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Abstract

Causes of climate predictions’ uncertainty include wide spread in modeled gross primary productivity (GPP) for evergreen
broadleaf forests. Deterministic predictions inherently lack the portion of variability that a regression’s error term summarizes.
Omitted predictors’ contribution to error represent simulations’ necessary underestimation of real variability. Earth system
model outputs with high variability relative to reference data warrant skeptical examination. We compare three statistical
and 15 process models to site-level means, seasonal amplitude and driver responsiveness of GPP as calculated at six Amazon
eddy covariance (EC) towers. Current month’s weather determines only 12% of the variability in EC GPP, implying that
models whose predicted GPP’s variability approaches that of EC GPP probably are substantially hypersensitive to weather
drivers. Roughly half the models have stronger seasonal GPP variability than ECs show, and inaccurately identify the timing
of annual minimum GPP. Responses to temperature and light for some highly seasonal models are of the opposite sign as EC
GPP’s. Strongly seasonal models’ deepest dip in photosynthesis both occurs later in the dry season and is more severe than

EC estimates. Excessive reactivity to drivers appears to cause the high simulated variability of the strongly seasonal models.
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Key Points:

+ Regression logic is cause to doubt predictions whose variability is unrealistically
high.

+ A suite of models poorly reproduce tower estimates of Amazon rainforest gross pri-
mary productivity.

+ Highly seasonal models predict stronger GPP reactivity to meteorology than is likely

to be true.
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Abstract

Causes of climate predictions’ uncertainty include wide spread in modeled gross primary
productivity (GPP) for evergreen broadleaf forests. Deterministic predictions inherently lack
the portion of variability that a regression’s error term summarizes. Omitted predictors’ con-
tribution to error represent simulations’ necessary underestimation of real variability. Earth
system model outputs with high variability relative to reference data warrant skeptical ex-
amination. We compare three statistical and 15 process models to site-level means, seasonal
amplitude and driver responsiveness of GPP as calculated at six Amazon eddy covariance
(EC) towers. Current month’s weather determines only 12% of the variability in EC GPP,
implying that models whose predicted GPP’s variability approaches that of EC GPP probably
are substantially hypersensitive to weather drivers. Roughly half the models have stronger
seasonal GPP variability than ECs show, and inaccurately identify the timing of annual min-
imum GPP. Responses to temperature and light for some highly seasonal models are of the
opposite sign as EC GPP’s. Strongly seasonal models’ deepest dip in photosynthesis both
occurs later in the dry season and is more severe than EC estimates. Excessive reactivity to

drivers appears to cause the high simulated variability of the strongly seasonal models.
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2 Plain Language Summary

Global climate models must accurately represent many processes, including the pace at
which plants convert sunlight, water and CO, into sugar. The Amazon rainforest is enormous
and extremely biologically productive, so the region strongly influences the world’s cycling
of CO,. Measurements from instruments on towers in the Amazon, despite imperfections,
seem to be the most accurate estimates of rainforest plant productivity rates that exist. We
compare "tower" estimates to 18 global models, focusing on rainforests’ subtle dry v. wet

s€asons.

Modeled monthly plant productivity poorly matches tower estimates. About half the
models have more seasonal variation than the towers and half have less. Simple equations
that use current month’s temperature, light, and rainfall describe model output quite closely,

especially for the weakly seasonal models.

Reality is more variable than are mathematical model predictions that accurately de-
scribe the results of a particular change in inputs. Why, then, do some models have stronger
seasonal swings than tower estimates? One cause is using a descriptive equation that over-
looks models’ non-linear responses to weather. But the main reason is that when weather
changes, tower estimates of plant productivity change less than it do predictions from models

with strong seasonal swings.

3 Introduction

Modeling tropical plant productivity accurately is important to the accuracy of global
climate predictions because rainforests are so large and productive that their gross primary
productivity (GPP) represents about 34% of the terrestrial total [Beer et al., 2010]. Rainfor-
est productivity largely drives interannual variability in global CO, concentrations [Bous-
quet et al., 2000; Rodenbeck et al., 2003; Wenzel et al., 2014]. Positive feedbacks to change
in rainforest productivity amplify change in CO, [Christoffersen et al., 2014; Harper et al.,

2014; Zemp et al., 2017].

The spread in simulations of current rainforest productivity [Ardo, 2015; Malhi et al.,
2009] is wide, and typically greater than for other biomes [Anav et al., 2015; Beer et al.,
2010; Cavaleri et al., 2015; Friedlingstein et al., 2006; Jung et al., 2020; Mystakidis et al.,
2016], shows of the need for better modeling for tropical rain forests. Cross-model differ-

ences represent material uncertainty about future rainforest productivity. Large differences in
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tropical GPP persist even after removing model differences in simulated precipitation [Malhi

et al., 2009; Poulter et al., 2010a].

3.1 Predictions tend to have lower variance than source data.

For assessing a non-stochastic model’s responses to climate change, it is helpful to
consider a trade-off between accurate responsiveness to drivers and accurate variance of pre-
dicted outcomes. A model’s sensitivity, or responsiveness, can be characterized as marginal
change in outcome per unit change in a predictor [Friedlingstein et al., 2006; Hamby, 1994].
In a regression, responsiveness corresponds to the slope coefficients. For models of GPP,
large slopes imply stronger responses to changing climate. Tropical GPP sensitivity is crit-
ical because it describes the extent to which climate will continue to alter rainforest activity

and even its viability.

In a model, a simplification by definition, omitted drivers cause some of any outcome’s
real variability. Predictions cannot include the variability that this portion of random error
contributes because the model has no information about the missing drivers. For a regres-
sion, if modeled responses to included drivers, or sensitivities, are accurate and other sources
of model error modest, omitted variables will still make variability of the predictions unreal-
istically low. We label the inherent tendency for predicted outcomes to have lower variability

than true outcomes as "flattening".

An idealized illustration explains why predictions have low variability. Posit a regres-
sion that predicts its outcome y; as a response to one predictor, x;. The model is perfectly ac-
curate, meaning that its responsiveness, 3, exactly equals the true responsiveness of y; to x;.
The model’s only source of error is omitted predictors, which account for the random error
term €;. There is no uncertainty due to imperfections of measurement, sampling, or specifi-
cation. Variance of the predictions from this nearly perfect regression is necessarily smaller

than the source data’s variance.

sampled real world observation: y; = Bx; + €

Bx;

regression prediction : ¥;

The error term adds variance only to the source data but not to predicted values (Equa-

tion 1, [Greene, 2012, Chapter 3]). Text S1 expresses the argument formally.

(D
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The regression could describe for a particular model the responsiveness of rainforest

GPP to temperature.

GPP; = [ * temperature; + intercept )

If the GPP model is based on enzyme kinetics, there is no internal 8 for temperature,
but instead a variety of other calculations involving temperature. For example, one param-
eter could be Q10, the exponent for a rate multiplier to rubisco carboxylation per increase
of 10°C. The value of Q10 may be derived from bench or field research. The parameter is
not estimated directly for rainforest due to lack of source data, and because in theory Q10 is
constant for all chlorophyll [but see Alster et al., 2020]. Other steps within the model may
further affect GPP’s temperature responsiveness. The temperature to which Q10 is applied
may be modified from ambient to account for degree of shading. There may be adjustments
for each plant functional type’s (PFT’s) optimum temperature. Temperature may affect GPP
indirectly through vapor pressure deficit. The descriptive regression summarizes as a linear

approximation the effects of the process model’s more complex underlying calculations.

As a thought experiment, assume that the net result of imperfections in the GPP model
is that effective rainforest temperature sensitivity, or the descriptive regression’s only S, is
twice the true sensitivity. A consequence is higher variance of the j;’s. As shown in Equa-
tion 3, exaggerating the regression coefficient by a factor of two quadruples the predictions’

variance.

$ =2Bx + intercept 3)
| 4
2 _ 7 An2 32
7?2 —n_1;<2ﬁxl 2Bx) = n_lg(ﬁxl)

More generally, when the slope of a regression with one predictor changes by a multi-
plied constant, the variance of predictions made from the same x-values used to fit the model
changes by the squared amount of the multiplier. A slope multiplier larger than one increases

predictions’ variance, and a multiplier smaller than one decreases variance.

If only because models by definition simplify reality, every regression model has a

non-zero error term. While error due to omitted variables embodies real-world variability,
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measurement error, sampling error, and misspecification of mathematical form represent the
data and model’s uncertainty about included aspects of the real world [Vicari et al., 2007].
More statistical noise from any source increases € and causes more flattening, or less vari-

ability of predicted outputs.

There is a trade off between accurate responsiveness of y; to x; and accurate variance
of predicted outcomes. Either deliberately or inadvertently, changing the regression slope
can adjust variance to any level including to equal observed variance. But deviations from
the optimal regression fit to the data carry a cost of less accurate modeled responsiveness
to change in the observed driver(s). The right answer as measured by accurate variability of

outcomes may result from the wrong reason of excessive model sensitivity.

A model can predict only what it "knows" about. Numeric calculations simulate the
processes for which equations are included, and the consequences of the influences for which
driver data are provided. If the model’s sensitivities are accurate, outputs have only as much
variability as the included processes and drivers create. The maximum portion of true out-
come variance that a model whose responsiveness to drivers is perfectly accurate can simu-
late is the portion that the included processes and drivers in fact determine. The more com-
pletely a model with accurate driver responsiveness includes all true determinants of its out-

come, the larger and closer to correct will be its predictions’ variance.

The variability that model errors contribute and that otherwise is missing from deter-
ministic predictions can be added back in directly. If random statistical noise is added, then
predictions can have both realistic variance and accurate reactivity to predictors. If instead
the introduced noise is correlated with drivers, such as by drawing predictions from a prob-
ability distribution at calculated percentiles, then effective driver slope(s) will be altered as
described in Equation 3. Stochastic modeling has computational and other complications,

and is rare in full earth system models (ESMs).

3.2 Flattening applies to Earth System Models.

Flattening occurs within parameterized ESM calculations. Many hard-coded
model parameters are "essentially a smaller model within the larger model" [Dahan,
2010]. For example, in the Community Land Model (CLMS5.0) each PFT’s stomatal
resistance parameter originated in a regression fitted to a global database of conductances

[https://escomp.github.io/ctsm-docs/doc/build/html/tech_note/index.html section 2.9.3,
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Table 2.9.1 of values from De Kauwe et al., 2015]. Real variability in resistances caused
by variables omitted from the source equation and subsequently from the ESM remains

unexplained and unmodeled.

Climate models’ inner workings are decisively more intricate than a single linear re-
gression. But flattening is a tendency of any deterministic numeric prediction, including
non-linear equations, transformations of variables (Text S1) and, like entire ESMs, com-
plex combinations of equations with feedbacks. Inclusion of processes may be indirect, such
as a model forced with satellite data that is a proxy for deciduous leaves’ annual cycle. The
driver data itself may be simulated, as weather is in fully-coupled ESM runs. In all of these
situations, predictions from the model will lack the portion of real variance determined by

omitted drivers and processes.

ESMs simulate systems so complex that omitted processes and drivers loom large. Be-
cause significant determinants of real variability are missing, the connection between the
accuracy of predictions’ variance and the accuracy of driver sensitivity provides a diagnos-
tic tool. If the variance of a predicted outcome is higher than or even close to a benchmark’s

variance, offsetting excessive sensitivity to drivers could be a cause.

3.3 The Amazon is likely to become warmer, with more variable rainfall.

Change in tropical GPP as represented in ESMs depends largely on four environmental
drivers: ambient CO,, precipitation, temperature, and top of canopy insolation. Prediction
accuracy depends on correctly simulating rainforest GPP responses to changes in the forc-
ings. Like the rest of the world, rainforests are experiencing consistently increasing ambient
CO,;. Models concur that the region’s precipitation will become more variable [Bathiany
et al., 2018; Chadwick et al., 2015; Feng et al., 2013], a trend for which there already are
observational indications at least on the drying side [Fu et al., 2013; Gloor et al., 2013; Li
et al., 2008; Lopes et al., 2016]. The direction of change in rainforest mean rainfall rather
than in its increasing variability is uncertain, however [Gloor et al., 2012; Li et al., 2006;

Poulter et al., 2010a].

Rainforest temperature is projected to rise and may already have changed measurably
[Corlett, 2011; Jiménez-Murioz et al., 2013]. Temperature increases are likely to vary re-
gionally within the basin [Gloor et al., 2012]. Deforestation and temperature may have an

amplifying feedback on GPP at landscape scales, with lower plant productivity causing more
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sunlight to become sensible rather than latent heat, and higher temperatures further reducing

photosynthesis rates.

In the sometimes-cloudy tropics light can limit photosynthesis, especially for lower
leaves in thick canopies. Amazonian surface insolation has increased slightly in recent
decades due to reduced cloudiness [Barkhordarian et al., 2017], though the trend’s robust-
ness is unclear [Wielicki et al., 2002]. One likely cause of increased surface light, seasonal
changes in the sizes of both Pacific and Atlantic Ocean warm pools, has an uncertain anthro-
pogenic signal [Arias et al., 2011]. Pollution and tropical fires on the other hand, reduce top
of canopy insolation. Both reflect human behavior, an influence whose uncertainty increases

the spread in trend predictions for most weather parameters.

This paper explores the fidelity of modeled Amazonian GPP to eddy covariance (EC)
flux tower data, with an emphasis on the accuracy trade-offs that flattening presents. Credible
representations of responsiveness to change in weather are especially important for climate
models because they describe the direction and strength of trends in GPP in response to in-
creasing concentrations of greenhouse gasses. If responsiveness is too weak, forecasts will
be unreasonably reassuring. Excessively strong weather responsiveness will predict faster

and more dramatic dieback of the rainforest [Cox et al., 2013].

4 Methods

We compare EC GPP to 15 process models and three statistical models. Methods sum-
marized in this section are described further in Text S2. The statistical models, Fluxcom,
Wecann and VPM, each have fared well in global accuracy intercomparisons. SG3 runs for
Multi-scale synthesis and Terrestrial Model Intercomparison Project’s [MsTMIP; Huntzinger
et al., 2014; Wei et al., 2014] 14 process models have common initial land cover maps, land
use and land cover change, spin-up procedures, and atmospheric CO; and weather inputs. To
MSsTMIP we added SiB4 [Haynes et al., 2019a,b], a recent major revision to the participating

SiB3 model and which now has prognostic phenology.

To compare process models to statistical models that rely on satellite data, the evalua-
tion period is limited to 2000 - 2010. Wecann starts in 2007 with the earliest satellite dataset
for solar-induced fluorescence. Wecann is included only in basinwide comparisons because
its shorter period for approximating seasonal cycles at tower sites would increase Wecann’s

apparent variability compared to all other models.
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Figure 1: Study area, which includes all shaded cells. Orange dots are locations of eddy covari-
ance towers. Based on MsTMIP’s PFT classifications, a high proportion of the study area is almost
pure rainforest. The land PFT distribution in 86% of study cells is at least 90% evergreen broadleaf

forest.

For basinwide comparisons, the study area is northern South America, the world’s
largest rainforest that we refer as the Amazon although we do not use a strict watershed
boundary. The study cells are limited to 42° - 81°W and 12°N - 21°S, excluding Central
America both north of 7°N and west of 77.5°W. Selecting grid cells whose MsTMIP
tiled PFTs are at least 50% evergreen broadleaf forest (EBF) limits the study to rainforest

vegetation. Fig. 1 shows the portion of each study cell that MsTMIP codes as EBF.

We compare the process and statistical models to six EBF eddy covariance sites from
the Large-scale Biosphere-Atmosphere Experiment in Amazonia: Rio Javaés-Bananal

(BAN), Caxiuand (CAX), Manaus Kilometer 34 (K34), Tapajos Kilometer 67 (K67), Tapajos
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Kilometer 83 (K83), and Reserva Jaru (RJA) [Restrepo-Coupe et al., 2013]. Fig. 1 maps
the towers’ locations. Each process or statistical model’s GPP estimates for the grid cell

containing a site are matched to the months for which data exists at each tower.

Eddy covariance towers are flawed benchmarks for GPP. Measured net ecosystem ex-
change is a small residual whose much larger offsetting components of GPP and ecosystem
respiration must be modeled. A particularly thorny issue is lack of closure in energy budgets.
Calculated energy fluxes leaving a site do not equal measured energy entering [da Rocha
et al., 2009; Jung et al., 2019; von Randow et al., 2004]. Where GPP seasonal variation is
smaller than average, as in the tropics, closure corrections introduce more noise [Clark et al.,
2017; Tramontana et al., 2016]. These weaknesses are serious. Nevertheless, and partly on
faith, we take tower estimates to be the best reference data available, and their GPP respon-
siveness to individual drivers as true to the extent of being qualitatively strongly positive,

strongly negative, or weak.

We define ‘site’ as an eddy covariance location. ‘EC’ refers more specifically to mea-
surements made at a tower site and their derivatives. Unless noted, the weather driver data
used to assess modeled GPP’s responsiveness is MSTMIP’s. Precipitation is monthly total in
mm. Light is monthly mean top of canopy short-wave radiation under all sky conditions, in

Wm™. Mean monthly temperature is measured in °C, and GPP in gCm™2d"!.

5 Results
5.1 Modeled GPP mean and variance grossly differ from EC estimates.

An optimistic hypothesis that each model’s simulated GPP mean and variance match
EC estimates is easily rejected. The lines in Fig. 2 enclosing the EC mean and variance mark
wide 99" percentile bootstrapped confidence intervals. Averaged across the six sites and all
months of each tower’s operation, nearly all model estimates are outside the ECs’ confidence
intervals. The EC variance reflects only calculated mean monthly GPP, however, and does

not include the considerable additional uncertainty from EC modeling and measurements.

For individual sites, at least one model severely underestimates mean GPP and at least
one model’s mean is more than twice EC GPP (Fig. S7). On average one or two models’
means are credible matches to EC data. The variance of two process models’ simulated GPP
is higher than EC variance for all sites, while one is too low for every site. No model’s vari-

ance is within target range for every site. One statistical model is credible for five of six sites.

—10-
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Figure 2: Comparison of EC GPP to process and statistical model means and variances across
all site-months. Variance, on the y-axis, has a logjg scale. Model "O" is EC GPP. Names of other
lettered models are shown in Fig. 3. Lines bracketing EC estimates are 99" percentile confidence

bounds. For all but two models both means and variances fall outside the confidence bounds.
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Which models are outliers differs across sites, and some models have very different relative
performance among sites. For example, model J’s variance is an outlier in Fig. 2 due to its
puzzling GPP close to zero for several grid cells near K67, while its GPP is well above aver-

age at most other sites.

Correlations with EC GPP are remarkably low. Individual models’ average across all
sites ranges from -0.16 to 0.45, with a grand mean of only 0.12 (range across sites: -0.32 -
0.66, Fig. S8). Overall correlations with EC GPP for four models are statistically indistin-
guishable from zero. CAX and K67 have especially weak matches, with negative correla-
tions for 12 and 14 of the 17 models respectively. The most closely simulated site is RJA,

where EC GPP is especially variable and average correlation across all models is 0.66.

Data with larger magnitudes tend to have larger variance than data with smaller mag-
nitudes, which tends to make GPP variance of mildly responsive models lower for strongly
responsive models. But most models in Fig. 2 show the opposite pattern, with higher vari-
ance and lower mean GPP than the EC towers or the opposite. Means with large absolute
values do not correspond to large variances. The opposing tendencies mean that for these
GPP models, whatever causes differences in means does not explain variability. The causes

of differences in variance need to be considered directly. Based on the logic of flattening, we
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hypothesize that high variance models may be overly sensitive to drivers. Before an explo-
ration of model responsiveness, in the next section a more robust descriptor of model vari-

ability is assigned.

5.2 Seasonal cycle amplitude characterizes a model’s GPP variability.

To explore the connection between flattening and sensitivity, and to compare mod-

els to EC GPP based on the relative variance of their predictions, one possibility is to rank
the models based on variances in EC estimates. An alternative metric of variability that is
more closely related to the biology being simulated is the amplitude of a model’s seasonal
cycle. Unlike a variance calculation, it takes into account the sequencing of observations. A
Fourier series approximation smooths a site’s GPP across outliers, uneven numbers of obser-
vation years per month and missing data. Earth’s annual insolation cycle is sinusoidal, giving
Fourier transformations inherent good fit for some ecological cycles. Characterizing seasonal
cycles of GPP with four pairs of Fourier terms is a compromise between overfitting versus
forcing unrealistic simplification. The first pair can be thought of as creating an annual cy-
cle, the second allows for asymmetric shoulders, and the third and fourth provide for limited

shaping of the annual peak and trough.

We label the difference between maximum and minimum months of a site’s mean an-
nual Fourier cycle as seasonal amplitude. In Fig. 3 and elsewhere, models are listed in in-
creasing order of their seasonal amplitude averaged across the EC sites and indicated with
black dots. Colors indicate how a model’s amplitude compares to the EC amplitude, both av-
eraged across all sites. The nine ‘mild’ models with weaker mean seasonal cycles than ECs
are shown in blue or green. The eight ‘lively’ models whose cycles are stronger are colored
red or orange. The intensity distinctions for dark blue or red break at one standard deviation
from the EC mean. Most notable is how widely the seasonal swings differ across models, by
a factor of 8.2. The difference means roughly that model Z’s simulated trees vary in produc-
tivity eight times as much during a year as do model A’s. The only model that would switch
between the categories of mild versus lively if rankings were determined by variance instead

is Model J, whose very high variance (Fig. 2) is due to anomalous GPP at one site.

ECs are a benchmark for model seasonality, albeit one with arguable accuracy. The
mildest model varies during the year a third (0.35) as much as does EC GPP. The most

strongly responsive model’s mean site amplitude is almost triple (2.9 times) that of the ECs.

—12—
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Figure 3: GPP’s seasonal amplitude, with models’ means across six sites ranked on the x-axis and
marked by black dots labeled with colored letters. Grey boxes show a model’s amplitude tendency
across all rainforest cells in the Amazon. For both sites and basin-wide, the range in seasonal

amplitude across models approaches an order of magnitude.

The models’ degree of seasonality differs strongly also at individual sites. At no site is a
mild model’s mean amplitude larger than four gCm2d! (Fig. S9), while few of the most
responsive models, shown in red, have a seasonal amplitude below four gCm2d-! at any
site. As climate parameters that affect productivity shift over time, a lively model is likely to

predict greater change in rainforest carbon fixation per unit area than a mild model.

Each mean amplitude summarizes only six data points, so the mean EC GPP, 3.4
gCm2d! has large uncertainty. Based on a t-test, only the liveliest model’s amplitude is

outside a 95% confidence interval around the EC mean. K34 and K67 are located close
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enough to each other to have somewhat similar climate. With four degrees of freedom rather
than five to reflect possible pseudoreplication, no model is outside the credible interval.

There are too few data points to tighten the confidence interval by bootstrapping.

ECs’ differing periods of operation preclude a temporally exact comparison between a
model’s basinwide and site tendencies. Fig. 3 shows in grey a box plot of a 95% confidence
interval around the mean seasonal amplitude for all Amazon rainforest cells in all months.
Whiskers on the grey boxes represent the tenth and ninetieth percentiles of cell amplitudes.
The 20% of each model’s cells that are outliers are not shown. As explained in the methods
section, there is no EC mean for model F, whose ranking is an approximation. For the most
mild models, shown in blue, EC amplitudes are roughly representative of the entire basin.
For all the strongly lively red models but one, EC sites have moderately stronger seasonal-
ity than do basin-wide means. The extent to which the ECs are typical of the Amazon as a

whole decreases with model seasonal amplitude.

Comparing seasonal amplitudes to interannual variability (Fig. S10) reinforces how
strong the consequences of seasonal cycles are for simulated GPP. The difference between
highest and lowest year’s mean GPP from 2000 to 2010 for individual models ranges from
0.1 to 1.2 gCm2d’!. The models’ mean basin-level seasonal amplitude ranges are several
times larger, from 1.3 to 6.0 gCm2d"!. The range in seasonal cycle amplitudes across mod-
els, 1.2 t0 9.7 gCm2d"!, approximately equals the grand mean of monthly GPP across all
models, 8.9. For GPP in the Amazon, understanding what drives variation within a year ex-
plains much more about a model’s tendencies than do determinants of its interannual vari-

ability.

5.3 EC GPP barely responds to current weather.

Compared to many temperate locations, rainforests are always moist, always warm and
always green. But even the wettest tropical forests have subtle annual cycles in rain, temper-
ature and light. Our null hypothesis is that a simple linear combination of these three drivers
largely describes monthly mean GPP. If so, weather’s cycles might logically also set the tim-
ing of the simulated annual GPP cycle. Importantly, the drivers’ individual influences on
GPP could be parsed and evaluated [Hamby, 1994]. With differing trends expected for each
driver, a model with retrospectively credible responsiveness to each is more likely to predict

reliably.
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Figure 4: Monthly GPP for each eddy covariance tower compared to paired values predicted from
a regression on MSTMIP rain, light, and temperature with site intercepts. Individual intercepts
force each site’s mean predicted value to equal the mean EC value, indicated with red symbols.
Differences between sites are the main source of the prediction’s power, with minimal EC GPP

responsiveness to weather.

To judge models’ responsiveness requires EC benchmarks. A linear regression with
only current month’s rain, temperature and light explains a small 12% of the variability in

EC GPP (not shown). Rain’s coefficient but no other is statistically significant.

GPP varies substantially between sites (Fig. 4). Individual cell intercepts, or fixed ef-
fects, segregate out the undetermined sources of location-specific differences that cause a
particular site’s outcome to differ by a consistent increment over time. For process models of
GPP, potential underlying causes of site differences include soil depth and fertility, species
assemblage in the spectacularly diverse tropics, herbivory, tree age distribution that reflects
disturbance history, local geology that affects flooding and subsurface hydrology, and others.
Most of these causes for site differences are impossible to parameterize globally, and there-

fore from an ESM perspective constitute impenetrable statistical noise. Site intercepts repre-
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sent differences between locations that may or may not be modeled accurately, and if not, are
apt to involve omitted variables. But separate intercepts allow a focus on how consistently
the three weather drivers cause GPP to change at all locations even if site characteristics sig-

nificantly influence long-term baseline productivity.

Equation 4 predicts monthly mean EC GPP from MsTMIP weather, with site intercepts

added.

GPP = Intercepts + 0.0054 = Rain + 0.019 = Light + 0.52 « Temperature “4)
P-values : Rain = 0.00; Light = 0.01; Temperature = 0.00

Adjusted R? = 0.59; Residual standard error =1.2; n =260

Fig. 4 compares EC GPP on the x-axis to paired predictions from Equation 4 on the
y-axis. Site intercepts account for most of the spread in the EC dataset. Due to the weak
predictive power of the weather variables, paired values for individual sites in Fig. 4 do not
otherwise cluster near the 1:1 black line of perfect prediction. As measured by the adjusted
12, the regression terms determine 59% of the variability. Site-level differences account for
81% of the regression’s predictive power [Chevan and Sutherland, 1991], leaving 19% of
explained variability, or only 12% of total variability, predicted by the current month’s envi-
ronmental attributes. Contrary to the initial hypothesis, current weather has little influence

on EC GPP.

Each site’s predicted values are flattened, with less variability on the y-axis than the
source values on the x-axis. While the EC GPP data points have a variance of 3.3, the vari-

ance of matched but flattened predictions is 2.0, or 61% as large.

If EC meteorology for the comparable cell is used rather than MsTMIP weather, the
regression fit with site effects degrades slightly (r> = 0.54). The only terms whose p-value
is <.10 are four site intercepts and the slope for rain. GPP is statistically unrelated to ei-
ther light or temperature. Why site-specific weather should be less predictive than regional
weather is unclear. Perhaps soil moisture is influential, reflects regional recharge, and over-
whelms highly localized rainfall differences. Also, conceivably a geographically broader
weather summary more accurately represents conditions across ECs’ full footprints than does
weather at point locations chosen to represent the upwind area. The unexpectedly weaker fit

with site weather is convenient, however. Errors in representing the true values of the drivers
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cause attenuation bias in regression coefficients, or weaker sensitivity. If MsTMIP weather
were a worse fit than site weather, comparisons of EC driver sensitivities to model sensitivi-

ties would be less straightforward.

5.4 Lively models respond more strongly to current weather than mild models.

Linear Regression of Site GPP on Weather Drivers
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Figure 5: Linear regression slopes of GPP on current month’s temperature, radiation, and precipi-
tation for each model across six sites. Drivers are in units of standard deviation across all sites and
months. Pale bars are coefficients whose p-value exceeds .05. EC slopes are outlined in black. The
lower right panel shows the residual standard error and adjusted r> for each regression. Slopes, or

driver responsiveness, range among models across an order of magnitude.

Whether flattening is as strong an influence on a model’s simulations as on EC predic-
tions depends on (a) whether current weather describes similarly little of the model’s GPP

variability, and (b) how reasonably a linear sum describes the mathematical form of current
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weather’s relationship to modeled GPP. The three driver variables included in Eq. 4 describe
EC GPP’s weak but statistically significant responses to each. Based on the Akaike Infor-
mation Criterion fit, all three drivers should be retained. All would be kept even if the full
combination were less than ideal, however, in order to explore next each model’s potentially

differing emphases among the weather elements.

The vigor with which some models respond to rain, light and temperature contrasts
sharply with EC GPP’s weak responses. The regressions whose responsiveness slopes appear
in Fig. 5 are simple additive models with site-specific intercepts, parallel to the characteri-
zation above of EC GPP. To facilitate comparison across drivers, environmental variables
are shown in units of standard deviations. A regression slope of +0.5 in Fig. 5 indicates a
tendency for a half gCm2d-! increase in GPP to result from an increase of one standard de-
viation in the driver. Among the models, statistically significant coefficients for rain range
from -0.26 to 2.2, for temperature from -1.8 to 0.26, and for light from -0.81 to 0.69. Am-
bient CO» is an insignificant predictor of historical site GPP in nearly all models (Fig. S11)

and is not included in Fig. 5’s regressions.

Among the GPP drivers, rain is the most consistent predictor across models. Its sign
is positive for all but one model, and its influence statistically significant (p<0.05) for all but
one. The magnitude of rain responsiveness varies substantially, from 0.1 to 2.2 gCm2d"! of
GPP per 120 mm increase in a month’s precipitation. GPP increases with rain in all but 2
models. Models’ rank for rain slopes almost matches that of seasonal amplitudes. The ECs’
responsiveness to rain, outlined in black, sits solidly in the middle. For rain, the main differ-

ence among models is the response strength.

No environmental variable has a monopoly on GPP. Mean absolute slopes differ by
less than a factor of two: 0.75 for rain, 0.46 for temperature, and 0.40 for light. Responses to
temperature differ more than they do to rain. Temperature is statistically insignificant for four
models. For the mildest models, temperature’s influence is positive, as it is for EC GPP, and
very weak. For the liveliest, GPP strongly declines. For light, statistically unreliable slopes
exist across the range of slope magnitudes. On average mild models have nearly as strong a
GPP response to light as do lively models but light’s effect is in the opposite direction. For
temperature and light, there is as much disagreement between models in what direction GPP

responds as how strongly.
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The descriptive regressions largely characterize GPP for all models. For the mild mod-
els as a group, residual standard error (RSE) averages 8% of site GPP and mean 17 is 0.69
(Fig. S12). For the lively models, average RSE is 24% and mean r? is 0.58. GPP and current
weather have an even closer linear connection for seasonally mild models than for livelier

models.

Differences in mean cell GPP, or among intercepts, are substantial and influential. Ex-
cept for one model, the range in intercepts as a percent of mean site GPP is 12 - 55%. The
exception, model J, has intercepts that vary by more than 100% of mean GPP due to one
outlier site. Given that site intercepts are largely a proxy for omitted variables, it is not sur-
prising that they are relatively less influential on process models than on EC GPP. The wide
range in site GPP compared to relatively modest slopes for driver values means that site
means constitute most of the descriptive regression’s explanatory ability, as they do for the

ECs.

As shown in Fig. 5’s lower right panel, for mild models site intercepts explain more
of GPP’s variance (mean = 49%) than does weather (mean = 21%). For lively models, site

intercepts explain a smaller share (mean = 16%) than does weather (mean = 43%)

A model’s responses to drivers in the six cells with eddy covariance towers are gen-
erally similar to its responses across the Amazon (Figs. S11 and S12), suggesting that as-
sessing model responses for the Amazon by comparing them with EC estimates of GPP is a
reasonable application of scarce benchmarking data. But the similar mean tendencies smooth
across considerable spatial differences (Fig. S13). For percent of variance that a simple re-
gression explains, the most striking spatial pattern is that for almost every model there are
areas where a linear relationship of current environmental conditions plus site intercepts de-

scribes change in GPP almost completely, and other places where it explains little.

Weather’s stronger influence on responsive model variability compared to the mild
models is consistent with lively models’ generally steeper slopes for each weather driver. The
principle of flattening suggested, and the data summarized in Fig. 5 confirm, that models

with high variance, the strongly seasonal models, are on average overly responsive to drivers.
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5.5 Models’ differing rainforest non-linearities are not benchmarked.

Compared to regressions that characterize reality, those that describe model output are
unusually clean. All of the modeled values for the study period and area typically are acces-
sible, yielding a census with no sampling errors nor errors in measuring outputs. Some or all
of the inputs to the model’s calculations may also be known exactly, as is MsTMIP weather.
Only two sources of stochastic noise remain in the regressions that describe modeled GPP:
omitted drivers and misspecification. This section considers alternative specifications, first

interactions between weather drivers then non-linear responses.

Adding interaction terms to the regression that describes EC GPP minimally increases
its total explanatory power, while diluting evidence of individual environmental drivers’
influence. The same predictors as Equation 4 were used plus all possible crosses for the
three weather drivers: rain times temperature, etc. The resulting regression has 5% more ex-
planatory power than the model without interactions (1> = 0.62). But no single or combined

weather driver has a significant slope.

Unfortunately, there are too few months of noisy EC data to resolve a non-linear re-
gression form or assess the accuracy of flex points. It is possible that daily GPP estimates
from the towers would better resolve non-linear responsiveness, or might share with monthly
means having too much random uncertainty. Fig. 6 highlights differences in model responses
to extreme temperatures. On the x-axes monthly mean temperatures are grouped by deciles
basinwide. GPP on the y-axis is displayed as z-scores to remove model differences in mean
and variability for each cell. What remains is the degree to which a model’s response to ex-
tremes of temperature are anomalous compared to its responses to currently more typical

temperatures.

The descriptive regressions with simple linear forms of the drivers do reliably indicate
mean tendencies across the range of driver values for the EC months sampled. But as climate
shifts, the models’ responsiveness to more extreme values will be most relevant. For most
models, responses have particularly strong deviation at high temperature from their mean re-
sponsiveness. GPP rises continuously with temperature in about a third of models. The rest
eventually flex into declining plant productivity. Most of the mild models simulate that rain-
forest is more productive in the warmest of months, while lively models reach the opposite
conclusion. Mild models H and J resemble the lively models in this respect, simulating their

very lowest GPP at peak temperatures.
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Figure 6: Non-linearity in modeled cell-level GPP responses to temperature across the Amazon
basin. Monthly cell average temperature, on each panel’s x-axis, is binned by deciles for all cells
and months. GPP is scaled as the number of standard deviations from a particular model and cell’s
mean. Mild models are in the left panel and lively models in the right. At high temperature, GPP

falls markedly in lively models, while the response of mild models varies widely.

Models’ responses to rain and light also are non-linear (Text S4). Models with the
strongest, steepest GPP response to increasing rain tend to have only modest response to in-
creasing light and vice versa. Most lively models respond strongly to rain but have below-
average GPP in the brightest months. In contrast, most of the mild models simulate their
highest rainforest GPP with typical, middle decile rain amounts, and below-average GPP in

the wettest months.

5.6 Lively models simulate strong, rapid drops in dry season GPP.

Responsiveness is a critical characteristic of GPP models because it describes how the
model represents the consequences of climate change. An overly responsive model will pre-
dict more change than is realistic. The phase, or timing, of modeled GPP’s seasonality is a
corroborative assessment of responsiveness’ accuracy that can be benchmarked. Seasonal

timing may also suggest which model processes cause any mismatches. A slightly more re-
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models in the latter half of the dry season.

cent version of Model J illustrates, for example, that an ESM’s seasonal GPP timing can be
correct in most of the world but have major inaccuracies in the world’s wettest regions [Col-

lier et al., 2018, Fig. 5d].

One way to characterize seasonal timing focuses on the month of lowest GPP, as show-
ing when the modeled forest experiences its greatest stress. Across all sites, the month with
lowest modeled GPP is on average 2.6 months different from EC estimates (Fig. S3). Every
model matches at least one site’s time of minimum EC GPP to within one month. But with
one exception, every model also is at least 5 months different from the EC estimate at one or

more sites, or essentially has an opposite seasonal cycle.

Fig. 7 summarizes seasonal timing tendencies for models generalized by responsive-
ness group. Zero on the figure’s x-axis is each site’s long-term average driest month, with
one month before the driest month shown as -1, two months after as +2, etc. Boxes for each

month enclose the 25™ and 75™ percentiles of all models’ GPP deviances from the EC esti-
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mates. Dots indicate outlier models. In months whose median value of the box plot is above
zero, most models at most sites simulate higher GPP than EC estimates. Taller boxes late in

the dry season show when the widest spread among models occurs.

Mild models on average, shown with the green line in Fig. 7, have relatively little sys-
tematic difference from EC estimates over the course of a year. Mildness is defined as a
dampened seasonal cycle, not by similarity to EC GPP, so this result is not inevitable. Mild
models tend to exceed EC estimates slightly in the two months before the driest month, or
early in the dry season. A possible mechanism is insufficient modeled water stress. In con-
trast, lively models, whose average the orange line tracks, simulate lower GPP for 5 months
starting with the driest month. For lively models, lack of plant available water during the dry

season may more strongly curtail GPP than EC data suggest.

At individual sites, the mean differences between mild and lively models are sharper,
with more variation in timing relative to the dry season (Fig. S14). But the overall pattern-
ing at individual sites is similar to the means (Fig. S4), with lively models on average dif-
fering more from EC estimates than mild models except at the K83 site. During transition
months on either side of the dry season, boxes overlap the zero line, showing that on average
the models simulate GPP close to EC estimates during the shoulder seasons. At the RJA site
there is little seasonal pattern in differences between models and EC, and mild models match
EC GPP more closely throughout the year. At other sites, both groups of models estimate
lower GPP during the dry season than do ECs, and higher during the wettest months. The
tendency for all models to simulate GPP that on average is lowest relative to EC estimates

during the late dry season suggests challenges in modeling soil moisture.

6 Analysis

Flattening describes the tendency for the variance of predictions made from otherwise
accurate equations with significant omitted variables or other statistical noise to be reduced.
In light of flattening, this paper addresses the extent of modeled GPP’s seasonal variability
in Amazonian rainforest, how strongly current weather variables determine GPP at six eddy
covariance sites, and the fidelity of seasonal timing. lively models are defined as those with

higher seasonal amplitude than EC GPP, while mild models are less seasonal (Fig. 3).
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6.1 Summary of Findings

Both process and statistical models struggle to reproduce EC estimates of Amazonian
rainforest gross primary productivity. Mean and/or variance of all models’ GPP falls out-
side of 99" percentile confidence intervals (Fig. 2). Flattening helps interpret benchmark
comparisons of the variances. Flattening’s degree of influence is a function of how com-
pletely a model’s drivers determine predicted outcomes, leaving only a small error term in
the descriptive regression. Model outcome variances that are similar to benchmark variance
indicate model skill only if included drivers explain most of the variability in the reference
outcomes. Otherwise, or worse if modeled variance exceeds its reference equivalent, exces-
sive model sensitivity to drivers has overwhelmed flattening. Multiple metrics in this study
suggest that lively models are overly responsive, while the mild models appear most likely to

represent accurately the mean GPP consequences of climate shifts for rainforests.

The regression that predicts EC GPP might appear strong enough that process and sta-
tistical models’ predicted GPP variance should be nearly as high. The regression for EC GPP
that includes both weather and site-specific intercepts explains a total of 59% of variability
(Equation 4). However, the descriptive regression treats intercepts as the fixed outcome of
unspecified variables. With reference data for only six intercepts, this paper does not explore

the important component of GPP accuracy that resides in site means and their drivers.

Separated from site effects, a linear combination of current month’s rain, tempera-
ture and light explains only about an eighth (12%) of EC GPP’s total variance, equal to 0.38
gCm2d’!. Although there are severe difficulties in "measuring" GPP at a flux tower, the por-
tion of variability explained is so low that qualitative conclusions seem warranted. Current
month’s weather is a weak linear determinant of rainforest GPP, and the amount of GPP vari-
ability due to weather is small. In terms of comparing modeled GPP variance to the eddy
covariance estimates, flattening is a strong influence because included drivers do not largely

explain EC GPP.

For the lively models, the weight of evidence favors excessive sensitivity to weather
drivers. The models pass flattening’s indirect test of hypersensitivity; GPP variability of all
the lively models as measured by both simple variance (Fig. 2) and seasonal amplitude (Fig.
3) exceeds EC GPP variability. Direct comparisons of descriptive regression slopes are even
stronger evidence of excessive sensitivity. Responsiveness to rain is stronger in every lively

model than for EC GPP (1.17 average v. 0.48, Fig. 5). Perhaps in counterbalance, all statis-
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tically significant slopes for temperature and light for each lively model are of the opposite

sign from EC GPP’s. Finally, mismatched seasonal cycles also imply that lively models have
excessive responsiveness to at least current rain. For highly seasonal models, the annual min-
imum in photosynthesis tends to be both later in the dry season than EC estimates, and more

severe (Fig. 7).

Whether mild models are overly sensitive is less clear. Net flattening does occur, which
makes excessive driver sensitivity less likely. Mild models’ seasonal GPP amplitudes and
in most cases variances are below EC GPP’s (Figs. 2, 3). However, it is possible that other
flattening influences are sufficiently strong to counteract excessive driver responsiveness.
Two main contributors to the flattening are likely. One is model misspecification noise due to
non-linearity in responses to weather (Figs. 6 and S2). Non-linearities were assessed only
qualitatively due to EC data limitations. The second likely cause of low variance in mild
models’ GPP predictions is low spread in site intercepts. The range in site means for EC GPP
is 4.0 gCm2d"'. Except for one outlier, the ranges of GPP site means for mild models all are
smaller, 0.8 to 3.5. Both model misspecification and low sensitivity to site mean differences

could flatten the GPP predictions.

Since excessive driver responsiveness in mild models could coexist with net flattening,
the sensitivity needs to be assessed more directly. One test is whether weather predictors as
a group explain an appropriate amount of mild model responsiveness. If model sensitivity
to weather perfectly matched the ECs’, weather would explain the same absolute amount of
variability as it does for the towers, 0.38 gCmd"!. For mild models, the average variance
that weather explains is 0.79 gCm2d"! (range across models = 0.09 - 4.60). Given the de-
gree of uncertainty in EC GPP, this check seems at most suggestive that some mild models
respond too weakly. Direct comparison of driver slopes indicates that the mild model group’s
sensitivities to weather is reasonable overall, although there is quite a bit of spread among
models (Fig. 5). Average mild model responsiveness to rain and light is similar to that of EC

GPP, while temperature responsiveness is lower but at least of the same sign.

6.2 Assessment of Findings

Our results are specific to the scales of time and space for which they are calculated:
monthly means for 6 tower sites between 2000 and 2010. Driver strengths can vary with

time integration. At the K67 flux tower, for example, vapor pressure deficit and total and dif-
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fuse light largely determined hourly averaged GPP, while a derived index that also included
leaf area index was better at explaining monthly averages [Wu et al., 2017]. A model that re-
produces hourly photosynthetic fluxes well may still have substantial biases in annual totals
[Keenan et al., 2012]. Spatial amalgamation even more strongly affects variability [Rodig

et al., 2018]. Given the grossly finite mean annual amount of atmospheric water, even though
precipitation may drive local variability of GPP, temperature largely determines global vari-

ability in net land:atmosphere carbon exchange [Jung et al., 2017].

Our analysis agrees with prior studies that have found rainforest GPP in global vegeta-
tion models reacts excessively to weather [Ahlstrom et al., 2017; Baker et al., 2008; Cleve-
land et al., 2015; Huang et al., 2016; Li et al., 2017; Parazoo et al., 2014; Piao et al., 2013;
Poulter et al., 2009; Restrepo-Coupe et al., 2016; von Randow et al., 2013; Zhu et al., 2016].
Excessive rainforest GPP seasonality was reported for an earlier version of Model J at K67
[Sakaguchi et al., 2011], and for Model I at a flux tower in Guyana [Zhu et al., 2018]. How-

ever, we found also that a few mild models have weak responses to weather.

While future trends in Amazon light and rain are uncertain, temperature are expected
to rise [Jiménez-Murioz et al., 2013]. This makes model responses to temperatures that cur-
rently are outliers particularly important [Cavaleri et al., 2015]. Ten of the study models
have a statistically significant negative response, consistent with Huntingford et al. [2013]
and Poulter et al. [2010a]. The mismatch between EC and model responses to temperature
is striking (Fig. 5). Not one is as welcoming of warmer temperature as EC GPP. Dispropor-
tionately strong responses to high temperature (Fig. 6) mean that differences between model

predictions will increase as the climate warms.

Independent indicators of tropical plant response to higher temperatures are mixed.
At La Selva, Costa Rica, the net of GPP and respiration fell strongly with increases over
12 years in daily minimum temperatures [Clark et al., 2013]. Temperature appears to be a
positive and stronger driver of net ecosystem exchange globally, and precipitation a weaker
driver, than is represented in most dynamic global vegetation models [Wang et al., 2013].
For some models, EBF’s optimal temperature parameter is influential. MacBean et al. [2018]
found that one MsTMIP model’s temperature flex point (Fig. 6) seems too low. Optimal tem-
perature for EBF is difficult to specify well including because the real value may vary among

the Amazon’s thousands of tree species.
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Mismatches in GPP seasonal timing (Fig. 7, Text S5), consistent with Poulter et al.
[2010b], suggest that during the dry season plants experience less water stress than modeled.
An exploratory assessment of cumulative rain as a proxy for soil moisture (Text S6) shows
that while at individual sites cumulative rain is an important predictor, no lag duration works
well everywhere. GPP’s site-specific dependence peaks at three months at CAX and eight at
BAN. When the only lag durations whose cumulative rain predictor is statistically significant
at all sites, six or seven months, is used at all sites, the regression has a worse fit than if only
current month’s rain is included. Sites’ differing optimal lag periods cancel each other when

generalized and blur the importance for GPP of seasonal drought.

6.3 A water- versus light-limitation dichotomy poorly characterizes the models.

GPP increases with light in mild models, and falls with light in lively models (Fig. 5).
The lively models also respond more to light strongly. It is tempting to associate each group
with either strong response to light at the expense of temperature sensitivity or vice versa.
If more rain causes GPP to rise enough, and tropical rain clouds reduce radiation, then GPP

necessarily would fall with increasing light.

Clouds’ opposing consequences for photosynthesis of more rain but less light [Huete
et al., 2006; Nemani et al., 2003] has been labeled as light-limited versus water-limited
[Arias et al., 2011; Baker et al., 2013, 2019; Myneni et al., 2007]. If a site is water-limited,
GPP falls during sunny periods due to soil dryness. At light-limited sites water is more
plentiful and GPP rises during sunny periods [Graham et al., 2003]. Some observational
evidence contradicts the hypothesis that light limitations and water limitations represent a
trade-off in the tropics, however, and instead that GPP may have little response to variations
in light [Restrepo-Coupe et al., 2013]. For four of the nine mild models, GPP is lowest
during a dark month for at least one site, but for at least one other site GPP is lowest during a

dry month when light is likely to be stronger (Fig. S3).

The dichotomy requires that light and rain be anti-correlated, with a tendency for in-
creases in tropical clouds both to reduce light and to increase rain. In the MsSTMIP driver
data rain explains only 3% of the variation in light, and the correlation of EC GPP and light
is negative (-0.14). Neither in the MsTMIP driver data does low rainfall bring more sensible
heat in presumed Bowen ratio response to drought stress; Rain explains similarly little (4%)

of the variation in temperature. While the lively models do respond strongly to precipitation,
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as would be expected for modeling approaches that focus mostly on water limitations, there

are few indications the mild models are strongly light-limited.

6.4 Hindcast GPP’s weak responses to CO, do not reveal predicted responses to

CO;.

CO; was a significant predictor of GPP only for two especially mild process models
(Fig. S11). The CO; slope for five models was statistically indistinguishable from zero Much
more than for the other weather drivers, however, the effect of CO, is likely to differ in com-

ing decades from either real or modeled responses for 2000-2010.

Over time CO; can overwhelm trends in other environmental drivers due to its persis-
tence and much larger relative change [Fisher et al., 2013]. And GPP responses to CO; are
unlikely to be linear, mainly because multiple and sometimes conflicting components shape
a net trade-off between CO, fertilization and increased water use efficiency [Swann et al.,
2016]. Land surface models differ substantially in how strongly they amplify atmospheric
CO; increases [Piao et al., 2013]. As an example, this study’s model D, Tem6, simulates
logarithmic increase [Jain et al., 1994]. Other methods than comparison with this EC dataset

will be needed to assess the accuracy of model sensitivity to CO; in rainforest vegetation.

6.5 Fluxcom GPP’s low variance logically reflects flattening.

Statistical models of GPP derive from a limited set of core time series data: satellites,
flux towers, and ground-based weather observations. The statistical models included in this
study use all three. There is no fourth independent source data with which the statistical
models can be benchmarked. Some tentative conclusions about each statistical model’s ac-
curacy for the Amazon still can be drawn from the comparisons made above to flux towers,

however.

There is conspicuous absence of a Fluxcom (Model G) assessment that features rain-
forests even though rainforest is the most productive PFT on the planet and for climate per-
haps the most important. One comparison of GPP from 53 eddy covariance towers to an

early version of Fluxcom included EBF sites only in Australia and Italy [Joiner et al., 2014].

The defining source for Fluxcom is EC data. Reassuringly, Fluxcom’s gross fit with EC

GPP is among the closest for this study’s models. Only model B exceeds Fluxcom’s overall
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correlation with EC GPP (r = 0.37, Fig. S8). While Fluxcom’s mean GPP in site cells is, like
all but one model, outside EC credible bounds, it is among the half-dozen models closest to
the EC mean. Fluxcom’s rain responsiveness slope is one of the closest to EC estimates (Fig.
5). Its scaled temperature slope, 0.006, is much shallower than the ECs’ slope of 0.460. But
so to some degree is every other model’s. The sign of Fluxcom’s slope for light matches that
of the EC towers although its response is stronger by almost half. Fluxcom’s month of peak
GPP is within two months of EC estimates for all sites except RJA (Fig. S4), again among

the best matching of models.

Fluxcom’s complex algorithms resemble linear regression in ways that make flattening
applicable. For example, in model tree ensembles, one of Fluxcom’s options, machine learn-
ing stratifies spatially and temporally defined outcomes into bins but each simulated value
is the prediction of a particular bin’s regression. Predictions from regressions are systemati-

cally flattened, with lower variance than the underlying data.

Flattening could help explain Piao et al. [2013]’s finding that Fluxcom’s GPP is less
variable than any of ten DGVMSs’. In our study, Fluxcom’s GPP variance (1.4 v. ECs’ 3.3
gCm2d") and seasonal amplitude for site cells (2.2 v. 3.4 gCm2d"") are about half as vari-
able. Fluxcom and Wecann are less accurate for evergreen broadleaf forests (EBF) than their
global average [Alemohammad et al., 2017; Badgley et al., 2019]. Reasons for the poor per-
formance include the dearth of both eddy covariance towers and clear satellite retrievals in
the tropics [Tramontana et al., 2016; Jung et al., 2020]. Fluxcom would thus likely have es-

pecially well-smoothed tropical predictions.

Fluxcom’s globally low GPP variability has been called "undersampled" [Piao et al.,
2013], "poorly captured" [Tramontana et al., 2016], underestimated for reasons that are not
fully clear [Jung et al., 2020], and, on the product’s website, "too small" (https://www.bgc-
jena.mpg.de/geodb/projects/Data.php). The tendency bears consideration when using Flux-
com. But in light of flattening, we disagree that Fluxcom’s mildness is necessarily a weak-
ness. The low variance appears instead to be an inherent consequence of omitted drivers and
flattening, and suggests theoretically good potential for relatively accurate driver responsive-

ness globally.

Wecann’s (Model F’s) temporal span prevents reasonable direct comparisons to the EC
towers used in this study. In each comparison across the Amazon basin, Wecann resembles

Fluxcom (Text S3 and Figs. 6, S2, S10, S11, and S12). GPP differs at the warmest decile
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(Fig. 6). Wecann is slightly less sensitive to light than is Fluxcom and more so to CO; (Fig.
S11). Current weather explains less of the variance. But the models’ residual standard errors
(Fig. S12), which tend to indicate the extent of mismatch in a cycle’s phase [Taylor, 2001],
are similar. The detailed nature of these differences reinforce Wecann and Fluxcom’s overall

similarity.

While source data for Fluxcom and Wecann feature eddy covariance towers, VPM
(Model ) emphasizes satellite sources. It uses especially tight coupling and straightforward
equations to merge remotely sensed products. VPM’s unusual spatial pattern of rain respon-
siveness in the Amazon (Fig. 1, Model I) corresponds to likely seasonal trends in cloud con-
tamination of satellite data retrievals. Cloud cover and therefore scarcity of acceptable satel-
lite retrievals globally tends to peak in the tropics and during the wettest months. Gap-filled
or missing data therefore overlap heavily with periods of high greenness and potentially of
peak rainforest GPP. Photosynthetically active radiation from the NCEP II weather reanaly-
sis is the model’s multiplicative component that cloudiness is most likely to skew. Radiation
from weather reanalyses was specifically omitted as an input to another statistical model due

to the product’s high uncertainty [Gentine et al., 2019; Jung et al., 2011].

VPM is more strongly anticorrelated with EC GPP than any other model (r = -0.19).
It is the only model for which rain’s linear regression slope is negative. GPP falls with in-
creasing precipitation for all but the driest decile (Fig. S2). VPM’s response to light also is
an outlier, increasing at every decile with no inflection point (Fig. 6). In terms of the month
with lowest GPP at each site, while other models’ average timing difference from ECs ranges
from 1.5 to 3.3 months, VPM averages 4.5 months (Fig. S3). The phase of VPM’s seasonal
cycle is nearly opposite that of EC GPP at most sites. At no site does VPM simulate min-
imum GPP during a dry season month. While VPM’s GPP estimates are unrepresentative
of the best reference data available for the Amazon, a logically underlying reason of cloud
contamination applies most strongly to the tropics and could have little effect on VPM’s ac-

curacy elsewhere.

In summary, Fluxcom’s match with EC GPP is weak. Their correlation is 0.37. But the
fit is better than for almost all process models. Wecann compares similarly. The fidelity does
not establish Fluxcom’s or Wecann’s veracity, merely their anticipated conformity with EC
GPP in all its imperfections. Of this study’s models, Fluxcom and Wecann appear to be the

best currently available wall-to-wall estimates of mean Amazon GPP.
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6.6 Flattening has practical implications for ESMs.

Flattening certainly does not mean that ESM outputs necessarily have low variability.
GPP in the Amazon is a case in point. For many ESM subprocesses, other sources of model
uncertainty and imperfection remain large enough to obscure and/or overwhelm flattening

due to omitted random variables.

Flattening is likely to be a dominant problem for models privileged to have high ac-
curacy (modest RSE) combined with low precision (low r2). These models suffer little from
uncertainty about included predictors’ responsiveness but lack some key drivers. Currently
it is flattening’s side effects that are most pertinent to ESMs. As described below, they affect
studies of climate outliers; intermediate model calculations; trade-offs in the development,

assessment, and use of models; and consequences of increasing model complexity.

There is enormous practical value in understanding change in the frequencies of
droughts, wildland fires, heat waves, floods, and tropical cyclones [Katz and Brown, 1992].
Studies of climate outliers’ consequences often base predictions on driver change or z-scores
[Abatzoglou and Williams, 2016, for example] rather than on the variability of predictions
directly, sidestepping any bias in variance of predictions that results from flattening. A
conceptually similar option is to build model predictor metrics from simulated history

[Camargo, 2013] rather than from observed driver history [Westerling et al., 2011].

Feedbacks mean that variability internal to a model can affect mean outcomes. Pre-
cipitation intensity in the Amazon rainforest is an illustration. In typical ESM runs, rain-
fall depth is spread uniformly across a grid cell and can simulate overabundant frequency
and duration of light mist [Baker et al., 2019]. Rain reaching the soil is a step function that
breaks when rain exceeds the depth that leaf surfaces can store. Modeled rainforest foliage
remains wet far longer than it actually does after the region’s legend cloudbursts. So much
water evaporates from leaves that soil recharge is weak, in turn reducing GPP. Cloud super-
parameterization distributes rain among and within virtual sub-cells rather than spreading it
uniformly, improving representation of soil moisture. Greater variability in rainfall intensity
within each cell was required for simulating accurate mean rates of plant processes. But the
superparameterization adjustment creates new inaccuracies in modeled global precipitation

patterns [Phillips, 2019].
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When variance of intermediate outputs needs to be similar to actual variability, fea-
sible workarounds may be scarce. Theoretically they include explicit addition of statistical
noise in the form of deterministic or random draws from exogenous distributions [Pelletier,
1997; Khodaparast et al., 2008], finer temporal or spatial scaling, and ensemble modeling
of probabilistic outcomes. An example of the first is LPImL’s semi-stochastic distribution of
monthly rainfall to individual days [Poulter et al., 2010a]. Fuzzy parameters can be used
to address not uncertainty in parameter estimates [Hoffiman and Miller, 1983; Ersoy and

Yiinsel, 2006] but as a proxy for statistical noise due to omitted variables.

Driver sensitivity affects both trends and variability of outcomes [Nijsse et al., 2019].
As long as models lack some influential real drivers, optimizing the predicted variance of
predictions can compromise the accuracy of responsiveness to drivers and vice versa. Ide-
ally the trade-offs are deliberate and publicly documented. The short list of diagnostics to
which the Max Planck Institute’s ESM was finely-tuned for CMIP5 included both means and
variabilities [Mauritsen et al., 2012]. Especially when omitted variables are known to be
highly influential, conversations about the relative importance of sensitivity versus variance
for specific equations, models or applications may be fruitful. For example, flattening may
affect benchmark selection; Fluxcom appears likely to be reasonable if noisy reference data

for GPP’s driver sensitivity.

Weather sensitivity describes, by definition, the consequences of a changing climate.
It is important to focus at least as much on the accuracy of sensitivity as on predictions’
variance despite possibly less certain benchmark data. Accuracy of outcome variances al-
ready is integral to ILAMB Collier et al. [2018] and to many model intercomparison projects
[Houghton et al., 2001; Jupp et al., 2010; Li et al., 2019]. Responsiveness to drivers tends to
be more difficult to benchmark than the variance of outputs. But inadvertently prioritizing

spread over responsiveness in accuracy assessments can be counterproductive.

As ESMs become increasingly accurate for the processes and drivers they include,
and incorporate more of the drivers that cause real variability, simulated variance will tend
to rise. Processes and drivers added over time to the ESMs in IPCC’s Comprehensive As-
sessment Reports have done little to reduce uncertainty around mean temperature trends but
higher complexity has increased the accuracy of simulated variability [Dahan, 2010]. There

are practical limits to adding global drivers to climate models, however.
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7 Conclusions

We compared 15 process models and three statistical models to GPP estimates from
six eddy covariance towers in the Amazon rainforest. Models split almost equally between
weaker and stronger responsiveness than EC data to the environmental drivers of current
month’s rain, temperature, and light. Most striking about the wide spreads across modeled
GPP’s means, responsiveness to drivers, and amplitude of the annual cycle is how little virtu-
ally every model resembles EC estimates. Similarity to Amazon flux towers is one of many
important ESM accuracy metrics. Models that poorly replicate driver responsiveness in
tropical rainforest may do very well by other criteria. The implication, provided EC GPP
is somewhat realistic, is that lively models overreact to rain and have opposite signs of re-
sponse for light and temperature. Since temperature is likely to rise and rain to become more
variable, the liveliest models may substantially exaggerate the Amazon’s future change and

peril.

As this article’s title asserts, accurate deterministic simulation of both sensitivity to
drivers and variability for Amazonian GPP is unattainable. The reason is that weather ex-
plains so little of EC GPP variability that flattening is a strong influence. Of wider relevance
is the role of omitted processes and uncertainty due to other sources of modeling error in re-
ducing the variability of model predictions. It is generically appropriate to be more skeptical
of too much variability than of too little. In the interest of accurate sensitivity, low variance

of predictions relative to a benchmark may sometimes deserve acclaim.
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term with mean 0 and variance o2 and i = 1,...,n is an index of observations. Let h(-,-) be

a known function, which if it were linear would be h(x;, 8) = B1 + Baxi2 + -+ + Bk Xki.

Consider the prediction of a specific outcome, y; corresponding to the explanatory
variables x;. If we have a consistent estimator /3 of the parameters 3, then the predicted
value of y; is 9; = h(x;, B). Since f is consistent, as the sample size n becomes large its limit
in probability is precisely S, so in the limit A(x;, 3) becomes indistinguishable from A(x;, 3).
However, even in the probability limit, J; £, Ely;|x] # y; because y; = h(x;, 8) + &; also

has the random error term &;.

The variance of y; has two parts, V[y;] = V[h(x;, B)] + V]e;], assuming X; is uncor-
related with &;, as typically is necessary for 3 to be consistent. In large samples, V[$;] LN

V[h(x;, 8)], but the variance of y; is larger:
VIyil = VIh(xi. B)] + o

due to the presence of the random error term &; in y;.
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Text S2: Methods Details

2.1 Process Models

The Multi-scale synthesis and Terrestrial Model Intercomparison Project [MsTMIP;
Huntzinger et al., 2014; Wei et al., 2014] isolates land model GPP structural responsiveness
from output differences due to varying inputs. Variants of four of the models participate in
IPCC'’s forecasts. Comparing runs based on standardized drivers is important for the Ama-
zon because its rainfall differs strongly across ESMs [Ahlstrom et al., 2017; Huntingford
et al., 2013; Jupp et al., 2010; Li et al., 2006; Poulter et al., 2010]. MsSTMIP did not pre-
scribe how modelers should distribute monthly meteorology into the shorter time steps at
which many models run. Forcing all models with the same weather does omit feedbacks be-
tween weather and GPP [Gloor et al., 2013; Harper et al., 2014] at times scales longer than a

single month.

All participating MsTMIP models provided outputs of GPP, respiration, and closely-
derived net ecosystem productivity. While MsTMIP invited additional variables, their ab-
sence for at least a varying third of models hampers comparative analysis. Runs represent
each model’s configuration in about 2014. A subsequent update of CLM, for example, specif-
ically addressed previously excessive modeled tropical GPP [Oleson and Lawrence, 2013, p.

9].

Weather reanalyses are less certain for the tropics than for midlatitudes [Clark and
Clark, 2011; Li et al., 2006; Malhi and Wright, 2004]. The only striking outliers in the MsT-
MIP meteorology were retained. From 4000 to 8,597 mm of rain in January, 2000 is as-
signed to 56 half-degree grid cells. Otherwise the highest monthly rainfall anywhere in the
study area in any month is 2,431 mm. Following convention for the wet tropics [Saleska
et al., 2003], dry season is defined as months when long-term mean precipitation is below
100 mm, or less than the approximate maximum plants can metabolize in real time [Aragdo

et al., 2007].

SiB4 meteorology and land cover drivers were developed in conjunction with the new

model version and differ slightly from MsTMIP’s.
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2.2 Statistical Models

MsTMIP models plus SiB4 are referred to as process models, since each simulates
the biological determination of GPP. In contrast, data assimilation estimates of global GPP,
labeled as statistical models, simulate retrospectively from remotely sensed inputs. Ideally
they are sufficiently accurate to benchmark process models [Jung et al., 2011; Zhang et al.,

2017]. They are driven not by MsTMIP weather but by closely-related weather reanalyses.

Global satellite inputs temper Fluxcom’s and extrapolate cleaned eddy covariance flux
estimates. Fluxcom is widely used as reference GPP globally [for example, Anav et al., 2015;
Bonan et al., 2011; Collier et al., 2018; Jung et al., 2019; Malavelle et al., 2019; Mystakidis
et al., 2016; Piao et al., 2013; Tramontana et al., 2016; Xu et al., 2015]. We use the half-

degree resolution product from the multivariate adaptive regression splines algorithm.

Wecann is similar in both concept and results to Fluxcom. With additional input from
GOME-2’s solar-induced fluorescence, Wecann fits tower sensible heat, latent heat, and GPP
slightly better than does Fluxcom [Alemohammad et al., 2017]. Wecann’s one degree reso-
lution is coarser than MsTMIP’s. We attribute each value to four half-degree cells, and note

below adjustments made to avoid artificially narrowed confidence intervals.

The third statistical model, vegetation photosynthesis model (VPM) is a light-use effi-
ciency model. VPM applies deliberately few and non-fitted numeric constants to temperature
reanalysis and multiple MODIS and SPOT satellite products [Xiao et al., 2005; Zhang et al.,
2017]. For a test year in North America, VPM provided the median estimate compared to
six other global GPP models [Zhang et al., 2016]. Being even more heavily dependent on
satellite data than is Fluxcom, VPM is likely to be less accurate in the cloudy tropics than

elsewhere, and less accurate for the tropical wet season than for the dry season.

2.3 Study Boundaries

Selecting EBF tiles within cells is not workable because MSTMIP models’ GPP es-
timates are not available for individual PFTs. To assess GPP that is representative for each
cell’s vegetation (Fig. 1) requires that cell values should be an average only across land area.
The MsTMIP models [Chapin et al., 2006], SiB4, and WeCann [personal communication,
Alemohammad, 2020] give GPP as a mean value across both land and water. VPM [Zhang

et al., 2017] and Fluxcom [Jung et al., 2019] provide GPP as means for a cell’s land area
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only. All GPP datasets except VPM and Fluxcom were adjusted by the cell’s water fraction
in the MSTMIP PFT map. In summary metrics, months are treated as if they are equally

long.

2.4 Eddy Covariance Fluxes

While there is some utility in simply comparing models, knowing their true accuracy is
far more useful. The statistical models are candidate reference data sets, but despite circular-
ity issues addressed below, we wish to assess their accuracy as well. For the Amazon, GPP
from individual eddy covariance towers is the only remaining option. ECs measure exchange
between the land surface and the atmosphere of CO, and other gasses that vegetation affects.
From measurements related to net ecosystem exchange, the large and opposing contributions

of GPP and ecosystem respiration are modeled.

EC GPP was further limited to the study period starting in 2000, cutting off a few
months each at sites CAX, K34, and RJA. The merged EC dataset offers eleven GPP algo-
rithm options. Consistent with Baker et al. [2013], we use "GEP_model." The two ECs in
the Tapajos National Forest are about a dozen kilometers apart in stands with different log-
ging histories. Due to their related synoptic weather and seasonality, for this study the K67

and K83 sites are best considered as pseudo-replicates.

Six sites in the South American rainforest cannot fully represent the region’s range in
either plant productivity or other criteria. For most study models the six cells that contain a
flux tower site encompass less than a third of the model’s central 98% of range in mean an-
nual GPP across the Amazon. However, EC site cells typically fall on both sides of a model’s
median GPP. EC cells also tend to have high GPP (Text S3), which is useful because simi-
larly annual high productivity is uncommon at other flux towers globally whose tendencies

might otherwise help constrain modeling of the tropics.
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Text S3: Representativeness of EC Sites
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Figure S1: Distribution of cell-level GPP averaged across all study months and the entire study
area. A horizontal bar marks a model’s median GPP. Boxes encompass the central 50% of a
model’s cells as ranked by mean GPP, outside of which all grey points indicate all but the most
extreme 2% of cells. Colored symbols mark EC cells. Especially for the some of the more respon-

sive models, toward the left, the EC sites are in cells with above-average productivity.

From the perspective of the models being contrasted, how representative are the EC
sites of the entire Amazon? One basis of comparison is how much of the range in mean
GPP for the 11-year study period the six cells that contain a flux site capture compared to
the range across all EBF cells. EC sites are compared to the basin’s range as defined by its
1%t and 99 percentile values. The outlier is model J, for which EC sites span 85% of the
watershed’s range in GPP due largely to its near-zero GPP for K67. Among the remaining
models, mean GPP for cells with ECs cover from 9% and 51% of the range of the central

98% of Amazon rainforest cells. The median among the models in span that ECs represent
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is 29%. For most of the study models, the six ECs represent less than a third of the range in

mean grid-cell GPP.

On the other hand, the EC sites represent a portion of the rainforest GPP range that is
especially valuable to match. There are disproportionately few flux towers in the exception-
ally productive tropics than there are in some of the world’s less productive biomes. If plant
responsiveness across the global range of environmental driver values is mostly continuous
although non-linear, then ECs elsewhere may help constrain modeling of the low end of the
rainforest productivity spectrum. By this criterion, the most useful EBF flux towers are at the

most productive sites.

The six EC cells do have a higher mean GPP than is typical of the Amazon basin. The
median cell-level annual GPP across all the models that the most productive of the sites rep-
resents as a percentile of each model’s central 98% of study cells is 85%, with a range of
50% to 99% . In most but not all models, the most productive flux site cell is CAX. For the
least rather than most productive of the EC cells, usually the cell that contains BAN, model
percentiles range from 4% and 49% with a median of 17%. While the cells with eddy covari-
ance data cover only a limited portion of the Amazon basin’s range in mean annual GPP, they

are in relatively productive sites for which closely-related alternative data are least plentiful.
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Figure S2: Non-linearity in modeled GPP’s responses to rain and light, parallel to the main pa-

per’s Fig. 6 for temperature.

149 In Fig. S2, GPP is shown as z-score relative to a particular model and cell’s mean

150 across the study period. Shared MsTMIP driver data is binned by deciles. Mild models are

151 in the left panels, and lively models on the right. Nearly all models simulate GPP as falling
152 in the very wettest months although in only a few mild models is it below average. In the dri-
153 est 10% of months GPP is below average in all but two models.

154 GPP increases with rain at the driest deciles and falls in the very wettest months in all
155 but one model. One difference from temperature is that responses to rain for individual mild
156 models are more nearly linear, and models diverge from each other for the driest months in
157 approximately reverse rank as they do at the wettest. Model T, a statistical model, is an ex-

158 ception, with no discernable trend in response to varying rain. The inflection point at which
159 GPP switches from increasing to falling with more rain ranges among models from the sec-
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ond to ninth deciles of current month’s rain. The drop begins at drier levels in most of the
mild models. For some of the lively models, more rain corresponds to higher GPP until
about the top two deciles. The disparities represent disagreement about what moisture is op-
timal for EBF, although do not reveal how modeled soil moisture mediates these responses

within many of the models.

Radiation’s responsiveness too is almost uniformly curved, consistent with a classic
light response curve [Baker et al., 2019]. In the darkest months nearly all models simulate
low GPP. Consistent with differences that Rogers et al. [2017] noted, the flex points of mod-
els’ light saturation divide into two groups, one slightly below 200 Wm™ and the other near
220 Wm™2. Some of the lively models show strong drops in plant productivity in especially

bright months.
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Text S5: Months of Modeled GPP’s Seasonal Peaks at EC Sites
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Figure S3: For each site, the month of lowest mean monthly GPP for each mode. The x-axis and

symbol colors rank models by extent of seasonality. Grey bars on each site’s y-axis indicate the

three months with the least light, while a blue star marks the brightest month. Brown bars show

the dry season. The wettest month is indicated with a green dot. Mild models are more likely to

simulate minimum GPP during a dark month, while lively models’ lowest GPP typically occurs

during the dry season.

Fig. S3 shows that models tend to fall into the same groups for seasonal phase as they
do for seasonal amplitude, both reflecting their relative responsiveness to drivers. Mild and
lively models have nearly identical mean timing differences between EC and modeled GPP,
of 2.9 and 2.3 months respectively. The model groups differ in the direction of differences.
Models with little seasonality tend to simulate the year’s lowest GPP before or early in the
dry season. For every lively model except Model I, GPP is lowest at every site either during
the dry season or in the first month afterward (Fig. S3). Most of the lively models’ minima
occur late in the dry season when modeled soil moisture presumably is lowest. Again except-
ing Model I, no lively model simulates minimum GPP during the three darkest months for

any site.

Patterns are similar for month of highest rather than of lowest mean GPP (Fig. S4).
EC GPP at all sites but CAX peak 2-5 months after the last dry season month. Half of the

models, a mix of mild and lively, match CAX’ timing to the extent of peaking during its four-
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Figure S4: Parallel to Fig. S3 of month of lowest GPP at each site, but showing month of highest
GPP. While the peak and trough of the seasonal phase is not consistently offset by six months,

overall patterns of model responses are similar between lowest and highest GPP timing.

month dry season. Peak month is most accurately modeled for RJA, where neither the EC

tower nor any model reaches maximum GPP during the dry season.

The wet tropics have a modest annual cycle in both leaf area index and the photosyn-
thetic capacity of average leaves [Albert et al., 2018; Borchert et al., 2002; Dahlin et al.,
2017; Doughty and Goulden, 2008; Goulden et al., 2004; Samanta et al., 2012; Wilson et al.,
2001; Wu et al., 2016] but see [Morton et al., 2016]. Seasonal rainforest leaf phenology is
thus far absent from most process models of GPP Albert et al. [2019]. While there is at least
speculative logic for the timing of each site’s maximum plant stress, the dominant mecha-
nism appears to vary across sites. At Tapajos, sites K34 and K83, the lowest EC GPP occurs
early in the dry season (Fig. S4) and corresponds to the annual peak of leaf exchange. The
timing at K67 and BAN also is reasonably consistent with a leaf demography hypothesis.
RJA reaches its lowest EC GPP late in its stark dry season. CAX’s minimum is during a dark
month in the middle of its mildly wetter season. The timing of rainforest leaf exchange may

respond to a continuum of water v. light limitation even if instantaneous GPP does not Albert

—11-



199 et al. [2019]. The mismatches suggest that adding tropical leaf seasonality could improve the

200 accuracy of modeled GPP.
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Text S6: Cumulative rainfall’s influence on EC GPP

Although site intercepts and current weather in simple regressions explain on aver-
age 64% of modeled GPP’s variance, on average about a third remains unexplained. For the
ECs, the correlation of soil moisture with GPP is -0.31. Lively models’ lower GPP than ECs
during the dry season suggests that modeled rainforest plants experience more severe wa-
ter stress than real plants. Process models simulate and track soil moisture, often at multiple
depths. Cumulative water deficit may be a key variable omitted from the descriptive regres-
sions. Soil moisture output is not available for enough models, but an indirect indicator of its
effects is the strength of connection between modeled GPP and cumulative rain over recent
months. The added explanatory power of cumulative rainfall is one way to characterize the

strength of a site’s hydrologic memory.

Testing soil moisture modeling directly requires reasonable reference GPP across the
basin’s spectrum of annual precipitation. Local plants logically adapt to the degree of drought
they experience episodically [Corlett, 2016], and satellite data imply that sensitivity to trop-
ical drought is spatially heterogeneous [Bonal et al., 2016; Feldpausch et al., 2016]. Soil
moisture varies markedly also at fine scales, making it difficult to measure [Broedel et al.,
2017; Huang et al., 2016] or model [Parazoo et al., 2014] for even an EC footprint. Bench-

marking modeled soil moisture across the Amazon is therefore particularly challenging.

It would be helpful if instead accumulated rain were a rough proxy for soil moisture.
Rain summed over periods ranging from only the most recent month to the entire last year
explain greatly varying portions of individual sites’ GPP variability. Each point in Fig. S5,
represents a regression of GPP on MsTMIP temperature, light and accumulated rain, opti-
mized for a single site except the summary line for all sites. Dots and solid connecting lines
mark regressions whose rain coefficients are statistically significant at p<0.05. Dashed lines
pass through 12 of regressions whose rain coefficients fail the significance test. The max-
imum predictive power of a full year for all sites is of little practical consequence. A full

year’s cumulative rain is significant at only one site.

For each site, the point for one month of lag in Fig. S5 shows how much of the varia-
tion in GPP current weather alone explains. The difference from each site’s peak value in-
dicates how much more information rain history can add to current month’s weather. The

legend lists each site’s maximum fit improvement due to cumulative rain. As with current
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Explanatory Power of Cumulative Rain for GPP
Using Rain Data from MstMIP Drivers
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Figure S5: For each site, the rain accumulation duration best predicts EC GPP. The x-axis shows
the number of months before and including the current month that are totaled. The y-axis indi-
cates the portion of variability explained by regressing each rain accumulation period plus current
month’s light and temperature on GPP. Large open symbols indicate each site’s accumulation dura-
tion with the most explanatory power. The increase in r> listed in the legend equals the difference
between the optimal formula and one that uses only current month’s rain. The month with the most
explanatory power varies so much that no single duration explains more of the variability across all

sites than can current month’s rain alone.

month predictors of GPP, weather measured near each EC has slightly less explanatory power

(Fig. S6).

We attempted to predict each site’s best rain lag period. The negative coefficient on
annual average rain, -0.010 months of optimal lag per mm increase, implies that a longer lag
and possibly greater soil moisture retention capacity or deep rootedness exist at relatively
dry sites. Correlations are very low for latitude, dry season length, and mean rain during the
three driest months. Site mean annual precipitation explained 73% of the variation in best

lag length.
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Explanatory Power of Cumulative Rain for GPP
Using Rain Data from Flux Tower
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Figure S6: Parallel to Fig. S5 of rain lag duration versus explanatory power, using EC meteorol-
ogy rather than MsTMIP weather reanalysis rain. The sharpest differences in results for the two
meteorology sources are the worse fits of EC rain for K67 and K83. EC rain does slightly better

than MsTMIP rain for K34 and CAX.

Highlighting the difficulties in developing modeling equations that are reasonable for
all sites are differences in Fig. S5’s site-specific light and temperature coeflicients. Particu-
larly for light, responsiveness is typically two to eight times stronger at individual ECs than
when calculated across all sites simultaneously. Light at one or more rain lags is significant
at only three sites, one only at cumulations longer than 9 months. That light nonetheless is
significant for the regression across all sites for every lag period option suggests that light
may be partly a surrogate for omitted drivers correlated with latitude. Temperature differs
more across sites, significant in regressions for 2 to 7 inconsistent groupings of the 12 possi-

ble lag periods.
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Figure S7: Mean and Variance of GPP for Each Site
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Figure S7: For each eddy covariance site, comparison of EC estimates to the means and variances
in GPP estimates from each statistical or process model. Vertical and horizontal lines bracketing
Model "O", EC estimates, are 99t percentile confidence bounds. For most models, both mean and
variance fall outside the confidence bounds, with some models higher and some lower. For some

models, their GPP variability exceeds that of EC estimates even more markedly than does mean

GPP.

Comparing GPP’s mean and variance for individual EC sites to each model relative
to the mean rather than by the absolute variance further contradicts the possibility that high
variance is simply due to high absolute GPP. Six models’ variance at one or more sites ex-
ceeds 100% of the site’s mean (Fig. 2). These six models are among the eight whose overall
variance is larger than overall EC variance. Site-level variance for the model with the highest

overall variance ranges from 160 to 226% of the site’s mean modeled GPP. In contrast, the
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256 model with the lowest variance as a percent of mean modeled GPP ranges from 1% to 8% at

257 individual sites.
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Figure S8: Correlations of EC GPP with Process and Statistical Models

model BAN CAX K34 K67 K83 RJA Al
A -0.07 0.17 0.45 -0.07 0.18 0.07 [ ] 0.36

B 0.69 0.03 0.74 -0.42 0.50 0.77 [ ] 0.39

c 0.21 -0.32 -0.22 0.09 -0.05 0.37 [ ] 0.25

D 0.64 0.41 0.67 -0.36 0.42 0.12 | 0.03

E 0.40 -0.60 -0.16 -0.52 -0.03 0.87 [ ] 0.19

G 0.82 0.12 0.43 -0.08 0.65 0.85 [ ] 0.37

H 0.02 -0.54 -0.26 -0.48 -0.10 0.89 [ ] 0.34

[ 0.33 0.68 -0.04 -0.45 -0.19 0.11 | -0.19

J 0.34 -0.61 -0.27 0.30 -0.18 0.87 [ ] 0.20

s 0.25 -0.70 -0.19 -0.38 0.01 0.80 [ ] 0.17

T 0.49 -0.59 0.12 -0.28 0.12 0.85 | -0.05

u 0.89 -0.45 0.28 -0.38 -0.01 0.75 | 0.02

v 0.41 -0.55 -0.14 -0.34 0.01 0.87 [ ] 0.34

w 0.61 -0.53 0.02 -0.34 0.06 0.76 [ ] 0.18

X 0.58 -0.74 -0.09 -0.19 0.02 0.78 [ ] 0.13

Y 0.05 -0.68 -0.59 -0.50 -0.16 0.75 | -0.03

z 0.81 -0.50 0.32 0.19 0.31 0.77 [ ] 0.21
Mean 0.44 -0.32 0.06 -0.25 0.09 0.66 [ ] 0.17

Figure S8: Simple correlations between a process or statistical model’s GPP at a particular site to
its EC estimate. Letter colors correspond to models’ seasonal amplitude relative to that of the ECs,
with green and blue models milder and orange and red models livelier. The mean months that a EC
operated, or number of paired values per site correlation, is 43. The column on the far right, for all
sites, is the variance calculated on all pairs of EC GPP with the other model, across all sites and
months, not the mean of the six site-level variances. A small squared correlation suggests prima

facie that there is only random connection between a model and EC estimate.
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259 Figure S9: Seasonal Cycle Amplitudes for Each EC Site
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Figure S9: Parallel to the main paper’s Fig. 3 of seasonal amplitudes, showing each site sep-
arately. Steadily increasing values from left to right indicate moderate similarity in site-level

amplitude ranking and the ranking of mean amplitudes.
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Figure S10: Yearly Mean GPP by Model

Model Variation in Amazonian GPP over Time
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Figure S10: Yearly mean GPP for Amazon rainforest model cells. Interannual variability of indi-

vidual models is much smaller than the differences among models in a particular year. Even driven

by identical climate inputs, different models simulate consequentially different GPP. In every year

the mean reconstructed GPP for the Amazon is over twice as high for the highest three models as

for the lowest two. The differences mean that ESMs’ predictions of tropical GPP several reflect

not only substantial differences in meteorological predictions but also in tropical GPP’s model

structure and parameterization.
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261 Figures S11 and S12: GPP Responses to Environmental Drivers Across the Entire
262 Amazon Basin

Weather's Linear Effects on GPP
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Figure S11: Fig. 5 shows each model’s slope of GPP for EC cells only with driver units in z-
scores. This figure summarizes tendencies also across the entire basin, displays slopes per unit
value of each driver, and includes slopes for CO,. The large purple diamonds are for the EC cells
only while the blue dots are for the entire Amazon. EC estimates are highlighted with a yellow
background. Site slopes with probability <0.05 are semi-transparent. With hundreds of cells,
p<0.05 for all basin-level predictors. Model responsiveness at EC sites generally mimics their

basinwide responsiveness.
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Fit of Linear Models of GPP
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Figure S12: Please see caption for previous figure. Fits for Model F are not directly comparable
because they summarize a 1° spatial grid while all other models have ¥2°, or approximately four

times as many cells in the Amazon.

22—



“YInos Joy}re]
UST] 10U PIM JJO FOMO] J0 ‘0aneSau 0] §,¢ Jo yitou JySi| a1ow 0) asuodsar aanisod & woiy Yyoyms 0) Aouopuo) dreys e ST 919y} pealsul ‘S[opowl [euoseas A[Suons

104 "S9[0Ad [eUOSEIS Yeam )M s[opout 1oy Aroydrrad s, urseq oy Jeau 9A1su0dsal JSed[ SI JdD UIseq oy} JO Pud Isam Y} U0 [)I0oU 9y} 0} IOY)Ie] SPUIXd pue ‘dsuodsax
Ieam UBY) JoUJel IoSUoI)s Sey pueq [eNUd 2y} Ing ‘Tefruis st uroned reneds s, ormjerodwiay, ‘SYIUOW JSAMUTRI AY) UL ISOUWL SISBAIOUL JJO) 2Ioym sdoe[d JO UONEBIO] [BID
-ud3 j0U INq JUAIXA Y} Ul APSOW SULIYIP ‘Uret 0} A[Te[IwIs puodsal S[opowl ‘)samyliou Jom A[[e1oadsa oy J0 "urel ueawl A[JIUOUW JO SSOUAANOUNSIP A} 90NpPal Aew
UO7Z, 90UdZIAU0)) [821d01)I2)U] A} JO SUISSOIOIA0 A[IBAA-901M] ‘QIQY], J0Jenba 9y} JO INOS YIems }Sam-1Sed Ue Ul urel 03 Apjeam jsow puodsal [ pue ( S[OPON Inq [[V

‘A[[enprarput paje[nored are 3dadiojur se [[om se sadofs s, [[90 1049 Isenuod ur ‘sdews [9poul Ay} 10 IS AI9AQ Je [BD

-UApI 9q 0} PI10J A1k S2dO[S JOALIP Iy 1dO0IOUL JUSIOHIP B 9ABY 0] S)IS OB SMO[[B ULIOJ UOISSAIFI Y] ‘G "TIf Ul SIS DF 2yl Io °G 3L Jo s[oued oy se suoneso]
uwres 9y ul paguelte a1e s[oued Inoj s, [opow Yoey ‘[opow yoed Joj paure[dxa Afiqerrea Jdo jo uoniod s

3

uorssa13ar pue sadoys 1oarap ur suroped [eneds :¢1S 2In3ig

ainjesadwa)

SI9ALIQ S,YJUOIA JUd1IN) 0} SsaudAIsuodsay
4 ISPOIN

aimesadwa)

uley
SI9ALIQ S,YJUOIA JudLIND 0} SSdudAIsuodsay
V [9POIN
IPPOIAl Aq SSIUIATISUOASIY JIALI(T JO sdeA] :€TS 2In3I

23



Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

"UOT109S SIY) UI 2In3 1Y ISIY Mmo[aq uondes 29s asealq

aimesadwa)

SJ9ALIQ S,YJUOI JudLINY 0} SSdudAIsuodsay
4 I3PON

ainjesadwia)

SI9ALIQ S,YIUO JUdLINY 0} SSauaAisuodsay
3 ISPOIN

aimesadwa)
SJ9ALIQ S,JJUO\ JuUdaind 0} ww0=w>_w:OwaI

a Ispon

ainjesadwia)
SJI9ALIQ S,YJUOIA Jud.Ing 0} ww0=0>_w—._0n,_m0~_

O I3POoIN

24—



Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

"UOT109S SIY) UI 2In3 1Y ISIY Mmo[aq uondes 29s asealq

aimesadwa)

SJ9ALIQ S,YJUOI JudLINY 0} SSdudAIsuodsay
S I19pon

ainjesadwia)

SI9ALIQ S,YIUO JUdLINY 0} SSauaAisuodsay
I I19PON

aimesadwa)
SJ9ALIQ S,JJUO\ JuUdaind 0} ww0=w>_w:OwaI

1 ISPO

%
ainjesadwia)
SJI9ALIQ S,YJUOIA Jud.Ing 0} ww0=0>_w—._0n,_m0~_

H ISPON

25—



Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

"uo1no9s SIy) ur 2In3y IsIy mo[aq uonded 99s asea|d

aimesadwa)

SJ9ALIQ S,YJUOI JudLINY 0} SSdudAIsuodsay
M ISPOIN

ainjesadwia)

SI9ALIQ S,YIUO JUdLINY 0} SSauaAisuodsay
A 12POIN

aimesadwa)
SJ9ALIQ S,JJUO\ JuUdaind 0} ww0=w>_w:OwaI

N ISPOW

ainjesadwia)
SJI9ALIQ S,YJUOIA Jud.Ing 0} ww0=0>_w—._0n,_m0~_

1 13poiN

uey

26



Earth Systems (JAMES)

Advances in Modeling

Confidential manuscript submitted to Journal of

"UOT109S SIY) UI 2In3 1Y ISIY Mmo[aq uondes 29s asealq

ainjesadwia)

SI9ALIQ S,YIUO JUdLINY 0} SSauaAisuodsay
Z I9PON

aimesadwa)
SJ9ALIQ S,Jjuop jJuaiing o3 ww0=w>_w:OwaI

A I19PON

ainjesadwia)
SJI9ALIQ S,YJUOIA Jud.Ing 0} ww0=0>_w—._0n,_m0~_

X ISPON

27—



263 Figure S14: Phase of Site-Level Seasonality

Mean Deviance from Tower GPP
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Figure S14: Parallel to the main paper’s Fig. 7 for each site separately, showing deviance in mod-

eled GPP from EC estimates. Blue and yellow bars at the top of each panel show mean monthly in-
solation and rainfall. Relative variations in light are small, and the line at 200 W m is an arbitrary
visual reference. The dotted line for rain defines dry season months. At most sites, divergences are

largest for lively models late in the dry season.
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