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Abstract

This study presents a new methodology for identifying near-optimal sensor locations for contaminant source tracing in river

networks. To establish a physical basis for the problem, we first derive a linear time-invariant (LTI) model for riverine con-

taminant transport using the one-dimensional advection-diffusion equation. We then formulate an optimization problem to

find the sensor placement that maximizes the observability of the modeled system, and identify two heuristics for efficiently

achieving this goal. Evaluating each sensor placement strategy on its ability to reconstruct initial contaminant loads from

observed outputs, we find that the best sensor placement is obtained by greedily maximizing the rank of the LTI system’s

Observability Gramian. In addition to providing the best approximate reconstruction of internal states, this strategy makes

it possible to perfectly recover any initial contaminant load while only monitoring a small subset of river branches (˜14%).

Our methodology will enable researchers to build sensor networks that better interpolate pollutant loads in ungaged locations,

improve contaminant source identification, and inform more effective pollution control strategies.

1



Observability-based sensor placement improves
contaminant tracing in river networks

Matt Bartos
Dept. of Civil Engineering

University of Michigan
mdbartos@umich.edu

Branko Kerkez
Dept. of Civil Engineering

University of Michigan
bkerkez@umich.edu

Abstract

This study presents a new methodology for identifying near-optimal sensor loca-
tions for contaminant source tracing in river networks. To establish a physical basis
for the problem, we first derive a linear time-invariant (LTI) model for riverine
contaminant transport using the one-dimensional advection-diffusion equation. We
then formulate an optimization problem to find the sensor placement that max-
imizes the observability of the modeled system, and identify two heuristics for
efficiently achieving this goal. Evaluating each sensor placement strategy on its
ability to reconstruct initial contaminant loads from observed outputs, we find that
the best sensor placement is obtained by greedily maximizing the rank of the LTI
system’s Observability Gramian. In addition to providing the best approximate
reconstruction of internal states, this strategy makes it possible to perfectly recover
any initial contaminant load while only monitoring a small subset of river branches
(∼14%). Our methodology will enable researchers to build sensor networks that
better interpolate pollutant loads in ungaged locations, improve contaminant source
identification, and inform more effective pollution control strategies.

1 Introduction

Global river health is in a state of crisis. In the United States, roughly 46% of river length is classified
as being in poor biological condition [1]. Survey results indicate similar trends worldwide [2, 3].
The main drivers of surface water impairment are nonpoint-source pollutants like sewage, nutrients,
and sediments [4]. Sewer overflows release pathogens that are attributable to roughly 3,400-5,600
cases of illness annually in the United States [5]. At the same time, excessive nutrient loads from
agriculture result in harmful algal blooms that impair aquatic ecosystems and render water unsafe to
drink [6, 7]. Sediment transport results from almost all human land use [8], and leads to destruction of
aquatic habitats [9, 10], deposition of toxic chemicals [11, 12], and loss of reservoir capacity [9, 13].
Despite the severity of impacts, nonpoint-source pollutants are often poorly characterized and thus
inadequately managed.

To address surface water impairment, new systems for continuous water quality monitoring are
desperately needed. In the United States, water quality is heavily regulated but not heavily enforced
[14, 15]. Water managers rely on periodic field surveys to measure contaminants of interest. However,
water quality measurements are typically only collected on a weekly to monthly basis [16]. At this
temporal resolution, it is almost impossible to capture the influence of storm events [16], which exert
a dominating effect on water quality [17]. While continuous water quality data are provided by the
United States Geological Survey (USGS), there is currently only about one gage per 4,400 km2 of
land area in the United States [18]. Sparse and infrequent data make it difficult to accurately assess
river health, identify pollution sources, or even evaluate the effectiveness of existing interventions.

Fortunately, new sensing technologies are enabling researchers and stakeholders to better characterize
and respond to waterborne contaminants. Novel optical nitrate sensors [19], continuous-flow PCR



reactors [20], and automated grab samplers [17] are providing new tools to measure pathogen and
nutrient loads in-situ. At the same time, internet of things technologies are allowing researchers to
build larger sensor networks that collect more real-time data than ever before [21]. These advances
are enabling researchers to better understand contaminant fate and transport not only at individual
sites, but at the scale of entire river basins.

As new technologies make it possible to characterize water quality at unprecedented scales, the
question of where to place sensors takes on greater significance. Historically, monitoring programs
have been initiated on a site-by-site basis in response to known cases of water quality impairment
[22]. However, focusing on individual problem sites does not guarantee a suitable sensor place-
ment for system-scale problems like contaminant source identification. Despite recent advances in
sensing, water quality monitoring remains costly and labor-intensive. With increasing budgetary
constraints being placed on water quality monitoring programs [23], it is imperative that sensor sites
be selected efficiently. This study seeks to answer the question: where should we place sensors to
best characterize water quality using the minimum number of sites?

1.1 Background

Within the field of water resources engineering, the sensor placement problem has been most
extensively studied in drinking water distribution systems. In this context, protecting human safety is
paramount, and so studies tend to focus on minimizing public health impacts from contamination
events [24]. Sensor placement is thus optimized for security-related objectives such as minimizing the
time to contaminant detection, minimizing the number of people exposed, or maximizing detection
likelihood [25]. To achieve these objectives, studies explore a variety of techniques including
expert opinion [26], mixed-integer programming [27–30], genetic algorithms [25, 31–33], graph
centrality metrics [34], minimum test cover selection [35], cross-entropy selection [36], and various
combinatorial heuristics [37–40]. A recent review catalogs over 90 studies related to sensor placement
for contaminant detection in water distribution networks alone [24].

For river networks, the goals of contaminant monitoring are different, and thus different sensor
placement strategies are required. River monitoring programs focus less on detecting acute hazards,
and more on characterizing long-term human impacts to water quality [41]. In this vein, common
applications include wildlife impact assessments [42, 43], contaminant source tracing studies [44, 45],
and future predictions of river health based on current trends [46]. This information is vital for water
managers seeking to develop effective remediation strategies [47]. However, because monitoring goals
differ between river networks and water supply networks, sensor placement techniques designed
for one system do not necessarily carry over to the other. Sensor placement strategies for river
networks must meet the needs of current monitoring programs, which fundamentally revolve around
understanding the present, past and future states of the system.

To better characterize surface water quality and its drivers, this study investigates the problem of
optimal sensor placement for state estimation. In plain language: given a dynamical model of a
river network, we seek the sensor placement that enables the best reconstruction of internal states
from observed outputs. State estimation informs a number of critically important applications in
riverine contaminant fate and transport. First, it enables interpolation of contaminant loads at ungaged
locations, which is necessary for assessing impacts in sparsely instrumented basins. Second, state
estimation facilitates contaminant source identification, which is essential for tracking down the
origin of pollutant releases and taking corrective action. Third, state estimation improves our ability
to forecast the movement of contaminant plumes, which helps to coordinate early warnings and
interventions. Finally, when paired with real-time control, state estimation enables water managers to
actively improve water quality—for instance, by holding back water in retention basins to encourage
sedimentation and reduce downstream erosion.

The problem of optimal sensor placement for state estimation has attracted a large body of practical
and theoretical research. On the practical side, sensor placement has been investigated with respect
to state estimation in electric power grids [48, 49], biochemical reaction networks [50], robotic
locomotion and path-planning [51–53], structural health monitoring [54–56], spacecraft [57], weather
monitoring [58], and contaminant monitoring in soil [59]. These applications have been supported by
recent theoretical advances that make the sensor placement problem amenable to larger and more
complex networks. Within this domain, some important contributions include scalable graphical
approaches to sensor placement [50], convex relaxations to the sensor placement problem [60], and
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approaches based on maximization of “signal energy” [61–63]. While state estimation has long been
used in hydrology [64], to our knowledge there are no studies that have examined the problem of
optimal sensor placement for riverine contaminant transport.

1.2 This work

Despite numerous practical benefits, there are as of yet no studies that examine the problem of sensor
placement for state estimation in river networks. To fill this knowledge gap, this study presents a
new methodology for determining optimal locations of riverine water quality sensors. To permit a
theoretical treament of the problem, we first derive a linear time-invariant (LTI) model for contaminant
transport in river networks based on the one-dimensional advection-diffusion equation. We then
propose two heuristics for selecting sensor locations that maximize the observability of this LTI
system—by maximizing the trace and rank of the system’s Observability Gramian, respectively.
We evaluate each sensor placement heuristic by simulating the system under a large number of
random contaminant loads and determining which sensor placement is best able to reconstruct initial
contaminant loads from observed outputs. The result is a robust and theoretically-sound method for
selecting water quality sensing sites in river basins. Our method will assist practitioners in building
more effective sensor networks for riverine contaminant monitoring and also help to identify “blind
spots” in existing deployments. While this study primarily focuses on contaminant transport, we
discuss how our sensor placement algorithm will also inform better systems for flash flood monitoring
and hydrologic state estimation.

2 Mathematical description of transport dynamics

This study focuses on the optimal sensor placement needed to characterize transport of contaminants
in river networks. Thus, before we can formulate an algorithm for sensor placement, it is first
essential to capture an accurate mathematical representation of riverine transport dynamics. In this
section, we derive a linear time-invariant model for contaminant transport in river networks using the
one-dimensional advection-diffusion equation. This physically-based model will form the basis for
our subsequent sensor placement algorithm.

The transport of a contaminant through a fluid medium is described by the one-dimensional advection-
diffusion equation [65]:

∂c

∂t
+
∂(uc)

∂x
− ∂

∂x

(
D
∂c

∂x

)
− r(c) = 0 (1)

Where c is the quantity of interest per unit length, u is the velocity of flow, D is the diffusion
coefficient, r(c) is the endogenous reaction rate, t is time and x is distance.

Discretizing this equation in time and space using an explicit upwind scheme [66], the quantity of
interest at an element i can be described as a linear function of the quantities at the upstream element
i− 1 and the downstream element i+ 1:

ct+∆t
i − cti

∆t
+
uic

t
i − ui−1c

t
i−1

∆xi
− 2Di

∆xi

[
ci+1 − ci

∆xi + ∆xi+1
− ci − ci−1

∆xi−1 + ∆xi

]
−Kcti = 0 (2)

For a network of elements, this equation can be generalized as a matrix equation ct+∆t = Act, where
A is a discrete-time state transition matrix. Expressing the equation in matrix form greatly simplifies
the presentation of the sensor placement problem. Thus, in the following sections we derive the
advective, diffusive, and reactive components of the state transition matrix, and present a general
linear time-invariant state space model for contaminant transport in river networks.
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Advection: Advection refers to the transport of a contaminant due to the bulk motion of a carrier
fluid. To represent advection in the form of a matrix expression, we first define a directed weighted
adjacency matrix U to represent the inward flux into each element, with entries defined as:

Uij =

{
ujiφji∆t

∆xi
if there exists a directed path from vj to vi, and vi 6= vj

0 o/w
(3)

Where i is the row index, j is the column index, vj is the source node, vi is the destination node, and
φji ∈ [0, 1] is the fraction of flow from vj that enters vi. Each node in the network corresponds to an
individual stream segment. Next, we define a weighted adjacency matrix W to represent the outward
flux from each node:

Wij =

{
uijφij∆t

∆xi
if there exists a directed path from vi to vj , and vi 6= vj

0 o/w
(4)

Finally, let V be the diagonal matrix V = diag(W1). Thus, the advective component of the equation
can be represented by the matrix expression (U − V )ct, which yields the net advective transport
through each node i at time t:

((U − V )ct)(i) =
∑
j∈Ui

ctjujiφji∆t

∆xi
−
∑
k∈Di

ctiuikφik∆t

∆xi
(5)

Where Ui is the set of nodes upstream of node vi, and Di is the set of nodes downstream of node vi.

Diffusion: Diffusion represents the transport of a contaminant from regions of high concentration
to low concentration due to random movements within the carrier fluid (e.g. turbulence). To express
the diffusion component as a matrix expression, we first define the following undirected weighted
adjacency matrix X , with elements defined as follows:

Xij =

{
2

∆xi+∆xj
if vi adjacent to vj , and vi 6= vj

0 o/w
(6)

Thus, each nonzero element represents the inverse of the average distance between the center of node
vi and the center of adjacent node vj . Let Z be the diagonal matrix:

Z = diag
(
D1∆t

∆x1
, . . . ,

Dn∆t

∆xn

)
(7)

Finally, let Y be a diagonal matrix Y = diag(X1). Then the diffusive component of the advection-
reaction-diffusion equation can be represented by the matrix expression Z(Y −X), which yields the
diffusion from node vi to neighboring nodes at time t.

(Z(Y −X)ct)(i) =
2Di∆t

∆xi

∑
j∈Ni

cti − ctj
∆xi + ∆xj

(8)

Where Ni is the set of nodes adjacent to (i.e. either upstream or downstream of) node vi. Note that
the expression Z(Y −X) is equivalent to a rescaled graph Laplacian.

Reaction: The reaction component represents the portion of contaminant lost or gained due
to interactions with the surrounding environment (e.g. chemical reactions, sedimentation,
etc.). To express the reaction term, define a diagonal matrix of reaction coefficients R =
diag(K1∆t,K2∆t, . . .Kn∆t). Then the reaction rate at node i is expressed as:

(Rct)(i) = ctiKi∆t (9)
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Figure 1: Contaminant progression over time, with contaminant quantity per unit length (in nominal
units of g/m) indicated by both color and width. The watershed contributing area is shown in light
gray, while the channel network is shown in dark gray.

State space equation: Following the previous derivations, we may define the state transition matrix
A that carries the system states from time t to t+ ∆t:

A = (U − V )− Z(Y −X) +R+ I (10)

Thus, assuming no exogenous input, the state transition from time t to t+ ∆t for node vi is:

(ct+∆t)(i) = (Act)(i) =
∑
j∈Ui

ctjujiφji∆t

∆xi
−
∑
k∈Di

ctiuikφik∆t

∆xi
+

2Di∆t

∆xi

∑
j∈Ni

cti − ctj
∆xi + ∆xj

+ ctiKi∆t+ cti

(11)

Figure 1 shows the transport of a contaminant in a river network using the above formulation. Using
the state transition matrix A, the advection-diffusion dynamics on the network can be formulated as a
discrete-time linear time-invariant (LTI) state space system:

c(t+ ∆t) = Ac(t) +Bu(t) (12)
y(t) = Cc(t) (13)

Where A is the n × n state transition matrix defined previously, B is the n × p input matrix, C is
the m× n observation matrix, c(t) is the n× 1 vector of system states at time t, u(t) is the p× 1
exogenous input vector, and y(t) is the m× 1 observed output vector of the system at time t.

The state equation (12) describes the evolution of system states over time, while the output equation
(13) describes the observable output of the system (e.g. sensor readings). With respect to the sensor
placement problem, the rows of C represent sensor locations. Independent sensors located on each
river reach correspond to an observation matrix equal to the identity matrix (C = I). If we consider
the case of independent sensors located on some subset of reaches in the network, then C would be a
matrix formed from a subset of the rows of the identity matrix. In the context of sensor placement,
one can represent different sensor strategies by changing the rows of the observation matrix C. In the
following section, this formulation will enable us to define algorithms for computing optimal sensor
placement strategies.

3 Sensor placement methodology

We define an optimal sensor placement as one that enables the best reconstruction of a system’s
internal states from its measured outputs. This definition follows from the concept of observability in
control theory, wherein a system is said to be completely observable if all past states can be perfectly
inferred from its sensor outputs [67]. In the following section, we will quantify what it means to “best
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Figure 2: Conceptual sensor placements for a convergent binary tree graph. Left: sensor placement
needed for complete observability (sensors in black). Center: incremental sensor placement by trace
maximization of Wo. Right: incremental sensor placement by rank maximization of Wo. Sensor
placements are ordered with a left-handed bias.

reconstruct internal states”, and propose algorithms for finding the sensor placement that achieves
this goal.

The most general test for the observability of a deterministic linear system is given by the Observability
Gramian. For a discrete-time LTI system, the Observability Gramian Wo(tf , t0) is a matrix-valued
function defined over the time interval t0 to tf [67]:

Wo(tf , t0) =

tf∑
t=t0

(AT )tCTCAt (14)

Where t0 and tf are the start and end times of the observation interval, respectively. A linear system
is completely observable over this time interval if and only if the Observability Gramian is full rank.
Under this condition, the system state at any initial time t0 can be recovered from the observed
outputs y(t) using the least-squares formulation [67]:

x(t0) = W−1
o (tf , t0)

tf∑
t=t0

(AT )tCTy(t) (15)

While the Observability Gramian is defined with respect to a particular time interval, one can
characterize the general observability of the system by letting tf approach infinity. In this case,
the infinite time-horizon Observability Gramian Wo is given by the solution to the discrete-time
Lyapunov equation [67]:

ATWoA−Wo + CTC = 0 (16)

If Wo is full rank, then the history of internal states can be reconstructed from some arbitrarily long
sequence of sensor outputs, and the system is completely observable in the general case. The infinite
time-horizon Observability Gramian provides a way to determine the observability of a system that
may take an indefinitely long time to reach a steady state (which is often the case when diffusion
effects are present).

For dendritic systems with convergent flow, the conditions for complete observability are difficult to
achieve in practice. In general, for every branch in which p upstream nodes converge to 1 downstream
node, sensors must be placed on both the downstream node as well as on p− 1 of the upstream nodes
(see Figure 2 for an illustration) [50]. Thus, assuming a bifurcating branching pattern, a river network
would require roughly half of all tributaries to be monitored in order to be completely observable.1

However, in addition to determining whether a linear system is completely observable, the Observ-
ability Gramian also indicates the system’s relative observability. Some intuition for this concept is

1Note that this statement is only true for the case where all edge weights are equal. For a branching network
with non-symmetric edge weights, complete observability can be achieved with many fewer sensors.
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given by the relationship between the Observability Gramian and the estimation error covariance.
Consider an LTI system in which each sensor is corrupted by Gaussian white noise. In this case,
the estimation error covariance P (tf , t0) gives the expected error associated with reconstructing the
system’s state at some previous time t0:

P (tf , t0) = E[(x(t0)− x̂(t0))(x(t0)− x̂(t0))T ] (17)

Where x(t0) is the initial state at time t0, and x̂(t0) is the minimum variance estimate of the initial
state given a sequence of sensor outputs from t0 to tf . The diagonal elements of P are the variances
of the estimation errors for each state. If the measurement error at each sensor is independent and
identically distributed with variance σ2, it can be shown that the estimation error covariance P is
inversely proportional to the Observability Gramian [63]:

P (tf , t0) = σ2W−1
o (tf , t0) (18)

This relationship reveals that “maximizing” the Observability Gramian will in some sense “minimize”
the estimation error. However, one of the central challenges in sensor placement is deciding what it
means to “maximize” a matrix-valued function. Within the literature, various methods have been
proposed, including maximizing the trace, the determinant, the rank, or the minimum eigenvalue of
the Observability Gramian [63]. Some of these metrics—such as the determinant—are only valid for
completely observable systems.

For systems that are not completely observable, two natural candidates emerge for minimizing the
estimation error. The first option is maximizing the trace of the Observability Gramian, which
corresponds to minimizing the average estimation variance over all observable modes. The second
option is maximizing the rank of the Observability Gramian, which corresponds to maximizing the
number of observable subspaces. These two approaches have different strengths and limitations in
terms of the types of signals they are best able to detect.

3.1 Sensor placement algorithms

In the following discussion, we formalize the sensor placement problem in terms of maximizing
the trace and rank of the Observability Gramian, respectively. For the application of contaminant
monitoring, we will assume that it is possible to place a sensor at each river reach on the network. In
this case, the observation matrix C is a subset of the rows of the identity matrix I . Moreover, we will
assume that the number of desired sensors is known and given by N . Under these conditions, sensor
placement can be formulated as an optimization problem for each objective function of interest.

Trace optimization: Maximizing the trace of the Observability Gramian has an intuitive justifica-
tion in terms of minimizing the average estimation variance. The variances of the estimation errors
in each direction of the state space are given by the eigenvalues of the estimation error covariance
P . Moreover, from Equation (18), we know that the Observability Gramian is the inverse of the
estimation error covariance. Therefore, because the trace is equal to the sum of the eigenvalues,
maximizing the trace of the Observability Gramian is equivalent to minimizing the sum of the
estimation variances.

To solve the optimization problem efficiently, we use an interesting correspondence between the
Observability Gramian and its dual, the Controllability Gramian. Specifically, it can be shown that the
N sensor locations that maximize the trace of the Observability Gramian correspond to the N largest
diagonal indices of the corresponding Controllability Gramian (see Theorem 1 in Appendix Section
A1). Thus, we can state the trace-optimized sensor placement strategy as the following optimization
problem:

max
K∈K

∑
k∈K

eTkWcek

s.t. AWcA
T −Wc + I = 0

|K| = N

(19)
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Figure 3: Sensor placement progression for rank- and trace- optimized strategies from N = 2 to
N = 16 sensors.

Where K is a set of sensor locations with elements {k ∈ N|1 ≤ k ≤ n}, K is the set of all possible
sets of sensor locations, and ek ∈ Rn is the kth canonical basis vector (i.e. the kth column of the
identity matrix). This optimization problem can be solved quickly by computing Wc, and then finding
the indices of the N largest diagonal elements. The computational complexity of this approach is
approximately O(n3)—(see Appendix Section A2 for details).

Rank optimization: Compared to maximizing the trace, maximizing the rank of the Observability
Gramian enables better identification of spatially localized signals. While optimizing the trace
maximizes the overall “signal energy”, it provides no guarantees on the number of observable
subspaces. In the context of river networks, this means that the trace-optimized sensor placement will
often struggle to detect which branch in the network a contaminant load originated from. Selecting
the rank as the objective function ensures more equal representation of each subspace, enabling better
characterization of smaller tributaries. We can express the rank-optimized sensor placement strategy
as the following optimization problem:

max
K∈K

rank(Wo)

s.t. ATWoA−Wo +
∑
k∈K

eke
T
k = 0

|K| = N

(20)

With all variables defined previously. Prior work has shown that the rank of the Observability
Gramian is a submodular function with respect to the columns of the observation matrix [62]. This
property means that a greedy optimization algorithm is capable of efficiently generating a near-
optimal solution—with the worst-case performance guaranteed to be at least 63% of the optimal
value [62]. In practice, greedy optimization will usually perform much better than this lower bound
[62]. Our greedy rank-optimized sensor placement algorithm is described formally in Algorithm 1.
The computational complexity of this approach is approximately O((N + 1)n4)—(see Appendix
Section A3 for details).

Visual comparison of algorithms: Visualization reveals that the rank- and trace-based sensor
placement strategies produce markedly different outcomes. Figure 3 shows the sensor placements
obtained through rank-based (left) and trace-based (right) optimization of the Observability Gramian,
for N = 2 to N = 16 sensors. From this figure, it can be seen that the trace-based strategy
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Data:
State transition matrix A ∈ Rn×n;
Desired number of sensors N ;
Result: Set of rank-optimal sensor locations K;

K ← ∅;
G1 ← {Wi | ATWoA−Wo + eie

T
i = 0, i ∈ [1, n]};

G2 ← ∅;
while |K| < N do

k ← argmax
i

{
rank(Wi +

∑
Wj∈G2

Wj)
}
, ∀Wi ∈ G1;

K ← K ∪ {k};
G1 ← G1 \ {Wk};
G2 ← G2 ∪ {Wk};

end

Algorithm 1: Greedy rank-optimized sensor placement algorithm.

concentrates all sensors along the river mainstem, whereas the rank-based strategy attempts to divide
the watershed into roughly equally-sized subcatchments. In general, the rank-based strategy optimizes
for exploration of the state space by distributing sensors evenly throughout the network, while the
trace-based strategy optimizes for exploitation of the total signal energy by placing all sensors in the
most information-dense region.

4 Evaluation of sensor placement

We evaluate the trace- and rank-based sensor placement algorithms by assessing how well each sensor
placement strategy reconstructs the location and magnitude of a series of initial contaminant loads. In
terms of real-world applications, this assessment corresponds to the problem of contaminant source
identification, in which one seeks to trace the origin of a contaminant of interest. In theoretical terms,
this test is similar to the fundamental test of observability in a linear system—except that in this case
we seek the sensor placement that enables the best approximation of an initial state, as opposed to a
sensor placement that enables its perfect reconstruction.

The evaluation procedure takes place in three main steps. First, we generate a series of randomized
initial contaminant loads. For each sensor placement and initial load, we then propagate the advection-
diffusion model forward in time and collect a corresponding sequence of observed outputs. We then
reconstruct the least-squares estimate of the initial state from the observed outputs and compute
the mean squared error associated with each sensor placement. This procedure yields the relative
reconstruction error associated with each sensor placement.

Sensor placement strategies are evaluated on their ability to reconstruct a series of initial contaminant
loads from observed outputs. Because a sparse sensor placement generally does not result in a
completely observable system, the initial contaminant load cannot be perfectly reconstructed and
must instead be approximated with a low-rank representation. For a given sparse sensor placement
K, the low-rank estimate of the initial contaminant load is given by:

x̂(t0,K) = W+
o (tf , t0,K)

tf∑
t=t0

(AT )tCTy(t) (21)

Where W+
o (tf , t0,K) is the Moore-Penrose pseudoinverse of the Observability Gramian associated

with sensor placement K [68]. Loosely speaking, the pseudoinverse is the “closest one can get” to
the true matrix inverse W−1

o for the case where Wo is singular. The corresponding mean squared
error (MSE) of this low-rank estimate is thus:

MSE(s) = ||x̂(t0,K)− x(t0))||22 (22)
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Figure 4: Overview of evaluation procedure. Top-left: initial contaminant loads generated using the
“heat kernel” method. Top-right: An example initial contaminant load x(t0). Bottom-left: Map of
reconstruction error with N = 11 sensors. Bottom-right: Histogram of reconstruction errors.

The mean squared reconstruction error provides an intuitive metric for comparing the effectiveness of
different sensor placement strategies, with a lower MSE indicating that the sensor placement is better
able to reconstruct an initial contaminant load.

To ensure a robust evaluation, it is important to generate a large number of initial contaminant loads
at different locations and with differing spatial extents. To accomplish this task, we use the “heat
kernel” method for generating random signals on graphs [69]. Specifically, for each trial we generate
a heat kernel G in the graph spectral domain, and then center the kernel around a vertex vj using the
generalized graph translation operation to produce a contaminant load g:

G(λ`) = e−ρλ` (23)

g(i) =

n−1∑
`=0

G(λ`)u
∗
` (j)u`(i) (24)

Where λ` and u` are the `th eigenvalue/eigenvector pair of the graph Laplacian associated with the
river network’s adjacency matrix. This operation effectively “localizes” the contaminant load around
a vertex vj with a spatial spread defined by ρ. Figure 4 (top) shows a series of initial contaminant
loads generated using this procedure. For the purposes of evaluation, we generate 200 randomized
initial contaminant loads by letting the heat kernel parameter ρ correspond to a normally distributed
random variable with a mean and standard deviation of 100. For each trial, the vertex vj around
which the kernel is localized is selected uniformly at random from the set of river reaches. To ensure
consistency between trials, all initial contaminant loads are normalized to be unit-norm.

In addition to comparing the trace- and rank-based sensor placement strategies against one another,
we also compare these two strategies to a baseline strategy in which the locations of sensors are
selected uniformly at random from all river reaches in the network. For this assessment, 10 different
randomized sensor placement trials are chosen, and the associated reconstruction error is compared
against the trace- and rank-optimized strategies.

For our test case, we focus on the Sycamore Creek watershed in the Dallas–Forth Worth metroplex.
This 83 km2 urban creekshed is the subject of a long-term sensor deployment led by the authors [70,
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71]. In constructing the dynamical model, we assume that the bulk velocity of flow is approximately
constant throughout the watershed—an assumption that has been empirically validated in previous
studies [72]. Note that for a chosen discrete timestep, the system is completely parameterized by
the basin Peclet number (the ratio of advection to diffusion). Based on values from the literature,
we assume that the basin Peclet number is Pe = 10 [72]. The contaminant is assumed to be a
conservative tracer (i.e. with a reaction constant of zero). We extract the channel network from digital
elevation model (DEM) data by selecting an accumulation threshold that visually agrees with channel
extents predicted by the National Hydrography Dataset [73].

4.1 Summary of evaluation procedure

Given a set of sensor placements K to test, we evaluate each sensor placement K as follows:

1. Generate a randomized set of initial contaminant loads X = {x1(t0) . . .xM (t0)}.
2. For each combination of sensor placement and initial state (K,x(t0)) ∈ K × X :

(a) Propagate the advection-diffusion model given by Equations (12) and (13) forward in
time from t0 to tf , collecting a sequence of observed outputs {y(t0), . . .y(tf )}.

(b) Use Equation (21) to generate a low-rank approximation of the initial state x̂(t0,K)
from the sequence of observed outputs.

(c) Compute the mean squared error between the true initial state x(t0) and the estimated
initial state x̂(t0,K) using Equation (22).

This evaluation procedure yields the mean squared error for each sensor placement with respect to
each initial contaminant load. The overall effectiveness of each sensor placement is evaluated as the
average mean squared error over all initial conditions tested.

4.2 Evaluation results

Among all methods considered, the rank-optimized sensor placement strategy produces the best
reconstruction of initial contaminant loads. Figure 5 (left) shows the mean squared error (MSE) vs.
the number of sensors for each placement strategy, averaged over all 200 initial contaminant loads
tested. In this case, the rank-optimized sensor placement achieves the lowest reconstruction error
regardless of how many sensors are used. The benefit of the rank-optimized strategy becomes even
more apparent when viewed on a log-scale (Figure 5, right). Here, it can be seen that the rank-based
sensor placement not only achieves the lowest MSE, but that the marginal advantage of the rank-based
strategy improves as the number of sensors increases.

The trace-optimized sensor placement exhibits comparatively poor performance. Indeed, the mean-
squared error associated with the trace-optimized strategy is generally larger than the error associated
with randomized sensor placements. This result suggests that the trace-optimized sensor placement
does not encourage sufficient exploration of the state space. As noted in Figure 3, the trace-optimized
algorithm places all sensors along the river mainstem, making it difficult to disambiguate the location
in the network from which any particular signal originates. In general terms, this result implies
that placing sensors evenly throughout the network (i.e. exploration) does more to reduce the
overall reconstruction error than focusing all sensors on the most information-dense regions (i.e.
exploitation).

The rank-based sensor placement strategy also converges to full observability faster than either the
randomized or trace-based strategies. For our test case, rank-based sensor placement requires only 32
sensors to achieve complete observability of the system. Given that there are 223 channel segments,
this means that only 14% of reaches need to be observed to perfectly reconstruct all internal states.
By comparison, the trace-based strategy requires 213 sensors to achieve complete observability, while
the randomized placements require 141 sensors on average (corresponding to 96% and 63% coverage
of stream reaches, respectively). This result highlights the critical importance of site selection in the
deployment of sparse sensor networks.

The rank-based sensor placement algorithm is also robust to parameter uncertainty in the underlying
dynamical system. We test robustness to parameter uncertainty by evaluating the performance of the
sensor placement algorithm when the basin Peclet number (Pe) is uncertain. Specifically, we generate
sensor placements assuming Pe = 10 and then run the evaluation procedure for systems with a
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Figure 5: Reconstruction error for different sensor placement strategies averaged over all 200
initial contaminant loads. Left: reconstruction error as measured by the mean-squared error. Right:
reconstruction error as measured by the log of the mean-squared error.

true parameter value of Pe ∈ {7.5, 15} to see how well the sensor placement is able to reconstruct
initial states. Figures A1 and A2 in the Appendix show the resulting reconstruction errors. While the
relative performance is slightly degraded in the high-advection case, the rank-based sensor placement
strategy still shows the lowest MSE and the fastest error convergence among all sensor placement
strategies considered.

5 Discussion

The rank-optimized sensor placement algorithm provides a powerful tool for improving contaminant
source identification in river networks. From a management perspective, information on contaminant
sources is a vital prerequisite to the development of pollution control strategies [47]. By tracking
down sources of nitrogen and phosphorus, for instance, water managers can prevent eutrophication by
enforcing targeted limits on fertilizer application or installing tile drains to halt nutrient seepage [74].
Similarly, source tracing of coliform bacteria may help to locate sanitary sewer leakages and prevent
disease outbreaks [75]. However, accurate contaminant source identification depends heavily on the
placement of sensors. Currently, little is known about the effectiveness of existing sensor placements
or sampling strategies. Our methodology will help fill this gap by providing water managers with a
clear procedure for placing water quality sensors to ensure more effective contaminant source tracing.

The sensor placement methodology presented in this paper will also strengthen emergency response
during acute contamination events by improving our ability to delineate and forecast contaminant
spread. Detection and mitigation of chemical spills in surface water is a central concern for water
managers. When the extent of contamination is known, water managers may deploy countermeasures
like pipe flushing and no-drink/no-use orders to avert health impacts [76]. For instance, in response
to the Elk River chemical spill of 2014, authorities tracked the progression of the contaminant plume
and were able to limit exposure by shutting off water intakes at treatment plants until after the
plume had passed [76]. These interventions are most effective when the extent and progression of
contamination is well-characterized [76]. Our methodology will help improve rapid response to
contamination events by enabling water managers to better pinpoint the location, magnitude and
trajectory of contaminant plumes.

Finally, our sensor placement methodology will bolster the development of smart stormwater systems
that use real-time control to improve urban water quality [21]. Recent studies have highlighted the
potential for real-time control of stormwater systems to restore ailing urban waterways by managing
nutrient and sediment loads [77–81]. Retrofitting retention basins with actuated valves, for instance,
makes it possible to strategically hold back water during storm events [70]. Strategic retention of
stormwater helps to reduce contaminant loads by enhancing sedimentation and reducing downstream
erosion [21]. Real-time control of sewer systems may also improve the treatment capacity of receiving
wastewater treatment plants by removing suspended solids and limiting inflows to sustainable levels
[82]. While real-time control promises to help reverse the impacts of urbanization on river health,
effective control is predicated on an accurate understanding of system states. Put simply, one needs
to know how a system is behaving in order to control it. Towards this goal, our sensor placement
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methodology will facilitate more effective water quality control by enabling better real-time estimates
of contaminant concentrations in urban watersheds.

5.1 Limitations and future work

One potential limitation of our sensor placement methodology is that it does not provide a mechanism
for incorporating uncertainty about the underlying dynamical system. While the algorithm is reason-
ably robust to parameter uncertainty in its current state, one could potentially improve performance
by integrating information about the distribution of uncertain parameters into the algorithm itself.
In the case of contaminant transport, the most important uncertain parameter is the Peclet number,
which describes the ratio of advective to diffusive transport. Although it is possible to characterize the
probability distribution of this uncertain parameter through tracer studies, the process of combining
sensor placements associated with each realization of this parameter into a single representative sensor
placement is not straightforward, but rather subject to interpretation and design goals. In real-world
applications, however, system parameters such as the Peclet number will generally incorporate some
degree of uncertainty. Thus, future research should extend our sensor placement methodology to
account for parameter uncertainty in the underlying dynamical system.

Further work should also investigate ways to extend our sensor placement algorithm to larger
watersheds. The time complexity of the rank-based sensor placement algorithm is approximately
O((N + 1)n4), with n corresponding to the number of candidate sensor sites, and N corresponding
to the number of desired sensors. Thus, for very large river networks (on the order of thousands or
millions of stream reaches), the algorithm may prove computationally intractable. One simple and
intuitive way to handle this issue is to simply limit the number of stream reaches under consideration
by restricting the dynamical model to streams above a specified size. For stream networks delineated
from DEM data, this goal is readily accomplished by setting the accumulation threshold to an
appropriate user-specified value. Future research should also investigate simplified sensor placement
algorithms that do not require computing the full Observability Gramian of the system. Sensor
placement algorithms based purely on network topology for instance [83], could provide a scalable
alternative to our theoretically-motivated approach.

In addition to its implications for water quality monitoring, our sensor placement methodology may
also inform more effective flood and streamflow monitoring networks. Although primarily used
for contaminant fate and transport, studies have shown that the advection-diffusion equation also
approximately characterizes the hydrodynamic response of river networks [72]. Specifically, when the
transport velocity u is taken to be the mean kinematic wave celerity and the diffusion coefficient D is
taken to be the hydrologic dispersion coefficient, the state space system given by Equation 12 yields
the approximate streamflow response to a runoff perturbation [72].2 Thus, if the advection-diffusion
equation serves as a first-order dynamical model for streamflow routing, then it follows that the
rank-optimized sensor placement strategy will also enable better estimation of hydraulic states like
depth and discharge. Using the sensor placement methodology proposed in this study, hydrologists
may one day deploy sensor networks that better detect localized flash floods, characterize basin-scale
water balances, or enable inverse modeling of rainfall from streamflow measurements.

6 Conclusion

This study investigates the problem of optimal placement of water quality sensors in river networks.
Specifically, we focus on the problem of optimal sensor placement for state estimation, which
has major implications for pollutant source tracing, forecasting of contaminant transport, and real-
time data assimilation. To motivate a theoretical treatment of the problem, we first derive a linear
time-invariant model of contaminant transport in river networks using the one-dimensional advection-
diffusion equation. Drawing on this model, we propose two heuristics for selecting sensor locations
that maximize the observability of the system—specifically, by maximizing the rank and trace of
the system’s Observability Gramian. To evaluate each heuristic, we simulate the system under
a large number of randomized contaminant loads, and measure the extent to which each sensor
placement algorithm is able to reconstruct the system’s initial state from observed outputs. Based
on this assessment, we find that the rank-based sensor placement heuristic results in the lowest

2Within this theoretical framework, the response to an impulsive runoff input is sometimes called the
geomorphological impulse unit hydrograph.
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reconstruction error, and is also able to achieve perfect observability with the smallest number of
sensors. Our general-purpose methodology will help practitioners to deploy more effective riverine
sensor networks for both scientific and practical applications. By enhancing our ability to characterize
riverine contaminants, our method will enable better stewardship of surface water systems and inform
more effective policies for restoring impaired waterways.
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Appendix
A1 Efficient optimization of the trace of the Observability Gramian

Theorem 1: The indices of the N columns of the identity matrix I that maximize the trace of
the Observability Gramian are given by the indices of the N largest diagonal elements of the
Controllability Gramian, when the input matrix B = I .

Proof: Maximizing the trace with respect to the columns of the observation matrix is given by the
optimization problem:

max
K∈K

Tr(Wo)

s.t. ATWoA−Wo +
∑
k∈K

eke
T
k = 0

|K| = N

(25)

By the definition of the Observability Gramian this is equivalent to:

max
K∈K

Tr
( ∞∑
t=0

∑
k∈K

(AT )teke
T
kA

t

)
s.t. |K| = N

(26)

Because the trace is a linear operator, the summation can be rearranged as:

max
K∈K

∞∑
t=0

∑
k∈K

Tr
(

(AT )teke
T
kA

t

)
s.t. |K| = N

(27)

Using the cyclic property of the trace:

max
K∈K

∞∑
t=0

∑
k∈K

Tr
(
eTkA

t(AT )tek

)
s.t. |K| = N

(28)

Note that the quantity within the trace is a scalar. Because the trace of a scalar quantity is equal to
that quantity itself, the above expression is equivalent to:

max
K∈K

∞∑
t=0

∑
k∈K

eTkA
t(AT )tek

s.t. |K| = N

(29)

Rearranging the sums:

max
K∈K

∑
k∈K

eTk

( ∞∑
t=0

At(AT )t
)
ek

s.t. |K| = N

(30)
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Inserting the identity matrix:

max
K∈K

∑
k∈K

eTk

( ∞∑
t=0

AtIIT (AT )t
)
ek

s.t. |K| = N

(31)

Note that the quantity inside the parentheses is the infinite time-horizon Controllability Gramian,
when the input matrix B is equal to I . Thus, the columns of the identity matrix that maximize the
trace of the Observability Gramian are given by the N largest diagonal indices of the corresponding
Controllability Gramian:

max
K∈K

∑
k∈K

eTkWcek

s.t. AWcA
T −Wc + I = 0

|K| = N

(32)
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A2 Computational complexity of optimizing the trace of the Observability
Gramian

This section derives the computational complexity of the trace-based sensor placement algorithm.
We will assume a linear time-invariant system defined by the state transition matrix A ∈ Rn×n. First,
note the following known time complexities:

• The time complexity of solving a Lyapunov equation using the Bartels-Stewart algorithm is
approximately O(n3) [84].

• The time complexity of sorting a list of real numbers using quicksort is O(n log n) [85].

The trace-based sensor placement algorithm requires the following steps:

Procedure Time complexity

Solve the Lyapunov equation AWcA
T −Wc + I = 0 O(n3)

Sort the diagonal elements of Wc O(n log n)

Index the N largest elements O(N)

Ignoring the lower-order terms, the approximate computational complexity is thus O(n3).
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A3 Computational complexity of optimizing the rank of the Observability
Gramian

This section derives the computational complexity of the rank-based sensor placement algorithm. We
will assume a linear time-invariant system defined by the state transition matrix A ∈ Rn×n. First,
note the following known time complexities:

• The time complexity of solving a Lyapunov equation using the Bartels-Stewart algorithm is
approximately O(n3) [84].

• The time complexity of computing the rank of a square matrix using the singular value
decomposition is O(n3) [86].

The rank-based sensor placement algorithm requires the following steps:

Procedure Time complexity

Solve n Lyapunov equations: ATWoA−Wo + eie
T
i = 0, i ∈ [1, n] O(n4)

Solve k1 = argmax
i

{
rank(Wi)

}
, ∀ i ∈ [1, n] O(n4)

Solve k2 = argmax
i

{
rank(Wi +Wk1)

}
, ∀ i ∈ [1, n] \ {k1} O((n− 1)n3)

Solve k3 = argmax
i

{
rank(Wi +Wk1 +Wk2)

}
, ∀ i ∈ [1, n] \ {k1, k2} O((n− 2)n3)

...
...

Solve kN = argmax
i

{
rank(Wi +

∑N−1
j=1 Wkj )

}
, ∀ i ∈ [1, n] \ {k1, k2, . . . , kN−1} O((n−N + 1)n3)

Thus, the total computational complexity is O(n4 + n3
∑N−1
i=0 (n− i)). Note that for a sparse sensor

placement (N � n), the approximate computational complexity is O((N + 1)n4).
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A4 Robustness to parameter uncertainty

Figure A1: Reconstruction error for different sensor placement strategies averaged over all 200 initial
contaminant loads when sensor placements are constructed assuming Pe = 10, but true model has
Pe = 7.5. Left: reconstruction error as measured by the mean-squared error. Right: reconstruction
error as measured by the log of the mean-squared error.

Figure A2: Reconstruction error for different sensor placement strategies averaged over all 200 initial
contaminant loads when sensor placements are constructed assuming Pe = 10, but true model has
Pe = 15. Left: reconstruction error as measured by the mean-squared error. Right: reconstruction
error as measured by the log of the mean-squared error.
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