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Abstract

Assessing volcanic hazard in regions of distributed volcanism is challenging because of the uncertain location of future vents.
A statistical-mechanical strategy to forecast future vent locations was recently proposed. Here we further develop and test
that strategy with analog models. We stress a gelatin block in controlled conditions and observe air-filled crack trajectories.
We use the observed surface arrivals to sample the distributions of parameters describing the stress state of the gelatin block,
combining deterministic crack trajectory simulations with a Monte Carlo approach. We find the algorithm retrieves the stress
imposed on the gelatin and successfully forecasts the arrival points of subsequent cracks in the same experimental setups. We

discuss how the approach may be used to gain insight on the stress state of regions of distributed volcanism.
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Abstract

Assessing volcanic hazard in regions of distributed volcanism is challenging because of
the uncertain location of future vents. A statistical-mechanical strategy to forecast fu-
ture vent locations was recently proposed. Here we further develop and test that strat-
egy with analog models. We stress a gelatin block in controlled conditions and observe
air-filled crack trajectories. We use the observed surface arrivals to sample the distribu-
tions of parameters describing the stress state of the gelatin block, combining determin-
istic crack trajectory simulations with a Monte Carlo approach. We find the algorithm
retrieves the stress imposed on the gelatin and successfully forecasts the arrival points
of subsequent cracks in the same experimental setups. We discuss how the approach may
be used to gain insight on the stress state of regions of distributed volcanism.

Plain Language Summary

In regions of distributed volcanism eruption locations (vents) are scattered over a
large area. Forecasting the new eruption locations over such regions is critically impor-
tant, as many are densely populated. One of the main difficulties is dealing with few known
past eruptions, that is, the data available to constrain forecast models are scarce. Here
we develop a forecast strategy by using analog models. We observe the propagation of
air-filled cracks inside a block of gelatin, which we had previously stressed by applying
extension or compression and surface excavations. Such models, if properly scaled, are
an analog for magma propagation in the Earth’s crust. We use the surface arrival points
of some observed cracks to retrieve the statistical distributions of a few parameters con-
trolling the stress field. Next, we use such distributions to simulate many cracks to fore-
cast other observed arrivals. Our strategy may help retrieving the state of stress in vol-
canic regions and forecast the location of future vents.

1 Introduction

In many volcanic regions, especially monogenetic fields, continental rifts and calderas
but also shield volcanoes and stratocones, eruptive vents may be spatially scattered: they
sometimes cluster along rift zones or are distributed over areas that may exceed 10,000
km?. Some of these regions are densely populated. In order to better protect human life
and infrastructure, it is important to better understand the factors determining vent dis-
tributions and improve vent location forecasts.

The most common approaches to probabilistic forecasts of future vent opening lo-
cations rely on the spatial density of past eruptive events, sometimes complemented with
the surface distribution of structural features, such as faults and fractures (Connor &
Hill, 1995; Martin et al., 2004; Selva et al., 2012; Bevilacqua et al., 2015). Models based
on these approaches, however, often remain poorly constrained due to scarce or spatially
sparse data, and cannot be easily validated in volcanic systems where eruptions are in-
frequent.

Recently, Rivalta et al. (2019) proposed a mechanical-statistical approach to in-
versely constrain the state of stress, and thus magma pathways, of a volcanic edifice or
region on the base of the known location of magma reservoirs and past eruptive vents.
Dike trajectories are assumed to follow a ”least resistance to opening” path calculated
from the elastic stress field, as explained in detail below, and seeks to optimize the stress
field so that any magma batch released from the magma reservoir reaches one of the past
eruptive vents. Once the stress field is constrained, the trajectories of future dikes can
be forecast. Rivalta et al. (2019) adapted and applied the concept only to Campi Fle-
grei caldera in Italy. Further developments and applications are necessary to harness the
potential of the method.



Analog laboratory experiments involving fluid-filled crack propagation in gelatin
have proven useful in validating dike propagation models (Watanabe et al., 2002; Mac-
caferri et al., 2019), also assessing the influence of surface loads (Muller et al., 2001; Gaete
et al., 2019), rigidity layering (Maccaferri et al., 2010) and external stress fields (Acocella
& Tibaldi, 2005).

Here we further explore the potential of stress inversions to forecast dike trajec-
tories using analog experiments with an imposed stress field, then discuss its performance
and relevance for natural systems.

2 Methods

The scheme presented here consists of three main steps. First, we run a series of
experiments where we track the propagation of injected air-filled cracks. Second, we use
a boundary element (BE) model to calculate expected crack trajectories, combined with
a Markov Chain Monte Carlo (MCMC) algorithm to sample two parameters describing
the state of stress within the gelatin. Third, we validate our strategy by running fore-
casts for additional cracks, which we compare to further injections.

2.1 Experimental Setup

We use a perspex container of size A = 40 cm, B = 20 cm, C = 30 cm (fig. 1a).
A 2.0 wt% or 2.5 wt% aqueous solution of 220 Bloom pig gelatin powder was let solid-
ify in the box at T'= 8° C for 20 h. The gelatin density is assumed to be pge; = 1020
kg-m~3, as measured by Smittarello (2019) on a similar setup for the same gelatin brand
and concentrations. Compression or extension were imposed on the set gelatin by insert-
ing or removing two plastic plates of thickness d°*? = 2.5 + 0.1 mm at the box sides,
separated from the medium by a transparent plastic film (fig. 1a). The gelatin block sur-
face is moulded to include along the y direction a rectangular, rift-like excavation of width
w = Tcm and varying depth h®*P (fig. 1a), creating surface unload. Air is injected into
the gelatin from the bottom of the box through syringes, resulting in ascending air-filled
cracks. Their trajectories are recorded, and the start and surface arrival points of the

cracks (2519t and 9%, respectively) are measured (fig. 1c,d).

All experiments were carried out at room temperature, with timescales short enough
(< 1 h) to maintain the experiments in an elastic regime (Kavanagh et al., 2013). The
Young’s modulus F of the gelatin was determined case by case by applying a small cylin-
drical load on the surface and measuring the resultant subsidence under the assumption
of a half space (Kavanagh et al., 2013). Deviations from the analytical solution due to
the box walls can be neglected if the load is small enough (Smittarello, 2019). E was mostly
within the 2000—3500 Pa range (table 1). We assumed a v = 0.49 Poisson’s ratio (van
Otterloo & Cruden, 2016).

To compute the scaling between our experiments and nature, we consider calderas
or rifts of 5 to 25 km diameter or width as the reference cases. The length scaling fac-
tor L* =1.4-107° - —2.8-107%, where the asterisk refers to the ratio between analog
and natural values, is thus obtained by dividing w by the assumed width in nature. An-
other length scale relevant to our experiments is the buoyancy length (Nakashima, 1993):

2

L= ( bt ) 1)
72 Apg

where K, is the medium fracture toughness and Ap is the density contrast between the
host medium and the injected fluid. Assuming Ap, = 100 kg:m™3, Apge; = 1000 kg-m =3
as the rock-magma and gelatin-air density contrasts, respectively, and K = 0.2 -1 -

10° Pa~m%, Kg¢ = 50—80 Pam? as the rock and gelatin fracture toughness, respec-
tively, for a gelatin Young’s modulus in the order of F = 3000 Pa (Menand & Tait, 2001),
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we obtain L; = 1.3-107° — —2.9- 1075, comparable with L*. A typical z*""* = —150
mm (table 1) corresponds to z***"* = —10— —50 km in nature. Such a starting depth
for dikes is rather deep, but not unreasonable.

The stress scaling factor is calculated by dividing the unload stress oy = pgeigh
for the excavation in the gelatin by the one for the natural case. Taking h =2—5 cm
(table 1) and caldera or rift depths in the range 0.3 - 1 km, assuming p, = 2500 kg-m~3,
we obtain o* = 8.2-1076—6.8-107°. We also require the ratio between the stress aris-
ing from lateral strain and the unloading one to be comparable to natural cases. In our
experiments, such ratio Fe/pgegh is in the range 0.06—0.19. The same ratio for Campi
Flegrei caldera is ~ 0.26 (Rivalta et al., 2019), which is lower than, but in the same or-
der of magnitude of, our upper limit.

Inhomogeneities of various nature affect the outcome of the experiments. Some of
them are unplanned, such as temperature gradients within the gelatin block and localised
strain concentrations induced when removing and, especially, inserting the side plates.
Conversely, rigidity layering is intentionally introduced in experiments 2DLA-3 & 2DLA-
4 (table 1). In this particular experiment series any inhomogeneity is welcome, as it of-
fers a chance of testing the method against medium variability.

2.2 Experimental Data

We carried out a total of ten experiments (2DLA-i, i= 1,...,10), considering exten-
sion (6 experiments), compression (4 experiments), layering (2 experiments) and evolv-
ing states of stress (3 experiments).

In experiments 2DLA-1,3,4,5,6,7 we applied extension. 2DLA-3 and 2DLA-4 were
performed in layered gelatin. In 2DLA-3, the bottom layer had a higher gelatin concen-
tration, and thus rigidity, than the top one, and reverse in 2DLA-4. For these two ex-
periments we use an “effective” Young’s modulus obtained by carrying out the measure-
ment on the whole block.

In 2DLA-5,6,7 we changed the state of stress midway in the experiments after a
first set of injections. In 2DLA-5 we performed 3 injections, then removed the side plates
and finally injected 3 more cracks. In 2DLA-6 and 2DLA-7 we partially refilled the sur-
face excavation with water between a first and a second set of injections; the data of these
two experiments were then pooled with the purpose of checking the performance of the
method with a larger data set. As h®*P and F were similar but not identical in the two
experiments, we assumed average values.

In experiments 2DLA-2,8,9,10 we imposed compression. These experiments displayed
a relatively large variability in the propagation and orientation of the cracks for simi-
lar sets of parameters and starting points: observed trajectories diverged significantly
from each other, resulting in the cracks hitting the box walls in 2DLA-8, 2DLA-9 and
2DLA-10 or, in one case (2DLA-2), becoming stuck beneath the unload as a sill-like in-
trusion (fig. 1d). In 2DLA-2 we discarded that one crack, while experiments 2DLA-8 -
9 and -10 were discarded entirely, as very few cracks reached the gelatin surface.

2.3 Numerical Modeling

The stress state within the gelatin blocks is described by the two parameters d and
h (fig. 1a). We assume that the position and width, w, of the surface excavation are known
exactly.

To calculate the elastic stresses within the gelatin, we use the two-dimensional (2D)
Boundary Element (BE) code ” CutédDisplace” (Crouch et al., 1983; Davis et al., 2017,
2019). Plane strain is assumed (the validity of this assumption will be discussed later).



The box bottom and walls are discretized into boundary elements of length g = 2
mm. Displacement is set to zero on the bottom elements, while we impose fixed displace-
ment on the side walls, equal to d or —d (fig. 1) for extension or compression, respec-
tively. The free surface is also discretized and BEs are shaped to model the excavation;
stress boundary conditions are imposed on them to reproduce the gravitational stress
due to the unload (Martel & Muller, 2000, egs. 1).

We calculate the principal stress directions on a dense grid of observation points
within the box. We simulate the crack trajectories assuming that the cracks open against,
and propagate perpendicular to, the least compressive stress axis o3 (Anderson, 1951).
This assumption makes a good approximation of real trajectories provided the size and
volume of the cracks are not too large (Watanabe et al., 2002; Maccaferri et al., 2019)
and the effects of its viscosity can be neglected, as well as those of stress gradients (Dahm,
2000), and that the cracks are not misaligned to the principal stress axes at the injec-
tion point. The more these assumptions are far from reality, the larger the mismatch be-
tween real and os-perpendicular trajectories. These factors can be accounted for by us-
ing more complex dike trajectory models, in 2D (Dahm, 2000; Maccaferri et al., 2011)
and recently also in three dimensions (3D) (Davis et al., 2020), but since they would in-
crease the number of parameters, larger data sets would be needed to perform a stress
inversion.

2.4 MCMC Scheme

Our sampling procedure relies on the Delayed Rejection and Adaptive Metropo-
lis (DRAM) MCMC algorithm (Haario et al., 2006; Laine, 2013). The set of N observed
arrivals (x9% i = 1,...,N) is first divided into two subsets N/ and N¥ ("I" and "F”
stand respectively for ”inversion” and ”forecast”). The N7 set is used to sample the two
parameters d and h. The size of the data sets we used varies from a minimum N’ = 2

in 2DLA-2 to a maximum of N/ =5 in 2DLA-6 & 2DLA-7 (table 2).

At start, ranges and guesses for the parameters d and h are fixed together with a
common starting depth for the cracks, 271" = z5t@" ghallower than the injection depth
so that the cracks have some space to align perpendicularly to o3 (fig. 1). Starting lo-
cations 5% are then assigned as the horizontal coordinate of the upper tips of the ob-
served cracks at 2%, At each iteration, we simulate N! crack trajectories and sam-

ple d and h in order to minimize the objective function

NI
§ =3 (wf —at™)? 2)
i=1

where z7 are the simulated arrivals.

The squares of the uncertainties on the two parameters (Ad = £0.1 mm; Ah =
+1 mm) populate the diagonal of the covariance matrix (which is assumed diagonal).
M = 10* iterations were made for every chain, with a burn-in time of 103 iterations.
Our runs highlight a correlation between d and h, as expected from Rivalta et al. (2019),
d

so we consider a further parameter: R = 3, which partly removes the trade-off, and

use the posterior probability distributions (PPDs) of d and R to perform the forecasts.

2.5 Forecasting Approach

After performing the inversions, we run M = 103 iterations of N simulations
for the forecasts, where we sample the parameters (d, R) from their PPDs. Starting points
are drawn from a Gaussian distribution centered on the observed ones, 7/ HF zstart.F

% Eiat) ’



Table 1.

arrivals used for the forecast (see fig. 2). Column 7: ”t” = top; ”b” = bottom layers. Updated

d°®P and h®*P are indicated in parentheses.

Experiments and measured parameters. Blue markers in the pictures indicate the

# Exp. Picture H h**P w acer E zstart

+1mm £1lmm £ 1mm =+ 0.1 mm Pa + 1 mm

2DLA-1 190 50 70 2.5 2930 + 120 -100

2DLA-2 210 44 60 -2.5 2740 £+ 130 -100

2DLA-3 217 21 70 2.5 t: 3150 £+ 110 -150
b: 5250 £+ 460

2DLA-4 195 24 70 2.5 t: 2300 £ 70 -150
b: 2620 £+ 400

2DLA-5 196 24 70 0 (2.5) 2800 £ 70 -150

2DLA-6 219 58 (28) 60 2.5 2480 + 50 -150

2DLA-7 219 72 (32) 60 2.5 2800 £ 60 -150

2DLA-8 210 55 60 -2.5 2700 £ 80 -100

2DLA-9 195 44 60 -2.5 2700 £ 80 -100

2DLA-10 195 30 70 -2.5 2960 + 90 -100




with standard deviation ¢ = 1 mm. The combined distribution of simulated arrivals
is compared to the observed arrivals set aside for the forecast x?bS’F.

A different approach is adopted in experiments 2DLA-5 and 2DLA-6 & 2DLA-7
to account for the modified state of stress between the N' and N cracks. In 2DLA-5
we fit the PPDs of d and R with Beta functions and then update them by shifting the
mean value and their upper and lower limits to account for the added extension. In 2DLA-
6 & 2DLA-7 we use the same strategy, except that we update h and R.

3 Results
3.1 Parameters sampling

We observe that, as expected, extension competes against surface unloading and
leads to more vertical crack trajectories. This is clearly observed in 2DLA-5 and in 2DLA-
6&7, where extension was applied and unloading was decreased midway through the ex-
periment, respectively (compare green to red trajectories in table 1, 2DLA-5 and 2DLA-
7).

In general, we find that our trajectory simulations for the experiments with exten-
sion are closer to the observations than those for the compressional cases, where the tra-
jectories tend to diverge significantly from each other and spread the uncertainty of the
initial location into a more spread distribution of the arrival locations (see section 2.2).
This is reflected on the PPDs, which are generally spread and fail to recover the imposed
values of the parameters in the only compressional case we performed an inversion on

(2DLA-2).

In the homogeneous extensional cases, the PPDs for d and especially h are gener-
ally poorly constrained, though the imposed value d**? is well recovered in 2DLA-5 and
2DLA-6 & 7, where it falls at the 44th and 45th percentile, respectively. In contrast, the
PPD for R is always peaked around or close to R®*P (fig. 2). The distributions of h tend
to be generally uniform. The PPDs, including those of h, are more peaked when more
data are available (2DLA-6&7). In the layered cases (2DLA-3 and 2DLA-4), the medi-
ans of all the PPDs are rather far from the respective imposed values, except for R in
2DLA-4.

The joint distribution for R and h (fig. 2a) shows that R is generally well constrained
while A is not.

3.2 Forecasts

We find that, in spite of the PPDs for d and h being often spread or even uniform,
the forecast distribution always shows NT sharp peaks. Moreover, in spite of the PPDs
for d and h failing to accurately recover the imposed values, the peaks of the forecast
distribution generally coincide or are very close to the observed arrivals (fig. 2b, table 2).
This includes the layered cases. Again, the compressional case marks an exception: the
forecast shows two maxima, one closer to the box center and a sharp one at the box mar-
gin (fig. 2b); this is due to the fact that many simulated cracks ended up hitting the right
side of the box. Neither of the maxima coincides with the observed arrival, although the
median does (fig. 2b, table 2).

Two secondary peaks are also obtained in the combined forecast distribution for
2DLA-5, as the sampling range for d allowed for both positive (extension) and negative
(compression) values. The two main maxima are here close to the box center and show
good agreement with xfbs’F. Considering the single distributions separately, the three
22" fall between the 47th and the 79th percentile. In 2DLA-6&7 (N = 6) three clear
maxima are observed in the combined forecast distribution, showing again good agree-
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Table 2. Additional results from inversions and forecasts

Experiment code N? N d°*P + 0.1 d™? h®®P £ 1 h™ R®P (x1073) R™*? (x107®) Forecast percentile

2DLA-1 4 1 25 49 50 51 63+4 100 75
2DLA-2 2 1 -25 -3.5 44 73 BT+ 4 -55 61
2DLA-3 3 1 25 3.9 21 63 120 £ 10 69 56
2DLA-4 4 1 25 5.8 24 59 104 £ 8 102 60

2DLA-5 3 3 0 04 24 64 0+ 1x107? 8x1073 47%

2.5k 104%* £ 8 58%

79%

2DLA-6 & 7 5 6 25 2.5 65 64 43+ 2 39 51%

35%* T1¥* £ 5 TT*

35%

44%*

34%

60*

* Relative to the forecasts for each of the Nt arrivals in 2DLA-5, 6 & 7.
** After the stress update.

ment with the xfbs’F, which fall between the 34th and the 77th percentile of the respec-

tive individual distributions (table 2).

In all experiments with N = 1, the observed arrivals z°%" fall between the 50th
and the 75th percentiles (table 2).

4 Discussion and Conclusions
4.1 Method Validation

The inversion and forecast strategy we applied to our experimental data proved gen-
erally effective in retrieving information on the stress state within the gelatin blocks and
very effective in identifying high-probability regions for crack arrivals on the surface (ta-
ble 2). Forecasts are successful in spite of the sampling being carried out on scarce data
sets. If data sets are larger (5 data points for 2 parameters), also the state of stress is
recovered accurately. The method performs well also when the layering of the medium
is neglected in the model. The same holds true for all the other inhomogeneities we ne-
glected, such as previous cracks and local stress concentrations. Elastic parameters, if
unknown, could be constrained through a similar sampling procedure, but information
on the stress state would be necessary as they trade off. To test this possibility, we ran
an inversion on the N data set of 2DLA-5, fixing both d and h as known parameters
and inverting for E. We found the sampled E distribution peaks very close to E¢*P (ta-
ble 1), which falls at the 37th percentile of the distribution.

The forecast strategy applied in experiments 2DLA-5 and 2DLA-6&7 also proved
effective in accounting for the modification of the stress field over time, validating the
evolving-stress forecast method by Rivalta et al. (2019).

—10-



4.2 Limitations

A critical issue is the nearly-uniform trend observed in the PPDs for h, which leads
to the ”banana-shaped” joint distributions retrieved from the inversions (fig. 2a). This
behavior arises from the fact that very shallow or very deep surface unloads, for the same
d and starting points, lead to similar arrivals. We saw this effect both in the numerical
simulations and in a separate experiment where two cracks were injected in a block with
a deep surface excavation (w = 7 cm, h = 10) cm. Based on this, we conclude that
the effect is due to the relaxation of the surface excavation’s walls under gravity. This
refocuses trajectories towards the center of the unload once, after having been deflected
by the unloading, they approach the surface.

The method performs better with extensional rather than compressional settings.
Several factors may contribute to this. Compressing gelatin blocks without inducing lo-
cal stress concentrations proved difficult, and the crack trajectories were greatly affected
by these. Both unloading and compression lead to more horizontal o; directions within
the medium. Thus, the mismatch between the crack orientation and the principal stress
axes right after the injection is larger and the cracks need to cover longer distances be-
fore aligning to them. Moreover, a horizontal o7 may encourage cracks to propagate to-
wards the back or the front walls of the box, thus making our 2D model unfit. Compres-
sional settings may be inherently more challenging to forecast: trajectories tend to di-
verge, especially in case of unloading, and simulations are therefore more sensitive to any
variability of initial and boundary conditions or model parameters.

4.3 Application to natural cases

Our results suggests that reliable forecasts of vent distribution can be carried out
even with scarce data or a lack of knowledge of the layering structure of the host medium,
as is often the case in nature. A stress field evolving with time can be approached with
a distribution updating strategy.

The two parameters determining the state of stress in our model, d and h, play the
role of tectonic and topographic load/unload stress in a natural case, respectively. Roman
and Jaupart (2014) have shown that these two are in general the main contributions to
elastic stresses at and beneath a volcano. They dominate over magma chamber pressur-
ization stress because the latter is only significant very close to the magma reservoir (Roman
& Jaupart, 2014). However, when these stresses are small (e.g., in the presence of a gen-
tly sloping topography or far away from plate margins), buoyancy can play a big role
in driving dike propagation and should be accounted for.

An upgrade to three-dimensional modeling is necessary before application to vol-
canic regions to account for any geometry and topography-related effects.
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Figure 2.
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