. C., Kraimer, R. A., Khresat, S. E., Cole, D. R., Wang, X., & Wang, J.
- 595 (2015). Sequestration of inorganic carbon in soil and groundwater. *Geology*, 43(5),
- 596 375-378. https://doi.org/10.1130/G36449.1
- 597 Nel, J. A., & Cramer, M. D. (2019). Soil microbial anaplerotic CO₂ fixation in
- 598 temperate soils. *Geoderma*, *335*, 170-178.
- 599 https://doi.org/10.1016/j.geoderma.2018.08.014

- Nowak, M., Beulig, F., von Fischer, J., Muhr, J., Küsel, K., & Trumbore, S. E.
- 601 (2015). Autotrophic fixation of geogenic CO₂ by microorganisms contributes to soil
- organic matter formation and alters isotope signatures in a wetland
- 603 mofette. *Biogeosciences*, 12(3), 7169-7183. https://doi.org/10.5194/bg-12-7169-2015.
- Ortiz, M., Legatzki, A., Neilson, J. W., Fryslie, B., Nelson, W. M., Wing, R. A.,
- 605 Soderlund, C. A., Pryor, B. M., & Maier, R. M. (2014). Making a living while
- starving in the dark: metagenomic insights into the energy dynamics of a carbonate
- 607 cave. The ISME journal, 8(2), 478-491. https://doi.org/10.1038/ismej.2013.159
- 608 R Core Team (2019). R: A Language and Environment for Statistical Computing.
- 609 Vienna: R Foundation for Statistical Computing.
- 610 Reynolds, J. F., Smith, D. M. S., Lambin, E. F., Turner, B. L., Mortimore, M.,
- 611 Batterbury, S. P. J., Downing, T. E., Dowlatabadi, H., Fernández, R. J., Herrick, J. E.,
- Huber-Sannwald, E., Jiang, H., Leemans, R., Lynam, T., Maestre, F. T., Ayarza, M.,
- 613 & Walker, M. (2007). Global desertification: building a science for dryland
- development. science, 316(5826), 847-851. https://doi.org/10.1126/science.1131634
- 615 Safriel, U., & Adeel, Z. (2005). Dryland systems. In Hassan, R., Scholes, R., & Ash,
- 616 N., (Eds.), *Ecosystems and Human Well-Being, Current State and Trends* (pp.
- 617 625–658). Washington, DC: Island Press.
- 518 Šantrůčková, H., Kotas, P., Bárta, J., Urich, T., Čapek, P., Palmtag, J., Alves, R. J. E.,
- 619 Biasi, C., Diáková, K., Gentsch, N., Gittel, A., Guggenberger, G., Hugelius, G.,
- 620 Lashchinsky, N., Martikainen, P. J., Mikuttai, R., Schleper, C., Schnecker, J., Schwab,
- 621 C., Shibistova, O., Wildk, B., & Gittel, A. (2018). Significance of dark CO₂ fixation

- 622 in arctic soils. Soil Biology and Biochemistry, 119, 11-21.
- 623 https://doi.org/10.1016/j.soilbio.2017.12.021
- 624 Schühle, K., & Heider, J. (2012). Acetone and butanone metabolism of the
- 625 denitrifying bacterium "Aromatoleum aromaticum" demonstrates novel biochemical
- 626 properties of an ATP-dependent aliphatic ketone carboxylase. Journal of
- 627 *bacteriology*, 194(1), 131-141. https://doi.org/10.1128/JB.05895-11
- 628 Shi, Y., Baumann, F., Ma, Y., Song, C., Kühn, P., Scholten, T., & He, J. S. (2012).
- 629 Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands:
- 630 pattern, control and implications. *Biogeosciences*, *9*(6), 2287.
- 631 https://doi.org/10.5194/bg-9-2287-2012
- 632 Spohn, M., Müller, K., Höschen, C., Mueller, C. W., & Marhan, S. (2020). Dark
- microbial CO_2 fixation in temperate forest soils increases with CO_2
- 634 concentration. *Global Change Biology*, 26(3), 1926-1935.
- 635 https://doi.org/10.1111/gcb.14937
- 636 Steinbeiss, S., Temperton, V. M., & Gleixner, G. (2008). Mechanisms of short-term
- 637 soil carbon storage in experimental grasslands. Soil Biology and Biochemistry, 40(10),
- 638 2634-2642. https://doi.org/10.1016/j.soilbio.2008.07.007
- 639 Tong, L. (2013). Structure and function of biotin-dependent carboxylases. *Cellular*
- 640 and Molecular Life Sciences, 70(5), 863-891. https://doi.org/10.1007/s00018-012-
- 641 1096-0

- 642 Tran, T. H., Hsiao, Y. S., Jo, J., Chou, C. Y., Dietrich, L. E., Walz, T., & Tong, L.
- 643 (2015). Structure and function of a single-chain, multi-domain long-chain acyl-CoA
- 644 carboxylase. *Nature*, *518*(7537), 120-124. https://doi.org/10.1038/nature13912
- 645 Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for
- determining soil organic matter, and a proposed modification of the chromic acid
- titration method. *Soil science*, *37*(1), 29-38.
- Wang, J. P., Wang, X. J., Zhang, J., & Zhao, C. Y. (2015). Soil organic and inorganic
- carbon and stable carbon isotopes in the Yanqi Basin of northwestern
- 650 China. European Journal of Soil Science, 66(1), 95-103. https://doi.
- 651 org/10.1111/ejss.12188
- 652 Wang, J., Zhang, F., Kung, H. T., Ren, Y., Zhang, Y., & Yu, H. (2017). Linkage
- analysis of land use/cover patterns and hydro-chemical characteristics in different
- seasons in ebinur lake watershed, China. *Water*, 9(11), 888.
- 655 https://doi.org/10.3390/w9110888
- 656 Wang, X., Jiang, Z., Li, Y., Kong, F., & Xi, M. (2019). Inorganic carbon
- 657 sequestration and its mechanism of coastal saline-alkali wetlands in Jiaozhou Bay,
- 658 China. Geoderma, 351, 221-234. https://doi.org/10.1016/j.geoderma.2019.05.027
- 659 Wang, Y., Wang, Z., & Li, Y. (2013). Storage/turnover rate of inorganic carbon and
- its dissolvable part in the profile of saline/alkaline soils. *PloS One*, 8(11), e82029.
- 661 https://doi.org/10.1371/journal.pone.0082029
- 662 Yang, Y., Fang, J., Ji, C., Ma, W., Mohammat, A., Wang, S., Wang, P., Datta, A.,
- Robinson, D., & Smith, P. (2012). Widespread decreases in topsoil inorganic carbon

- stocks across China's grasslands during 1980s–2000s. *Global Change*
- 665 *Biology*, 18(12), 3672-3680.
- 666 Zamanian, K., & Kuzyakov, Y. (2019). Contribution of soil inorganic carbon to
- atmospheric CO₂: More important than previously thought. *Global change*
- 668 *biology*, 25(1), e1-e3. https://doi.org/10.1111/gcb.14463
- 669 Zamanian, K., Pustovoytov, K., & Kuzyakov, Y. (2016). Pedogenic carbonates:
- 670 Forms and formation processes. *Earth-Science Reviews*, 157, 1-17.
- 671 https://doi.org/10.1016/j.earscirev.2016.03.003
- 672 Zamanian, K., Zarebanadkouki, M., & Kuzyakov, Y. (2018). Nitrogen fertilization
- raises CO₂ efflux from inorganic carbon: A global assessment. *Global Change*
- 674 Biology, 24(7), 2810-2817. https://doi.org/10.1111/gcb.14148
- 675 Zhao, K., Kong, W., Wang, F., Long, X. E., Guo, C., Yue, L., Yao, H., & Dong, X.
- 676 (2018). Desert and steppe soils exhibit lower autotrophic microbial abundance but
- higher atmospheric CO₂ fixation capacity than meadow soils. Soil Biology and
- 678 Biochemistry, 127, 230-238. https://doi.org/10.1016/j.soilbio.2018.09.034