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Abstract

Perfect foresight hydroeconomic optimization models are tools to evaluate impacts of water infrastructure investments and

policies considering complex system interlinkages. However, when assuming perfect foresight, management decisions are found

assuming perfect knowledge of climate and runoff, which might bias the economic evaluation of investments and policies. We

investigate the impacts of assuming perfect foresight by using Model Predictive Control (MPC) as an alternative. We apply

MPC in WHAT-IF, a hydroeconomic optimization model, for two study cases: a synthetic setup inspired by the Nile River,

and a large-scale investment problem on the Zambezi River Basin considering the water-energy-food nexus. We validate the

MPC framework against Stochastic Dynamic Programming and observe more realistic modelled reservoir operation compared

to perfect foresight, especially regarding anticipation of spills and droughts. We find that the impact of perfect foresight on

total system benefits remains small (<2%). However, when evaluating investments and policies using with-without analysis,

perfect foresight is found to overestimate or underestimate values of investments by more than 20% in some scenarios. As the

importance of different effects varies between scenarios, it is difficult to find general, case-independent guidelines predicting

whether perfect foresight is a reasonable assumption. However, we find that the uncertainty linked to climate change generally

has more significant impacts than the assumption of perfect foresight. Hence, we recommend MPC to perform the economic

evaluation of investments and policies, however, under high uncertainty of future climate, increased computational costs of

MPC must be traded off against computational costs of exhaustive scenario exploration.
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Abstract 24 

Perfect foresight hydroeconomic optimization models are tools to evaluate impacts of water 25 

infrastructure investments and policies considering complex system interlinkages. However, 26 

when assuming perfect foresight, management decisions are found assuming perfect knowledge 27 

of climate and runoff, which might bias the economic evaluation of investments and policies. We 28 

investigate the impacts of assuming perfect foresight by using Model Predictive Control (MPC) 29 

as an alternative. We apply MPC in WHAT-IF, a hydroeconomic optimization model, for two 30 

study cases: a synthetic setup inspired by the Nile River, and a large-scale investment problem 31 

on the Zambezi River Basin considering the water-energy-food nexus. We validate the MPC 32 

framework against Stochastic Dynamic Programming and observe more realistic modelled 33 

reservoir operation compared to perfect foresight, especially regarding anticipation of spills and 34 

droughts. We find that the impact of perfect foresight on total system benefits remains small 35 

(<2%). However, when evaluating investments and policies using with-without analysis, perfect 36 

foresight is found to overestimate or underestimate values of investments by more than 20% in 37 

some scenarios. As the importance of different effects varies between scenarios, it is difficult to 38 

find general, case-independent guidelines predicting whether perfect foresight is a reasonable 39 

assumption. However, we find that the uncertainty linked to climate change generally has more 40 

significant impacts than the assumption of perfect foresight. Hence, we recommend MPC to 41 

perform the economic evaluation of investments and policies, however, under high uncertainty of 42 

future climate, increased computational costs of MPC must be traded off against computational 43 

costs of exhaustive scenario exploration. 44 

1 Introduction 45 

Developing hydropower and irrigation while preserving ecosystems will contribute to reach the Sustainable 46 

Development Goals (UN General Assembly, 2015), but might also increase competition for the scarce water 47 

resource. Therefore, decision-makers need tools that consider the interdependencies within the water-energy-food 48 

nexus (Albrecht et al., 2018; Baldassarre et al., 2019; Bhave et al., 2016; Miralles-Wilhelm, 2016; Rising, 2020). 49 

Hydroeconomic optimization models, which associate an economic impact to each management decision and thus 50 

transform a complex multi-objective management problem into a simpler single-objective problem (Bauer-Gottwein 51 

et al., 2017; Harou et al., 2009) are attractive candidates. In this category, models representing numerous nexus 52 

interactions and multiple reservoirs (Block & Strzepek, 2010; Draper et al., 2003; Kahil et al., 2018; Khan et al., 53 

2018; Payet-Burin et al., 2019; Vinca et al., 2020) often assume perfect foresight. Perfect foresight is a common 54 

approach used in sectorial planning models (Expósito et al., 2020; Keppo & Strubegger, 2010), where the system is 55 

optimized over the whole planning period with assumed perfect knowledge of the future. This means that 56 

optimization models with perfect foresight anticipate future conditions, such as droughts, and adjust, for instance, by 57 

selecting crops with lower water requirements or storing additional water. In actual operation, water planners and 58 

managers do not have perfect foresight, and are limited by the availability and skill of existing forecasting systems. 59 

A more realistic way of modelling reservoir operation and agriculture decisions could improve the reliability of the 60 

results of investment evaluation and cost benefit analysis (Anghileri et al., 2016; Jahani et al., 2016; Khadem et al., 61 

2018; Sahu, 2016). 62 

Stochastic Dynamic Programming (SDP) (Scarcelli et al., 2017; Soleimani et al., 2016) and Stochastic Dual 63 

Dynamic Programming (SDDP) (Pereira-Cardenal et al., 2016; Tilmant et al., 2012) have been used to represent 64 

water management problems and infrastructure evaluation in a nexus context while considering the stochastic nature 65 

of the water inflow. However, SDP suffers the curse of dimensionality as problem complexity increases 66 

exponentially with problem size, hence it is restricted to applications with a limited number of reservoirs and 67 

interactions; while SDDP can be applied to larger systems, it is still limited to convex future benefits. 68 

Simulation frameworks (Cervigni et al., 2015; Howells et al., 2013; Yates et al., 2005), do not assume perfect 69 

foresight, as the system management is determined for each time step using allocation rules. However, allocation 70 

rules are usually based on current or past socio-economic conditions and might not be economically optimal in 71 

another context (Pereira-Cardenal et al., 2016). This might lead to biased performances when exploring a range of 72 
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possible scenarios, which is a key process when exploring robust decisions considering the large uncertainties of the 73 

future climate and socio-economic development (Bhave et al., 2016; Giuliani & Castelletti, 2016; Herman et al., 74 

2015, 2020).  75 

Model predictive control (MPC) is a framework that enables to use a perfect foresight optimization model while 76 

considering limited knowledge of the future. In this approach, which replicates potential actual operation, optimal 77 

management decisions are iteratively solved in each time step, using forecasted information available at the time of 78 

decision. Model predictive control was originally developed for power plants and refineries in 1970 and is now used 79 

in a large variety of fields from food processing to aerospace applications (Qin & Badgwell, 2003). MPC has many 80 

advantages: (1) it makes use of an existing perfect foresight framework, (2) it does not suffer the curse of 81 

dimensionality, as computation costs do not increase exponentially with problem size (3) it can be applied to non-82 

linear frameworks, (4) it is not limited to hydrologic uncertainty. Yet, the application of MPC to water resource 83 

systems is seldom: Khadem et al. (2018) apply a specific form of MPC, by solving the CALVIN perfect foresight 84 

model (Draper et al., 2003) year by year, still assuming a perfect foresight of a year; Anghileri et al. (2016) apply 85 

MPC to a simple water resource system model to evaluate the value of forecasts. The purpose of this work is to 86 

demonstrate that MPC is a powerful framework to overcome the perfect foresight assumption in large-scale multi-87 

sector hydroeconomic models and to investigate the impacts of assuming perfect foresight when evaluating the 88 

economic value of infrastructure. We use the open-source hydroeconomic optimization model WHAT-IF (Payet-89 

Burin et al., 2019), which links in a holistic framework, representations of the water, energy, and agriculture 90 

systems. 91 

The study is organized as follow: 92 

In section 2 we present the WHAT-IF model and the Model Predictive Control Framework. Section 3 describes the 93 

study cases: a synthetic setup inspired by the Nile River and a large scale problem in the Zambezi River Basin from 94 

Payet-Burin et al. (2019), where water infrastructure and policies are planned to satisfy growing food and energy 95 

demands. In section 4 we discuss the parametrization of the MPC framework. In section 5 we investigate the 96 

impacts of assuming perfect foresight when performing the economic evaluation of investments through with-97 

without analysis. In the Nile case, we validate the MPC framework against Stochastic Dynamic Programming and 98 

highlight some of effects of the perfect foresight assumption. We also compare it to a rule-based simulation 99 

framework. Using a large range of scenarios, we investigate in which cases the perfect foresight assumption affects 100 

the economic evaluation of two hypothetical projects. Finally, we perform the same analysis for the economic 101 

evaluation of hydropower, irrigation development, and an environmental flow policy on the Zambezi River Basin. 102 

2 Methods 103 

2.1 The hydroeconomic optimization model: WHAT-IF 104 

WHAT-IF is an open-source hydroeconomic optimization model, linking representations of the water, energy, and 105 

agriculture systems in a holistic framework (Payet-Burin et al., 2019). In WHAT-IF decision variables for water 106 

management (e.g. water storage and supply), energy management (e.g. power capacity construction, production, 107 

transmission, and supply) and agriculture management (e.g. crop choice, irrigation, transport, and supply) are solved 108 

to maximize the welfare economic objective function which is the sum of all consumer and producer surpluses. The 109 

model operates at a monthly time step for long hydrologic time series. It is a perfect foresight framework as optimal 110 

decisions are found with full knowledge of the future over the planning horizon. In addition to the description of  111 

WHAT-IF in Payet-Burin et al. (2019), in the current version of the model hydropower production is the product of 112 

releases and a volume-dependent head, which leads to a non-linear optimization model and more realistic reservoir 113 

release decisions. 114 

The model is coded in the python programming language: the problem is formulated with Pyomo (Hart et al., 2017) 115 

and solved with the non-linear solver IPOPT (Wächter & Biegler, 2005) using the HSL mathematical software 116 

library (Research Councils UK, 2020). 117 

2.2 Model Predictive Control Framework 118 

The basic concept of Model Predictive Control (MPC) is to iteratively optimize decision variables (also called 119 

"control actions") of a system over a forward moving time window at a given sampling interval. The MPC 120 

framework suits real-time water management, repetitively answering the question "given the current available 121 

information about the future what is the best decision to take now?". For example, every month, for the Colorado 122 

Reservoir System, the Bureau of Reclamation updates the "24-Month study" (Bureau of Reclamation, 2019) 123 
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describing the expected behavior of the system for the next two years, based on which the operation rules for the 124 

current month are set. In this study, the MPC framework is implemented to simulate a more realistic operation of the 125 

water infrastructure than the one resulting from perfect foresight optimization runs, and thus, evaluate more 126 

accurately the potential economic impacts of water infrastructure investments and policies.  127 

Figure 1 summarizes the framework: Every time step, a forecast of the hydrologic parameters is generated for the 128 

prediction horizon. The forecast might be an ensemble forecast, or a single forecast as in Figure 1. The prediction 129 

horizon is the time window for which the system is optimized (e.g. 2 years). The choice of the prediction horizon 130 

depends on the quality of the forecast, the time scales and memory effects inherent in the problem and the available 131 

computational resources. Over the prediction horizon all the decision variables are solved (e.g. water storage, and 132 

supply) using the perfect foresight model with the forecast information, but only the decision variables for the 133 

current time step are implemented. The process is repeated over the planning horizon (e.g. 30 years), at each time 134 

step the prediction horizon is moved forward, a new forecast is generated considering the new information available, 135 

and the optimal decision variables for the current time step are implemented. If the model contains a mix of monthly 136 

and yearly decision variables, the prediction horizon is adjusted to cover a complete year. Yearly decision variables 137 

of the model (e.g. crop choice and power capacity investments) are only determined for time steps that start a new 138 

year. 139 

Regarding reservoir operation, the decisions taken in a given month might impact reservoir levels several years later. 140 

Because for large models it would be computationally too expensive to consider a very long prediction horizon (e.g. 141 

several decades), a storage target or hedging rule (You & Cai, 2008) at the end of the prediction horizon is 142 

implemented in order to account for the value of water in the reservoir beyond the prediction horizon. Khadem et al., 143 

(2018) suggest a complex but general method to evaluate the storage value; the MPC framework presented here is 144 

not as sensitive to the assumed end storage value, because only the first decisions are implemented, hence we choose 145 

a simple method based on the shadow value (or dual value) of water from a perfect foresight run. 146 

To find the optimal decision variables from the forecast, different methods can be used. For a single forecast 𝐹𝑠 the 147 

model 𝑀 is run once 𝐷𝑉𝑠 = 𝑀(𝐹𝑠) and resulting optimal decision variables for the current time step 𝑡0 are 148 

implemented 𝐷𝑉𝑡0 = 𝐷𝑉𝑡0
𝑠 . For an ensemble forecast of 𝑛 members {𝐹𝑘, 𝑘 𝜖 1. . 𝑛}, a simple approach is to run the 149 

model separately for each ensemble member {𝐷𝑉𝑘 = 𝑀(𝐹𝑘), 𝑘 𝜖 1. . 𝑛} and assume that the optimal decision 150 

variables are the average of the ensemble optimal decision variables 𝐷𝑉𝑡0 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐷𝑉𝑡0
𝑘 , 𝑘 ∊ 1. . 𝑛). The 151 

probabilistic method is to merge the individual problems from the different ensemble members into a single 152 

optimization problem 𝐷𝑉𝑒 = 𝑀(𝐹𝑘, 𝑘 𝜖 1. . 𝑛), in which the decision variables for the first time step are shared 153 

𝐷𝑉0
e,1 = 𝐷𝑉0

e,2 … = 𝐷𝑉0
e,n

 and the objective function 𝑜𝑏𝑗𝑒 is an average of the individual objective functions 154 

weighted by their respective likelihood 𝐾: 𝑜𝑏𝑗e = ∑𝑜𝑏𝑗k ∙ 𝐾k, 𝑘 𝜖 1. . 𝑛.  155 

Here we assume that only the hydrology is uncertain and that other parameters, such as energy demand and 156 

renewable energy production can be predicted. If intermittent renewable power sources play an important role, the 157 

same approach can be implemented with wind and sun forecasts in addition to hydrologic forecasts. 158 
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 159 
Figure 1. Model Predictive Control (MPC) framework. The methodology is illustrated with 160 

runoff as forecasted parameter with a single forecast, and reservoir storage as a decision variable; 161 

in the model all forecasted parameters and decision variables are solved simultaneously.  162 

3 Overview of two study cases 163 

The Nile synthetic study case is used to demonstrate the MPC framework and evaluate the effects for a large range 164 

of scenarios. The Zambezi River Basin study case is used to demonstrate the applicability of the MPC framework to 165 

large-scale water-energy-food nexus models. 166 

3.1 Nile synthetic study case 167 

To illustrate the methodology, we use a synthetic study case inspired by the High Aswan Dam (HAD) in Egypt 168 

(Figure 2). The dam receives inflow from Soudan and has an active capacity of 90 BCM (Billion Cubic Meters). 169 

We represent Egypt as a single water demand node of 53 BCM /year, with a seasonal profile and a demand curve. 170 

The demand curve is inspired from El-Gafy and El-Ganzori (2012), the average economic value of irrigation water 171 

is around 2 L.E/m³ (0.130$/m3), and there is about a factor 10 between high value crops such as vegetables and low 172 

value crops such as rice. The hydropower plant linked to the dam has a capacity of 2100 MW, producing around 10 173 

GWh per year. The head in the reservoir varies from 36 to 64 meters and the hydropower turbine capacity from 1200 174 

to 2500 m³/s; for simplicity, we assume a linear head-volume dependence. Hydropower production is valued using a 175 

fixed output price of 50$/MWh. We use a monthly runoff time series at Dongola from 1970 to 2000. To simplify, 176 

the water share of Soudan (18.5 BCM/year) and the average evaporation from the dam (10 BCM/year) is subtracted 177 

from the inflow, leaving an average water availability of 58 BCM/year. 178 
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 179 
Figure 2. Conceptual scheme of the Nile synthetic study case. Water units are in Billion Cubic 180 

Meters (BCM). 181 

The operation rule used in the simulation (SIM) framework is from Mobasher (2010), and works as follows: If the 182 

reservoir level in July is above 60 BCM, the water releases for the rest of the year are proportional to the July 183 

reservoir level (from 1800 m³/s for 60 BCM to 2850 m³/s for 90 BCM) or higher to fully satisfy the agricultural 184 

demand. If the reservoir level in July is lower than 60 BCM, the agriculture demand is curtailed by: 5% from 55 to 185 

60 BCM, 10% from 50 to 55 BCM and 15% under 50 BCM. The releases are then proportional to the agricultural 186 

demand and no extra water for hydropower is released.  187 

As a benchmark, we also implemented the stochastic dynamic programming (SDP) framework for this study case 188 

(see Loucks and Van Beek (2005) for the development of the SDP method). the main limitation of SDP is that it 189 

cannot be applied to larger systems, however, for this simple study case SDP is straightforward and can be used to 190 

validate the MPC method. We divide the inflow in three classes for each month: low, average, and high inflow 191 

which correspond respectively to the 0 to 30th, 31 to 60th, and 61 to 100th percentiles of the inflows. We consider the 192 

15th, 45th and 80th inflow percentiles to be representative inflows for the 3 classes. We find that the definition of 193 

classes has little impact on results. We then obtain storage water values in the High Aswan Dam for the different 194 

classes of inflow (see supporting information). 195 

3.2 Zambezi River Basin study case 196 

We use the modelling framework and dataset of the Zambezi River Basin from Payet-Burin et al. (2019). The river 197 

basin is divided in 26 catchments with runoff and precipitation time series covering 40 years; the average yearly 198 

runoff is 114 109m³. In each catchment domestic, agricultural, and industrial water demands are represented, as well 199 

as environmental flow constraints at the level of the main wetlands (Kafue flats, Baroste plain, and Mana pools) and 200 

the Zambezi delta (Figure 3). The main reservoirs of the river basin (Itezhi-Tezhi, Kariba, and Cahora Bassa 201 

dams) have an active storage capacity of 127 109m³ and are the main consumptive water user of the river basin 202 

through evaporation losses. The agricultural water demand is calculated based on FAO 56, crop yields are based on 203 

FAO 33, and the crop choice is part of the optimization framework. Unlike in Payet-Burin et al. (2019), rainfed 204 

production and crop markets are not represented, only irrigated agriculture is represented and valued at the farm 205 

level using FAO data (FAO, 2018). Thermal power is represented as aggregated production units per country. A 206 

power market per country is represented, including South Africa, with corresponding power demands. The power 207 

transmission network is represented with a transport model considering aggregated transmission lines between 208 

countries. A capacity expansion model represents additional investments in thermal and solar power. 209 
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We use the reference "2030" scenario from Payet-Burin et al. (2019), considering the forecasted water, crop and 210 

energy demands in the river basin in 2030 and the natural flooding environmental policy of 7000 m³/s in february. 211 

The evaluated water infrastructure development plan (Payet-Burin et al. (2019), World Bank (2010)) considers 15 212 

hydropower projects with 7.2 GW of new operating capacity and 336 000 ha of new areas equipped for irrigation, 213 

almost doubling the current irrigated area. To evaluate the MPC framework in different water scarcity levels, we 214 

consider three different climate change scenarios from Cervigni et al. (2015) as in Payet-Burin et al. (2019). 215 

 216 
Figure 3. Zambezi River Basin water-energy-food nexus framework. 217 

4 Parametrization of the Model Predictive Control framework 218 

We test how different parameters of the MPC framework affect performance on the Nile and Zambezi River Basin 219 

study cases. To do so, we compare the objective function (Nile: benefits from water allocation and energy 220 

production; Zambezi: total producer and consumer surplus for water, energy and crops) of the MPC framework with 221 

different parameters against the perfect foresight framework. The difference is then called "Gap to perfect foresight" 222 

and represents the distance to the optimal solution, in this section we don't explore yet the drivers of the difference. 223 

When comparing the different frameworks, the last 3 years out of the 30 years planning period are solved under 224 

perfect foresight. This ensures that results are not significantly impacted by boundary effects (e.g. different runs not 225 

finishing with the same reservoir level). In the Nile study case, we evaluate the parameters for a range of scenarios 226 

considering different runoff levels by multiplying all values with a constant change factor. In the Zambezi study 227 

case, we consider three climate change scenarios. 228 

4.1 Bootstrapping forecast performance 229 

We use nearest neighbors bootstrapping (Lall & Sharma, 1996; Yates et al., 2003) to generate single and ensemble 230 

forecasts for the MPC framework (see supporting information). We assess the performance of the average forecast 231 

using bootstrapping by comparing it to monthly runoff climatology and the Thomas-Fiering method (Harms & 232 

Campbell, 1967). We observe that the bootstrapping method performs better than climatology and the Thomas-233 

Fiering method for lead times under 3 to 5 months (Figure 4). The advantage of nearest neighbors bootstrapping 234 

against the Thomas-Fiering method is that it can be used to simultaneously predict runoff, rainfall, and 235 

evapotranspiration. The purpose is not to demonstrate the bootstrapping's performance as a forecasting tool, but to 236 

show that it performs adequately to be used within the MPC framework for investment evaluation. 237 
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 238 
Figure 4. Bootstrapping forecast performance. Root mean square error (RMSE) of the total 239 

forecasted runoff in the river basin for different lead times; the bootstrapping forecast is 240 

benchmarked against the Thomas-Fiering method and monthly runoff climatology.  241 

Subsequently, we investigate how the forecast quality affects the performance of MPC. To simulate different 242 

forecast qualities, we add a perfect forecast length varying from 0 to 36 months to the bootstrapping forecasts. When 243 

generating a forecast, a perfect forecast length of 3 months means that the true time series is used for the next 3 244 

months (hence a "perfect" forecast), and only the following months are forecasted with the nearest neighbor 245 

bootstrapping method. We observe that for water-rich scenarios, a 1-year perfect forecast is almost equivalent to 246 

perfect foresight, while for water-scarce scenarios, several years of perfect forecast are beneficial, showing that 247 

long-term interannual storage plays an important role (Figure 5). However in all cases a perfect forecast of a year 248 

improves considerably (artificially) the performances; even if not exactly comparable, this illustrates some 249 

limitations of using a year by year perfect foresight optimization framework as in Khadem et al. (2018). The purpose 250 

of using the MPC framework here, is to represent a realistic infrastructure operation; if in actual operation more 251 

complex or simpler forecasts are used to operate infrastructure, those can be implemented in the MPC framework.  252 

  253 
Figure 5. Impact of forecast quality on Model Predictive Control framework performance. The 254 

gap to perfect foresight is the difference between the values of objective function of the MPC 255 

and Perfect Foresight framework. 256 

4.2 Choice of optimal decision variables for the current time step 257 

As described in section 2.2, different methods can be used to find the optimal decisions in the current month, based 258 

on a single forecast or an ensemble of forecasts. We compare the methods summarized in Table 1.  259 
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Table 1. Summary of methods to derive present decision variables from forecast. 260 

Method 

name 

Description 

A Single weighted forecast (or "tracer" forecast) based on a 20-ensemble forecast. The model is run for 

the single forecast giving a single set of optimal decisions. 

B Ensemble forecast of n members. The optimization problem is solved separately for the ensemble 

members and the optimal decisions are the average of the ensemble optimal decisions. 

C Ensemble forecast of n members. Single probabilistic optimization problem merging the individual 

problems using equality constraints between decision variables in the current time step. Average 

objective function weighted by respective likelihoods. 

D Same as C, except that a 20 members ensemble forecast is converted to a 2 members ensemble 

forecast divided into high and low flow forecasts. 

 261 

For the Nile study case, methods B and C are used with both 5 and 20 ensemble members, while for the Zambezi 262 

study case, only 5 ensemble members are used to reduce computational costs. We observe that methods A, C, and D 263 

perform similarly, while method B performs worse. If the problem was fully linear and had no binding constraints, 264 

averaging the forecasts (method A) or averaging the solutions generated by these forecasts (method B) should give 265 

the same result. However, we find that averaging the individual decisions derived from an ensemble forecast is not 266 

an appropriate method. Method C performs best as it has the finest resolution in terms of representing the 267 

probability of the hydrologic parameters. Method D is the same as C with 20 members, except that a 20-member 268 

ensemble forecast is merged into a 2-member ensemble forecast (low and high runoff forecast). As methods C and 269 

D perform very close, considering that a higher number of ensemble forecasts is computationally expensive, we find 270 

method D to be a good trade-off. Method A is found to perform almost as good and is even simpler as it uses a 271 

single forecast, however it can lead to irrational management. Indeed, if high runoff leading to spills is forecasted, in 272 

the optimization problem it may be equally profitable to spill water now or in the future as the problem assumes 273 

future is certain. This can lead to spills that could have been delayed or avoided, as the forecast might be wrong, and 274 

no spill would be necessary in the future. In actual operation, decision of spilling would be delayed until it is certain 275 

that there is too much water in the system or that flood control criteria become binding. When considering an 276 

ensemble forecast premature spills do not happen, as one of the forecasts would likely represent a scenario with low-277 

flows. This could also be addressed by including artificial "penalties" in the optimization problem, that are small 278 

enough to not influence the other trade-offs. To avoid those artificial penalties, we prefer to opt for method D for the 279 

rest of the study, considering a low and high flow forecast with their respective likelihoods in a probabilistic 280 

optimization problem. 281 

 282 

Table 2: Performance of the different methods to identify current decisions based on forecast. 283 

The gap to perfect foresight is the difference between the objective function of the MPC 284 

framework against the Perfect Foresight framework. Green, orange, and red colors indicate 285 

respectively high, medium and low performance. 286 

Gap to perfect 

foresight 

(M$/month) 

Scenario (runoff) 

Nile Zambezi 

Method 80% 90% 100% 110% 120% semi-wet semi-dry driest 

A -94 -72 -52 -29 -23 -78 -69 -131 

B_5 -134 -93 -67 -36 -26 -108 -87 -113 

B_20 -138 -102 -73 -38 -28    

C_5 -103 -83 -42 -26 -26 -82 -63 -120 

C_20 -90 -76 -28 -28 -26    

D -111 -81 -45 -30 -23 -77 -59 -132 

 287 



manuscript submitted to Water Resources Research 

 

4.3 Prediction Horizon  288 

The prediction horizon determines the timeframe for which the optimization problem is solved in every time step. 289 

Regardless of the prediction horizon length, it is only the first time step (one month) decision that is implemented in 290 

the system model. For the Zambezi study case, the prediction horizon needs to cover entire years as the model 291 

contains yearly decision variables, hence the shortest prediction horizon is one year. We vary the length of the 292 

prediction horizon to evaluate the impact of this parameter (Figure 6). We observe that considering a prediction 293 

horizon under one year leads to lower performances, horizons above one to two years lead to the best performance. 294 

As the forecast has short-term skills, increasing the prediction horizon above two years does not clearly improve 295 

performances, we even observe performance decrease in the Zambezi case. Based on this we consider a prediction 296 

horizon of 2 years for the rest of the study. Note that with a (theoretical) perfect forecast (section 4.1) we still find 297 

improved performance when increasing the prediction horizon above 2 years for all cases and scenarios.  298 

  299 
Figure 6: Impact of the prediction horizon on the performance of the MPC framework. The gap 300 

to perfect foresight is the difference between the values of objective function of the MPC and 301 

Perfect Foresight framework. 302 

5 Impact of perfect foresight on the economic evaluation of investments and policies 303 

5.1 Nile study case 304 

In this section we compare the Perfect Foresight (PF), Model Predictive Control (MPC), Stochastic Dynamic 305 

Programing (SDP), and Simulation (SIM) frameworks on the Nile synthetic case and for a range of scenarios. The 306 

objective function of the PF, MPC, and SDP frameworks is to maximize total economic benefits from water demand 307 

satisfaction and hydropower production. The SIM framework follows the operation rule presented previously 308 

(section 3.1).  309 

We observe that  the global economic output in the four frameworks is very similar (Table 3); the main difference is 310 

that the PF framework leads to higher hydropower production and lower demand curtailments. The operation rule of 311 

the SIM framework might not be as optimal for this synthetic case as it was designed for the real conditions, but we 312 

observe that it performs closely to the other frameworks in terms of total system benefits.  313 

 314 

Table 3. Key indicators for the different frameworks on the Nile study case. 315 

Framework PF MPC SDP SIM 

Total benefits (M$/year) 7 229 7 204 7 189 7 087 

Difference to MPC (%) +0.3% - -0.2% -1.6% 

Hydropower production (GWh/year) 9.6 9.2 9.2 9.2 
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Hydropower spill (109m3/year) 3.2 4.5 5.3 5.0 

Hydropower value (M$/year) 479 463 458 462 

Demand curtailment (109m3/year) 1.3 1.4 1.7 4.8 

Demand Value (M$/year) 6 750 6 741 6 732 6 626 

 316 

Regarding reservoir management, we observe two effects of perfect foresight: (1) high flows are anticipated by 317 

releasing additional water before, thus avoiding spills (release higher than turbine capacity), (2) low flows are 318 

anticipated by storing additional water before, achieving a better head management and leading to less water 319 

demand curtailment (Figure 7). Both effects together explain the higher hydropower production observed for the PF 320 

framework. We also observe that MPC and SDP lead to almost identical reservoir operations. MPC and SDP 321 

frameworks can be implemented in actual operation. Hence, we can assume that they represent a potential reality 322 

and that differences observed for PF and SIM are biases linked to the intrinsic assumptions linked to these 323 

frameworks.  324 

  325 
Figure 7. Modelled reservoir management of the High Aswan Dam (HAD) for the different 326 

frameworks. MPC, PF, SIM, and SDP indicate respectively Model Predictive Control, Perfect 327 

foresight, Simulation, and Stochastic Dynamic Programming.  328 

To investigate how these effects vary depending on the context, we perform the comparison between the 329 

frameworks for different scenarios by varying runoff and water demand. Change in runoff and water demand is 330 

implemented by multiplying all values by a constant factor. Change in water demand keeps the proportions of the 331 

temporal distribution and demand curve of current water demand. We see the effects highlighted in Figure 7 take 332 

different proportions depending on the scenario (Figure 8).  333 
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 334 

 335 

 336 
Figure 8. Economic evaluation of baseline (a) and project development (b & c) with the different 337 

frameworks. For Model Predictive Control (MPC) the absolute value is shown, for Stochastic 338 

Dynamic Programming (SDP), Perfect Foresight (PF), and Simulation (SIM) the incremental 339 

value compared to MPC is shown. Irrigation and Transfer benefits are calculated through with-340 

without analysis.  341 

The analysis of scenarios of total system benefits (Figure 8.a) confirms that MPC and SDP behave similarly, even if 342 

trends of differences are visible, they are considerably smaller compared to other frameworks. That said, all 343 

frameworks are close in terms of total system benefits: PF overestimates benefits by +0.2% to +1.7%, while SIM is 344 

underestimating benefits by -1 to -12%. The results by indicators are available in the supporting information. The 345 

SIM framework assumes the same reservoir operation rule applies in all scenarios; as expected, it underperforms in 346 

scenarios different from the reference scenario, particularly when increasing water scarcity. However, for total 347 

system benefits, the uncertainty linked to the framework is small compared to other sources of uncertainties (e.g. 348 

data, temporal and spatial aggregation, other model assumptions) for this kind of analysis. 349 

 350 

In a second step, we investigate how the choice of framework affects the economic valuation of projects in a with-351 

without analysis. We consider two (hypothetical) projects: (1) an irrigation extension project, corresponding to an 352 

increase in the water demand by 10% (homogeneously distributed in the temporal-demand and value-demand 353 

profiles); and (2) a water transfer project adding 10% of water upstream of the dam, represented by a constant 354 

additional inflow of 0.45 109m3 per month. We evaluate the economic impact of these projects (computed as total 355 

benefits with the projects minus total benefits without the project) for the different scenarios of runoff and initial 356 

water demand (Figure 8.b and Figure 8.c). The impact of the irrigation project (Figure 8.b) corresponds to two 357 

horizontal moves right in Figure 8.a, and the impact of the water transfer project (Figure 8.c) is similar to two 358 

vertical moves up.  359 

We observe that: 360 

 (1) SDP and MPC behave similarly as for total system benefits, even if trends of differences are visible, 361 

they are smaller compared to other frameworks (Figure 8.b and Figure 8.c). 362 

 (2) PF overestimates irrigation project benefits by 5% to 12% in the diagonal where water demand is close 363 

to water availability (Figure 8.b). The reason is that the irrigation project's increase in water demand moves the 364 

system from a state where foresight has low value towards a state where foresight has high value (Figure 8.a). PF 365 
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underestimates transfer project benefits by -20 to -35% in the diagonal where water demand is slightly above water 366 

availability (Figure 8.c). The value of additional water is underestimated with perfect foresight, because it moves the 367 

system from a state where foresight has high value towards a state where foresight has low value (Figure 8.a). 368 

Outside the diagonal, PF is close to both MPC and SDP. With water abundance or stress, the value of foresight is 369 

respectively either low or stable, hence it does not affect the with-without analysis significantly. 370 

 (3) SIM underestimates irrigation projects benefits by -40% to -80% (Figure 8.b) in water-scarce scenarios 371 

(high demand and low availability). In water-abundant scenarios (high availability and low demand), SIM performs 372 

similarly to other frameworks, as the release rules are not stressed by water shortages. SIM overestimates transfer 373 

project benefits by +30% to +60%  in water-scarce scenarios (Figure 8.c), because the transfer project eases the 374 

water stress that SIM does not cope well with. 375 

In contrast to global system benefits, the differences found in the with-without analysis can impact decision-making 376 

on project development. When performing the with-without analysis, the impact of assuming perfect foresight is 377 

more important in scenarios where the importance of perfect foresight varies between the with and the without run. 378 

This does not necessarily correspond to scenarios for which the impact of perfect foresight on total benefits is 379 

strongest. However, the value of investments varies importantly depending on the water demand and available 380 

runoff (with a factor 3 to 7), hence uncertainty in these parameters is likely to have more impact than the bias 381 

introduced by perfect foresight. In general, to use a non-adaptative simulation rule is clearly inappropriate to explore 382 

scenarios with a different system state: as observed here, even small changes (e.g. +10% demand combined to -10% 383 

runoff) can lead to considerably different results (respectively -34% and +23% for the irrigation and water transfer 384 

project benefits). 385 

5.2 Zambezi River Basin study case 386 

We now apply the Model Predictive Control (MPC) framework to a large-scale problem on the Zambezi River Basin 387 

considering multiple interactions between the water, energy and food systems. We evaluate the economic impact of 388 

different projects and policies from World Bank (2010) by performing with-without analyses for three different 389 

climate change scenarios from Cervigni et al. (2015). We compare the Perfect Foresight (PF) to the MPC framework 390 

in order to evaluate the bias introduced by the perfect foresight assumption (Table 4). The individual results of the 391 

largest hydropower and irrigation projects are highlighted, while "all projects" also include other investments. 392 

The climate change scenarios correspond to different water-scarcity levels, in the semi-wet, semi-dry and driest 393 

scenarios the water consumption represents respectively 17%, 23%, and 34% of the available runoff. We observe 394 

that for the semi-wet and semi-dry scenarios the differences between the PF and MPC frameworks are mostly under 395 

5% (Table 4), which is small compared to other possible sources of uncertainty (e.g. climate, socio-economic 396 

development). However, for the driest scenario important differences appear for some investments.  397 

The economic value of all irrigation investments is only overestimated by 4% with perfect foresight (Table 4), but 398 

up to 90% for the Shire Irrigation investment, while the value is almost the same for the Delta irrigation investment. 399 

In Payet-Burin et al. (2019) the Shire River is found to be the most water-scarce zone with high inflow variability 400 

and low storage capacity, which explains why with perfect foresight the project is found more profitable as water 401 

scarcity can be anticipated. The Delta irrigation project is in the Zambezi Delta, where there is the most flexibility 402 

due to all upstream reservoirs and where the water has the lowest value as there are no downstream uses, which 403 

might explain the small difference between the MPC and PF frameworks. When implementing all irrigation projects 404 

(Table 5), perfect foresight leads to higher agricultural production (+45 M$/year), which is partially due to higher 405 

irrigation water allocation (+241 Mm³/year) as less water is spilled downstream (-127 Mm³/year). 406 

Environmental flow (e-flow) opportunity costs, which are the direct forgone benefits by ensuring a minimum flow to 407 

ecosystems (excluding the direct and indirect benefits of protecting ecosystems), are underestimated by 23% with 408 

the perfect foresight assumption. The difference is explained by lower trade-offs with agricultural production (-61 409 

M$/year), energy production (-11 M$/year), and domestic and industrial water users (-6 M$/year) (Table 5). With 410 

perfect foresight low flows can be anticipated, hence extra water can be stored to accommodate ecosystems and 411 

other water users, while in actual operation, when low flows are not anticipated, high value water users might be 412 

curtailed in order to satisfy the environmental constraint (as we assume environmental flows have the highest 413 

priority).  414 

The economic values of all hydropower projects are overestimated by 9% with perfect foresight (Table 4), and 415 

similar trend is observed at the individual scale (+8% for Batoka Gorge, +12% for Mphanda Nkuwa). However, we 416 

see two opposite effects compensating each other: the value of the additional reservoir capacity in Mphanda Nkuwa 417 

is considerably underestimated with perfect foresight (-25 M$/year, -53%), while the value of the hydropower 418 

turbines is considerably overestimated (+47 M$/year, +71%). Hence, we find that the value of reservoirs tends to be 419 
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underestimated with perfect foresight, while the value of hydropower plants is overestimated. When implementing 420 

all hydropower projects (Table 5), perfect foresight leads to an underestimation of trade-offs with the industrial and 421 

domestic water users (-8 M$/year) and agricultural production (-31 M$/year). While the additional hydropower 422 

production is almost the same for both frameworks, perfect foresight avoids more energy production costs by 423 

alternative sources (-31 M$/year). Similar effects are found for the impact of the e-flow policy and the irrigation 424 

development (Table 5): with perfect foresight the projects/policies lead to more hydropower curtailment, but to a 425 

lower economic impact on the energy system (lower energy production costs).  The reason is that with perfect 426 

foresight hydropower curtailments are timed to minimize the need of extra power capacity development, while in 427 

actual operation, this is not feasible.  428 

These numbers can be compared to the uncertainty linked to climate change; from the driest to the semi-wet 429 

scenario, the value of all irrigation projects varies from 723 to 883 M$/year (+22%), the value of all hydropower 430 

projects from 736 to 1163 M$/year (+58%), and the opportunity costs of the environmental policy from 284 to 55 431 

M$/year (-80%). Furthermore, in Payet-Burin et al. (2019), other factors such as yield growth, international crop 432 

prices, carbon taxes, and cost of renewable technologies are found to be as important regarding the uncertainty of 433 

the future value of investments. 434 

In conclusion, when evaluating the economic impact of investments in the Zambezi River Basin, we find that the 435 

perfect foresight assumption has negligible impacts for the semiwet and semidry climate scenarios. In the driest 436 

climate scenario, some investment values are over or under-estimated by more than 20%, but overall the uncertainty 437 

linked to the climate is more important than the bias linked to the perfect foresight framework. However, the perfect 438 

foresight assumption could impact the decision-making process when testing the robustness of investments 439 

regarding climate uncertainty. 440 

 441 

Table 4. Impact of the perfect foresight assumption on the economic evaluation of infrastructure 442 

development and policies. diff. indicates the relative difference as (PF-MPC)/MPC. All projects 443 

includes also other projects as in World Bank (2010). The infrastructure investments costs 444 

(CAPEX) are provided as an indicative value.  445 

 

 

Investment benefits (M$/year) 

 Climate scenario CAPEX semi-wet semi-dry driest 

 Investment M$ MPC PF diff. MPC PF diff. MPC PF diff. 

Ir
ri

g
at

io
n
 Shire 280 109 109 0% 110 109 -1% 32 61 90% 

Delta 573 138 138 0% 138 138 0% 144 137 -5% 

Kariba 787 346 344 -1% 319 322 1% 285 308 8% 

All projects 2 501 883 884 0% 836 843 1% 723 754 4% 

e-flow Opportunity costs - 55 52 -5% 123 116 -5% 284 218 -23% 

H
y
d
ro

p
o
w

er
 

Batoka Gorge 3 603 407 406 0% 392 392 0% 328 355 8% 

Reservoir  5 2  5 1  -8 1  

Hydropower  402 404 0% 387 390 1% 336 354 5% 

Mphanda Nkuwa 2 142 326 333 2% 272 279 3% 101 113 12% 

Reservoir  14 16 13% 25 21 -17% 48 23 -53% 

Hydropower  311 317 2% 247 258 5% 53 90 71% 

All projects 10 972 1163 1196 3% 1033 1039 1% 736 804 9% 

Reservoir  26 27 5% 33 33 -1% 86 82 -5% 

Hydropower  1137 1169 3% 1000 1006 1% 650 721 11% 

 446 

Table 5. Key indicators for the with-without analysis of selected investments and policies. diff. 447 

indicates the relative difference as (PF-MPC). 448 

Investment All irrigation projects E-flow policy All hydropower projects 

Key indicators [M$/year] MPC PF diff. MPC PF diff. MPC PF diff. 
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Total economic impact 723 754 31 -284 -218 66 736 804 68 

Water User Benefits 7 0 -7 -6 0 6 -6 2 8 

Energy Supply Benefits 0 0 0 0 0 0 0 0 0 

Energy Production Costs 96 98 2 222 211 -11 -742 -773 -31 

Crop Supply Benefits 1065 1110 45 -70 -9 61 -5 38 43 

Crop Production Costs 253 257 4 -13 -1 12 -5 9 14 

Downstream flow (106m3/year) -4761 -4888 -127 954 560 -394 1038 714 -324 

e-flow fail (106m3/year) -45 0 45 21 0 -21 20 0 -20 

Hydropower production 

(GWh/year) 

-1975 -2142 -167 -3571 -3990 -418 17476 17501 25 

Irrigation consumption 

(106m3/year) 

4619 4859 241 -597 -153 443 -705 -457 249 

Irrigated area (1000ha) 292 292 0 -12 -2 11 -7 4 11 

 449 

5 Discussion and Conclusion 450 

In this paper, we show how the Model Predictive Control framework can overcome assuming perfect knowledge of 451 

the future in hydroeconomic optimization models. The method is attractive as it does not necessarily require 452 

additional data and can be applied to complex large-scale models. We validate the method by comparing it to 453 

Stochastic Dynamic Programming on a simple study case. We highlight impacts of assuming perfect foresight: high 454 

flows are anticipated in the model by earlier water releases avoiding spills; low flows are anticipated by storing 455 

additional water avoiding curtailments. On a more complex system in the Zambezi River Basin, we show that 456 

perfect foresight also results in better timing of hydropower production leading to less power capacity construction. 457 

By using a wide range of scenarios, we show that the importance of these effects is highly dependent on the system 458 

state. We find that perfect foresight overestimates total system benefits by less than 2% for all scenarios (compared 459 

to Model Predictive Control), while a pure simulation framework shows differences up to 12% for the water-scarcest 460 

scenarios. The specific focus of the paper is to analyze the impact of assuming perfect foresight in cost-benefit 461 

analysis of investments and policies through with-without analysis. On the Nile synthetic case, for some scenarios 462 

the perfect foresight assumption is found to have no impact. But for other scenarios, the value of an irrigation project 463 

is overestimated by 5 to 12% while the value of a transfer project is underestimated by 20 to 35%. We also show 464 

that using a non-adaptative simulation rule is clearly inappropriate when exploring scenarios with a different system 465 

state as economic impacts are over and underestimated by more than 30% for a large range of scenarios. Hence, 466 

while perfect foresight can introduce bias in the economic analysis, the assumption seems more reasonable than 467 

using a simulation framework with static rules. 468 

The impact of assuming perfect foresight is confirmed when applying the methodology to a large-scale problem on 469 

the Zambezi River Basin involving interactions between the water, energy and agriculture systems. Perfect foresight 470 

does not affect the economic evaluation of potential investments in two out of three climate change scenarios. 471 

However, in the driest climate change scenario, the value of one irrigation projects is overestimated by 90% while 472 

other projects show little bias, the opportunity costs of an environmental flow policy are underestimated by 23%, the 473 

value of reservoir capacity development is underestimated by 5 to 53%, and the value of hydropower turbines are 474 

overestimated by 5 to 71%. In general, we find the impact to be less important on larger investments. 475 

Contrary to total system benefits, the differences found in the with-without analysis can impact decision-making on 476 

project development. While perfect foresight provides an upper bound to total economic benefits of a system, this is 477 

does not hold for economic evaluation of investments through with-without analysis. In with-without analysis, the 478 

impact of the perfect foresight assumption depends on the current system state and towards which state the project 479 

moves the system. As different effects are impacting the results, it is difficult to predict in which cases the perfect 480 

foresight assumption will lead to biased cost-benefit results as it might vary from case to case. We can however 481 

formulate these general insights:  482 

In water scarce situations (where demand is large relative to supply and/or variability is high relative to storage), 483 

perfect foresight will tend to overestimate benefits of infrastructure, because close to perfect water management is 484 

more valuable. In abundant situations, perfect management is less valuable so perfect foresight will be closer to 485 

reality. With regards to infrastructure, perfect foresight will tend to overestimate the benefits from infrastructure 486 
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using water (e.g. irrigation and turbines), while benefits from infrastructure for managing flows (e.g. reservoirs) tend 487 

to be underestimated.  488 

Hence when using perfect foresight models, we recommend the use of a framework like Model Predictive Control to 489 

perform the economic evaluation of investments and policies, or to control the validity of the perfect foresight 490 

assumption. However, we find that the uncertainty linked to exogenous parameters like climate change (or socio-491 

economic development not explored in this paper) is likely to have more impact than the bias introduced by perfect 492 

foresight. While the framework is not limited by the curse of dimensionality, it does increase computation costs. If 493 

those become a burden when evaluating a large range of scenarios for robust decision-making, a trade-off must be 494 

found between uncertainty introduced by the perfect foresight assumption and uncertainty introduced by exploring 495 

less scenarios. When researchers for computational reasons opt for perfect foresight, these insights can be useful for 496 

conducting sensitivity analyses or stating qualifications. 497 
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Nearest neighbors bootstrapping (Lall & Sharma, 1996) is a method to generate synthetic time 

series or forecasts using observed time series while preserving important correlations and 

autocorrelations (Yates et al., 2003). The concept is to find a system state in the historical archive, 
which is similar to the current state of the system and then assume that future evolution will be 

similar to the evolution observed in the past. The approach can be divided in three steps: (1) 

Define the feature vector characterizing the current state of the system, (2) Find the nearest 

neighbors (closest past system states) in the observed time series, (3) Sample from the nearest 
neighbors to generate a forecast or a synthetic time series. 

At a given time step (i), we consider here as feature vector (Di), the ensemble of: total runoff (Qi), 

average precipitation (Pi), and average reference evapotranspiration (Ei) in the system.  

Di  =  [Qi, Pi, Ei] 

The ensemble of feature vectors of past occurrences (D) is defined for the ensemble of time steps 

corresponding to the same month as the current time step (𝑇𝑚𝑜𝑛𝑡ℎ(𝑖)). 

D = ([Qt, Pt, Et] |𝑡 ∈ 𝑇𝑚𝑜𝑛𝑡ℎ(𝑖)) 

D = ([Qt , Pt, Et] ∀ 𝑡 ∈ 𝑇 |𝑚𝑜𝑛𝑡ℎ(𝑡) = 𝑚𝑜𝑛𝑡ℎ(𝑖)) 

D = ([Qt, Pt, Et] ∀ 𝑡 ∈ 𝑇𝑚𝑜𝑛𝑡ℎ(𝑖)) 

The distance (rt) of a past state (Dt) to the current system state (Di) is calculated using the 

Euclidian norm between feature vectors: 

rt  =  √∑ w𝑗 ∙ (Di
j

− Dt
j
)

2

𝑗

 

where wj are the weights of the elements of the feature vector (runoff, precipitation, and 

evapotranspiration here). We define the weights as the inverse of the standard deviation of the 

elements of the feature vector. For example, the runoff weight takes the form: 

𝑤𝑄  =  1
𝑠𝑡𝑑(Qt | 𝑡 ∈ 𝑇𝑚𝑜𝑛𝑡ℎ(𝑖))⁄  

The k nearest neighbors are the k past system states with the lowest distance to the current state. 

The choice of k can be optimized, Lall and Sharma (1996) suggest the square root of the total 

amount of samples. Because we use 40 years or 360 months length time series, we choose k=20. 

The nearest neighbors are ranked from lowest to highest Euclidian distance. To sample among the 
nearest neighbors, we define the sampling Kernel based on the rank of the neighbors, as in Yates 

et al. (2003). 

Kl =  1 𝑙⁄
∑ 1 𝑛⁄𝑛=1..𝑘

⁄  

where 𝑙 is the rank of the neighbors. This approach assumes that only the rank affects the 
probability; Akbari et al. (2011) describe alternative sampling Kernels. 

To generate an ensemble forecast, the desired number of neighbors are sampled with probability 

K. To generate an average forecast, the nearest neighbors are weighted according to their 

probability to generate a single weighted forecast (D̂i+m): 

D̂i+m = ∑ 𝐾𝑙 ∙ 𝐷𝑡(𝑙)+𝑚

𝑙=1..𝑘

  

Where m is the forecast lead time (in time steps) and 𝑡(𝑙) is the time step corresponding to the l-

th ranked neighbor. We also generate weighted ensemble forecasts, by classifying the k-nearest 

neighbors in different categories based on the total predicted runoff (e.g. 50% lowest and highest 
predictions) and then computing the weighted average forecast within the categories. The 

likelihood of the categories is then the sum of the neighbor's likelihoods belonging to this 

category. This last method enables to generate an ensemble forecast with less members that still 
contains information from the k-nearest neighbors. 



 

 

3 

 

Loucks and Van Beek (2005) describe the development of the SDP method. The code 
implementing the SDP framework is https://github.com/RaphaelPB/WHAT-IF under the "Nile 

synthetic case" branch in the file "Nile_SDP_water_value.py". The SDP framework is not part of 

the WHAT-IF tool and was only implemented on this specific study case to compare results with 

the Model Predictive Control framework. Figure S1 shows example of the reservoir storage value 
for three scenarios obtained from backwards runs in the SDP framework. When comparing the 

full range of scenarios exploring total runoff and water demand, the reservoir storage value is 

calculated individually for each scenario. 

 

This section provides two additional figures to the paper: Figure S2 shows the differences 
between the frameworks on key indicators not restricted to total system benefits (Allocation 

value, Hydropower value, Spills and Storage), Figure S3 shows the impact on total system 

benefits and cost-benefit analysis when evaluating the project development as in the Paper, but 
displays the results in terms of relative value (percentage). 
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