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Abstract

Interferometric synthetic-aperture radar (InSAR) interferograms contain valuable information about the fault systems hidden

beneath the surface of the Earth. In a new approach, we aim to fit InSAR ground deformation data using a volumetric distri-

bution of multiple seismic point sources whose parameters are found by a genetic algorithm. The resulting source distribution

could provide another useful tool in solving the difficult problem of accurately mapping earthquake faults. To test the algorithm,

we first apply it to synthetic data, followed by applications to an ALOS-2 InSAR interferogram. We report first results and

discuss advantages and disadvantages of this approach.

1



manuscript submitted to Earth and Space Science

Simultaneous Inversion of Multiple Faults’ Parameters1

From InSAR Data Using a Genetic Algorithm2

Cameron Saylor1, John B. Rundle1,2,3, and Andrea Donnellan4
3

1University of California, Davis, Department of Physics and Astronomy4
2University of California, Davis, Department of Earth and Planetary Science5

3Sante Fe Institute, Sante Fe, NM6
4Jet Propulsion Laboratory, California Institute of Technology7

Key Points:8

• inversion for the parameters of multiple faults at once9

Corresponding author: Cameron Saylor, ccsaylor@ucdavis.edu

–1–



manuscript submitted to Earth and Space Science

Abstract10

Interferometric synthetic-aperture radar (InSAR) interferograms contain valuable infor-11

mation about the fault systems hidden beneath the surface of the Earth. In a new ap-12

proach, we aim to fit InSAR ground deformation data using a volumetric distribution13

of multiple seismic point sources whose parameters are found by a genetic algorithm. The14

resulting source distribution could provide another useful tool in solving the difficult prob-15

lem of accurately mapping earthquake faults. To test the algorithm, we first apply it to16

synthetic data, followed by applications to an ALOS-2 InSAR interferogram. We report17

first results and discuss advantages and disadvantages of this approach.18

1 Introduction19

Significant errors can occur in fault geometry and slip dislocation models as a re-20

sult of volumetric distributions of sources not well represented by simple planar or rect-21

angular fault models. For this reason, it is necessary to utilize all of the tools available22

to improve estimates of fault geometry and location. One such tool is interferometric syn-23

thetic aperture radar (InSAR), which provides maps of surface deformation that con-24

tain valuable information about the complexity of the fault system giving rise to the im-25

age (Bürgmann et al., 2000). InSAR is a radar technique that uses a synthetic aperture26

radar (SAR) mounted on a satellite to image the same area at two different times, and27

uses those images to determine the differences in phase of the waves that return to the28

SAR. Since the wavelength of the electromagnetic waves emitted by the SAR is known,29

the phase difference between the images can be used to calculate their difference in line-30

of-sight distance to the satellite. The result is a map of the line-of-sight ground defor-31

mation of the imaged area that occurred between the times that the original SAR im-32

ages were taken (Jet Propulsion Laboratory, California Institute of Technology, 2014).33

Previous work has been performed that aimed to invert the ground deformation34

contained in InSAR interferograms to find the geometry of faults that could cause the35

observed ground deformation. Such methods rely on having a model that depends on36

various parameters that can recreate the desired dataset. For seismology, a commonly37

used model is Okada’s analytical solutions for the surface deformation due to faults in38

an elastic half space, which can model ground deformation due to either point or finite39

rectangular seismic sources (Okada, 1985).40

The inversion detailed in Bagnardi and Hooper (2018), for example, utilizes an Okada41

rectangular fault model described by 9 parameters: length, width, depth, strike angle,42

dip angle, X and Y-coordinates, uniform slip in the strike direction and uniform slip in43

the dip direction (Bagnardi & Hooper, 2018). Their approach uses a Bayesian inversion44

to determine a posterior probability density function (PDF) which describes how well45

a set of parameters can explain a given dataset based on their uncertainties and taking46

into account prior information in the form of a joint prior PDF. A Monte-Carlo Markov47

Chain utilizing the Metropolis-Hastings algorithm is then used to efficiently search the48

parameter space by taking steps in the prior PDF to get new sets of parameter values49

and comparing the likelihood of the new model to the previous step (Hastings, 1970).50

After an appropriate number of iterations, the sampling done by the algorithm approx-51

imates the desired posterior PDFs of each of the parameters, which can be used to es-52

timate their most likely values. Jo et al. (2017) performed a different type of inversion53

for the MW = 6.0 2014 South Napa earthquake for a similar set of parameters for a rect-54

angular fault model (Jo et al., 2017). They used two separate inversions in their anal-55

ysis, the first being a Monte Carlo simulation of 10000 iterations to find the fault param-56

eters. A second least squares inversion was performed to find the slip distribution over57

the rectangular fault plane.58

Aside from Monte Carlo methods, there are other analysis techniques that have been59

used to invert InSAR interferograms. Feng et al. (2013) utilized a method of inversion60
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called multipeak particle swarm optimization (M-PSO) to study the 2011 MW = 6.861

Burma earthquake (Feng et al., 2013). A PSO works by first defining a population (or62

swarm) of candidate solutions to a problem and then moving them throughout the pa-63

rameter space to find the optimal solution. The particles move according to a ”veloc-64

ity” that is based on each particle’s own best known position in the parameter space as65

well as the best known position of the other particles (Kennedy & Eberhart, 1995). Wen66

et al. (2016) and Li et al. (2020) also used a M-PSO inversion in their analyses of the67

2015 MW = 6.5 Pishan earthquake and the 2013 MW = 6.6 Lushan earthquake, re-68

spectively, while additionally adding a second inversion for the slip distribution on the69

fault plane (Wen et al., 2016; Li et al., 2020).70

There have also been advances in specific aspects of the inversion, such as the slip71

distribution. Liu and Xu (2019) developed another method for the joint inversion of co-72

seismic and postseismic fault slip from InSAR data called LogSIM, which uses a loga-73

rithmic model solved by a nonlinear least squares curve fitting function (Liu & Xu, 2019).74

Zhang et al. (2008) solved the slip distribution inverse problem with a model using tri-75

angular dislocation elements to more accurately model the 3D fault surface (Zhang et76

al., 2008). They solved the resulting inverse problem using a weighted damped least squares77

approach. Jiang et al. (2013) also performed an inversion utilizing a model made up of78

triangular dislocation elements, finding a solution using bounded variable least squares79

(Jiang et al., 2013). Fukahata and Wright (2008) aimed to improve the inversion of the80

slip distribution by treating the dip angle as a hyperparameter and estimating it using81

the Bayesian information criterion (Fukahata & Wright, 2008). This is followed by de-82

termining the slip distribution using maximum-likelihood methods. Their work is con-83

tinued in another paper by Fukahata and Hashimoto (2016) who apply the same method84

to the 2016 Kumamoto earthquake (Fukahata & Hashimoto, 2016). Frietsch et al. (2019)85

extended the problem slightly, adding two new parameters for time-shift to the centroid86

time and the compensated-linear-vector-dipole (CLVD) component while also allowing87

for the parameters of multiple fault segments to be found at one time (Frietsch et al.,88

2019). This makes it possible for them to model a single event as multiple fault segments89

or model multiple separate events at the same time.90

Finally, it should be noted that InSAR is not limited in usefulness to earthquake91

mechanism inversion, as shown by Peng et al. (2018) who used InSAR-derived deforma-92

tion data to invert the mechanism of subsidence of Line 3 of the Xi’an metro near Yuhuazhai93

(Peng et al., 2018). They found from their inversion of a flat lying sill model with dis-94

tributed contractions—with a depth based on the average depth of local pumping wells—that95

the rapid subsidence could be explained by excessive groundwater extraction in the area.96

In this paper, a new approach that utilizes a genetic algorithm to simultaneously97

find the parameters of multiple point sources is introduced. As their name implies, ge-98

netic algorithms borrow their method of solving problems from genetics. A population99

of solutions to the problem is randomly generated, and they are allowed to crossover and100

mutate until an ideal solution is found. A crossover operator is the genetic algorithm equiv-101

alent of parents giving birth to offspring that inherit their genes. In a traditional genetic102

algorithm, a solution is represented as an array of bits, and the crossover operator might103

be defined to swap certain bits between two ”parent” solutions. The mutation opera-104

tor randomly changes the value of one or more bits in a solution array, similar to what105

occurs during a long period of a species’s evolution. A genetic algorithm also requires106

some form of ”survival of the fittest,” which allows better solutions to be chosen to move107

forward during the execution of the algorithm. This is included in the algorithm as a cost108

function—more ”fit” solutions to the problem are those who minimize the cost function109

or maximize some other desired measure of fitness (Kumar et al., 2010). In this paper,110

we utilize what is known as a real-coded genetic algorithm, in which the solutions are111

instead represented by a list of real-valued parameters. This change in the form of the112
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solutions necessitates a change in the genetic operators, which will be explained in the113

next section.114

2 Genetic Algorithm115

As stated before, the solutions in a real-coded genetic algorithm are represented116

as lists of real-valued parameters. For the genetic algorithm used in this paper, the so-117

lutions are a list of parameters that describe the locations and orientations of a num-118

ber of seismic point sources. In particular, every point source has a parameter for each119

of the following: x coordinate, y coordinate, z coordinate, strike angle, dip angle and seis-120

mic moment. The x, y and z coordinate parameters define the location of the point source121

in three-dimensional space where z = 0 defines the ground’s surface in the case of zero122

deformation. The strike angle and dip angle determine the orientation of the slipping123

fault represented by the point source. Strike angle determines the direction of the line124

created by the intersection of the fault plane and the ground’s surface. The dip angle125

is the angle between the fault plane and the ground’s surface. In Okada’s convention,126

the dip angle is restricted to lie within the range 0 < δ < π
2 (Okada, 1985). The seis-127

mic moment of a point source represents a combination of the fault area and the amount128

that it slips. A solution will have 6n parameters total, where n is the number of point129

sources the solution is composed of. These point sources give rise to surface deforma-130

tion as defined by Okada’s expressions for deformation due to shear and tensile faults131

in a half-space (Okada, 1985). The total deformation—the superposition of the defor-132

mation from all point sources—is compared to a desired surface deformation (the data),133

and the goal of the algorithm is to move and reorient the point sources until the model’s134

surface deformation approximates that of the data. The specifics of the algorithm are135

discussed in the following paragraphs.136

Given some ground deformation data in the form of ground coordinates and their137

corresponding deformations, the algorithm first determines the minimum and maximum138

x- and y-values to use as limits when generating possible source distributions to fit the139

data. This restricts the allowed locations of the point sources to an area below the ground140

deformation. Then the algorithm generates a population of a user-defined number of source141

distributions (models) containing a user-defined number of sources with random loca-142

tions and orientations within specified limits. It calculates each model’s displacement143

field, which is the ground deformation resulting from a superposition of the ground de-144

formation due to individual point sources in the model. Each model is compared to the145

input data, and the chi-squared value of each model is recorded. In this paper, the chi-146

squared value for a given model is defined as:147

χ2 =

n∑
i=1

(zi − f(xi, yi))
2 (1)

where zi is the data value for the elevation of the ground at the point (xi, yi), f(xi, yi)148

is the model value for the elevation of the ground at the point (xi, yi) and i runs over149

all data points.150

After the chi-squared of each model has been determined, pairs of models are se-151

lected to use as parents in the creation of the next generation of models. The models with152

lower χ2 are more likely to be selected as parents. Note that the same model cannot be153

both members of a pair, but can be present in more than one pair with another model.154

As each pair is selected, the member models are crossed to yield two more next-generation155

models.156

This paper uses what is called a simulated binary crossover operator to generate157

new solutions based on the parent solutions (Deb & Agrawal, 1995). It is the real-coded158

equivalent of the single-point crossover operator of a binary genetic algorithm. The single-159

point crossover operator crosses the parent solutions by picking a random point in one160
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solution’s bit array, and swaps the bits after that point between the two solutions. Sim-161

ulated binary crossover uses a probability density function to imitate single-point crossover162

for use in a real-coded genetic algorithm. Simulated binary crossover works as follows:163

1. Choose two parents x1 and x2164

2. Generate a random number r ∈ [0, 1)165

3. Calculate the parameter β

β =

{
(2r)

1
ηc+1 if r ≤ 0.5(
1

2(1−r)
) 1
ηc+1 otherwise

where ηc is the distribution index.166

4. Compute the child solutions using167

xnew1 = 0.5[(1 + β)x1 + (1− β)x2]

xnew2 = 0.5[(1− β)x1 + (1 + β)x2]

The distribution index determines the width of the distribution used for generating chil-168

dren. Large values of ηc tend to generate solutions closer to the parents, while smaller169

values generate solutions further away. The recommended value for ηc, and the one used170

in this paper, is ηc = 2 (Deb & Agrawal, 1995). Pairs are selected and crossed until the171

next generation becomes equal in size to the original population of models.172

Once the next generation has been created, there is a user-defined chance for each173

model in the new generation to be mutated. The mutation operator, when applied to174

a model, gives each source in the model a user-defined chance to be shifted from its orig-175

inal position, orientation and seismic moment. The amount of translation or rotation is176

determined by a Gaussian random number generator centered at the original value of177

the coordinate. For example, if the original strike angle of a source is π/2, the Gaussian178

distribution used to select the new value has a mean value of π/2. The amount of shift179

in the location and seismic moment is selected in a similar manner. The process of cross-180

ing to create new generations and mutation of the new generations is repeated until the181

user-defined number of generations is reached.182

3 Applying the Genetic Algorithm to Randomly Generated Data183

To generate the synthetic data for testing the algorithm, an interferogram was gen-184

erated by placing 10 point sources at random positions and orientations. The positions185

are restricted within a cuboid defined by the limits 0 < x < 30km, 0 < y < 10km186

and −10 < z < −3km. The data points at which the generated data and models are187

compared lie within the same x and y bounds. 30 data samples were taken in the x-direction188

and 10 data samples in the y-direction, yielding a total of 300 data points—each a square189

with a side length of 1km. The sources were placed with random strike and dip angles190

in the ranges 0 < θ < 2π and 0 < θ < π
2 , respectively, as well as random seismic191

moment in the range 108 < M0 < 1012Nm. The total ground deformation was calcu-192

lated as a result of the superposition of the ground deformation of all placed sources—with193

each point source causing a ground deformation according to Okada’s equation for the194

vertical displacement of a strike-slip seismic source. Horizontal deformation was not con-195

sidered in this example.196

The generated interferogram was fit using 10 point sources. The starting values of197

the parameters in the initial population of solutions were chosen from uniform distribu-198

tions for each parameter. As stated before, the x and y coordinates of the initial pop-199

ulation of sources lie within the range of the data points. The initial depth of the sources200

and their initial strike and dip angles were restricted to the same ranges used to gener-201

ate the interferogram. The algorithm ran for 10000 generations with the spreads in Ta-202

ble 1 used to mutate each parameter. In Table 1, the half order of magnitude spread for203
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Parameter Amount of Spread

x 2 km
y 2 km
z 0.5 km

Strike angle π/6
Dip angle π/24

Seismic moment Half order of magnitude

Table 1. The standard deviations of the Gaussian distributions used to mutate the parameters.

seismic moment means that the Gaussian was used to generate a power of 10 that was204

used as the new seismic moment. For example, if the original value of the seismic mo-205

ment was 2.4×105, a Gaussian centered at log10(2.4×105) with a standard deviation206

of 0.5 was used to generate a random number r. The new value of the seismic moment207

is then 10r. The chance for a model to be chosen to mutate in a given generation was208

20%. If chosen to mutate, each source point in the model had a 10% chance to have its209

location, strike angle, dip angle and seismic moment changed according to the above val-210

ues of spread in each parameter. During the execution of the algorithm, the only restric-211

tion on the evolution of the sources is that their dip angles must remain in the range 0 <212

δ < π
2 as in Okada’s convention—every other parameter is allowed to evolve freely ac-213

cording to the rules of the crossover and mutation operators. The model resulting from214

the fit is compared to the data in Figure 1.215

4 Applying the Algorithm to ALOS-2 Data216

The InSAR interferogram that was fit in this paper was processed by Lindsey et217

al. (2015a) and was downloaded from the Nepal Earthquake ALOS-2 InSAR website (Lindsey218

et al., 2015b). The particular one used was the sum of the ALOS2040533050-150222 and219

ALOS2050883050-150503 products, yielding an interferogram containing ground displace-220

ment between February 22nd, 2015 and May 17th, 2015. This interferogram was cho-221

sen because it exhibits deformation due to seismic events—in this case, the magnitude222

7.8 earthquake that occurred on April 25th, 2015, 36 km east of Khudi, Nepal and its223

magnitude 7.3 aftershock that occurred on May 12th, 2015. The interferogram is a col-224

lection of points, each defined by their latitude, longitude and line-of-sight ground dis-225

placement. The line-of-sight displacement is converted to vertical displacement using the226

reported look angle of the satellite for each data point. To fit this interferogram, the data227

were binned into a 30-by-30 two-dimensional histogram to reduce the amount of com-228

putation time. The value of each bin was calculated as the average vertical displacement229

of each data point contained in that bin. After binning, the resulting pixels in latitude230

and longitude were mapped to the x-y plane, in units of km, to allow comparison to the231

results of the algorithm. When fitting this interferogram, the algorithm was set to use232

a population size of 500, with each solution in the population containing 15 seismic point233

sources. The earthquake was a result of thrust faulting (United States Geological Sur-234

vey, 2015), and so Okada’s equations for dip-slip faulting were used to calculate the ground235

deformation caused by the point sources. To further reduce computation time, the area236

of the interferogram being fit was reduced to pixels in the range 40 < x < 240km and237

70 < y < 200km, which contains the ground deformation of interest. For this exam-238

ple, only the vertical displacement of the ground was calculated—the horizontal displace-239

ment was not considered. After running for 15000 generations, taking about 7400s to run240

on a hexacore Intel i7-9750H CPU, the algorithm returned the model visible in Figure241

2. This run of the algorithm used the same parameters for spread and mutation prob-242
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Figure 1. (a) Azimuthal view of the synthetic ground deformation data. (b) Azimuthal view

of the model generated by the algorithm. (c) Top view of the synthetic ground deformation data.

(d) Top view of the model generated by the algorithm.
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Figure 2. (a) Azimuthal view of the ALOS-2 ground deformation data. (b) Azimuthal view of

the model generated by the algorithm. (c) Top view of the ALOS-2 ground deformation data. (d)

Top view of the model generated by the algorithm.

ability as outlined in Table 1 and Section 3, respectively. The initial values of the point243

source parameters in the starting population were chosen from uniform distributions. The244

ranges of the x and y coordinates were limited to the dimensions of the interferogram245

area above and the depth ranged from −30 < z < −20km. The strike and dip angles246

ranged from 0 < θ < 2π and 0 < δ < π
2 , respectively. The seismic moments were247

pulled from the range 109 < M < 1012Nm. The parameters found by the algorithm248

for each point source can be seen in Table A1 in Appendix Appendix A.249

5 Discussion and Conclusion250

When comparing simulated or actual data to the resulting model, one can see that251

the basic shape of the data has been captured, but discrepancies exist if individual data252

points are compared. This is most likely a problem with the spread used when crossing253

and mutating the fit models. Since the spread of the parameters never changes, there254

comes a point where the error plateaus—further increases in fit accuracy require a de-255

crease in the spread of the possible parameters. A larger initial spread is useful to widely256

search the parameter space for the appropriate fit and to prevent falling into a local min-257

imum. However, a large spread also prevents the fit from settling to a more exact solu-258

tion. Simply reducing the spread leads to an increase in the computation time, as more259

time will be required for the solutions to search the parameter space in smaller steps.260
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Increasing the population size can help widen the initial search area, but this also increases261

the computation time. A possible fix for this problem is an adaptive algorithm that mod-262

ifies the spread during calculation to more efficiently search the parameter space and re-263

duce the spread when close to the optimum solution. One such algorithm is outlined in264

(Deb et al., 2007).265

The advantage of our method lies in its ability to invert InSAR data to obtain the266

parameters of more than one seismic source at a time. Inversions of fault geometry are267

typically calculated for a single rectangular fault plane, which limits their effectiveness268

in scenarios that are not well modeled by a single fault plane. One example is an inter-269

ferogram that contains deformation from more than one significant seismic event, such270

as the one fit in Section 4, which contains deformation from both a magnitude 7.8 main-271

shock and a magnitude 7.3 aftershock. Another capability of point sources is modeling272

of faults that are not accurately portrayed by planar surfaces. The point sources move273

independently, so in theory they can model any possible fault shape if an appropriate274

number of sources are used. The cost of this increased flexibility is an increase in the amount275

of computation time required. The deformation caused by each source in a model must276

be calculated at every desired data point and their individual contributions must be summed277

to produce the total deformation field. This deformation field must be calculated for ev-278

ery model in the population for every generation that the algorithm runs. For example,279

if you desire for a population of 500 models containing 15 sources each to run for 10,000280

generations, that is 75,000,000 function evaluations for each data point you are fitting.281

To reduce this computational complexity, it is possible to set a fixed value for any of the282

parameters or to use a more informative prior than a uniform distribution. This was not283

done in this paper to showcase the ability of the algorithm to fully explore the search284

space and arrive at a solution even with a vague starting point.285
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Appendix A Parameters found by the algorithm367

x y z strike dip moment

1 69.8468 177.091 -29.9032 -0.45963 1.0839 0.13784
2 106.367 97.4588 -32.8588 6.61252 0.479722 168801
3 150.058 78.0384 -33.6847 19.0313 0.307234 1.23221e+09
4 140.425 191.588 -28.8003 5.79284 0.27404 1.90518e+10
5 202.588 127.159 -22.7864 0.111355 1.51411 2.05646e+10
6 72.8359 123.785 -17.2656 12.2768 1.4786 1894.74
7 131.227 132.126 -21.8409 6.72117 1.14697 1.06253e+10
8 143.966 118.57 -23.2668 3.75185 1.28514 1.53379e+10
9 73.7351 144.747 -21.1349 2.96139 1.4699 9.02219e+09
10 163.803 108.866 -29.3693 6.3945 0.352603 1.93104e+10
11 102.768 151.892 -22.8624 3.53234 0.0142592 2.29585e+10
12 181.87 89.2093 -36.7044 4.76648 0.0305045 4.18498e+09
13 126.37 151.843 -27.464 0.494327 1.51399 2.4217e+10
14 237.313 230.565 -26.7075 0.469047 1.12608 5.72458e+09
15 143.542 133.469 -26.0931 6.43808 1.21437 626.352

Table A1. The parameters found by the algorithm for each point source in the ALOS-2 data

fit. The strike and dip angles are recorded in radians and seismic moment in Nm. Recall that

these parameters use Okada’s convention, where a strike angle of zero means the strike is parallel

to the x axis.

Appendix B Residuals between data and models368
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Figure B1. (a) Azimuthal view of the residuals between the synthetic ground deformation

data and the corresponding model. (b) Top view of the residuals between the synthetic ground

deformation data and the corresponding model. (c) Azimuthal view of the residuals between the

ALOS-2 ground deformation data and the corresponding model. (d) Top view of the residuals

between the ALOS-2 ground deformation data and the corresponding model.
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