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Abstract

Carbonate clumped isotopes ([?]47) have become a widely applied method for paleothermometry, with applicationsspanning

many environmental settings over hundreds of millions of years. However, [?]47-based paleothermometry can be complicated

by closure temperature-like behavior whereby C–O bonds are reset at elevated diagenetic or metamorphic temperatures, some-

times without obvious mineral alteration. Laboratory studies have constrained this phenomenon by heating well-characterized

materials at various temperatures, observing temporal [?]47 evolution, and fitting results to kinetic models with prescribed C–O

bond reordering mechanisms. While informative, these models are inflexible regarding the nature of isotope exchange, leading

to potential uncertainties when extrapolated to geologic timescales. Here, we propose a ”disordered” kinetic framework to

circumvent this issue by modeling C–O bond reordering as a continuum of first-order processes occurring in parallel at different

rates. We show theoretically that all previous models are specific cases of disordered kinetics; thus, our approach reconciles the

transient defect/equilibrium defect and paired reaction-diffusion models. We estimate the rate coefficient distributions from

published heating experiment data by finding a regularized inverse solution that best fits each [?]47 timeseries. Importantly, this

approach does not assume a particular mechanism or energy distribution a priori. Resulting distributions are well-approximated

as lognormal for all experiments on calcite or dolomite; aragonite experiments require more complex distributions. Presuming

lognormal rate coefficient distributions and Arrhenius-like temperature dependence yields an underlying activation energy, E,

distribution that is Gaussian with a mean value of μE = 224.3±27.6 kJ mol-1 and a standard deviation of σE = 17.4 ± 0.7 kJ

mol-1 (+-1σ uncertainty; n = 24) for calcite and μE = 230.3 ± 47.7 kJ mol-1 and σE = 14.8 ± 2.2 kJ mol-1 (n = 4) for dolomite.

These model results are adaptable to other minerals and may provide a basis for future experiments whereby the nature of

carbonate C–O bonds is altered (e.g., by inducing mechanical strain or cation substitution). Finally, we apply our results to

geologically relevant heating/cooling histories and suggest that previous models underestimate low-temperature alteration but

overestimate [?]47 blocking temperatures.
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Abstract14

Carbonate clumped isotopes (∆47) have become a widely applied method for paleothermometry, with applications15

spanning many environmental settings over hundreds of millions of years. However, ∆47-based paleothermometry16

can be complicated by closure temperature-like behavior whereby C–O bonds are reset at elevated diagenetic or17

metamorphic temperatures, sometimes without obvious mineral alteration. Laboratory studies have constrained this18

phenomenon by heating well-characterized materials at various temperatures, observing temporal ∆47 evolution, and19

fitting results to kinetic models with prescribed C–O bond reordering mechanisms. While informative, these models20

are inflexible regarding the nature of isotope exchange, leading to potential uncertainties when extrapolated to geologic21

timescales. Here, we instead propose that observed reordering rates arise naturally from random-walk 18O diffusion22

through the carbonate lattice, and we develop a “disordered” kinetic framework that treats C–O bond reordering as23

a continuum of first-order processes occurring in parallel at different rates. We show theoretically that all previous24

models are specific cases of disordered kinetics; thus, our approach reconciles the transient defect/equilibrium defect25

and paired reaction-diffusion models. We estimate the rate coefficient distributions from published heating experi-26

ment data by finding a regularized inverse solution that best fits each ∆47 timeseries without assuming a particular27

functional form a priori. Resulting distributions are well-approximated as lognormal for all experiments on calcite or28

dolomite; aragonite experiments require more complex distributions that are consistent with a change in oxygen bond-29

ing environment during the transition to calcite. Presuming lognormal rate coefficient distributions and Arrhenius-like30

temperature dependence yields an underlying activation energy, E, distribution that is Gaussian with a mean value of31

µE = 224.3±27.6 kJ mol−1 and a standard deviation of σE = 17.4±0.7 kJ mol−1 (±1σ uncertainty; n = 24) for calcite32

and µE = 230.3± 47.7 kJ mol−1 and σE = 14.8± 2.2 kJ mol−1 (n = 4) for dolomite. These model results are adaptable33

to other minerals and may provide a basis for future experiments whereby the nature of carbonate C–O bonds is al-34

tered (e.g., by inducing mechanical strain or cation substitution). Finally, we apply our results to geologically relevant35

heating/cooling histories and suggest that previous models underestimate low-temperature alteration but overestimate36

∆47 blocking temperatures.37

Keywords: activation energy model, carbonate, apparent equilibrium temperature, clumped isotopes, solid-state38



diffusion, thermometry39

1. Introduction40

Carbonate clumped isotope ratios (reported as ∆47) are a valuable paleothermometer because they have been41

shown—empirically and experimentally—to solve the underdetermination problem with carbonate-water oxygen iso-42

tope exchange thermometry (Eiler, 2011). This apparent panacea, however, comes with caveats. Specifically, clumped43

isotopes are subject to alteration during diagenetic dissolution-reprecipitation of the original carbonate, both in water-44

buffered and rock-buffered settings (e.g., Ryb and Eiler, 2018; Shenton et al., 2015), and by internal, diffusion-driven45

isotope exchange reactions within the solid mineral lattice at elevated temperatures—so-called “solid-state clumped46

isotope bond reordering” (Dennis and Schrag, 2010; Passey and Henkes, 2012; Stolper and Eiler, 2015; Brenner et al.,47

2018; Lloyd et al., 2018; Chen et al., 2019).48

Bond reordering has been observed or hypothesized to affect carbonates from many geologic contexts on Earth.49

Empirical evidence comes from two main sources: (i) carbonatites, where ∆47-derived temperatures, T (∆47), are con-50

sistently much lower than inferred igneous crystallization temperatures (Dennis and Schrag, 2010; Stolper and Eiler,51

2015; Fosu et al., 2020), and (ii) marbles and sedimentary rock alteration along dikes, where T (∆47) systematically52

increases closer to the heat source (Finnegan et al., 2011; Lloyd et al., 2017; Ryb et al., 2017). Furthermore, bond53

reordering has been invoked to explain elevated T (∆47) in deeply buried paleoclimate archives (e.g., shells) that are54

petrographically and geochemically well-preserved (e.g., Shenton et al., 2015; Henkes et al., 2014, 2018). Predicting55

the impact of bond reordering on measured ∆47 values is thus critically important for properly interpreting clumped56

isotope paleotemperature records, particularly in older archives that may have been exposed to higher diagenetic57

temperatures (Henkes et al., 2018).58

Quantifying bond reordering necessitates kinetic models that both satisfy experimental tests and are amenable to59

a wide range of geologic applications. This has been achieved in the laboratory by heating the same mineralogically60

pure carbonate material at multiple temperatures for discrete time intervals. From these studies, it is possible to61

observe ∆47 evolution without obvious physical or isotopic changes to the reactant (i.e., decarbonation or mineral-62

gas/mineral-liquid isotope exchange). By assuming first-order kinetics and Arrhenius-like temperature dependence,63

one can utilize heating experiment results to estimate E, the underlying activation energy of clumped isotope bond64

reordering, and k0, the Arrhenius pre-exponential factor (Passey and Henkes, 2012; Stolper and Eiler, 2015). Given65
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Figure 1: Crystal structures of (A) calcite and (B) aragonite, each showing two unit cells projected onto the (001) plane. Carbon (grays), oxygen
(reds), and calcium (greens) atoms are shaded according to their distance along the c axis. Isotopically substituted oxygens (18O) and carbons
(13C) are shown in gold and blue, respectively. Also included are representations of crystal lattice defects that may influence oxygen bonding
environments and clumped isotope reordering rates: calcium substitutions (e.g., Mg2+ or Sr2+; purple), oxygen vacancies (open circles), and
interstitial atoms (hexagons). Interactions between an 18O atom and neighboring defects are highlighted with pink lines, whereas bond distances
(in Angstroms) between an 18O atom and all nearest neighbor O atoms are highlighted with light blue lines (Markgraf and Reeder, 1985; De Villiers,
1971). For aragonite, O1 type oxygens are outlined in dotted lines, whereas O2 type oxygens are outlined in solid lines. Dolomite crystal structure
is similar to that of calcite but with the c/6 calcium replaced by magnesium.

these experimentally determined Arrhenius parameters, ∆47 evolution due to bond reordering can then be estimated66

for any carbonate sample that has experienced any specified time-temperature (t-T ) history (Passey and Henkes, 2012;67

Stolper and Eiler, 2015).68

However, nearly all heating experiments to date are complicated by the presence of an early, rapid change in ∆4769

that appears to deviate from exponential decay predicted by first-order kinetics (Passey and Henkes, 2012; Henkes70

et al., 2014; Stolper and Eiler, 2015; Lloyd et al., 2018). While initially ignored, these early data points have prompted71

the development of two alternative bond reordering models. First, the “transient defect/equilibrium defect” model72

of Henkes et al. (2014) posits that non-first order behavior results from the simultaneous reaction of two defect73

populations: one that follows first-order kinetics and a second whose concentration decreases with prolonged heating.74

Despite its presence, Passey and Henkes (2012) and Henkes et al. (2014) argue that the nature of this transient defect75

pool is ambiguous and likely annealed in many geologic contexts. Second, the “paired reaction-diffusion” model of76

Stolper and Eiler (2015) treats the early, rapid change in experimental ∆47 as the result of interactions between pairs of77

neighboring, singly substituted carbonate groups; these groups can then diffuse through the crystal lattice according78

to first-order kinetics. This model is intuitive and capable of capturing ∆47 changes in most experimental datasets79

but is inflexible and disregards the contribution of lattice defects or other extrinsic factors that may promote isotope80

exchange. Importantly, both models prescribe C–O bond reordering mechanisms a priori, potentially leading to large81
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Figure 2: The random walk bond reordering model: (A) Potential energy wells for oxygen atoms vibrating about their zero-point energies (ZPE;
thick gold lines) in two neighboring CO3 groups. At the molecular level, diffusion occurs when an oxygen atom “jumps” from one CO3 group i
to a neighboring group j (blue dotted line); a jump requires that the activation energy barrier Ei, j is overcome. If an 18O atom (gold circle) jumps
to a neighboring 13C-containing group (blue circle), then the ZPE of the resulting clump is lower than that for the initial state and the reaction is
thermodynamically favored. (B) Conceptual diagram of the model setup. A grid of nC carbon atoms is created, each with a random probability of
being isotopically substituted (blue circles) that is equal to the natural abundance of 13C (assumed δ13C = 0 ‰). An 18O atom (gold circle) is then
“seeded” onto the grid; ri, the probability of initially being associated with carbon atom i, follows a uniform distribution but is increased by a factor
of R47,0/R∗47, the initial ∆47 value, for all 13C atoms. At each time step tk , the 18O atom can “jump” to any of its neighboring carbon atoms with
a total probability p such that p =

∑
qi, j, where qi, j is the probability of jumping to neighboring carbon atom j; qi, j decreases as the square of the

distance between the two carbon atoms and is increased by a factor of R47,eq/R∗47, the equilibrium ∆47 value, for all neighboring 13C atoms. An
example random walk is shown with the dotted gold (no clump formed at tk) and blue (clump formed at tk) trajectory. The random walk process is
repeated nO times for a given carbon grid; uncertainty is determined by recreating the carbon grid niter times for a total of nO × niter random walks.
(C) Model results showing G(tk), the normalized deviation from equilibrium at each time step, as a function of 〈J〉, the ensemble averaged number
of jumps per 18O atom. 〈J〉 = ptk is nondimensional time such that 〈J〉 = 1 is the mean life of an exponential decay reaction with rate constant
k = p (dotted black line). The model shown here (blue line and shaded region) was initialized with di, j for calcite (see Fig. 1), R47,0/R∗47 = 1.01,
R47,eq/R∗47 = 1.0025, p = 0.1, nC = 104, nO = 106, niter = 103, and nt = 25. Also shown is the predicted G(tk) evolution using the best-fit
lognormal disordered kinetics solution (solid black line; Section. 4.1).

uncertainties when extrapolated to geologic t-T histories.82

To obviate the need for a priori mechanistic assumptions, here we recast clumped isotope bond reordering as a83

“disordered” kinetic process whereby solid state C–O isotope exchange occurs as a parallel superposition of pseudo-84

first-order reactions. We show theoretically that all previously published models represent specific cases of disordered85

kinetics subject to certain constraints. We then relax these constraints and estimate the distributions of rate coefficients86

that best fit experimental data using a regularized inverse approach. Resulting rate coefficient distributions are gen-87

erally well-approximated as lognormal, indicating that underlying E distributions are Gaussian, consistent with the88

central limit theorem. Finally, we compare our bond reordering predictions to those of previous models and estimate89

∆47 evolution for examples of geologically relevant heating/cooling histories.90

2. Conceptual Framework91

To motivate the development of our model, we first conceptualize solid-state bond reordering as a random-walk92

diffusion process occurring within the crystal lattice (Cole and Chakraborty, 2001; Passey and Henkes, 2012). Al-93

though new to mineral isotope studies, disordered kinetics have been successfully applied to similar solid-state reac-94
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tions; in particular, mineral luminescence decay patterns are shown to result from a distribution “trapping sites” that95

are analogous to the formation of 13C–18O clumps (Huber, 1985).96

For carbonates, 18O diffusion arises when an oxygen atom randomly “jumps” from one CO3 group i to a neigh-97

boring CO3 group j (Fig. 1; Stolper and Eiler, 2015). Because each atom within a given group vibrates about its98

zero-point energy (ZPE) such that a jump involves overcoming an activation energy barrier Ei, j, the probability p of a99

given atom jumping at any given time is small (Cole and Chakraborty, 2001). Following a harmonic oscillator, we as-100

sume Ei, j is inversely proportional to d2
i, j, the square of the distance between oxygen atoms in neighboring CO3 groups101

(Fig. 1). Furthermore, if an 18O atom from a singly substituted CO3 group jumps to a neighboring 13C-containing102

CO3 group, the final ZPE of the newly formed clumped group is lower than that of the initial configuration (i.e., it103

is thermodynamically favored) due to the nonlinear reduction in ZPE (Fig. 2A; Wang et al., 2004). Lattice defects104

such as vacancies, interstitials, or Ca2+ substitutions likely influence Ei, j, but their presence is not strictly necessary105

for diffusion within this framework (Fig. 1; Henkes et al., 2014).106

In statistical mechanical terms, this reduction in ZPE leads to an increase in the probability of following a particular107

diffusion pathway, qi, j, when it involves jumping to a neighboring 13C-containing CO3 group; the magnitude of this108

increase is proportional to the ZPE difference between singly and doubly substituted groups and, by extension, to109

the equilibrium ∆47 value at a given temperature (Fig. 2B; Schauble et al., 2006). As T → ∞, the ZPE difference110

approaches zero and diffusion becomes truly random (i.e., the reduced partition function ratio between singly- and111

doubly-substituted CO3 groups approaches unity; Wang et al., 2004), consistent with the requirement that clumped112

isotopologues are stochastically distributed in the mineral lattice at high T . Critically, this framework differs from the113

paired reaction-diffusion model in that we do not treat the “pair-to-clump” transition as a separate chemical reaction114

that follows unique kinetics (kf in Stolper and Eiler, 2015). Rather, we include this as part of the diffusion process and115

we increase the probability of this diffusion pathway in a manner predicted by statistical mechanics.116

As shown in Fig. 2C, the random-walk diffusion model described here accurately predicts the observed slowdown117

in ∆47 evolution during heating experiments without the need to treat the pair-to-clump transition as a unique chemical118

reaction or to invoke lattice defects. We interpret this result and predict ∆47 evolution on geologic timescales by119

developing the disordered kinetic model for bond reordering.120

3. Methods121

3.1. Data compilation122

We compiled results from all published experiments designed to derive the kinetics of solid-state C – O bond123

reordering. This includes ∆47 data from 42 experiments using four carbonate minerals: optical and fossil brachiopod124

5



calcite (Passey and Henkes, 2012; Henkes et al., 2014; Stolper and Eiler, 2015; Brenner et al., 2018), aragonite (Chen125

et al., 2019), dolomite (Lloyd et al., 2018), and the carbonate group within apatite (Stolper and Eiler, 2015). All data126

were generated using near-identical analytical methods either at the California Institute of Technology (see Passey127

et al., 2010) or at Johns Hopkins University (see Henkes et al., 2013). To summarize, this included carbonate digestion128

using a 90 ◦C common phosphoric acid bath, CO2 purification by cryogenic and He-carrier gas chromatography, and129

measurement of m/z 44–49 on a Thermo Scientific MAT 253 isotope ratio mass spectrometer. Reported clumped130

isotope compositions are calculated as131

∆47 =

[(
R47

R∗47 − 1
)
−

(
R46

R∗46 − 1
)
−

(
R45

R∗45 − 1
)]
× 1000‰, (1)

where Ri is the measured ratio of isotopologue i relative to 12C16O2 and R∗i is the predicted ratio of isotopologue i132

relative to 12C16O2 if all isotopes were randomly distributed (Affek and Eiler, 2006).133

To perform all calculations in a standardized reference frame, we refer to only published data on the “carbon134

dioxide equilibrium scale” (Dennis et al., 2011) uncorrected for the fractionation factor between 25 ◦C and 90 ◦C135

phosphoric acid reaction (i.e., CDES90; Bonifacie et al., 2017). Study-specific fractionation factors were used to136

uncorrect all data except those presented in Stolper and Eiler (2015); since no fractionation factor was reported for137

these experiments, a value of 0.092 ‰ was used to match that reported for other data generated in the same laboratory138

during the same time period (e.g., Bonifacie et al., 2017). Isotopologue reordering reaction progress should be139

insensitive to the reported ∆47 values (i.e., acid or any other standardized correction) so long as equilibrium ∆47 is140

reported in the same reference frame. We thus made no attempt to correct for differences in isotope parameters used141

between studies.142

Assessing model fits requires knowledge of measurement uncertainty. Here, we use ∆47 uncertainty reported in143

each original study without further correction. For samples with replicate measurements, reported uncertainty is the144

±1 standard error (s.e.) of all replicates. For samples analyzed only once, reported uncertainty is typically equal to145

the long-term instrument precision of a suite of standards (Passey et al., 2010; Henkes et al., 2013). In the compiled146

dataset, uncertainty averages ±0.013 ‰ and never exceeds 0.041 ‰ (n = 355).147

All stable isotope data are presented in Table S.1, including: published δ13C, δ18O, and ∆47 values; ∆47 values148

after conversion to the CDES90 reference frame; and ∆47 uncertainty.149

3.2. Data analysis150

Determining C – O bond reordering progress requires knowledge of ∆
eq
47(T ), the equilibrium ∆47 value at each ex-151

perimental temperature. We calculate ∆
eq
47(T ) using the multiple mineralogy high-temperature T vs. ∆

eq
47(T ) calibration152
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equation of Bonifacie et al. (2017) (their Eq. 2). However, Lloyd et al. (2018) advocate for the theoretical calibration153

equation of Schauble et al. (2006) (corrected to CDES90) for dolomite reordering experiments since the Bonifacie et al.154

(2017) calibration over-estimates measured high-temperature dolomite ∆
eq
47(T ) values by up to 0.015 ‰. For consis-155

tency, we retain the Bonifacie et al. (2017) calibration for all calculations performed herein but discuss in Section 5.3156

the degree to which this choice influences resulting activation energy estimates.157

All calculations were performed using the ‘isotopylog’ package in Python 3.7 (Hemingway, 2020). Regularized158

inversion solutions (Section 4.2.1) were determined using the non-negative least squares algorithm in Lawson and159

Hanson (1995), whereas lognormal rate distribution solutions (Section 4.2.2) and Arrhenius parameters (Section 4.3),160

including error estimation, were determined using the Levenberg-Marquardt algorithm for non-linear curve fitting161

with each data point weighted by the inverse of its analytical variance (Marquardt, 1963). Python scripts to generate162

all figures and tables are included in the supplementary information.163

4. Theory164

Here, we derive the disordered kinetic model and show that it reproduces ∆47 evolution slowdown observed during165

random-walk diffusion and in carbonate heating experiments (Section 4.1), and we demonstrate that the “pseudo-166

first-order” (Passey and Henkes, 2012), “transient/equilibrium-defect” (Henkes et al., 2014), and “paired reaction-167

diffusion” (Stolper and Eiler, 2015) models all represent specific cases of disordered kinetics. We further describe how168

this framework can inform non-monotonic ∆47 evolution, as has been observed in aragonite heating experiments (Chen169

et al., 2019). We then outline an inversion approach to determine the rate distributions that best fit experimental data,170

and we show that these distributions are approximately lognormal (Section 4.2). Finally, we estimate the underlying171

activation energy distributions using an Arrhenius approach (Section 4.3) and show how to calculate ∆47 evolution—172

including uncertainty propagation—over geologically relevant time-temperature histories (Section 4.4). For reference,173

all mathematical symbols are described in Table S.2.174

4.1. Theoretical derivation175

Carbonate isotopologue reordering can be written as176

12C16O3 + 13C18O16O2
κ(t)
−−−−−⇀↽−−−−−−
α(T )κ(t)

13C16O3 + 12C18O16O2, (2)

where κ(t) is the apparent rate coefficient of the “order-to-disorder” reaction at time t and α(T ) is the temperature-177

dependent equilibrium constant (Passey and Henkes, 2012). A general feature of all carbonate isotopologue reordering178

experiments is that κ(t) decreases with time, either monotonically (apatite, calcite, dolomite; Passey and Henkes, 2012;179

7



Henkes et al., 2014; Stolper and Eiler, 2015; Brenner et al., 2018; Lloyd et al., 2018) or after early transient features180

have dissipated (aragonite; Chen et al., 2019).181

A decreasing apparent rate coefficient can be shown to result from a superposition of multiple reactions, each182

following a unique rate coefficient k (Huber, 1985; Ross and Vlad, 1999). This approach is commonly applied to183

disordered systems such as organic carbon remineralization (Forney and Rothman, 2012a; Hemingway et al., 2017),184

fossil fuel pyrolysis (Burnham and Braun, 1999), nonlinear chemical kinetics (Ross and Vlad, 1999), and lumines-185

cence decay in crystals (Huber, 1985). Here, we suppose that carbonate ∆47 evolution during isotopologue reordering186

similarly follows disordered kinetics. We define the normalized deviation from equilibrium for a subset of material187

that is associated with a given rate coefficient k at time t as188

g(k, t) =
∆47(k, t) − ∆

eq
47(T )

∆0
47 − ∆

eq
47(T )

, (3)

where ∆47(k, t) is the ∆47 value of material associated with rate k at time t, ∆0
47 is the measured ∆47 value at t = 0, and189

∆
eq
47(T ) is the temperature-dependent equilibrium ∆47 value, either measured empirically (e.g., Passey and Henkes,190

2012; Bonifacie et al., 2017) or determined theoretically using first-principles estimates of α(T ) (Schauble et al.,191

2006).192

Following Passey and Henkes (2012), we show in Appendix A that g(k, t) evolves with time as193

g(k, t) = e−kt. (4)

That is, g(k, t) follows first-order kinetics. We similarly define the normalized deviation from equilibrium for the bulk194

sample at time t as195

G(t) =
∆47(t) − ∆

eq
47(T )

∆0
47 − ∆

eq
47(T )

, (5)

where ∆47(t) is the measured ∆47 value at time t. G(t) evolves as a superposition of first-order reactions:196

G(t) =

∫ ∞

0
p(k)g(k, t)dk, (6)

where p(k) is the fraction of total material initially associated with rate coefficient k such that p(k) ≥ 0 for all k and197

∫ ∞

0
p(k) ≡ 1. (7)

8



That is, p(k) forms a probability density function (pdf). Substituting Eq. 4 into Eq. 6 yields198

G(t) =

∫ ∞

0
p(k)e−ktdk, (8)

which defines the Laplace transform of p(k) (Hansen, 1994; Forney and Rothman, 2012a). Because the superposition199

of parallel first-order reactions is itself first order, it follows that200

dG(t)
dt

= −κ(t)G(t), (9)

where κ(t) is the apparent rate coefficient at time t (Eq. 1). Combining Eqs. 8 and 9 yields201

κ(t) =

∫ ∞
0 kp(k)e−ktdk∫ ∞
0 p(k)e−ktdk

, (10)

which defines the arithmetic mean of k weighted by p(k)e−kt. Equation 10 states that small k values become more202

heavily weighted with increasing t since e−kt approaches zero most rapidly for large k. Put differently, κ(t) must203

decrease with time for any distribution of p(k) other than a single delta function [in which case κ(t) is constant; see204

Section 4.1.1]. The observed decrease in κ(t), which prompted the development of the transient/equilibrium-defect205

(Henkes et al., 2014) and paired reaction-diffusion (Stolper and Eiler, 2015) models, is thus a natural consequence of206

disordered kinetics. We now demonstrate that Eq. 8 can describe all previous isotopologue reordering models given207

the right choice of p(k).208

4.1.1. Relationship to previous models: Passey and Henkes (2012)209

We first consider the “pseudo-first-order” model, which supposes that reordering after some critical time point tcr210

follows a single first-order reaction with rate constant kc. This is written mathematically as a delta function, which211

has the properties212

δ(k − kc) =


∞, if k = kc

0, otherwise
(11)

and213 ∫ ∞

−∞

δ(k − kc)dk = 1. (12)
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Reaction progress for t < tcr is ignored since it is hypothesized to include “transient defects,” the loss of which is214

assumed to be an artifact of experimental heating. We thus define τ = t− tcr and p(k) = δ(k− kc). Equation 8 becomes215

G(τ) =

∫ ∞

0
δ(k − kc)e−kτdk,

= e−kcτ,

(13)

which is identical to governing equation of Passey and Henkes (2012) (their Eq. 3). It can be similarly shown from216

Eq. 10 that κ(τ) = kc for all τ, as expected.217

4.1.2. Relationship to previous models: Henkes et al. (2014)218

Next, we consider the “transient defect/equilibrium defect” model. This is an extension of the pseudo-first-order219

model that includes transient defect reaction progress when t < tcr. Henkes et al. (2014) state that G(t) follows a220

first-order reaction (Eq. 9) with an apparent rate constant that evolves as (their Eq. A.11)221

κ(t) = kc + kde−k2t. (14)

Transient defects are assumed to react with rate kd and anneal with time following a first-order reaction governed by222

k2 where k2 ∼ 1/tcr. It can be seen from Eq. 14 that κ(t) = kc when t � tcr, as in the pseudo-first-order model.223

Comparing Eqs. 10 and 14, it is apparent that the transient defect/equilibrium defect model follows a parallel224

superposition of first-order reactions with a distribution p(k) that satisfies225

∫ ∞
0 kp(k)e−ktdk∫ ∞
0 p(k)e−ktdk

= kc + kde−k2t. (15)

Finding p(k) involves solving the inverse Laplace transform, which in this case does not conform to a particular226

function that can be derived analytically (see Section 4.2, below). Nonetheless, as an example, we show the p(k)227

distribution that satisfies Eq. 15 for optical calcite heated at 425 ◦C in Fig. S.1.228
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4.1.3. Relationship to previous models: Stolper and Eiler (2015)229

Finally, we consider the “paired reaction-diffusion” model, which treats ∆47 evolution as a serial reaction between

“clumps”, “pairs”, and “singletons”. Equation 2 can be rewritten as

12C16O3 + 13C18O16O2
κ1(t)

−−−−−−−⇀↽−−−−−−−
α1(T )κ1(t)

p

κpd(t)
−−−−−−−−⇀↽−−−−−−−−
αpd(T )κpd(t)

(13C16O3)s + (12C18O16O2)s, (16)

where p denotes “paired” 13C16O3 groups immediately adjacent to 12C18O16O2 groups, the subscript “s” denotes230

“singleton” 13C16O3 or 12C18O16O2 groups that do not neighbor any other isotopically substituted group, and pd231

denotes “pair diffusion”. As in Stolper and Eiler (2015), we assume each step of the reaction is described by a single232

unique rate constant κ1(t) = k1 and κpd(t) = kpd and equilibrium constant α1(T ) and αpd(T ). Equation 16 describes a233

system of paired first-order ordinary differential equations.234

Two reactions occurring in series can be treated as a superposition of reactions occurring in parallel (Forney and235

Rothman, 2014). Specifically for this system, we show in Appendix B that G(t) evolves as236

G(t) =

2∑
i=1

r(λi)e−λit, (17)

where λi ∝ k1, kpd are the eigenvalues of the reaction system and and r(λi) represents p(ki) projected onto its eigen-237

vectors. The paired reaction-diffusion model is thus a specific case of disordered kinetics. Unlike p(k) however, in238

general r(λ) need not be non-negative since eigenvectors can contain negative entries. Relaxing this constraint can239

additionally explain non-monotonic G(t) evolution seen in aragonite heating experiments (Chen et al., 2019).240

4.1.4. Relaxing the non-negativity constraint241

It has recently been observed in isotopologue reordering experiments of aragonite that ∆47 does not monotonically242

approach ∆
eq
47 but rather increases transiently prior to decreasing (Chen et al., 2019). This was interpreted to reflect243

an initial excess of pairs that rapidly back-react to form clumps on timescales shorter than that of singleton diffusion244

[i.e., if α1(T )κ1(t) & κ2(t)]. This phenomenon is consistent with serial disordered reactions.245

We show in Appendix C that, in general,246

G(t) =

∫ ∞

0
r(λ)e−λtdλ, (18)

which is the continuous version of Eq. 17 that allows κ1(t) and κpd(t) to evolve with time. That is, we suppose that247
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each step in Eq. 16 is itself described by a superposition of first-order reactions that progress at different rates; this248

is predicted by our random-walk diffusion conceptualization (Fig. 2) and follows from the assumption in Chen et al.249

(2019) that the activation energy of reaction between a given CO3 group and any of its neighbors need not be identical.250

Again recognizing that r(λ) is a projection of p(k) onto the eigenvectors of the reaction system, it follows that a r(λ)251

distribution containing significant negative area can lead to transient increases in G(t) with time.252

Negative r(λ) may be a general feature of serial and feedback systems in which some processes occur at much253

faster rates than others. Negative r(λ) has also been observed in organic matter respiration experiments (Forney and254

Rothman, 2014) and was interpreted to reflect a lag phase between serial reactions, analogous to the proposed lag255

prior to the aragonite-to-calcite phase transition observed in Chen et al. (2019).256

4.2. Fitting experimental data257

Previous models derive rate equations after making assumptions about the system of reordering reactions; for258

example, that transient defects anneal exponentially (Henkes et al., 2014) or that clumps react with pairs in series259

(Stolper and Eiler, 2015). This prescribes the form of the p(k) distribution a priori. Here, we instead use an inverse260

approach to find the p(k) distribution that best fits observed data without any a priori assumptions about the reordering261

mechanism; we then compare this solution to a theoretically justified pdf to estimate a functional form of p(k).262

4.2.1. Finding the inverse solution263

Since we expect k to vary over many orders of magnitude (Passey and Henkes, 2012; Henkes et al., 2014; Stolper264

and Eiler, 2015; Brenner et al., 2018; Lloyd et al., 2018), we perform a change of variables from k to ν = ln(k). This265

facilitates the extraction of underlying activation energy distributions since E ∝ ln(k). Probability is conserved, so266

p(k)dk = ρ(ν)dν and Eq. 8 becomes267

G(t) =

∫ ∞

−∞

ρ(ν)e−eνtdν. (19)

As shown in Appendix D, this can be written in matrix from as268

G = Aρ, (20)

where G is the length nt vector of measured time-series G(t) values, ρ is the length nν vector of ρ(ν) values, and A is269

the nt × nν Laplace transform operator matrix. Although ρ can be directly calculated as ρ = A−1G, this solution is270

highly sensitive to noise at the level of ∆47 analytical uncertainty and could lead to negative ρ(ν) that is mathematically271

possible but physically unreasonable (Forney and Rothman, 2012b; Hemingway et al., 2017). In mathematical terms,272

Eq. 20 is ill posed (Hansen, 1994).273
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Figure 3: Examples of the disordered kinetic model for optical calcite (MGB-CC-1) isotopologue reordering experiments performed at (top) 385,
(middle) 425, and (bottom) 475 ◦C (data from Passey and Henkes, 2012). Panels A, D, and G show the Tikhonov regularization L-curve for each
experiment (solid black line), including the best-fit ω value (gray circle). Panels B, E, and H show the pdf of ν for each experiment, including
the best-fit regularized inverse solution (dotted black line) and the lognormal solution (solid blue line). Panels C, F, and I show the measured ∆47
values and the modeled ∆47 evolution as predicted by the best-fit regularized inverse solution (dotted black line) and the lognormal solution (solid
blue line). Shaded blue region is the propagated ±1σ uncertainty of the lognormal solution. For reference, reaction progress for each experiment
is also shown by converting ∆47 to G(t). The observed left-skewed regularized inverse solution at lower temperature and right-skewed regularized
inverse solution at higher temperature is a general feature of most experiments included in this study (Section 5.1). rgh = roughness; rmse = root
mean square error, min = minutes.

We use Tikhonov regularization to find the optimal solution that minimizes ρ(ν) complexity (determined by the274

intensity of fluctuations; termed “roughness”) while maximizing solution accuracy and ensuring that ρ(ν) ≥ 0. Fol-275

lowing Forney and Rothman (2012b), we calculate roughness as the nν×nν bi-diagonal first-derivative operator matrix,276

R (Appendix D). The regularized inverse solution is found by including the roughness term in a constrained least277
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Figure 4: Rate distribution results for optical calcite (MGB-CC-1) isotopologue reordering experiments (data from Passey and Henkes, 2012).
Best-fit lognormal rate distributions ρ(ν) are shown for each experimental temperature (see Table S.3 for distribution statistics). Distributions
generally become narrower and shift toward faster rates with increasing temperature, as predicted by Eq. 27 if isotopologue reordering follows an
underlying Gaussian distribution of activation energies.

squares problem:278

min
ρ
‖G − Aρ‖ + ω‖Rρ‖ (21)

subject to the constraints279

nν∑
j=0

ρ j = 1 and ρ j ≥ 0 for j = 1, . . . , nν, (22)

where ω is a scalar that determines how much to weight roughness ‖Rρ‖ relative to residual error ‖G − Ax‖. The280

optimal ω is taken as the point of maximum curvature in a log–log plot of residual error vs. roughness, where each281

point on the curve is calculated by solving Eq. 21 using ω values that vary over many orders of magnitude (the so-282

called “L-curve”; Hansen, 1994). From this optimal point, increasing ω greatly increases residual error but has little283

effect on solution roughness, whereas decreasing ω greatly increases roughness but has little effect on residual error284

(e.g., Fig. 3A, D, G).285

4.2.2. Finding the lognormal solution286

For most calcite, dolomite, and apatite samples, the regularized inverse distribution of ρ(ν) resembles a Gaus-287

sian; that is, p(k) is approximately lognormally distributed (e.g., Fig. 3B, E, H). Lognormal p(k) distributions are288

theoretically justified since they derive naturally from the central limit theorem of multiplicative processes (Montroll289

and Shlesinger, 1982); they are commonly observed in disordered systems such as organic matter respiration and290

luminescence decay in minerals (Huber, 1985; Forney and Rothman, 2012a).291

To compare with regularized inversion results, we determine the optimal lognormal distribution by setting ρ(ν) ∼292
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N(µν, σν) and finding µν and σν that best reproduce observed data. That is, we solve293

min
µν,σν
‖G − Aρ‖, (23)

where each entry in ρ is now subject to the constraint294

ρ(νi) =
1

√
2πσν

e−(νi−µν)2/2σ2
ν , i = 1, . . . , nν. (24)

For all isotopologue reordering experiments, optimal lognormal distributions give G(t) evolution estimates that are295

statistically indistinguishable from regularized inversion fits and are described by a root mean square error that is well296

within ∆47 analytical uncertainty (e.g., Fig. 3C, F, I).297

Resulting lognormal distributions generally shift toward higher µν and lower σν with increasing experimental tem-298

perature (Fig. 4). Similar relationships between temperature and bond reordering reaction rates have been observed299

previously, thus motivating the use of an Arrhenius-like activation energy approach to determine bond reordering300

temperature dependence (Passey and Henkes, 2012; Henkes et al., 2014; Stolper and Eiler, 2015; Brenner et al., 2018;301

Lloyd et al., 2018).302

4.3. Determining Activation Energies303

Because our ultimate goal is to predict isotopologue reordering over geologic timescales, we extract the underlying304

reaction energetics to predict reaction rates at any arbitrary temperature. As in previous models (Passey and Henkes,305

2012; Henkes et al., 2014; Stolper and Eiler, 2015), we suppose that each rate coefficient k follows the Arrhenius306

equation307

k(T ) = k0e−E/RT , (25)

where T is temperature, k0 is the Arrhenius pre-exponential factor, E is the activation energy of bond reordering for308

material associated k(T ), and R is the ideal gas constant. Treating k0 as constant is strictly inconsistent with transition309

state theory of chemical reactions, which predicts k0 ∝ T (Eyring, 1935). However, linear dependence of k0 on T310

only changes k by a factor of ∼ 3 over the temperature range of interest for isotopologue reordering (≈ 25 − 750 ◦C),311

whereas the exponential term in Eq. 25 varies by many orders of magnitude over this range. Thus, the assumption of312

constant k0 negligibly impacts resulting ∆47 evolution predictions.313

We seek p(E), the pdf of E that leads to measured ρ(ν) at a given T . If ρ(ν) ∼ N(µν, σν), then we show in314
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Figure 5: Arrhenius plots showing (A) µν and (B) σν as a function of inverse experimental temperature. Arrhenius regression best-fit lines
calculated using Eq. 27 for calcite (solid black line) and dolomite (solid blue line) are also shown, including ±1σ uncertainty about each regression
line (shaded regions). Experiments exhibiting noisy data [i.e., ∆47(t) signal-to-noise < 5] or non-monotonic ∆47(t) evolution were excluded from
regressions and thus are not shown here (see Sec. 5.3 and Table S.3).

Appendix E that p(E) ∼ N(µE , σE) where315

µE = RT (ν0 − µν),

σE = RTσν,
(26)

and ν0 = ln(k0). Rearranging yields316

µν = ν0 −
µE

R

(
1
T

)
,

σν =
σE

R

(
1
T

)
.

(27)

Equation 27 states that a Gaussian p(E) distribution leads to increasing µν and decreasing σν with increasing temper-317

ature, as is observed (Fig. 4). Similar to the approach taken in previous models, we fit ρ(ν) distributions to a suite of318

isothermal reordering experiments performed at various temperatures and estimate µE and σE by linearly regressing319

µν and σν against 1/T (Fig. 5).320
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4.4. Reordering on geologic timescales321

Finally, we seek to predict ∆47 evolution for over geologic timescales for any arbitrary t-T history. No analytical322

solution exists since G(t) does not scale linearly with ∆47(t) and since G(t) need not decrease monotonically with t323

(Hemingway et al., 2017); put differently, ∆47(t) is free to increase or decrease depending on the specific t-T history.324

We therefore numerically estimate ∆47(t) evolution following Passey and Henkes (2012). Rewriting Eqs. 5, 19, and325

25 in discrete form yields326

∆47(ti) = ∆
eq
47(Ti) +

[
∆47(ti−1) − ∆

eq
47(Ti)

]
∆Gi, (28)

where327

∆Gi =

 nE∑
j=1

N(µE , σE) exp
(
− exp

[
ν0 −

E j

RT (ti)

]
∆t

)
∆E

 ,
i = 2, . . . , nt,

j = 1, . . . , nE ,

(29)

∆t and ∆E are the discrete t and E steps, and we impose the initial condition ∆47(t1) = ∆0
47. This is written in matrix328

form as329

∆47 = φ(t,T|y),

y =
[
∆0

47, µE , σE , ν0

]
,

(30)

where t and T are the length nt discretized time and temperature vectors, φ denotes the function described in Eqs.330

28–29 solved at each ti, Ti given the input parameter values in y, and ∆47 is the length nt vector of resulting ∆47331

values.332

We additionally propagate ∆47 uncertainty. Uncertainty is derived from each input parameter in y, which contains333

either analytical error (for ∆0
47) or regression error associated with each Arrhenius plot (for µE , σE , and ν0; Fig. 5).334

We implicitly assume ∆
eq
47(Ti) is perfectly known for all Ti. This is not strictly true; however, ∆

eq
47(T ) error is expected335

to be minor relative to that of each parameter in y given the strong correlation and low uncertainty in T vs. ∆
eq
47(T )336

calibration equations (Schauble et al., 2006; Passey and Henkes, 2012; Bonifacie et al., 2017; Lloyd et al., 2018).337

Some input parameters are highly correlated—in particular, ν0 and µE (Fig. 5). We account for covariance by338

propagating error using a Taylor expansion approach (Ku, 1966). Specifically, we calculate ∆47 variance at each ti as339

Σ∆47∆47 = JΣyyJT , (31)
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where J is the nt × 4 Jacobian matrix of φ(t,T|y), Σyy is the 4 × 4 covariance matrix of y, and Σ∆47∆47 is the resulting340

nt × nt covariance matrix of predicted ∆47 values. The ±1σ uncertainty in predicted ∆47 values is readily determined341

as
√

diag(Σ∆47∆47 ).342

5. Results343

5.1. Inverse and lognormal rate distributions344

Most calcite, dolomite, and apatite regularized inverse ρ(ν) distributions are unimodal, symmetric, and lead to345

predicted G(t) evolution with model-data misfit (root-mean-square error, rmse) that is comparable to analytical uncer-346

tainty (Fig. 3, 4; Table S.3). There are two exceptions to this behavior: First, low-temperature experiments (. 350 ◦C)347

can result in broad, left-skewed ρ(ν) distributions (Fig. 3B); this is most apparent for experiments exhibiting small348

signals and thus analytical signal-to-noise ratios . 5. In extreme cases, left-skewed ρ(ν) distributions can extend to349

ν � −40, equivalent to rates of � e−40 min−1 at these experimental conditions (Fig. S.2). Material associated with350

such slow rates would exhibit bond reordering residence times of� 1011 years and thus remains unreacted over exper-351

imental timescales. Second, very high-temperature experiments (& 500 ◦C) can lead to right-skewed ρ(ν) distributions352

(Fig. 3H) that extend to ν � 10, equivalent to rates of � e10 min−1. Material associated with such fast rates would353

exhibit bond reordering residence times of � 10−5 seconds, orders of magnitude shorter than the duration between354

any two experimental time points and thus not resolvable in any existing dataset.355

Both left- and right-skew behaviors are mathematically feasible but physically unconstrained; they emerge when356

some fraction of material is associated with rates that lead to bond reordering on timescales that lie significantly357

outside of the analytical time window. We therefore omit from further consideration low-temperature experiments358

with signal-to-noise ≤ 5 (n = 4) as well as high-temperature experiments that reach their ∆
eq
47(T ) value prior to the first359

experimental measurement (n = 2), although this choice does not exert a major impact on observed trends. Our final360

data set includes 24 calcite experiments (spanning 4 studies, 6 calcite types, and 2 pressure/hydration conditions), 1361

apatite experiment, and 4 dolomite experiments. Regularized inverse ρ(ν) distributions of retained experiments exhibit362

log10 rmse averaging −2.18 ± 0.22 ‰, log10 roughness averaging −2.65 ± 0.43, and log10 ω averaging 0.08 ± 0.54363

(mean ± stdev.; n = 29); this rmse is comparable to the typical analytical uncertainty of ∼0.01 ‰ CDES90 (Table S.2).364

Lognormal ρ(ν) distributions exhibit average log10 rmse of −2.08 ± 0.21 ‰ (mean ± stdev.; n = 29) and typically365

result in G(t) evolutions that are nearly identical to those predicted by regularized inverse solutions (Fig. 3). This366

similarity holds even for experiments exhibiting left- or right-skewed inverse solutions since any G(t) evolution differ-367

ences resulting from such skew will only manifest outside of the analytical time window. For the entire dataset, µ(ν)368

averages −5.91 ± 3.25 ln(min−1) and exhibits a strong positive correlation with temperature whereas σ(ν) averages369
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Figure 6: Example of the disordered kinetic model for Tazouta aragonite at 300 ◦C after relaxing the non-negativity constraint (data from Chen
et al., 2019). (A) Measured ∆47 values and modeled ∆47 evolution as predicted by the best-fit (ω = 0.1) regularized inversion r(λ) distribution
shown in B. Importantly, r(λ) contains negative area, suggesting aragonite ∆47 evolution follows serial disordered kinetics that includes a lag phase
operating on the timescale of the λ value at which r(λ) reaches its minimum value (here termed λlag rate). (C) Predicted λlag rate as a function of
T for a suite of Tazouta aragonite reordering experiments. Predicted λlag rate increases with T and is roughly equal to the inverse of the time until
incipient aragonite-to-calcite transition observed in Chen et al. (2019). For reference, reaction progress is also shown in A by converting ∆47 to
G(t).

2.93 ± 1.01 ln(min−1) and exhibits a strong negative correlation with temperature (Fig. 4-5). Propagated model fit370

uncertainty is small, with estimated parameter error averaging ±0.35 ln(min−1) for µ(ν) and ±0.45 ln(min−1) for σ(ν).371

5.1.1. Aragonite inverse rate distributions372

Unlike all other carbonate minerals, regularized inverse rate distributions for aragonite heating experiments contain373

negative area due to the observed transient ∆47 increase (Fig. 6). This result prevents the inclusion of aragonite374

results when determining Gaussian E distributions, since this exercise requires that rate distributions are lognormally375

distributed (Eq. 27). Rather, negative r(λ) implies that aragonite bond reordering follows serial disordered kinetics376

in which one process is significantly slower than others (i.e., a lag phase; Forney and Rothman, 2014). Observed lag377

rates increase from e−8.26 min−1 at 200 ◦C to e−5.55 min−1 at 400 ◦C, indicating a temperature-dependent lag phase (Fig.378

6). This timescale is roughly equal to the time until incipient aragonite-to-calcite phase transition observed by Chen379

et al. (2019), implicating phase change as the cause of ∆47 reordering lag. Importantly, this result does not require380

the inclusion of arbitrary tuning parameters, as has been done previously (di in Table 2 of Chen et al., 2019), nor381

the assumption that the pair-to-clump reaction is chemically distinct from diffusion (Stolper and Eiler, 2015). Rather,382

rapid initial ∆47 decrease followed by a transient ∆47 increase is consistent with random-walk diffusion and a transition383

from aragonite to calcite O–O bond distances (Fig. 1-2).384

5.2. Comparison to previous models385

Lognormal distributed kientics results in model fits that are comparable to or better than those for both the transient386

defect/equilibrium model (Henkes et al., 2014) and the paired reaction-diffusion model (Stolper and Eiler, 2015). All387
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models provide similar model-data misfit rmse values. However, estimated µ(ν) and σ(ν) uncertainty is considerably388

less than that predicted for Henkes et al. (2014) and Stolper and Eiler (2015) model parameters, leading to smaller389

propagated error in G(t) evolution predictions (Fig. 7A).390

Furthermore, treating reordering rates as a continuous distribution naturally leads to a gradual slowdown in G(t)391

evolution with time; in contrast, the “kinked” rate slowdown behavior of previous models results from fitting a fi-392

nite set of discrete rates to each experiment (3 for the transient defect/equilibrium defect model; 2 for the paired393

reaction-diffusion model). This difference in gradual vs. kinked rate slowdown leads to slightly divergent model be-394

havior, evidenced by the differences in predicted − measured ∆47 evolution between different model types (Fig. 7B).395

Specifically, both previous models tend to over-predict ∆47 at intermediate time points and under-predict ∆47 at late396

time points; in contrast, the lognormal distributed kinetic model exhibits either the opposite behavior or no trend with397

time. Although these differences are small and statistically insignificant over the timescales of heating experiments398

considered here, they may become significant if projected over longer experimental timescales.399
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Table 1: Arrhenius regression activation energy distribution results (Eq. 27) for individual calcite and dolomite sample materials and for the “all
calcite” average. Experiments exhibiting noisy data [i.e., ∆47(t) signal-to-noise < 5] or non-monotonic ∆47(t) evolution were excluded from these
calculations (see Sec. 5.3 and Table S.3). Sample materials are only included here if ≥ 3 experiments were retained after this screening procedure.
OC = optical calcite; BC = brachiopod shell calcite; SC = spar calcite; D = dolomite; WHP = wet, high-pressure experiments; n = number of
experiments included in Arrhenius regression.

sample
µE (kJ mol−1) ν0 (min−1) σE (kJ mol−1)

n data reference
mean std. dev. mean std. dev. mean std. dev.

Eugui dolomite (D) 230.3 47.7 29.0 6.8 14.8 2.2 4 Lloyd et al. (2018)
MGB-CC-1 (OC) 290.2 27.1 42.7 4.6 20.4 1.8 5 Passey and Henkes (2012)
MGB-CC-1 (OC; WHP) 277.8 40.9 41.2 7.1 13.5 2.7 4 Brenner et al. (2018)
NE-CC-1 (SC) 264.4 16.8 35.6 2.7 24.3 0.8 6 Passey and Henkes (2012)
Mexico calcite (OC) 250.7 13.6 34.2 2.3 15.7 1.7 3 Stolper and Eiler (2015)
WA-CB-13 (BC) 247.4 15.6 35.8 2.6 16.6 0.6 5 Henkes et al. (2014)
All calcite average 224.3 27.6 31.5 4.6 17.4 0.7 24 –

5.3. Activation energy distributions400

Similar to previous observations, disordered kinetic model parameter values scale linearly with 1/T following401

Arrhenius-like behavior (Fig. 5). Combining all calcite samples yields a µν Arrhenius regression described by µE =402

224.3 ± 27.6 kJ mol−1 and ν0 = 31.5 ± 4.6 ln(min−1) and a σν Arrhenius regression described by σE = 17.4 ± 0.7403

kJ mol−1 [µν rmse = 1.3 ln(min−1); σν rmse = 0.9 ln(min−1); n = 24]. Similarly, dolomite experiments yield a µν404

Arrhenius regression described by µE = 230.3 ± 47.7 kJ mol−1 and ν0 = 29.0 ± 6.8 ln(min−1) and a σν Arrhenius405

regression described by σE = 14.8 ± 2.2 kJ mol−1 [µν rmse = 0.5 ln(min−1); σν rmse = 0.6 ln(min−1); n = 4].406

When separated into individual experimental materials, calculated µE ranges from a minimum of 230.3 ± 47.7407

kJ mol−1 for Eugui dolomite to a maximum of 290.2 ± 27.1 kJ mol−1 for optical calcite sample MGB-CC-1; similarly,408

σE ranges from a minimum of 14.8 ± 2.2 kJ mol−1 for Eugui dolomite to a maximum of 24.3 ± 0.8 kJ mol−1 for spar409

calcite sample NE-CC-1 (Table 1). Although all calculated µE results are statistically identical (two-tailed t test;410

p > 0.05), the “combined calcite” value appears lower than that for any individual calcite type due to bias caused411

by differences in the 1/T ranges spanned by experiments using different calcite types. In contrast to µE , calculated412

σE values exhibit statistically significant differences between sample materials (p < 0.05; Table 1), potentially due to413

differences in trace element contents, ionic impurities, and/or crystallogrpahic defect concentrations (Fig. 1; Henkes414

et al., 2014; Lloyd et al., 2018).415

Arrhenius regression results exhibit a minor dependence on the choice of ∆
eq
47(T ) calibration equation (Bonifacie416

et al., 2017; Lloyd et al., 2018). Specifically, recalculating lognormal disordered kinetic model fits and Arrhenius re-417

gression parameters using the ∆
eq
47(T ) equation advocated by Lloyd et al. (2018) (their Eq. 4) decreases the “combined418

calcite” µE value to 205.5 ± 31.1 kJ mol−1 and leads to slightly higher rmse values but has little impact on ν0 and σE419

[µν rmse = 1.4 ln(min−1); σν rmse = 1.5 ln(min−1); n = 24; Fig. S.3]. In contrast, recalculating dolomite results using420
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Figure 8: Isotopologue reordering diagnostic plots. (A) Apparent equilibrium temperature, T (∆47)ae, for a variety of cooling rates. To generate
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the Lloyd et al. (2018) ∆
eq
47(T ) equation increases µE to 258.3 ± 43.7 kJ mol−1 and σE to 20.9 ± 3.4 kJ mol−1 [µν rmse421

= 0.5 ln(min−1); σν rmse = 0.8 ln(min−1); n = 4; Fig. S.3)]. None of these differences in Arrhenius parameters calcu-422

lated using the Bonifacie et al. (2017) or the Lloyd et al. (2018) ∆
eq
47(T ) calibration equations is statistically significant423

(two-tailed t test; p > 0.05).424

6. Discussion425

6.1. Model results, implication, and application426

This disordered kinetic model provides a generalizable framework of carbonate isotopologue bond reordering.427

Importantly, previous models (Henkes et al., 2014; Stolper and Eiler, 2015) can be treated as specific cases of disor-428

dered kinetics. The finding that µE for the “all calcite average” appears slightly lower than µE for dolomite (although429

within uncertainty) is consistent with the conclusions of Lloyd et al. (2018) (their Fig. 5) and implies that observed430
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differences between calcite and dolomite from the same metamorphic system are driven, at least in part, by differen-431

tial isotopologue reordering behavior during the same thermal history. There were not enough heating experiments on432

carbonate groups in apatite that met our screening criteria to derive µE and σE values (see Sec. 5.1). We nonetheless433

find that apatite µν is lower than calcite but identical to dolomite at equivalent experimental temperatures, whereas434

apatite σν appears to be slightly lower than any observed calcite or dolomite value (Fig. 5). This result is consistent435

with the original conclusions of Stolper and Eiler (2015) that experimental heating and empirical carbonatite results436

for apatite are at odds. Differences between calcite and apatite kinetics, and similarities with dolomite, necessitate437

additional heating experiments and possible model refinements to accommodate exchange with phosphatic oxygen.438

Future studies that include independently constrained thermal histories will provide important natural tests of439

laboratory-derived kinetics. For example, ∆47 measurements on carbonatites result in T (∆47) values far below the440

canonically known temperatures of crystallization (Dennis and Schrag, 2010). Akin to the concept of closure tem-441

perature in thermochronology (Dodson, 1973), this “apparent equilibrium” ∆47-derived temperature, or T (∆47)ae, has442

been shown to depend on geologic cooling rate (Passey and Henkes, 2012). While T (∆47)ae measurements may pro-443

vide a useful geospeedometer, cooling rate predictions are sensitive to the choice of bond reordering kinetic model444

(Fig. 8A). All models predict similar T (∆47)ae values of ≈ 100 to 200 ◦C for geologic cooling rates between 10−8 and445

10−4 ◦C yr−1, broadly consistent with published ∆47 measurements of carbonatites and marbles (Dennis and Schrag,446

2010; Stolper and Eiler, 2015; Lloyd et al., 2017). Interestingly, this similarity at slow cooling rates includes both447

dolomite and calcite predictions. However, T (∆47)ae values diverge significantly at faster rates. For a given mineral, the448

disordered kinetic model presented here always predicts lower T (∆47)ae values than both previous models—although449

these differences are statistically insignificant at the slowest cooling rates—and suggests that calcite T (∆47)ae & 400450

◦C as the result of isotopologue reordering in natural samples at geologic cooling rates should be rare.451

The ∆47 preservation of low-temperature carbonates such as shells, micritic cements, and carbonate nodules can452

similarly be evaluated in the context of isotopologue reordering. Such materials have been shown to exhibit high453

T (∆47) values without any obvious geochemical alteration to the original mineral (Henkes et al., 2014; Stolper and454

Eiler, 2015); understanding this phenomenon is critical for screening and omitting altered samples from paleoclimate455

studies (e.g., Henkes et al., 2018). However, the time-temperature history at which reordering is predicted to occur456

depends on the choice of kinetic model (Fig. 8B). Specifically, the model presented here conforms to previous limits457

of ∆47 preservation but results in a left-ward shift for both “incipient” (1%) and “complete” (99%) reordering curves.458

That is, relative to previous models, ours predicts that less time and/or lower temperatures are needed to reach the same459

degree of alteration and suggests that previous models overestimate the temperatures at which isotopologue reordering460

is activated. Observed differences between models may be driven in part by our use of a single calcite Arrhenius461
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regression (Fig. 5) rather than sample-specific (e.g., brachiopod fossil in Henkes et al., 2014) or experiment-specific462

curves (e.g., hydrothermal reactions in Brenner et al., 2018). When separated by calcite type, our model conforms463

more closely to predictions of Henkes et al. (2014), particularly for brachiopod shell materials (Fig. S.4).464
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Figure 9: Thermal histories and corresponding model-predicted carbonate T (∆47) evolution for two geologic examples from the recent literature:
(A–B) a 1D conductive cooling model of the Amba Dongar carbonatite (Fosu et al., 2020, cooling model adapted from Ehlers (2005) for a 550 ◦C
intrusion 1.9 km in diameter that cools by thermal diffusion with 30 ◦C country rock with a diffusivity of 38 km2 Ma−1), and (C–D) modeled thermal
history for various sample depths of the Wagon Wheel 1 (WW-1) drill core in the northwestern Green River Basin (Lacroix and Niemi, 2019). Panels
A and C show imposed t–T histories (color-coded by WW-1 core depth in C) whereas panels B and D show reordering model-predicted T (∆47)
plotted against imposed model T . All models in B predict closure temperature-like behavior, whereas the T–T pathways predicted by the disordered
kinetic model in D are more complex and exhibit three distinctive features: (i) the temperature of incipient isotopologue bond reordering, (ii) the
rate of approach to equilibrium (shown as a dotted 1 : 1 line), and (iii) the final T (∆47)ae (shown to the left of the y-axis, including ±1σ model
uncertainty). Colors in B indicate predictions using the kinetic values for each model as reported in their original publications. Published T (∆47)
values for each geologic scenario are shown shown as: small gray circles = non-replicated measurements from Amba Dongar (population mean
and median as large white circle and red line, respectively; Fosu et al., 2020); large grayscale circles = WW-1 measurements color-coded by core
depth, including ±1 s.e. measurement uncertainty.

6.2. Geologic tests465

To exemplify how disordered kinetic model predictions might be applied to real geologic systems, we consider466

thermal histories of two different calcite-containing rocks from the recent literature. The current challenge for any467

geologic test of clumped isotope bond reordering models is that few natural systems have complete thermal histories468

that are known independently (e.g., from thermochronology) and have a sufficient number of ∆47 measurements for a469

detailed evaluation of measured versus model-predicted results (exceptions include Shenton et al., 2015; Lloyd et al.,470

2017; Lawson et al., 2018). Here, we select two ∆47 datasets with relatively well-constrained thermal histories to test471
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model behavior: (i) the Amba Dongar carbonatite complex from the Deccan large igneous province (Gujarat, India;472

Fig. 9A; Fosu et al., 2020) and (ii) lacustrine limestones from drill core in the Pinedale Anticline of the Green River473

basin (Wyoming, USA; Fig. 9C; Lacroix and Niemi, 2019).474

For the first example, the Amba Dongar thermal history described by Fosu et al. (2020) is a linear 10 ◦C Myr−1
475

cooling from a 400 ◦C emplacement temperature at 65 Ma. This cools the intrusion to ambient rock temperatures476

by 40 Ma, after which there is no additional heating. As noted by Fosu et al. (2020), actual intrusion cooling rates477

are typically non-linear and asymptotic, so instead we model Amba Dongar carbonatite cooling using a 1D thermal478

diffusion model whereby the intrusion cools by conduction with the country rock (Fig. 9A; Ehlers, 2005). This479

cooling pathway could also represent other geologic settings, including contact metamorphism (Lloyd et al., 2017)480

and heating of sedimentary rocks adjacent to dikes (Finnegan et al., 2011). Given that the starting temperature is481

equivalent to the warmest laboratory heating experiments (i.e., complete ∆47 change within minutes), all kinetic482

models predict apparent equilibrium temperature behavior. However, each model results in a slightly different T (∆47)ae483

value (Fig. 9B). The calcite disordered kinetic model predicts a lower T (∆47)ae and a shorter interval of departure from484

equilibrium than both previous models, suggesting ∆47 systematics are more “open” during the cooling of igneous and485

metamorphic rocks than previously thought. This finding is consistent with the mean and median T (∆47) from the486

best preserved Amba Dongar calciocarbonatites (B. Fosu, personal communication), both of which are lower than487

previous model predicted T (∆47). The comparison is limited, however, by outlier high T (∆47) values that are difficult488

to interpret without knowing exact sample locations within the intrusion (e.g., samples from the perimeter may have489

cooled more rapidly than samples from the core).490

The second example evaluates bond reordering in deeply buried sedimentary carbonates from the northern Green491

River Basin using modeled thermal histories for different sample depths of the Wagon Wheel 1 (WW-1) drill core492

(Fig. 9C, D). Burial temperatures in Lacroix and Niemi (2019) are derived from basin modeling that incorporates493

stratigraphic thickness, lithology, thermal maturity indices, and geothermal gradients. Unlike conductive cooling of494

the Amba Dongar complex, modeled WW-1 T (∆47) exhibits complex and varied features (Fig. 9D). We exclude495

a direct model-model comparison for this example to highlight depth-dependent patterns (previous bond reordering496

models were explicitly evaluated by Lacroix and Niemi, 2019). The calcite disordered kinetic model near-perfectly497

predicts T (∆47) at WW-1 depths 2253 and 3373 m; this was not the case for all data-model comparisons performed in498

Lacroix and Niemi (2019). At deeper depths in Fig. 9C and D, our model over-predicts measured T (∆47) by ≈20 ◦C;499

however, Lacroix and Niemi (2019) cite burial model error of 18 ◦C (±1σ) during peak heating at 28 to 55 Ma. This500

allows for the possibility of burial model overestimation of peak temperatures at 4543, 4912, and 5476 m, which501

would reconcile those apparent data-model discrepancies (Fig. 9D).502
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6.3. Outlook503

The adaptation of disordered kinetic models to describe internal isotopologue reordering in carbonates will en-504

able more targeted future experiments and will provide robust predictions of bond reordering when applied to natural505

systems. It has been suggested that various carbonate minerals may exhibit unique isotopologue reordering E distri-506

butions, possibly driven by inherent differences in metal-oxide bond strength (Lloyd et al., 2018) or O–O distances507

between neighboring CO3 groups (Fig. 1). Accurately constraining these distributions may allow for the derivation of508

independent cooling rates from the same rock in geologic systems that contain multiple carbonate types (Ryb et al.,509

2017; Lloyd et al., 2017). A mineralogical driver of isotopologue reordering kinetics would predict that one min-510

eralogy can be thermally reset while another, more refractory carbonate may preserve its formation ∆47 values after511

experiencing the same thermal history. Additionally, it has been observed that the same carbonate mineralogy (i.e.,512

calcite) may record different ∆47 signatures after burial (Shenton et al., 2015). While the underlying reason(s) for513

this phenomenon remain elusive, improvements in error propagation developed here (e.g., Fig. 9D) can provide an514

empirical means to interrogate such trends.515

This disordered kinetic framework can be adapted to characterize the reordering kinetics of other, novel mineral516

isotopologue measurements. For example, sulfate, phosphate, and silicates all contain isotopologue arrangements that517

include clumps analogous to 13C–18O (e.g., 34S–18O) and/or double heavy isotope substitutions (e.g., 18O–18O) in518

the oxyanion group; these minerals are likely subject to analogous diffusive bond reordering at elevated temperatures519

over geologic timescales. Measurement of such isotopologues with sufficient precision to resolve both natural and520

experimentally induced isotope effects is imminent (Ueno et al., 2019; Neubauer et al., 2020). Furthermore, future521

carbonate heating experiments should additionally target 12C16O18O2 isotopolgue evolution (∆48) as a complimentary522

isotopic marker for diffusive C–O bond breakage and reformation in the solid mineral lattice, although analytical523

signal-to-noise may limit the applicability of this approach (Fiebig et al., 2019). Finally, disordered kinetics may be524

usefully applied to mineral-pair isotope exchange kinetics and systems where the same elements occupies different525

intercrystalline sites (e.g., oxyhydroxides; Miller et al., 2020).526

7. Conclusion527

We show that early, rapid changes in ∆47 observed during calcite, dolomite, and apatite laboratory heating experi-528

ments arise from random-walk isotope diffusion through the mineral lattice, and we derive a disordered kinetic model529

to describe these results. This framework can be extended to describe ∆47 evolution other minerals, including non-530

monotonic aragonite evolution (Chen et al., 2019). We show theoretically that two previous models—the transient531

defect/equilibrium defect model (Sec. 4.1.2; Henkes et al., 2014) and the paired reaction-diffusion model (Sec. 4.1.3;532
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Stolper and Eiler, 2015)—represent specific cases of disordered kinetics. By fitting published heating experiment ∆47533

data using an inverse approach, we show that isotopologue reordering rate distributions are approximately lognormal,534

consistent with the central limit theorem. To extrapolate reordering kinetic model results to geologic scenarios, we535

determine the underlying Gaussian activation energy distributions using an Arrhenius approach, and we apply these536

results to two real-world geologic examples. Over geologically reasonable linear cooling rates, all isotopologue re-537

ordering models result in T (∆47)ae < 600 ◦C, with our model indicating that observed T (∆47)ae > 400 ◦C should be538

rare for calcite. We also suggest that previous models overestimate the ∆47 preservation threshold for calcite pale-539

otemperature archives (e.g., fossil shells). These differences are minor for incipient isotopologue reordering, which540

conforms with limits established by Henkes et al. (2014), but are larger for nearly complete resetting of ∆47. For541

complex thermal histories relevant to metamorphic and sedimentary carbonates, we show that the disordered kinetic542

model yields reductions in error that will be important for empirical tests of model predictions. Lastly, we hypothe-543

size that the disordered kinetic framework should be easily adapted to other current and future mineral isotopologue544

measurements such as carbonate 18O–18O (∆48) and sulfate 34S–18O.545

Accompanying this paper is an open-source Python package ‘isotopylog’ (Hemingway, 2020) that allows for546

model comparisons, incorporation of new isotopologue reordering experiment data (including from new carbonate547

mineralogies), and the prediction of ∆47 during any point of a geologic thermal history.548
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Appendix A. Deriving the first-order rate equation557

The carbonate isotopologue reordering reaction for material associated with a given rate constant k in a closed

system can be written as

12C16O3(k) + 13C18O16O2(k)
k
−−−−⇀↽−−−−
α(T )k

13C16O3(k) + 12C18O16O2(k), (A.1)

where we have appended each species with (k) to emphasize that this reaction only describes the subset of material

associated with rate k. In all subsequent equations, we replace each species with its atomic mass for convenience.

This implicitly ignores contributions to each atomic mass by 17O-containing isotoplogues since these are negligible

(Wang et al., 2004; Schauble et al., 2006). Following Eq. A.1, the derivative of 13C18O16O2 abundance with respect

to time can be written as

d[63](k, t)
dt

= −k[63](k, t)[60](k, t)+

α(T )k[61](k, t)[62](k, t), (A.2)

where [i] denotes the fractional abundance of atomic mass i such that Σ63
i=60[i] = 1 (ignoring negligible contributions558

by other multiply substituted isotopologues; Passey and Henkes, 2012). Similarly following Eq. A.1, we have559

α(T ) =
[60]eq[63]eq

[61]eq[62]eq
, (A.3)

where the subscript “eq” denotes equilibrium abundance at temperature T ; importantly, equilibrium abundances are in-560

dependent of k. Because 12C16O3, 13C16O3 and 12C18O16O2 are orders-of-magnitude more abundant than 13C18O16O2561

(Wang et al., 2004; Affek and Eiler, 2006), we assume that changes in the concentrations of these species are negligible562

and let563

[60](k, t) = [60]eq,

[61](k, t) = [61]eq,

[62](k, t) = [62]eq.

(A.4)
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Combining Eqs. A.2–A.4 yields564

d[63](k, t)
dt

= −k[60]eq

{
[63](k, t) − [63]eq

}
, (A.5)

which is a separable first-order differential equation of the form x′(t) = a[x(t) + b]. Because [60]eq ≈ 1 (Wang et al.,565

2004; Affek and Eiler, 2006), we subsume this term into k. The fractional abundance of 13C18O16O2 at time t can thus566

be determined by integrating Eq. A.5 from an initial time t = 0:567

[63](k, t) − [63]eq

[63]0 − [63]eq
= e−kt, (A.6)

where [63]0 is the fractional abundance of 13C18O16O2 at t = 0. Similar to equilibrium abundances, initial fractional568

abundances are independent of k. Equation A.6 is equivalent to (Passey and Henkes, 2012)569

∆63(k, t) − ∆
eq
63(T )

∆0
63 − ∆

eq
63(T )

= e−kt, (A.7)

where, by analogy to Eq. 1,570

∆63 =

[(
R63

R∗63 − 1
)
−

(
R62

R∗62 − 1
)
−

(
R61

R∗61 − 1
)]
× 1000‰, (A.8)

Ri = [i]/[60], and R∗i denotes the Ri value for a stochastic isotopologue distribution (Schauble et al., 2006). Following571

Guo et al. (2009), we let ∆63 = ∆47−∆∗47, where the phosphoric acid fractionation factor ∆∗47 is approximately constant572

for a given acid digestion temperature. Thus, Eq. A.7 is equal to573

∆47(k, t) − ∆
eq
47(T )

∆0
47 − ∆

eq
47(T )

= e−kt. (A.9)

Utilizing the definition of g(k, t) from Eq. 3, this can be written as574

g(k, t) = e−kt. (A.10)

Although derivational details differ, this result is identical to that in Appendix A of Passey and Henkes (2012) for bulk575

∆47(t) evolution assuming a single k value.576
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Appendix B. Relationship between reactions in parallel and in series577

Stolper and Eiler (2015) treat the carbonate isotopologue reordering reaction as two processes occurring in series:578

First, neighboring 13C18O16O2 and 12C16O3 groups react to form a “pair”. Then, paired 13C16O3 and 12C18O16O2579

groups diffuse to form “singletons”. Following Eq. 16, the derivative of 13C18O16O2 and pair abundances with respect580

to time is581

d[63](t)
dt

= −k1[60](t)[63](t) + α1k1[p](t),

d[p](t)
dt

= k1[60](t)[63](t) − (α1k1 + kpd)[p](t)

+ αpdkpd[61]s(t)[62]s(t),

(B.1)

where [i] denotes the fractional abundance of atomic mass i and [p] denotes the fractional abundance of pairs such582

that Σ63
i=60[i]+ [p] = 1. As above, we ignore contributions to each atomic mass by 17O-containing isotopologues (Wang583

et al., 2004; Schauble et al., 2006). Similarly following Eq. 16, we have584

α1(T ) =
[60]eq[63]eq

[p]eq
,

αpd(T ) =
[p]eq

[61]s,eq[62]s,eq
,

(B.2)

where the subscripts “eq” denotes equilibrium abundance at temperature T and the subscript “s” denotes singletons.585

Because 12C16O3, (13C16O3)s and (12C18O16O2)s are orders-of-magnitude more abundant than pairs and 13C18O16O2586

(Wang et al., 2004; Affek and Eiler, 2006; Stolper and Eiler, 2015), we again assume that changes in the concentrations587

of these species are negligible and let588

[60](t) = [60]eq,

[61]s(t) = [61]s, eq,

[62]s(t) = [62]s,eq.

(B.3)

Furthermore, we use the fact that G(t) is equivalent to589

G(t) =
[63](t) − [63]eq

[63]0 − [63]eq
, (B.4)
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and we similarly define the reaction progress of pairs as590

H(t) =
[p](t) − [p]eq

[63]0 − [63]eq
, (B.5)

noting that the upper bound of H(t) depends on [63]0 and [63]eq (i.e., H(t) is not strictly bounded to [0, 1]). By591

substituting Eqs. B.2–B.5 into Eq. B.1, the derivatives of reaction progress with respect to time can be simplified to592

dG(t)
dt

= −k1G + α1k1H,

dH(t)
dt

= k1G − (α1k1 + kpd)H.
(B.6)

In matrix from, this becomes593

dx(t)
dt

= Bx(t), (B.7)

where594

x(t) =

G(t)

H(t)

 , B =

−k1 α1k1

k1 −(α1k1 + kpd)

 . (B.8)

The solution to Eq. B.8 is found by assuming solutions exist in the form (Forney and Rothman, 2014)595

x(t) =

u1

u2

 e−λt. (B.9)

Substituting Eq. B.9 into Eq. B.7 results in the eigenvalue problem596

−λ

u1

u2

 =

−k1 α1k1

k1 −(α1k1 + kpd)


u1

u2

 , (B.10)

where λ must satisfy597

det (B + λI) = 0, (B.11)

and I is the 2×2 identity matrix. Because α1 & 1 and (k1 +kpd +α1k1)2 > 4k1kpd, Eq. B.11 contains two real solutions,598

λ1 and λ2. Substituting these into Eq. B.10 yields the two eigenvectors, u1 and u2. The solution to x(t) is thus a599

superposition of both exponential decays (Forney and Rothman, 2014)600

x(t) = f1u1e−λ1t + f2u2e−λ2t, (B.12)
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where the weighting factors f1 and f2 can be found by substituting the initial conditions G0 and H0 at t = 0 into Eq.601

B.12; G0 ≡ 1 by definition whereas H0 is estimated based on mass spectrometric measurements of [63]0 and known602

or assumed T vs. [63]eq and T vs. [p]eq relationships (e.g., Eqs. 2 and 17 in Bonifacie et al., 2017; Stolper and Eiler,603

2015, respectively). Focusing on G(t), this can be written as604

G(t) =

2∑
i=1

r(λi)e−λit, (B.13)

where r(λi) = fiui,1 can be though of as p(ki) projected onto the eigenvectors (Forney and Rothman, 2014). Therefore,605

while Eq. 16 defines two reactions in series, the total isotopologue reordering reaction behaves as two reactions606

occurring in parallel.607

Appendix C. A continuum of paired reaction-diffusion rates608

By analogy to Eq. 8, suppose that each step in Eq. 16 is itself described by a parallel superposition of n reactions609

occurring at various rates. This allows κ1(t) and κpd(t) in Eq. 16 to evolve with time. It follows that610

G(t) =

n∑
i=0

p(ki)g(ki, t), H(t) =

n∑
i=0

q(ki)h(ki, t), (C.1)

where p(ki) and q(ki) are the fractional contributions of each ki to G(t) and H(t), respectively, and611

n∑
i=1

p(ki) ≡ 1,
n∑

i=1

q(ki) ≡ 1. (C.2)

Equation B.7 can be rewritten for the fraction of material associated with a given k as612

dg(ki, t)
dt

= −kig(ki, t) + p(ki)α1

n∑
j=1

q(k j)k jh(k j, t),

dh(ki, t)
dt

= q(ki)
n∑

j=1

p(k j)k jg(k j, t)

−

α1

n∑
j=1

p(k j)k j + ki

 h(ki, t).

(C.3)

Reaction progress again follows Eq. B.8 but with613

x(t) =

g(t)

h(t)

 , (C.4)
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where614

g(t) =
[
g(k1, t), g(k2, t), . . . , g(kn, t)

]T ,

h(t) = [h(k1, t), h(k2, t), . . . , h(kn, t)]T ,

(C.5)

and B is now a 2n × 2n matrix with each row calculated using Eq. C.3. As above, x(t) can be found by assuming615

solutions in the form616

x(t) =



u1

u2

...

u2n


e−λt. (C.6)

There now exist 2n solutions with unique eigenvalues and eigenvectors. The overall solution is again a superposition617

of all exponential decays (Forney and Rothman, 2014) calculated as618

x(t) = Ue−Λtf, (C.7)

where U is the 2n × 2n matrix of eigenvectors, e is the matrix exponential, Λ is the 2n × 2n diagonal matrix of619

eigenvalues, and f is the vector of weighting factors. As above, f is found by substituting the initial conditions into620

Eq. C.7:621

f = U−1x0, (C.8)

where622

x0 =

g0

h0

 , (C.9)

and623

g0 = G0
[
p(k1), p(k2), . . . , p(kn)

]T ,

h0 = H0
[
q(k1), q(k2), . . . , q(kn)

]T .

(C.10)

G0 and H0 are calculated as in Appendix B. Each entry in x(t) is thus equal to624

xi(t) = fi
2n∑
j=1

u j,ie−λit. (C.11)
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Again focusing solely on G(t) and recalling that the first n rows of x(t) correspond to each g(ki, t), Eqs. C.1 and C.11625

can be combined to give626

G(t) =

n∑
i=1

r(λi)e−λit, (C.12)

where627

r(λi) = p(ki) fi
2n∑
j=1

u j,i. (C.13)

Equation C.12 is readily written in continuous form as628

G(t) =

∫ ∞

0
r(λ)e−λt. (C.14)

Similar to the 2-component case (Appendix B), a system of two reactions in series—each of which following a629

parallel superposition of first-order reactions at different rates—behaves itself as a superposition of reactions occurring630

in parallel. A unique feature of serial reactions is that each r(λi) can be negative since this represents p(k) projected631

onto eigenvectors whose entries need not be positive (Eq. C.13).632

Appendix D. Solving the inverse Laplace transform633

To numerically estimate ρ(ν), we first discretize t and G(t) into vectors t and G containing nt nodes such that634

each node corresponds to the time of each ∆47 measurement (Forney and Rothman, 2012b; Hemingway et al., 2017).635

Importantly, this does not require a uniform time step since ∆47 reordering experiments are rarely uniformly distributed636

in time. We similarly discretize ν into a uniformly spaced vector ν containing nν nodes such that637

∆ν =
νmax − νmin

nν
, (D.1)

where we let νmin = −60 and νmax = 20 based on published data (Passey and Henkes, 2012; Henkes et al., 2014;638

Stolper and Eiler, 2015; Brenner et al., 2018; Lloyd et al., 2018; Chen et al., 2019).639

Equation 19 can be separated into two components: (i) ρ(ν) and (ii) the Laplace transform operator e−eνt. We640

discretize the Laplace transform operator into a nt × nnu matrix A such that641

Ai, j = exp
[
− exp

(
ν j

)
ti
]
∆ν,

i = 1, . . . , nt,

j = 1, . . . , nν.

(D.2)
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Finally, we define ρ to be the unknown, discretized vector of ρ(ν) such that642

ρ j =
1

∆ν

∫ ν j+
1
2 ∆ν

ν j−
1
2 ∆ν

ρ(ν)dν, j = 1, . . . , nν. (D.3)

Our model can thus be written in matrix form as643

G = Aρ. (D.4)

To find a “smoothed” solution using Tikhonov regularization, we additionally calculate the bi-diagonal first-derivative644

operator matrix, R. That is, we let645

∥∥∥∥∥dρ(ν)
dν

∥∥∥∥∥ =

nν−1∑
j=2

(ρ j+1 − ρ j

∆ν

)2


1
2

≡ ‖Rρ‖, (D.5)

where the first and last rows of R are set to [1 0] and [0 −1], respectively, and 0 is the zero vector of length nν −1.646

This forces the constraint that ρ = 0 outside of the range νmin < ν < νmax (Forney and Rothman, 2012b).647

Appendix E. Deriving p(E) from ρ(ν)648

Suppose ρ(ν) ∼ N(µν, σν) and ν = ν0 − E/RT , then the pdf of E can be readily calculated by change of variables.649

That is,650

p(E) = ρ{ν(E)}
∣∣∣∣∣ dν
dE

∣∣∣∣∣ ,
=

 1
√

2πσν
exp

− (ν0 −
E

RT − µν)
2

2σ2
ν

 ∣∣∣∣∣− 1
RT

∣∣∣∣∣ . (E.1)

If we let651

µE = RT (ν0 − µν),

σE = RTσν,
(E.2)

then this simplifies to652

p(E) =
1

√
2πσE

exp
− (E − µE)2

2σ2
E

, (E.3)

which defines a normal distribution with mean µE and standard deviation σE .653
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Appendix F. Supplementary data and figures654

Supplementary data and figures associated with this article can be found in the online version at http://xxxxxx.655

36



References656

Affek, H.P., Eiler, J.M., 2006. Abundance of mass 47 CO2 in urban air, car exhaust, and human breath. Geochimica et Cosmochimica Acta 70,657

1–12.658

Bonifacie, M., Calmels, D., Eiler, J.M., Horita, J., Chaduteau, C., Vasconcelos, C., Agrinier, P., Katz, A., Passey, B.H., Ferry, J.M., Bourrand, J.J.,659

2017. Calibration of the dolomite clumped isotope thermometer from 25 to 350◦C, and implications for a universal calibration for all (Ca, Mg,660

Fe)CO3 carbonates. Geochimica et Cosmochimica Acta 200, 255–279.661

Brenner, D.C., Passey, B.H., Stolper, D.A., 2018. Influence of water on clumped-isotope bond reordering kinetics in calcite. Geochimica et662

Cosmochimica Acta 224, 42–63.663

Burnham, A.K., Braun, R.L., 1999. Global kinetic analysis of complex materials. Energy & Fuels 13, 1–22.664

Chen, S., Ryb, U., Piasecki, A.M., Lloyd, M.K., Baker, M.B., Eiler, J.M., 2019. Mechanism of solid-state clumped isotope reordering in carbonate665

minerals from aragonite heating experiments. Geochimica et Cosmochimica Acta 258, 156–173.666

Cole, D.R., Chakraborty, S., 2001. Rates and mechanisms of isotopic exchange. Reviews in Mineralogy & Geochemistry 43, 83–223.667

De Villiers, J.P., 1971. Crystal structures of aragonite, strontianite, and witherite. American Mineralogist 56, 758–767.668

Dennis, K.J., Affek, H.P., Passey, B.H., Schrag, D.P., Eiler, J.M., 2011. Defining an absolute reference frame for ’clumped’ isotope studies of CO2.669

Geochimica et Cosmochimica Acta 75, 7117–7131.670

Dennis, K.J., Schrag, D.P., 2010. Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration. Geochimica et Cosmochim-671

ica Acta 74, 4110–4122.672

Dodson, M.H., 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology 40,673

259–274.674

Ehlers, T.A., 2005. Crustal thermal processes and the interpretation of thermochronometer data. Reviews in Mineralogy and Geochemistry 58,675

315–350.676

Eiler, J.M., 2011. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quaternary Science Reviews 30, 3575–3588.677

Eyring, H., 1935. The activated complex in chemical reactions. Journal of Chemical Physics 3, 107–115.678
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Table S.1: All heating experiment metadata (sample ID, mineralogy, time, temperature, reference) and stable isotope data (δ13C, δ18O, ∆47, ∆47
uncertainty) used in this study. Where applicable, ∆47 values are presented both in their original reference frame as well as in the CDES90 reference
frame.

Table S.2: Descriptions of all mathematical symbols used throughout this study.

Table S.3: Resulting statistics of regularized inverse (rmse, roughness norm, ω) and lognormal (rmse, µν, σν) model fits for all heating experiments
used in this study. The non-negativity constraint was relaxed for aragonite experiments [i.e., r(λ) was fit]; thus, only regularized inverse model fit
statistics are included for these experiments.
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Figure S.1: Example demonstrating that the “transient defect/equilibrium defect” model (Henkes et al., 2014) is consistent with disordered kinetics.
Henkes et al. (2014) k values for the model fit to an optical calcite (MGB-CC-1) isotopologue reordering experiment at 425 ◦C [symbols in A; in
Henkes et al. (2014) notation; data from their Table B2] were used to generate a ∆47 evolution trajectory (dotted black line in B). The inverse
Laplace transform was then determined from this trajectory, leading to the pdf of ν in A and the corresponding forward-modeled ∆47 trajectory
in B (solid blue lines). Both ∆47 trajectories are identical, demonstrating that the Henkes et al. (2014) model is perfectly recreated by disordered
kinetics. For reference, reaction progress is also shown by converting ∆47 to G(t).
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Figure S.2: Same as Fig. 3, but calculated using the spar calcite (NE-CC-1) isotopologue reordering experiment performed at 300 ◦C (data from
Passey and Henkes, 2012). (A) Tikhonov regularization L-curve (solid black line), including the best-fit ω value (gray circle). (B) pdf of ν,
including the best-fit regularized inverse solution (dotted black line) and the lognormal solution (solid blue line). (C) measured ∆47 values and
the modeled ∆47 evolution as predicted by the best-fit regularized inverse solution (dotted black line) and the lognormal solution (solid blue line).
Shaded blue region is the propagated ±1σ uncertainty of the lognormal solution. For reference, reaction progress is also shown by converting ∆47
to G(t). The model fit is poor for this experiment due to the low analytical signal-to-noise ratio, leading to large model uncertainty and an overly
broad, left-skewed inverse solution for ρ(ν); as such, this experiment was omitted from the final dataset. rgh = roughness; rmse = root mean square
error, min = minutes.
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Figure S.3: Same as Fig. 5, but calculated using the T vs. ∆
eq
47(T ) relationship from Lloyd et al. (2018) (their Eq. 4). (A) µν and (B) σν as a function

of inverse experimental temperature. Arrhenius regression best-fit lines calculated using Eq. 27 for calcite (solid black line) and dolomite (solid
blue line) are also shown, including ±1σ uncertainty about each regression line (shaded regions). Experiments exhibiting noisy data [i.e., ∆47(t)
signal-to-noise < 5] or non-monotonic ∆47(t) evolution were excluded from regressions and thus are not shown here (see Sec. 5.3 and Table S.3).
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Figure S.4: Time-temperature fields for ∆47 preservation. Same as Fig. 8B, but calculated here for individual calcite minerals: (A) MGB-CC-1
optical calcite (data from Passey and Henkes, 2012), (B) NE-CC-1 spar calcite (data from Passey and Henkes, 2012), (C) Mexican optical calcite
(data from Stolper and Eiler, 2015), (D) WA-CB-13 brachiopod shell calcite (data from Henkes et al., 2014). To generate each line, material
that is initially described by T (∆47) = 25 ◦C is assumed to be instantaneously heated and held at a given temperature; dotted lines indicate the
time until incipient (1%) isotopologue reordering, which is conservative and may be below the detection limit given typical precision on natural
samples, whereas solid lines indicate the time until complete (99%) isotopologue reordering at that temperature. Where available, predictions were
generated using kinetic values for each model as reported in their original publications (Henkes et al., 2014; Stolper and Eiler, 2015). In some
cases, model parameters for certain minerals have not been previously reported (transient defect/equilibrium defect: NE-CC-1, Mexican optical
calcite; paired reaction-diffusion: NE-CC-1) and were calculated here by fitting the original heating experiment data using the ‘isotopolog’ python
package (Hemingway, 2020). blue = transient defect/equilibrium defect (Henkes et al., 2014), orange = paired reaction-diffusion (Stolper and
Eiler, 2015), black = lognormal disordered kinetics, hydrothermal conditions (this study; sample MGB-CC-1 only; data from Brenner et al., 2018),
red = lognormal disordered kinetics (this study).
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