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Abstract

Recent studies have found that terrestrial dryness indices like the Palmer Drought Severity Index, Standardized Precipitation

Evapotranspiration Index, and Aridity Index calculated from climate model projections are mostly negative, implying a drier

land surface with future warming. Yet, the same models’ prognostic runoff and bulk soil moisture projections instead feature

regional signals of varying sign, suggesting that the dryness indices could overstate climate change’s direct impacts. Observed

trends also show this “index-impact gap.” Most studies have attributed this gap to the indices’ omission of CO2-driven stomatal

closure. However, here we show that the index-impact gap is still wide even in model experiments that switch off CO2 effects

on plants. In these simulations, mean PDSI, Aridity Index, and SPEI still decline broadly with warming, while mean runoff

and bulk soil moisture still respond more equivocally. This implies that CO2-plant effects are not the dominant or sole reason

for the index-impact gap.
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Key Points:9

• Climate models project much more widespread drying using the Aridity Index,10

PDSI, or SPEI than using runoff or deep soil moisture11

• This gap persists even in simulations that turn off CO2 effects on plant physiol-12

ogy, which were thought to be its main cause13

• Thus, it must have a more basic cause than CO2 effects on plants14
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Abstract15

Recent studies have found that terrestrial dryness indices like the Palmer Drought Sever-16

ity Index, Standardized Precipitation Evapotranspiration Index, and Aridity Index cal-17

culated from climate model projections are mostly negative, implying a drier land sur-18

face with future warming. Yet, the same models’ prognostic runoff and bulk soil mois-19

ture projections instead feature regional signals of varying sign, suggesting that the dry-20

ness indices could overstate climate change’s direct impacts. Observed trends also show21

this “index-impact gap.”22

Most studies have attributed this gap to the indices’ omission of CO2-driven stom-23

atal closure. However, here we show that the index-impact gap is still wide even in model24

experiments that switch off CO2 effects on plants. In these simulations, mean PDSI, Arid-25

ity Index, and SPEI still decline broadly with warming, while mean runoff and bulk soil26

moisture still respond more equivocally. This implies that CO2-plant effects are not the27

dominant or sole reason for the index-impact gap.28

Plain Language Summary29

Climate scientists have traditionally measured “drought” and “aridity” using sim-30

ple formulas based on precipitation and temperature. When these formulas are applied31

to computer model projections of global warming, they forecast widespread increases in32

dryness, due to rising temperatures. Yet, these same models also directly simulate river33

flow and soil moisture – and do not forecast similarly widespread declines in either. Thus,34

it is unclear whether the drought and aridity formulas are relevant under climate change.35

Most existing studies that examine this discrepancy blame the effect of increasing36

CO2 on the microscopic pores, called stomata, that help plants conserve water. How-37

ever, other studies point to more fundamental differences between the drought formu-38

las and the direct simulations. In the present study, we show that the discrepancy per-39

sists even in special global warming simulations in which CO2 effects on stomata are elim-40

inated. This suggests that CO2 effects on plants are far from the only cause of the dis-41

crepancy, and that more work needs to be done to understand it.42

1 Introduction43

Drought is a surface water shortage, usually driven by below-normal precipitation44

(P ), that negatively impacts water resource production (i.e., stream runoff and ground-45

water recharge) and/or photosynthesis, with societal consequences (e.g., Wilhite & Glantz,46

1985; AMS Council, 2013). Aridity is a permanent, climatological lack of enough P to47

support plentiful regional water resources or vegetation (Budyko & Miller, 1974; Mid-48

dleton & Thomas, 1997), which plays a key role in human settlement patterns (e.g., Sea-49

ger et al., 2018).50

However, because water resource production and photosynthesis are strongly con-51

strained by the evaporative environment as well as P , the most effective methods for quan-52

tifying aridity and drought from climate data require both P and potential evaporation53

E0. E0 integrates radiation, temperature, humidity, and wind speed to quantify the rate54

at which the atmosphere is capable of evaporating surface water (e.g., Hartmann, 2016).55

The aridity index or AI (Transeau, 1905; Middleton & Thomas, 1997) is the ratio P/E056

of annual climatological means. The Standardized Precipitation-Evapotranspiration In-57

dex or SPEI (Vicente-Serrano et al., 2010) is the difference P−E0 smoothed to a user-58

defined timescale and transformed to a normal distribution. The Palmer Drought Sever-59

ity Index or PDSI (Palmer, 1965) is a bucket model of soil moisture forced by monthly60

P and E0. Lower AI and more negative PDSI and SPEI values indicate drier conditions,61
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with reduced water resources and vegetation. These indices are widely used and under-62

stood.63

According to the standard Penman-Monteith equation (Monteith, 1981; R. G. Allen64

et al., 1998), E0 substantially increases with greenhouse warming, mainly due to its de-65

pendence on temperature (Scheff & Frierson, 2014). Since projected changes in land P66

with warming are much less robust (e.g., IPCC, 2013; Greve & Seneviratne, 2015), global-67

scale climate model studies of AI (Feng & Fu, 2013; Fu & Feng, 2014; Scheff & Frierson,68

2015; Huang et al., 2015; Fu et al., 2016; Zarch et al., 2017; Park et al., 2018; Wang et69

al., 2020), PDSI (Dai, 2013; B. I. Cook et al., 2014; Zhao & Dai, 2015, 2016; Lehner et70

al., 2017), and SPEI (B. I. Cook et al., 2014; Touma et al., 2015; Naumann et al., 2018)71

almost always obtain widespread drying in warming scenarios. The same models also project72

widespread declines in near-surface soil moisture SMs (Dai, 2013; IPCC, 2013; Berg et73

al., 2017) and relative humidity RH (IPCC, 2013; Byrne & O’Gorman, 2016), which are74

used to argue for the physical relevance of the AI- or PDSI-based drying (e.g., Sherwood75

& Fu, 2014; Dai et al., 2018).76

Yet, as argued above, the core purpose of AI, PDSI, and SPEI, and the main use77

of SMs, is to indicate negative impacts to water-resource production and/or photosyn-78

thesis (Roderick et al., 2015; Greve et al., 2017; Scheff et al., 2017; Scheff, 2018). And,79

the same models that project widespread global declines in AI, PDSI, SPEI, SMs, and80

RH with warming project much more equivocal, two-sided changes in water-resource gen-81

eration (IPCC, 2013; Roderick et al., 2015; Zhao & Dai, 2015, 2016; Swann et al., 2016;82

Milly & Dunne, 2016, 2017; Greve et al., 2017; Scheff et al., 2017) and deep-layer soil83

moisture SMd (Berg et al., 2017; Berg & Sheffield, 2018; Greve et al., 2019). Further-84

more, these models project ubiquitous increases in photosynthesis (Greve et al., 2017,85

2019; Scheff et al., 2017; Mankin et al., 2018) and leaf coverage (Mankin et al., 2019),86

a.k.a. “greening.” Thus, it is not clear if the AI, PDSI, and SPEI projections are actu-87

ally relevant for warming impacts on water availability, nor (likewise) if the models’ prog-88

nostic runoff, SMd, and/or vegetation projections are reliable. Scheff (2018) and Scheff89

et al. (2017) show that this “index-impact gap” is also clear in global observations dur-90

ing CO2-driven climate changes (both recent and geologic), lending it additional credence.91

However, it is much less pronounced in certain regions, such as the American Southwest92

(B. I. Cook et al., 2015; Ault et al., 2016), particularly for SMd.93

What is the reason for this discrepancy? Most of the above studies argue that AI,94

PDSI and SPEI do not resemble projected climate change impacts in many places mainly95

because they do not account for the beneficial effect of elevated CO2 on plant water re-96

quirements, which tends to reduce evapotranspiration (ET) and increase photosynthe-97

sis (Roderick et al., 2015; Swann et al., 2016; Greve et al., 2017, 2019; Milly & Dunne,98

2017; Scheff et al., 2017). Yang et al. (2019, 2020) modify the standard Penman-Monteith99

equation to include this stomatal effect and find that the resulting AI and PDSI come100

much closer to the models’ hydrologic projections, and Lemordant et al. (2018) show that101

CO2-plant effects dramatically alter key model hydrologic outputs. Certainly, the bulk102

of simulated greening would not occur without these simulated CO2 effects (Arora et al.,103

2013; Shao et al., 2013).104

However, many other proposed causes of the index-impact gap, especially with re-105

gard to hydrologic impacts (i.e., water resources and SMd), are unrelated to CO2-plant106

effects. Zhao and Dai (2015), Dai et al. (2018), and Mankin et al. (2018) argue that the107

gap occurs partly because the increase in instantaneous P rate in a warming world drives108

greater runoff production for the same long-term total P . Observed and projected shifts109

in P towards the hydrological wet season (e.g., Chou et al., 2013; R. J. Allen & Ander-110

son, 2018) would have the same effect, and Berg et al. (2017) argue that the gap between111

SMd and SMs also stems from rectification of the seasonal cycle. Massmann et al. (2019)112

show that warming itself may reduce ET by closing stomata (Novick et al., 2016), apart113

from CO2. Further, Mankin et al. (2019) find that in much of the mid-latitudes, the pro-114
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jected increase in leaf area due to CO2 and warming cancels any plant water savings from115

CO2-induced stomatal closure, so that the net hydrologic impact of CO2-plant effects116

is often negative, not positive. Lehner et al. (2019) argue that prognostic runoff responses117

to climate change are biased positive, because model runoff seems to be too sensitive to118

P , and not sensitive enough to warming. Finally, Milly and Dunne (2016) and Vicente-119

Serrano et al. (2019) argue that Penman-Monteith E0 (and thus AI, PDSI and SPEI)120

is not always relevant to real watersheds under climate change, regardless of CO2 effects.121

Thus, it is not at all clear that CO2-plant effects are the main reason why simu-122

lated and observed mean hydrologic impacts of climate change are not as negative as AI,123

PDSI, or SPEI in many regions. Indeed, Milly and Dunne (2016) found that in one model,124

the gap between AI and runoff responses persisted even when those effects were switched125

off, at least in the global average. Here, we extend that comparison to many more mod-126

els, variables, and regions, showing that even when CO2-plant effects are suppressed, mean127

AI, PDSI, and SPEI (index) projections are much more widely negative than mean runoff,128

SMd, or vegetation (impact) projections.129

2 Data and methods130

We examine monthly output equatorward of 55◦ from 11 climate models in the Cou-131

pled Model Intercomparison Project phase 6 (CMIP6; Eyring et al., 2016), listed in Ta-132

ble S1 in the Supporting Information. We compare the results of two experiments that133

strongly warm the planet by increasing CO2 1% per year for 140 years (or more). In ex-134

periment “1pctCO2”, both the vegetation and radiation schemes “see” the increasing135

CO2, as in the experiments discussed in Section 1. Experiment “1pctCO2-rad” (Jones136

et al., 2016) is identical to 1pctCO2 except that the vegetation schemes instead “see”137

a constant 280 ppm of CO2, so any index-impact gap in 1pctCO2-rad must occur for a138

reason other than simulated CO2-plant effects.139

For each model, the climatological annual-mean responses of P , E0, AI, PDSI, SPEI,140

RH, SMs, SMd, water resource generation (i.e., total runoff Q), runoff ratio Q/P , pho-141

tosynthesis, leaf area index LAI, and evaporative fraction EF are quantified using the142

difference between years 111-140 and years 1-30 of the “r1i1p1” run, except where noted143

in Table S1. Monthly E0 is computed using the standard Penman-Monteith equation (R. G. Allen144

et al., 1998) and AI for each 30-year period is the ratio of 30-year-mean P to 30-year-145

mean E0, all as in Scheff et al. (2017). PDSI and 12-month SPEI are computed from monthly146

P and E0 as in B. I. Cook et al. (2014) using years 1-30 as the reference period; SPEI147

is set to −2.33 (100-year drought) when P−E0 is less than the origin of the reference148

distribution (S. Vicente-Serrano, pers. comm.). As in Scheff et al. (2017), monthly RH149

is defined as monthly-mean vapor pressure divided by saturation vapor pressure at monthly-150

mean temperature, for consistency with the E0 calculation.151

SMs uses the “mrsos” output (mm of water in the top 10 cm of the soil), and SMd152

is derived by summing the “mrlsl” output (mm of water in each soil layer) to a depth153

of 2 m, using a fraction of the bottom layer if necessary. They are each converted to vol-154

umetric water content (m3/m3), by dividing by 100 mm and 2000 mm respectively. Q155

is calculated as P minus ET rather than using model runoff output, to emphasize to-156

tal water-resource generation and avoid inconsistencies in how models defined runoff. Q/P ,157

which AI predicts in the present climate (Gentine et al., 2012), is the ratio of 30-year158

means. Photosynthesis is quantified using gross primary productivity (GPP), which is159

the flux of carbon through the stomata (Bonan, 2015) and thus the most water-linked160

metric. EF, a close cousin of the Bowen ratio, is the fraction of the 30-year-mean total161

turbulent heat flux (LH+SH) made up by the latent heat flux LH; decreases in EF rep-162

resent drought impacts to the atmosphere.163

–4–



manuscript submitted to Geophysical Research Letters

For each variable, the responses are nearest-neighbor interpolated to a common 3◦164

grid, and multi-model statistics are taken. For SMd, only nine models are available (Ta-165

ble S1); restricting the remainder of the study to only those models does not substan-166

tially change the results below. We also conduct a similar analysis on the CMIP5 (Taylor167

et al., 2012) 1pctCO2 vs. “esmFdbk1” experiments, with details and results in the Sup-168

porting Information.169

3 Results170

Fig. 1 maps the median responses to the “standard” 1pctCO2 experiment, in which171

both climate and vegetation respond to the CO2 increase. The index-impact gap com-172

mon to the coupled models is apparent: RH, AI, SPEI, PDSI, and SMs (Figs. 1a-e) ro-173

bustly and widely decline, but EF, SMd, Q/P , and Q respond much more heterogeneously174

(i.e., more like P ; Figs. 1f-j), and LAI and GPP robustly and near-ubiquitously increase175

(Figs. 1k-l.) However, EF still resembles PDSI in some places, facially suggesting that176

PDSI could be relevant for atmospheric impacts (Dai et al., 2018) despite its dissimilar-177

ity to water-resource and ecological impacts. Fig. S1 in the Supporting Information re-178

produces Fig. 1 but using standardized changes; results are similar, except that Q and179

Q/P responses become much weaker than the other metrics, reinforcing the sense of a180

gap.181

Fig. 2 maps the responses to the 1pctCO2-rad experiment, in which climate responds182

to the CO2 increase, but vegetation does not. Despite the lack of any CO2-plant effects,183

the index-impact gap is still wide, especially for hydrologic impacts: RH, AI, SPEI, PDSI,184

and SMs (Figs. 2a-e) again show widespread robust declines, but the responses of Q/P185

(Fig. 2h) and especially Q (Fig. 2j) are again much more two-sided. In particular, the186

Americas are dominated by AI, SPEI, and PDSI “drying”, yet have less consistent de-187

creases in Q/P , and regional decreases and increases in Q. In Africa and Australia, Q188

and Q/P increases are actually more extensive than decreases, despite strongly drying189

AI, PDSI and SPEI. However, in general, the gap is not quite as large as in Fig. 1, both190

because RH, AI, SPEI, and PDSI dry slightly less, and because Q and Q/P dry slightly191

more, consistent with Swann et al. (2016). Thus, CO2 effects still appear to cause some192

of the gap, by reducing ET and thus increasing both E0 and Q in Fig. 1 relative to Fig.193

2 (Berg et al., 2016; Brutsaert & Parlange, 1998).194

SMd (Fig. 2g) declines more robustly than Q, but not always as robustly as AI or195

SPEI, especially in Eurasia, North America and Australia. The declines are still weaker196

and less consistent than those in SMs (Fig. 2e). Interestingly, EF (Fig. 2f) responds much197

more like P (Fig. 2i) than like the indices, SMs, or even SMd, implying that the relative198

consistency of EF with PDSI in Fig. 1 may just be a fortuitous effect of CO2 reducing199

ET. Finally, as expected, LAI and GPP (Figs. 2k-l) lose their large, near-ubiquitous in-200

creases, but still change little (or even increase) in many regions where AI, SPEI and PDSI201

strongly decline, particularly in the mid-latitudes and Australia. Fig. S2 reproduces Fig.202

2 using standardized changes; again the main difference is relative weakening of the Q203

and Q/P responses.204

Fig. 3 distills Figs. 1 and 2 by plotting each panel as a single point in area-with-205

robust-drying vs. area-with-robust-wetting space, color-coded by type of metric (where206

“robust” means stippled on Fig. 1 or 2; that is, ≥ 75% intermodel agreement). It is im-207

mediately apparent that while the gap between the index (AI, PDSI, SPEI) and hydro-208

logic impact (Q, Q/P ) projections is larger with CO2-plant effects on (left), it is still large209

even with CO2-plant effects turned off (right). In the latter case, for PDSI, more than210

four times as much land area has robust drying as robust wetting, yet the areas of ro-211

bust Q increase and robust Q decrease are equal (Fig. 3, right), complicating the inter-212

pretation of PDSI as a water-resource proxy under climate change (e.g., E. R. Cook et213

al., 2009). For AI, more than 10 times as much land area has robust drying as robust214
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Figure 1. Multi-model median differences between years 111-140 vs. 1-30 of the 1pctCO2

CMIP6 experiment, in which vegetation responds to the CO2 increase. Black dots show where

at least 75% of the models agree on the sign of the change (i.e., where the change is robust.)

Variables without units are dimensionless.
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Figure 2. As Fig. 1, but for the 1pctCO2-rad experiment, in which vegetation does not “see”

the CO2 increase.
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Figure 3. Percent of land area with multi-model robustly projected (i.e., stippled) decreases

(x-axis) and increases (y-axis) in each variable on Fig. 1 (left; vegetation responds to CO2) and

Fig. 2 (right; vegetation does not respond to CO2). Climate variables and indices are in black,

vegetation impacts in green, water-resource impacts in dark blue, soil moisture impacts in brown,

and atmospheric impacts in light blue. Colored lines mark ratios of robust-decrease area to

robust-increase area.

wetting, yet the area of robust Q/P decrease is only twice the area of robust Q/P in-215

crease, despite the theoretical basis for AI as the primary driver of Q/P variation in the216

present climate (Budyko & Miller, 1974).217

For SMd and (especially) GPP and LAI, the gap from AI, PDSI, and SPEI responses218

without CO2-plant effects (right) is much smaller than with CO2-plant effects (left), mainly219

because the massive GPP and LAI increases are much reduced. However, the gap is still220

noticeable: similar to Q/P , robust GPP and SMd decreases are only about 2-3 times more221

widespread than respective increases, even though robust PDSI, AI and SPEI decreases222

are over 4, 10, and 20 times more widespread than respective increases. LAI more strongly223

tends to decrease, similar to PDSI, but still not as much as AI, SMs or SPEI. Thus, the224

indices still do not seem to be particularly reliable proxies for projected vegetation-related225

impacts, even in a world where CO2 does not affect vegetation. As discussed above in226

the context of Fig. 1, this is particularly so in parts of the midlatitudes, where growing-227

season lengthening is an important driver of vegetation increases (e.g., Mankin et al., 2018,228

2019). Also, EF is even farther from the indices when CO2-plant effects are off (right)229

than on (left), confirming that any apparent relevance of the indices for EF in Fig. 1 is230

just a fortuitous consequence of CO2 effects on transpiration.231

We quantify several of the index-impact gaps in greater detail by mapping disagree-232

ment between the impact variables (Q, Q/P , SMd, GPP) and the indices and similar233

variables (AI, PDSI, SPEI, SMs) across the multi-model ensemble (Fig. 4). Specifically,234

we map the percentage of models that obtain increases in impact variables despite de-235

creases in index-type variables (minus the percentage that do the opposite, which is much236

smaller). With CO2-plant effects on (left column), a large proportion of the models sim-237

ulate hydrologic and vegetation increases despite declining indices, as expected (though238

there are also regional exceptions). With CO2-plant effects turned off (right column),239

this proportion persists, albeit slightly diminished. Again, the gaps between Q and Q/P240

and the indices (Fig. 4a-f) and between SMd and SMs (Fig. 4g-h) are particularly per-241

sistent. (Some very dry regions do have the opposite sign gap, but Q ≈ 0 in such places.)242
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Figure 4. Percent of models with increasing A minus percent of models with increasing B

(equivalently, percent of models with increasing A and declining B minus percent of models with

increasing B and declining A), for selected pairs of variables A and B. Left: 1pctCO2 (vegeta-

tion sees CO2). Right: 1pctCO2-rad (vegetation does not see CO2). In panels g through j, both

variables use only the 9 models that had SMd for both experiments (Table S1).
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In contrast, the prevalence of SMd increases despite PDSI declines (Fig. 4i) is more243

noticeably reduced once CO2 effects are turned off (Fig. 4j), while regions with the op-244

posite sign gap are expanded. This relative agreement makes sense, since PDSI is a fun-245

damentally a model of SMd. Finally, the very large proportion of models that increase246

GPP despite index declines (e.g., Fig. 4k) largely vanishes or reverses in the tropics when247

CO2 effects are turned off, but still noticeably persists in the mid-latitudes (Fig. 4l); re-248

sults are similar for LAI. This again suggests that growing-season lengthening, in addi-249

tion to CO2, is a key driver of the gap between index and vegetation responses in the250

midlatitudes.251

Figs. S3-S6 reproduce Figs. 1-4 but using nine CMIP5 models, for cleaner compar-252

ison with the literature cited in the Introduction. The results are very similar, though253

the index-impact gaps (both with and without CO2) tend to be even wider in CMIP5254

than in CMIP6. Whether this is due to model improvement going from CMIP5 to CMIP6,255

or just different model selection (Table S1 vs. S2), is unknown. The lack of index-impact256

gaps in CMIP5 in parts of the American Southwest (B. I. Cook et al., 2015; Ault et al.,257

2016) is also apparent on Fig. S6.258

4 Discussion259

In short, Figs. 1-4 and S3-S6 show that while some simulated index-impact gaps260

can be driven by CO2-plant effects (e.g. low-latitude greening despite index declines, or261

PDSI declining more than SMd), most of the others (e.g. Q, Q/P and mid-latitude veg-262

etation increasing despite index declines, and SMd declining less than SMs) persist with-263

out any CO2-plant effects. Thus, contrary to studies like Swann et al. (2016), Milly and264

Dunne (2017), Scheff et al. (2017), and Greve et al. (2017), but in agreement with Mankin265

et al. (2019) and Greve et al. (2019), we find that CO2-plant effects are not the sole or266

dominant reason that impact simulations disagree with common climatic dryness indices267

under global warming. Instead, other mechanisms must be in play to explain the index-268

impact gaps.269

What could those other, non-CO2 factors be? The easiest explanations are that270

the indices are just simple formulas, and should not be expected to reflect complex cli-271

mate change impacts in the first place (e.g., Milly & Dunne, 2016; Greve et al., 2019)272

- and/or that mean changes in runoff and vegetation production are not actually what273

the indices are built to measure. However, the indices all have long histories of success-274

ful use in the present climate as hydrological and ecological impact proxies, continue to275

be frequently used to quantify climate change’s broad dryness effects (e.g., Lehner et al.,276

2017; Naumann et al., 2018; Wang et al., 2020), rest on solid theoretical foundations (Penman-277

Monteith E0, the Budyko curve, soil moisture modeling, the complementary principle),278

and do in fact agree with the impact projections in some places (Figs. 4 and S6; B. I. Cook279

et al., 2015; Ault et al., 2016). Where there are disagreements, they are mostly in one280

direction (indices drier than simulated impacts; Fig. 4) even with CO2 effects turned off.281

Thus, it is important to understand where the differences come from, so as to better as-282

sess the relevance and applicability of both types of projections.283

For water-resource (Q and Q/P ) responses, there is no shortage of potential non-284

CO2 mechanisms by which they could skew more positive than index responses, as de-285

tailed in Section 1. Again, these include direct closure of leaf stomata by high temper-286

atures and vapor-pressure deficits (Novick et al., 2016; Massmann et al., 2019), concen-287

tration of P into fewer, heavier events (e.g., Mankin et al., 2018; Dai et al., 2018), and288

concentration of P into the hydrological wet season (e.g., Chou et al., 2013), all of which289

are accounted for in the models but not in the indices. Biases in model Q and Q/P sen-290

sitivity to P and temperature (Lehner et al., 2019) could also be important. More broadly,291

some of the gap between Q and PDSI responses could also simply be that PDSI is a soil-292

moisture model, despite its frequent tacit use to indicate runoff scarcity. However, there293
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is no similar “apples and oranges” argument for the large gap between Q/P and AI re-294

sponses, since Q/P is the quantity that AI classically predicts (Gentine et al., 2012; Budyko295

& Miller, 1974). Planned offline land-modeling work will test many of the above mech-296

anisms.297

For vegetation-related impacts (GPP and LAI), the substantial non-CO2 portion298

of the simulated departure from the indices is most easily explained by the lengthening299

of mid-latitude growing seasons with global warming (e.g., Mankin et al., 2019), as stated300

in Section 3. Whether a longer growing season could overcome increased drought stress301

to cause greening in the real-world midlatitudes absent CO2 effects is far from certain.302

However, observations to date (Zhu et al., 2016) show that greening has been much more303

prevalent than de-greening at all latitudes, including the mid-latitudes.304

Finally, the almost total persistence of the gap between SMd and SMs responses305

when CO2 effects are turned off strongly suggests that its main cause is the seasonal mech-306

anism proposed by Berg et al. (2017), rather than plant savings of SMd due to elevated307

CO2. Similarly, the gap between EF and index responses is even stronger when CO2 ef-308

fects are off, so it must have a non-CO2 cause, likely the basic thermodynamic EF in-309

crease with warming and/or the strong constraint of EF by radiation and P (Scheff, 2018).310

5 Conclusion311

A number of studies find that simple climatic dryness and drought indices, such312

as the Aridity Index (AI), Palmer Drought Severity Index (PDSI), and Standardized Precipitation-313

Evapotranspiration Index (SPEI), indicate much more widespread drying with climate314

change than implied by high-complexity models (and observations) of water resources315

and vegetation. Many of these studies ascribe this “index-impact gap” to the direct ef-316

fects of CO2 on plant physiology. To the contrary, here we show that much of this gap317

strongly persists even in specialized simulations (CMIP6 1pctCO2-rad; CMIP5 esmFdbk1)318

in which direct CO2-plant effects are completely turned off, especially for impacts on wa-319

ter resources and mid-latitude vegetation. This strongly suggests key non-CO2 cause(s)320

for the index-impact gap. Future work will test several candidate causes from the lit-321

erature, using land-modeling experiments.322
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Table S1. CMIP6 climate models analyzed in this study

Model name Institution Data citations
ACCESS-ESM1.5 CSIRO Ziehn et al. (2019a, 2019b)
BCC-CSM2MR BCC Wu et al. (2018, 2019)

CanESM5 CCCma Swart et al. (2019a, 2019b)
CNRM-ESM2-1a CNRM-CERFACS Seferian (2018a, 2018b)

GFDL-ESM4a NOAA-GFDL Krasting, John, et al. (2018); Krasting, Blanton, et al. (2018)
GISS-E2.1Gb NASA-GISS NASA/GISS (2019a, 2019b)

IPSL-CM6A-LR IPSL Boucher, Denvil, Caubel, and Foujols (2018a, 2018b)
MPI-ESM1.2-LR MPI-M Wieners et al. (2019); Brovkin et al. (2019)

MRI-ESM2.0c MRI Yukimoto et al. (2020a, 2020b)
NorESM2-LMd NCC Seland et al. (2019); Schwinger et al. (2020)
UKESM1.0-LL MOHC Tang et al. (2019); Jones (2019)

aSMd is not available.
bWe use r101 for 1pctCO2, since it is the most up-to-date and matches 1pctCO2-rad.
cWe use i2, since i1 lacks carbon cycle variables (S. Yukimoto, pers. comm.)
dBase period is years 2-31, since part of year 1 is missing for some variables.

Table S2. CMIP5 climate models used for Figs. S3-S6

Model name Institution
BCC-CSM1.1 Beijing Climate Center, China Meteorological Administration

CanESM2 Canadian Centre for Climate Modelling and Analysis
CESM1(BGC) Community Earth System Model Contributors
GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory
HadGEM2-ES Met Office Hadley Centre

IPSL-CM5A-LRa Institut Pierre-Simon Laplace
IPSL-CM5A-MRa

MPI-ESM-LRa,b Max Planck Institute for Meteorology
NorESM1-ME Norwegian Climate Centre

aSMd is not available.
bSMs is not available.
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Figure S1. As Fig. 1 of the main text, but each model’s response is normalized by that

model’s interannual standard deviation before the multi-model median is taken. Annual Q each

year is defined as annual P minus annual ET; this is not strictly correct (due to storage) but

should capture the magnitude of interannual standard deviation of Q. Annual EF and Q/P are

each defined as the ratio of the yearly values of their numerator and denominator. “Interannual

variability of AI” is represented by interannual standard deviation of P over climatological E0.
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Figure S2. As Fig. S1, but for Fig. 2 of the main text (1pctCO2-rad experiment.)
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Figure S3. As Fig. 1 of the main text, but for the CMIP5 models in Table S2.
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Figure S4. As Fig. 2 of the main text, but for the CMIP5 models in Table S2, using the

esmFdbk1 experiment (identical to 1pctCO2-rad, except for the name.)
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Figure S5. As Fig. 3 of the main text, but for Figs. S3 and S4.
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Figure S6. As Fig. 4 of the main text, but for the CMIP5 models in Table S2.
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