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Abstract

To evaluate models as hypotheses, we developed the method of Flux Mapping to construct a hypothesis space based on dominant

runoff generating mechanisms. Acceptable model runs, defined as total simulated flow with similar (and minimal) model error,

are mapped to the hypothesis space given their simulated runoff components. In each modeling case, the hypothesis space

is the result of an interplay of factors: model structure and parameterization, choice of error metric, and data information

content. The aim of this study is to disentangle the role of each factor in model evaluation. We used two model structures

(SACRAMENTO and SIMHYD), two parameter sampling approaches (Latin Hypercube Sampling of the parameter space and

guided-search of the solution space), three widely used error metrics (Nash-Sutcliffe Efficiency – NSE, Kling-Gupta Efficiency

skill score – KGEss, and Willmott’s refined Index of Agreement – WIA), and hydrological data from a large sample of Australian

catchments. First, we characterized how the three error metrics behave under different error types and magnitudes independent

of any modeling. We then conducted a series of controlled experiments to unpack the role of each factor in runoff generation

hypotheses. We show that KGEss is a more reliable metric compared to NSE and WIA for model evaluation. We further

demonstrate that only changing the error metric — while other factors remain constant — can change the model solution space

and hence vary model performance, parameter sampling sufficiency, and/or the flux map. We show how unreliable error metrics

and insufficient parameter sampling impair model-based inferences, particularly runoff generation hypotheses.
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Key points 11 

• KGEss is a more reliable metric than NSE and WIA, due to its mathematical 12 

structure. 13 

• The choice of error metric — other things being equal — changes how model 14 

performance, parameter sampling sufficiency, and/or model hypotheses are measured.  15 

• Relying on large samples of parameter space, without considering the model solution 16 

space, is a major source of uncertainty.  17 
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Abstract 19 

To evaluate models as hypotheses, we developed the method of Flux Mapping to construct a 20 

hypothesis space based on dominant runoff generating mechanisms. Acceptable model runs, 21 

defined as total simulated flow with similar (and minimal) model error, are mapped to the 22 

hypothesis space given their simulated runoff components. In each modeling case, the 23 

hypothesis space is the result of an interplay of factors: model structure and parameterization, 24 

choice of error metric, and data information content. The aim of this study is to disentangle 25 

the role of each factor in model evaluation. We used two model structures (SACRAMENTO 26 

and SIMHYD), two parameter sampling approaches (Latin Hypercube Sampling of the 27 

parameter space and guided-search of the solution space), three widely used error metrics 28 

(Nash-Sutcliffe Efficiency – NSE, Kling-Gupta Efficiency skill score – KGEss, and 29 

Willmott’s refined Index of Agreement – WIA), and hydrological data from a large sample of 30 

Australian catchments. First, we characterized how the three error metrics behave under 31 

different error types and magnitudes independent of any modeling. We then conducted a 32 

series of controlled experiments to unpack the role of each factor in runoff generation 33 

hypotheses. We show that KGEss is a more reliable metric compared to NSE and WIA for 34 

model evaluation. We further demonstrate that only changing the error metric — while other 35 

factors remain constant — can change the model solution space and hence vary model 36 

performance, parameter sampling sufficiency, and/or the flux map. We show how unreliable 37 

error metrics and insufficient parameter sampling impair model-based inferences, particularly 38 

runoff generation hypotheses.  39 

 40 

1 Introduction 41 

The summum bonum (i.e. ultimate goal) of earth and environmental sciences, 42 

including hydrology, is to improve process understanding and prediction. Models are 43 

developed and improved by incorporating our understanding of real-world processes into 44 

them, and our understanding improves by modeling as a learning activity where models are 45 

treated as hypotheses of the real-world processes. Our understanding is ever-evolving, yet 46 

always remains incomplete and uncertain. While models are simplified representations of 47 

reality, they are most useful when used to challenge existing understanding (Oreskes et al., 48 

1994). Due to this symbiotic and never-ending process of learning and modeling, developing 49 

frameworks for evaluating models as hypotheses under uncertainty is — and will always be 50 

— a research priority in hydrological sciences (Blöschl et al., 2019) and beyond.  51 

Models can be evaluated from different standpoints. For instance, a response space 52 

(or surface) can be formed based on model parameters given some error metrics (Sorooshian 53 

& Gupta, 1983), or a likelihood space based on distributions of model parameters given some 54 

likelihood functions as a measure of model parameter uncertainty/sensitivity (Beven & 55 

Binley, 1992; Hornberger & Spear, 1981). Treating models as hypotheses, we developed a 56 

method to construct a hypothesis space based on equifinal model internal runoff fluxes that 57 

amount to the total simulated flow, called Flux Mapping (Khatami et al., 2019). The principle 58 

of equifinality implies that we should implement and evaluate models as multiple working 59 

hypotheses (MWH), which underpins the current paradigm of hydrological modeling (Beven, 60 

2012; Buytaert & Beven, 2011; Clark et al., 2011a; Jehn et al., 2018; Krueger et al., 2010). A 61 

catchment model, including its internal fluxes and stores, is a simplified and approximate 62 

representation of catchment dynamics, averaged over spatio-temporal units. So, the internal 63 

runoff fluxes of hydrological models are indicative of catchment scale behavior for runoff 64 

generation, and hence provides a parsimonious way for testing and falsifying our knowledge 65 
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of their corresponding catchment processes. In light of the above, the premise of this study is 66 

evaluating model runoff fluxes under uncertainty as MWH about catchment 67 

behavior/function namely runoff generation. It is a truism that model output is the result of 68 

the interplay between model structure and parameterization, data information content, and 69 

objective functions (or error metrics). The overall aim of this study is to unpack and 70 

demonstrate salient points of this interplay, which impact model-based inferences. We 71 

specifically address: how the error metric values change under different types or magnitudes 72 

of errors? What role does the error metric play in parameter sampling sufficiency? How error 73 

metric and/or parameter sampling influence model performance and process representation? 74 

To this end, we designed a series of controlled experiments to disentangle the role of each 75 

factor on the model output.  76 

In the following sections we outline the dataset of 222 Australian catchments, runoff 77 

generation within the two hydrological models (section 2.2), three error metrics for model 78 

evaluation (section 2.3), and design of ensemble modeling experiments (section 2.4). A key 79 

contribution of this work is disentangling the role of error metrics, specifically their 80 

mathematical structure, in model evaluation and hypothesis formation. To this end, we 81 

conducted a one-factor-at-a-time sensitivity analysis on the mathematical structure of the 82 

three aforementioned error metrics (section 2.5), to demonstrate how each metric functions 83 

under different error types and magnitudes independent of any hydrological modeling 84 

(section 3.1). To the best of our knowledge a formal metric sensitivity analysis has not been 85 

done previously. Our results (section 3) show that some limitations in model evaluation and 86 

hypothesis testing are partly due to inherent characteristics of error metrics embedded in their 87 

mathematical structure — independent of model structure and parameterization, parameter 88 

sampling sufficiency, and forcing data. Such characteristics of error metrics may impede a 89 

reliable model evaluation, and thus give rise to misleading hypotheses. Finally, we discuss 90 

our findings including some of the limitations of this work that can be addressed in future 91 

studies (section 4).  92 

2 Methods and experiment design  93 

2.1 Study area and dataset 94 

The study area is a subset of 222 unregulated catchments with relatively high-quality 95 

data over the period of record compiled by Fowler et al. (2020); the Australian edition of the 96 

Catchment Attributes and Meteorology for Large-sample Studies (CAMELS-AUS). In 97 

addition to the daily time series of observed streamflow of HRS catchments, the daily 98 

catchment average precipitation and daily Morton’s areal potential evapotranspiration 99 

(APET) at the catchment centroid are also estimated. For further details on data preparation 100 

refer to Fowler et al. (2020). We limited our presented results (section 3) to a number of 101 

catchments that illustrate the impact of different modeling factors (i.e. model structure and 102 

parameterization, parameter sampling sufficiency, error metric, and forcing data) on flux 103 

maps (i.e. runoff generation hypotheses). A summary of catchment characteristics is 104 

presented in Table 1. Since it is not the aim of this study to evaluate the correspondence 105 

between catchment characteristics and model behavior, we do not further discuss catchment 106 

characteristics. Given that the aim of this study is to treat models as hypotheses (and not to 107 

calibrate models for predictions), we used the entire record of forcing data to 108 

calibrate/evaluate models.  109 

 110 
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Table 1. Summary of the study catchments used in modelling experiments and presented in 111 

the results section.  112 

Catchment 

No. 

Corresponding 

figures  

Catchment characteristics 

Name Location 
Area 

(km2) 

Mean annual 

precipitation 

(mm) 

Mean 

annual 

streamflow 

(mm) 

Mean 

annual 

APET 

(mm) 

Annual 

runoff 

ratio 

1 

Figure 3 

Suggan 

Buggan 

River at 

Suggan 

Buggan 

Victoria 364.5 975.9 136.0 1088.5 0.14 

2 

Emu 

Creek at 

Emu Vale 

Queensland 153.8 996.2 99.2 1408.8 0.10 

3 

Curramben

e Creek at 

Falls 

Creek 

New South 

Wales 
93.5 1075.1 202.5 1241.1 0.19 

4 

Figure 4 Wide Bay 

Creek at 

Kilkivan 

Queensland 352.3 945.0 147.3 1518.8 0.16 

5 

Figure 5 Kandanga 

Creek at 

Hygait 

Queensland 170.8 1135.2 278.0 1532.5 0.24 

6 

Figure 6 Normanby 

River at 

Battle 

Camp 

Queensland 2314 1533.6 364.4 1865.1 0.24 

7 

Figure 7 Elizabeth 

Creek at 

Mount 

Surprise 

Queensland 459.2 806.8 88.5 1641.9 0.11 

 113 

2.2 Hydrological models: hypotheses of runoff generation  114 

As hypotheses for runoff generation, a hydrological model may entail runoff 115 

generation mechanisms, whether at local or catchment scales, based on distinct catchment 116 

processes. In general, there are four main runoff generation mechanisms/sources: (1) 117 

Infiltration-excess overland flow, which occurs when rainfall intensity exceeds the soil 118 

infiltrability, also known as Hortonian overland flow (Horton, 1933). (2) Saturation-excess 119 

overland flow, also known as Dunnian overland flow (Dunne & Black, 1970), which occurs 120 

under saturated soil conditions, either due to direct rainfall (regardless of its intensity) on 121 

saturated soil, or due to the exfiltration (return flow) of a portion of interflow. (3) Subsurface 122 

stormflow, which is the rapid lateral movement/displacement of subsurface flow under 123 

saturated soil conditions (Hewlett & Hibbert, 1967). (4) Baseflow, which is the slow release 124 

of water from the catchment store.  125 

For this study, we chose two conceptual hydrological models namely SIMHYD 126 

(Chiew et al., 2002; Peel et al., 2000) with 7 parameters, and SACRAMENTO (Burnash, 127 

1995; Burnash et al., 1973) with 15 parameters. Despite their conceptual differences, these 128 

two are comparable process-based models for runoff generation, in that they simulate runoff 129 

through distinct runoff generating mechanisms. Total simulated flow in SIMHYD is the sum 130 

of three runoff fluxes representing different mechanisms of streamflow: (1) infiltration excess 131 
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overland flow, (2) interflow and saturation excess overland flow, and (3) baseflow from a 132 

slow response reservoir. Details of SIMHYD and its runoff fluxes are explained in the 133 

literature (Chiew et al., 2002; Khatami et al., 2019; Peel et al., 2000). SACRAMENTO 134 

simulates runoff through five runoff fluxes: (1) runoff from permanently impervious areas 135 

(i.e. infiltration excess runoff), (2) direct runoff from additional impervious areas due to 136 

saturated conditions (a type of saturation excess runoff), (3) surface runoff when the Upper 137 

Zone Free Water storage is full (i.e. saturated conditions) and the precipitation intensity 138 

exceeds the rate of percolation and interflow, (4) interflow due to the lateral drainage of the 139 

Upper Zone Free Water storage, and (5) baseflow which is composed of primary and 140 

supplemental baseflow.  141 

As Saffarpour et al. (2016) argued, catchment wetness drives both saturation excess 142 

overland flow (Western & Grayson, 1998; Western et al., 2005) and subsurface stormflow 143 

(Freer et al., 2002; Tromp van Meerveld & McDonnell, 2005). Infiltration-excess overland 144 

flow is an intensity-based mechanism, and baseflow is a slow (and often continuous) 145 

response, compared with event hydrograph timescales. Therefore, the runoff fluxes of these 146 

models can be classified into three groups or modes of model response, namely intensity-147 

based, wetness-based, and slow response. Here we treat model output as a hypothesis 148 

indicating how runoff is simulated through these three modes of runoff generation for each 149 

modeling example. The flux map is a hypothesis space that summarizes an ensemble of 150 

acceptable/behavioral model runs based on their modes of model response (details in section 151 

2.5).  152 

2.3 Error metrics   153 

We use three error metrics namely NSE (equation 1), skill score variant of KGE 154 

(KGEss, equation 2), and WIA (equation 3). Each metric quantifies some aspects of the 155 

(dis)similarity or distance between a target variable (e.g. observed streamflow time series, 𝑂𝑖 156 

for 𝑖 = 1, … , 𝑛 datapoints) and a test variable (e.g. modeled streamflow time series, 𝑀𝑖). NSE 157 

is based on least square errors, whereas WIA is built upon absolute errors (Willmott et al., 158 

2012). Decomposing NSE, Murphy (1988) showed that NSE characterizes the distance 159 

between two variables (or time series) as an obfuscated function of their corresponding 160 

summary statistics: mean, standard deviation, and Pearson’s linear correlation coefficient 161 

(CC). Refining the intrinsic redundancies within NSE, Gupta et al. (2009) developed KGE to 162 

systematically account for the three error terms of bias, variability, and correlation of two 163 

time series. In other words, KGE is inherently a multiple-criteria metric based on the Pareto 164 

set (or non-dominant solutions) approach (Gupta et al., 1998). Gupta et al. (2009) originally 165 

used standard deviation to account for the variability error. It was later substituted by the 166 

coefficient of variation to reduce the cross-correlation between bias and variability terms 167 

(Kling et al., 2012), which is the KGE variant that we used in this study (Equation 2.1).  168 

 169 

𝑁𝑆𝐸 = 1 −
∑ (𝑀𝑖−𝑂𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−𝑂̅)2𝑛
𝑖=1

    ; −∞ ≤ 𝑁𝑆𝐸 ≤ 1      (Equation 1) 170 

𝐾𝐺𝐸𝑠𝑠 = 1 −
1−𝐾𝐺𝐸

√2
= ; −∞ ≤ 𝐾𝐺𝐸𝑠𝑠 ≤ 1      (Equation 2) 171 

𝐾𝐺𝐸 = 1 − √(1 −
𝑀̅

𝑂̅
)2

2

+ (1 −
𝑀𝑐𝑣

𝑂𝑐𝑣
)

2

+ (1 − 𝐶𝐶)2     (Equation 2.1) 172 

𝑊𝐼𝐴 = {
1 −

∑ |𝑀𝑖−𝑂𝑖|𝑛
𝑖=1

2∙∑ |𝑂𝑖−𝑂̅|𝑛
𝑖=1

,   𝑤ℎ𝑒𝑛 ∑ |𝑀𝑖 − 𝑂𝑖|
𝑛
𝑖=1 < 2 ∙ ∑ |𝑂𝑖 − 𝑂̅|𝑛

𝑖=1

2∙∑ |𝑂𝑖−𝑂̅|𝑛
𝑖=1

∑ |𝑀𝑖−𝑂𝑖|𝑛
𝑖=1

− 1,   𝑤ℎ𝑒𝑛 ∑ |𝑀𝑖 − 𝑂𝑖|
𝑛
𝑖=1 > 2 ∙ ∑ |𝑂𝑖 − 𝑂̅|𝑛

𝑖=1

    ; −1 ≤ 𝑊𝐼𝐴 ≤ 1 (Equation 3) 173 

 174 
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where 𝑀̅ is the mean of the modeled series, and 𝑀𝑐𝑣 and 𝑂𝑐𝑣 are the coefficient of 175 

variation for the modeled and observed series respectively. All three are efficiency metrics, 176 

i.e. they assign a dimensionless scalar value to indicate the distance between the observed and 177 

modeled series. A perfect match would result in a metric value of 1, and as the modeled 178 

series diverge from the observed series the metric value decreases. NSE and WIA are 179 

inherently benchmarked against the mean of the observed series, 𝑂̅. That is, the metric value 180 

is zero when the test (or modeled) series comprises of the overall mean of the target variable 181 

for every data point. Unlike NSE and WIA, KGE (both original and modified versions) is not 182 

benchmarked (Knoben et al., 2019). To benchmark KGE, here we developed the skill score 183 

version of KGE (KGEss, see Appendix A). Skill score is a common measure of the relative 184 

accuracy (or skill) of a forecast against a given reference/benchmark, e.g. NSE is essentially a 185 

skill score of mean squared error benchmarked against the observed mean (Murphy, 1988). 186 

KGE-based skill scores have been used previously for assessing the performance of 187 

hydrological models (Towner et al., 2019) and streamflow forecasts (Hirpa et al., 2018) 188 

benchmarked against some reference model/forecast. Here, we benchmarked KGE against 189 

observed mean to improve the comparability between the values of the metrics. 190 

It should be mentioned that each metric characterizes some aspects of the distance 191 

between target and test variables, while no single metric can characterize all aspects (Khatami 192 

et al., 2019). We will further discuss this by cross comparing these three metrics in sections 193 

3.1 and 4.1.  194 

2.4 Experiment design  195 

As shown in Figure 1, the experiment design has three main steps as follow: 196 

Step 1: to setup the modelling experiments. To sample the parameter space, we 197 

generated two sets of Latin Hypercube Samples (LHS) of model parameter sets: 1 million 198 

LHS for SIMHYD, and 1.2 million for SACRAMENTO. These two sets of LHS parameter 199 

sets are used consistently for all modeling experiments, i.e. parameter sets do not vary across 200 

catchments and error metrics. Given the higher number of parameters in SACRAMENTO, 201 

we decided to use an additional 200,000 LHS parameter sets for SACRAMENTO. This is a 202 

subjective decision and does not guarantee sampling sufficiency, which varies by the choice 203 

of error metric, data information content, and model structure. The forcing data to the 204 

hydrological models are precipitation and evapotranspiration as explained in section 2.1, and 205 

the error metrics are NSE, KGEss, and WIA as explained in section 2.3.  206 

Step 2: to run each hydrological model using two different parameterization 207 

approaches. (1) Random global search of the parameter space using the LHS parameter sets, 208 

resulting in an ensemble of model runs. (2) Guided global search of the solution space using 209 

Shuffled Complex Evolution (SCE, (Duan et al., 1992)) resulting in a single model run with 210 

the highest error metric value achievable. Due to inherent randomness in search routines like 211 

SCE, it is a common practice to repeat the search multiple times (Peterson & Fulton, 2019; 212 

Peterson & Western, 2014). Here, each modeling example was repeated 10 times for each 213 

error metric. The highest metric value among the 10 repeats (hereafter SCE-HMV) was 214 

chosen as the indicator of the guided search efficacy and a benchmark for the solution space, 215 

and the highest metric value of the model ensemble (hereafter Ensemble-HMV) as the 216 

indicator of the LHS effectiveness.  217 

Step 3: to evaluate the model runs. As shown on Figure 1, model evaluation has three 218 

parts: (i) evaluating the sampling sufficiency, (ii) refining the LHS ensemble to define 219 

acceptable model runs, and (iii) flux mapping. 220 
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(i) Assessing the sample sufficiency by comparing Ensemble-HMV and SCE-HMV, 221 

i.e. comparing the best of the two worlds that accounted for both parameter space (based on 222 

the feasible range of parameter values) and solution space (based on the model performance 223 

given the model parametrization, error metric, and forcing data). We defined that a sampling 224 

is insufficient if for a given error metric | Ensemble-HMV – SCE-HMV | > 0.01. This is a 225 

relative test of sampling sufficiency where the sampling approach with the smaller indicator 226 

is certainly inadequate, while we cannot be certain about the adequacy of the other approach. 227 

 (ii) Refining the original LHS ensemble based on some criterion of model 228 

acceptability. For each error metric, the highest metric value (HMV = max{Ensemble-HMV, 229 

SCE-HMV}) achievable is an upper benchmark (Seibert et al., 2018) of the model 230 

performance (or solution space), regardless of the sampling strategy. This allows us to 231 

separate the influence of acceptability threshold from parameter sampling sufficiency on flux 232 

maps (i.e. model’s runoff generation). The acceptability threshold is an arbitrary distance 233 

from the HMV for a given metric. For example, for the error metric KGEss we can apply a 234 

strict threshold of 0.03 (acceptability threshold = 𝐻𝑀𝑉𝐾𝐺𝐸𝑠𝑠 –  0.03), or a more relaxed 235 

threshold of 0.10 (acceptability threshold = 𝐻𝑀𝑉𝐾𝐺𝐸𝑠𝑠 –  0.10). A model run is defined 236 

acceptable if its corresponding metric value is above the acceptability threshold. While it is 237 

hard to objectively justify the choice of a threshold, we previously showed that the overall 238 

pattern of NSE-based flux maps is independent of the acceptability threshold (Khatami et al., 239 

2019). Although it is clear that relaxing the threshold allows the acceptance of a larger 240 

number of model runs and relatively expands the flux map point cloud. We will further 241 

discuss the differences between these three error metrics and their impact on sampling 242 

sufficiency and model process-representation in section 3.2, using a variety of thresholds for 243 

different modeling examples.  244 

 245 
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 246 

Figure 1. Schematic illustration of the modeling experiment design. The result of each 247 

experiment is to characterize the model response with a flux map.  248 

 249 

(iii) Flux mapping the acceptable model runs to characterize how each model run 250 

simulates runoff generation (Khatami et al., 2019). Model parameters are often the only 251 

source of uncertainty that is accounted for, i.e. all sources of modeling uncertainty are 252 

implicitly lumped into the parameter uncertainty, although uncertainty sources such as model 253 

input (Kavetski et al., 2006; Khazaei & Hosseini, 2015; Moallemi et al., 2018; 254 

Papacharalampous et al., 2020a; Papacharalampous et al., 2020b; Vrugt et al., 2008), 255 

observed data (McMahon & Peel, 2019; Westerberg et al., 2016), and model structural 256 

uncertainty (Clark et al., 2015; Fenicia et al., 2011) can be accounted for more explicitly. 257 

Even when only parameter uncertainty is accounted for, flux mapping characterizes how 258 

uncertainty propagates from parameter space to flux space and hence the impact on model 259 

process-representation and MWH (Khatami et al., 2019). Each model run is represented as a 260 

point on the flux map (the ternary plot in Figure 1) based on the percentage of the volumetric 261 

contribution of each model runoff flux and color-coded by its performance (i.e. the error 262 

metric value). The upper value of the color bar is the Ensemble-HMV, and the lowest value is 263 

HMV – acceptability threshold. The flux map (triangle) is comprised of 4 smaller triangles, 264 

based on which the acceptable ensemble could be further classified as: (1) Slow response (or 265 

baseflow) dominated model response if more than 50% of the simulated runoff is produced 266 

by slow/baseflow response, i.e. the bigger bottom left triangle within the flux map. (2) 267 

Wetness dominated model response if more than 50% of the simulated runoff is produced by 268 
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wetness-based runoff fluxes of the model, i.e. the bigger bottom right triangle within the flux 269 

map. (3) Intensity dominated response when more than 50% of the total simulated runoff is 270 

generated by intensity-based fluxes, i.e. the bigger upper triangle within the flux map. (4) No 271 

dominant mode when a model run is summarized into a point within the central triangle of 272 

the flux map. So, the flux map represents the relative dominance of different modes of model 273 

response that we defined in section 2.2.  274 

It should be mentioned that as we used the SCE routine only for the global search of 275 

the parameter space (and not model calibration), its corresponding parameter set is not used 276 

in flux mapping.  277 

2.5 Metric sensitivity  278 

Here, we demonstrate how NSE, KGEss, and WIA function under three different 279 

error regimes namely bias errors (𝑒𝐵), variability errors (𝑒𝑉), and correlation errors (𝑒𝐶). To 280 

this end, we took an arbitrary observed flow series, which includes multiple sequence of high 281 

and low flows, with 45 data points (𝑂𝑖 , 𝑖 = 1,2, … ,45), and conducted a one-factor-at-a-time 282 

sensitivity analysis (Pianosi et al., 2016) on each metric itself. In 20 steps (𝑘 = 1,2, … ,20), 283 

we incrementally corrupted the observed series under each error type (see the example of step 284 

1 in Figure S1). For bias errors, we corrupt the observed series to form a biased series (Series 285 

𝐵), which is generated by adding a bias equal to 5% of the average of the original observed 286 

series, 𝑂̅, at each step: 𝐵𝑘̅̅ ̅̅ = (1 + 𝑘 ∙ 0.05) × 𝑂̅, while standard deviation and Pearson’s 287 

linear CC with the original series were kept constant: 𝐵𝑠𝑡𝑑
𝑘 = 𝑂𝑠𝑡𝑑 and 𝑐𝑜𝑟𝑟𝑃(𝐵𝑘, 𝑂) = 1. In 288 

other words, increasing bias by 5% at each step under ceteris paribus (other factors held 289 

constant) assumption, i.e. standard deviation and CC unchanged. The residuals of series 𝐵 290 

and 𝑂 represent bias errors, and the added bias at step 20 equals the mean of the original 291 

series (𝑒𝐵
20 = 𝐵20̅̅ ̅̅ ̅ − 𝑂̅ = 𝑂̅). For variability errors, we corrupt the observed series to form 292 

Series 𝑉, which is generated by increasing the standard deviation of the original series by 5% 293 

at each step: 𝑉𝑠𝑡𝑑
𝑘 = (1 + 𝑘 ∙ 0.05) × 𝑂𝑠𝑡𝑑, under ceteris paribus assumption: 𝑉𝑘̅̅̅̅ = 𝑂̅ and 294 

𝑐𝑜𝑟𝑟𝑃(𝑉𝑘 , 𝑂) = 1. The residuals of series 𝑉 and 𝑂 represent variability errors, which is twice 295 

the standard deviation of the original series at step 20 (𝑉𝑠𝑡𝑑
20 = 2 ∙ 𝑂𝑠𝑡𝑑). For correlation errors, 296 

we corrupt the observed series to form Series 𝐶, which is generated by decreasing Pearson’s 297 

linear CC between the original and corrupted series by 0.05 at each step: 𝑐𝑜𝑟𝑟𝑝(𝐶𝑘, 𝑂) = 1 −298 

𝑘 × 0.05, under ceteris paribus assumption: 𝐶𝑘̅̅̅̅ = 𝑂̅ and 𝐶𝑠𝑡𝑑
𝑘 = 𝑂𝑠𝑡𝑑. The CC between the 299 

original series and the corrupted series at step 20 equals 0. The residuals of series 𝐶 and 𝑂 300 

represent correlation errors, and 𝑐𝑜𝑟𝑟𝑝(𝐶20, 𝑂) = 0. The original series and the three 301 

corrupted series are provided in the supporting information, Table S1.  302 

3 Results 303 

3.1 Metric Sensitivity: How do error metrics behave under different error regimes? 304 

Comparing the corrupted series 𝐵, 𝑉, and 𝐶 with the original series 𝑂, Figures 2a-c 305 

show how the values of the three metrics degrade from their ideal value of 1 (step 0) under 306 

each error type. To further demonstrate the underlying mechanisms of the three error 307 

regimes, we also present the residuals for each error type and step (Figures 2d-f). For all error 308 

types, the original series remains uncorrupted at step 0, and hence the residuals for all data 309 

points (dark purple dots on Figures 2d-f) are 0, i.e. 𝐵0 = 𝑉0 = 𝐶0 = 𝑂. Increasing the bias 310 

errors, enlarges the residuals homoscedastically (Figure 2d). That is, the magnitude of 311 

residuals increases while the variance of residuals remains constant; the zero slope of the 312 

linear lines highlighting the residuals at each step indicates this homoscedasticity. On the 313 
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other hand, both variability and correlation errors generate heteroscedastic residuals (Figures 314 

2e-f), but each exhibits a different type of heteroscedasticity. Variability errors lead to 315 

uniform (or linear) heteroscedasticity, indicated by a uniform increase in the slope of the 316 

highlighted lines in Figure 2e. Correlation errors, however, give rise to non-uniform (or non-317 

linear) heteroscedasticity, indicated by a non-uniform expansion of the plain in which 318 

residuals lie (highlighted plains in Figure 2f). In short, bias errors are homoscedastic, 319 

variability errors are uniformly heteroscedastic, and correlation errors are non-uniformly 320 

heteroscedastic. It is worth mentioning that introducing correlation errors generates data 321 

points with negative values. While a negative flow is unrealistic, it does not matter for this 322 

particular sensitivity analysis.  323 

 324 

 325 

Figure 2. Sensitivity of efficiency metrics NSE, KGEss, and WIA in response to bias, 326 

variability, and correlation errors in 20 steps (a-c); the residuals of corrupted series for each 327 

error type and step (d-f). At step 0, corrupted series equals the original series (𝐵0 = 𝑉0 =328 

𝐶0 = 𝑂). 329 

 330 

As shown in Figure 2a, NSE changes in a remarkably different way under the three 331 

error regimes, which arguably obscure the interpretability of NSE values. First, NSE exhibits 332 

varying degrees of sensitivity to different error regimes. At any given step, NSE is least 333 

sensitive to bias errors and most sensitive to correlation errors. The NSE’s degradation line 334 

under bias errors (the line through green squares) has the smallest gradient of the three 335 

degradation lines. NSE values barely change for the first 5 steps, while KGEss and WIA 336 

values degrade more rapidly and linearly under bias errors. NSE is more sensitive to 337 

variability errors compared to bias errors, i.e. the degradation line of variability errors (the 338 

line through blue circles) has a steeper gradient. NSE is most sensitive to correlation errors as 339 

its degradation line under correlation errors (line through red diamonds) has the steepest 340 
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slope between the three degradation lines. Due to this characteristic, for instance NSE = 0.80 341 

can almost equally represent bias errors at step 16, variability errors at step 10, or correlation 342 

errors at step 3. In other words, a high NSE value does not equally represent the magnitude of 343 

the different type of errors. An NSE of 0.8 could contain a high bias, a medium variability 344 

error, or a small correlation error. This unequal sensitivity to different error types makes 345 

interpreting errors via NSE unreliable. 346 

Second, NSE is less sensitive to bias and variability errors at higher NSE values (i.e. 347 

smaller error magnitudes) than lower values. This is due to the exponential decay of 348 

degradation lines of bias and variability errors, unlike the linear degradation line for 349 

correlation errors. In other words, although the magnitude of error is consistent across the 350 

error regimes and all 20 steps, NSE degrades inconsistently from one step to another for bias 351 

and variability errors (although consistently for correlation errors). For instance, a decrease in 352 

NSE values from 1.00 → 0.90 corresponds to larger bias or variability errors, than a decrease 353 

from 0.60 → 0.50. This characteristic obscures the interpretability and cross-comparison of 354 

NSE values across different ranges of itself. As we get closer to 1, it becomes harder to 355 

distinguish between models, whether comparing various model structures or parameter sets 356 

within a given model. Also, improving the performance of a given model, for example, from 357 

NSE: 0.50 → 0.60 is not comparable to NSE: 0.70 → 0.80. Due to this characteristic, a 358 

model can be accepted falsely (i.e. a false positive error) based on higher NSE values despite 359 

non-trivial bias or variability errors.  360 

Third, comparing the three metrics, NSE is the least sensitive metric to bias errors and 361 

most sensitive to correlation errors at any given step (except for smaller correlation errors 362 

where WIA and NSE are not easily comparable due to irregular decay of WIA as shown on 363 

Figure 2c). This characteristic has important implications for cross comparing these metrics. 364 

While NSE may result in a high metric value despite relatively high bias errors, KGEss and 365 

WIA would yield lower values. On the other hand, NSE can generate lower values than 366 

KGEss and WIA under identical correlation errors. In other words, a model may be falsely 367 

rejected (i.e. a false negative error) because of lower NSE values due to NSE’s over-368 

sensitivity to correlation errors. While both KGEss and WIA consistently degrade under bias 369 

and variability errors, WIA degrades at a lower rate (compare the slopes of green squares and 370 

blue dots on Figures 2b-c). This implies that when comparing WIA and KGEss values under 371 

similar bias or variability errors, WIA will result in higher values due to its mathematical 372 

structure regardless of the actual performance of a model. The same comments apply to NSE 373 

and KGEss under correlation errors (compare the slopes of red diamonds in Figures 2a-b). 374 

So, using pre-determined metric values (despite recommendations such as NSE = 0.75 375 

implying good model performance (Moriasi et al., 2007)) or cross-comparing metric values is 376 

not a reliable approach for evaluating model performance or improvement. We further 377 

demonstrate in section 3.2 that model performance and error metric value do not necessarily 378 

correspond.  379 

Due to these three characteristics, achieving high NSE values does not necessarily 380 

imply smaller residuals, and hence does not imply a good model structure or performance 381 

(i.e. a false positive error). It could simply be due to the insensitivity of NSE to bias or 382 

variability errors at higher NSE values. On the other hand, a lower NSE value does not 383 

necessarily indicate a poor model structure or performance, as it can be due to the higher 384 

sensitivity of NSE to correlation errors (i.e. a false negative). In other words, NSE is an 385 

unreliable metric to evaluate model structure and characterize the model performance 386 

because of the inconsistent sensitivity of NSE to different error types and magnitudes, which 387 

is due to its mathematical structure and independent of the model structure or performance. 388 

NSE values are a result of complicated interactions between multiple bias, variability, and 389 
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correlation terms inherent to the NSE function (see the NSE decomposition by Murphy 390 

(1988) and Gupta et al. (2009)). The problematic interaction between these components of 391 

NSE motivated the development of KGE, within which bias, variability, and correlation 392 

errors are separately and systematically accounted for. 393 

Given its mathematical structure, KGEss functions consistently across all magnitudes 394 

(i.e. steps) of the three error types (Figure 2b). In other words, KGEss is equally sensitive to 395 

bias, variability, and correlation errors. The small difference between the degradation lines of 396 

bias errors and the other two errors is due to the variability term of KGEss being based on the 397 

coefficient of variation, which is a function of both standard deviation and bias. So, while 398 

standard deviation was kept constant under bias errors, the coefficient of variation (the 399 

variability term of KGEss) changes due to change in bias. Similar to KGEss, WIA functions 400 

consistently for different magnitudes of bias and variability errors (Figure 2c). But unlike 401 

KGEss, its degradation has an irregular (and somewhat exponential) decay under correlation 402 

errors. Although similar to KGEss, WIA degradation lines are linear across the steps, and 403 

WIA is less sensitive to both bias and variability errors than KGEss. In other words, even a 404 

small change in the decimals of WIA value indicates a relatively larger error, compared with 405 

the other metrics. This is due to WIA’s mathematical structure being bounded at -1 for lower 406 

values, compared to the lower bound of NSE and KGEss being -∞. Such a narrow range of 407 

WIA values results in compact intervals and misleading interpretations if decimals are 408 

rounded. In this example, WIA = 0.75 may correspond to almost 50% increase in bias errors 409 

(𝑒𝐵 =  ~1.5 × 𝑂𝑚𝑒𝑎𝑛), while KGEss = 0.75 can be due to about 25% increase in bias errors.  410 

In summary, under the hypothetical conditions of this analysis: for similar bias errors, 411 

at each step NSE > WIA > KGEss; for smaller variability errors NSE > WIA > KGEss, and 412 

for larger variability errors WIA > KGEss> NSE; for correlation errors KGEss > WIA and 413 

KGEss > NSE, whereas for higher correlation errors KGEss > WIA > NSE, and for smaller 414 

correlation errors WIA and NSE are not easily comparable due to the irregular decay of WIA. 415 

Metric values for the degenerate cases (i.e. step 20) under each error regime are presented in 416 

Table 2. As shown, KGEss is the most consistent metric in terms of its sensitivity to different 417 

error regimes. While it is hard to generalize particularly beyond these three error types, it can 418 

be inferred that there would be a more controlled tradeoff between these error regimes under 419 

KGEss than the other metrics, which is due to its mathematical structure, and hence KGEss 420 

provides more reliable insights into model performance. That said, KGEss has its own 421 

limitations that we will discuss in section 4.1. Regardless of the limitations of error metrics, 422 

we argue that even a reliable error metric is not a sufficient condition for characterizing the 423 

model response.  424 

  425 

Table 2. Metrics values for the degenerate cases (i.e. step 20) of each error type based on the 426 

original series mean (𝑂𝑚𝑒𝑎𝑛), standard deviation (𝑂𝑠𝑡𝑑), and Pearson’s correlation between 427 

the original and corrupted series at step 20 (𝐶𝐶𝑝
20).  428 

At step 20 NSE KGEss WIA 

Bias errors = 𝑶𝒎𝒆𝒂𝒏 0.66 0.21 0.50 

Variability errors = 𝟐 × 𝑶𝒔𝒕𝒅 0.00 0.30 0.50 

Correlation errors: 𝑪𝑪𝒑
𝟐𝟎 = 𝟎  -1.00 0.30 0.11 

 429 



Confidential manuscript submitted to Water Resources Research 

 

13 

 

3.2 What determine the model response? 430 

Here we demonstrate salient points of the interplay between model structure and 431 

parameterization, parameter sampling sufficiency, choice of error metric, and data 432 

information content. To this end, we conduct controlled experiments, i.e. varying one factor 433 

at a time while holding other factors constant (ceteris paribus assumption) to the extent 434 

possible, to disentangle the interplay of these factor. For each example, the model flux map is 435 

used to characterize the model response in terms of runoff generation. First (section 3.2.1), 436 

we examine the interplay of these factors for a single model SIMHYD, i.e. the model 437 

structure is unchanged. We then (section 4.2.2) examine the interplay of these factors 438 

considering both SIMHYD and SACRAMENTO, i.e. varying the model structure. For all 439 

examples the parameter sampling is controlled by using the same LHS parameter sets (1 M 440 

for SIMHYD and 1.2 M for SACRAMENTO) for all modelling experiments. For each 441 

catchment the data information content is controlled, i.e. the hydrological data (period, 442 

resolution, etc.) are the same. Details of each experiment are described accordingly.       443 

3.2.1 Model response based on a single model structure  444 

Figure 3 shows 9 different modeling examples: flux maps for 3 different catchments 445 

(each row) using SIMHYD with 3 error metrics (each column). For these 9 examples 446 

parameter sampling is considered sufficient as | Ensemble-HMV – SCE-HMV | ≤ 0.01. So, 447 

the HMV is within ±0.01 of the upper bound value of the color bar. For all examples the 448 

acceptability threshold is 𝐻𝑀𝑉 − 0.10 (lower bound value of the color bar), and the model 449 

structure and parameterization is controlled i.e. SIMHYD with the same 1 M LHS parameter 450 

sets. For each row the data information content is also controlled (i.e. same catchment) and 451 

only the error metric varies, while for each column the error metric is controlled and the data 452 

information content across the three catchments varies. As shown on each row, for a given 453 

catchment and model parameterization, the choice of error metric can change the flux map in 454 

some examples (Figures 3a-c and 3d-f), while in some examples the choice of error metric is 455 

not as important (Figures 3h and 3i). On the other hand, the flux maps for two given 456 

catchments (#2 and #3) can be very different for some error metrics (NSE as in Figures 3d 457 

and 3g, and KGEss as in Figures 3e and 3h) and quite similar for another metric (WIA, as in 458 

Figures 3f and 3i). In other words, the interplay between the error metric and data 459 

information content for a given model structure and parameterization, can radically change 460 

the model response and hence the model’s representation of runoff generation. So, when 461 

models are used to formulate hypotheses about catchment response, the hydrological 462 

(dis)similarity between two catchments can be radically changed by the choice of error metric 463 

— even under the same model structure and parameterization with sufficient parameter 464 

sampling.  465 

 466 
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 467 

Figure 3. Model response (flux maps) of catchments #1-3 based on SIMHYD and the 468 

acceptability threshold of HMV – 0.10 for all error metrics. For all modeling examples 469 

parameter sampling is considered sufficient. 470 

 471 

Given the behavior of error metrics at different intervals of their values (established in 472 

section 3.1), a given threshold would lead to a different number of acceptable runs under each 473 

error metric. Yet, as we discussed before (Khatami et al., 2019), the point cloud pattern of a 474 

flux map — and hence the model response — is not strictly dependent upon the number of 475 

acceptable model runs. The three examples of Figures 3f, 3h and 3i are space-filled flux maps 476 

with varying acceptable ensemble sizes from ~20,000 to ~74,000 model runs. A flux map can 477 

be space-filled with fewer acceptable model runs (Figure 3f, ~20,000 model runs), while 478 

another flux map can be constrained with more acceptable runs (Figure 3g, ~35,000 model 479 

runs).  480 

In a different set of experiments (Figure 4) we gradually relax the acceptability 481 

threshold across the three metrics, under a ceteris paribus assumption (the catchment (#4), 482 

model structure and parameterization are unchanged). For each error metric (each column in 483 

Figure 4), the HMV is determined (HMV = max{Ensemble-HMV, SCE-HMV}), and the 484 

acceptability threshold relaxes in three steps from HMV – 0.03 to HMV – 0.06 and HMV – 485 

0.09. As shown in Figure 4, the choice of error metric — even when other factors remain 486 

constant — can change the sampling sufficiency, which in turn can impact the flux map. For 487 

NSE (1st column in Figure 4), the 1 million LHS parameter sets are not sufficient as SCE-488 

NSE – Ensemble-NSE ≈ 0.03; while for KGEss (2nd column in Figure 4) the SCE guided 489 

search is inadequate as Ensemble-KGEss – SCE-KGEss ≈ 0.02. So, for NSE the guided 490 

search and for KGEss the LHS was the better sampling approach for finding parameter sets 491 
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with the highest metric values. The sampling sufficiency is considered sufficient for WIA (3rd 492 

column in Figure 4), which is at least partly due to compact intervals of WIA values as this 493 

metric is bounded (as explained in section 3.1). For the strict threshold (1st row in Figure 4), 494 

no model run is accepted under NSE (Figure 4a), whereas there are acceptable model runs 495 

under both KGEss and WIA (Figures 4b-c) but with different flux maps. So, given the choice 496 

of error metric, a set of LHS parameter sets not only may be (in)sufficient even for a model 497 

with only 7 parameters, but also can generate similar or distinct runoff generation hypotheses 498 

regardless of the sampling sufficiency. Given the degree of sampling insufficiency, all model 499 

runs may be rejected (i.e. no working hypotheses); not because of model structural 500 

inadequacy, but because of sampling insufficiency due to the choice of error metric (all other 501 

factors being held constant).  502 

 503 

 504 

Figure 4. Model response (flux maps) of catchment #4 based on SIMHYD for the three error 505 

metrics (each column) with varying acceptability threshold (each row). Sampling sufficiency 506 

changes based on the choice of error metric: it is considered as sufficient for WIA, but 507 

insufficient for NSE and KGEss. For each error metric, HMV signals which parameter 508 

sampling (SCE or ensemble) was better i.e. found a parameter set with the highest metric 509 

value.  510 

 511 

3.2.2 Model response based on multiple model structures  512 

All the six modeling examples presented in Figure 5 are sufficiently sampled. The 513 

metric values for SIMHYD and SACRAMENTO are relatively similar under each error 514 

metric, yet the SIMHYD flux map is remarkably different from its corresponding 515 

SACRAMENTO flux map. For all error metrics, the SACRAMENTO intensity-based 516 
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response is almost similarly constrained around 25% (Figures 5d-f). This is due to the fact 517 

that the intensity-based response in SACRAMENTO is determined as a fixed portion of the 518 

input rainfall by a constant parameter value, and hence there is not a wide range of variability 519 

for this flux. In SIMHYD, however, the runoff fluxes can interact widely. For SIMHYD each 520 

error metric gives rise to a different set of runoff generating hypotheses under the same 521 

model parameterization with sufficient parameter sampling (Figure 5a-c). For 522 

SACRAMENTO, on the other hand, the flux maps under the three error metrics are quite 523 

similar. For almost identical model performance under KGEss, SACRAMENTO gave rise to 524 

mostly wetness-dominated and slow response hypotheses, while SIMHYD resulted in a 525 

space-filled flux map i.e. any combination of model runoff fluxes is plausible to simulate the 526 

catchment response. So, while SIMHYD is a simpler model (smaller number of parameters, 527 

store, and fluxes), it exhibits a wider range of runoff generation hypotheses for catchment #5 528 

even within a narrow range of (high) KGEss values.  529 

 530 

 531 

Figure 5. Model response (flux maps) of catchment #5 based on SIMHYD and 532 

SACRAMENTO, and the acceptability threshold of HMV – 0.05 for all error metrics. For all 533 

modeling examples parameter sampling is considered sufficient.   534 

 535 

Although the 1.2 million SACRAMENTO LHS parameter sets were sufficient for 536 

catchment #5 under all error metrics (Figure 5d-f), they are insufficient for catchment #6 537 

under NSE and KGEss (Figure 6d-e). This sampling insufficiency undermines both (A) 538 

model performance and (B) process representation. For catchment #6 and KGEss (Figures 6b 539 

and 6e): (A) the LHS ensemble misleadingly indicates a big difference between the 540 

performance of these two model structures (Ensemble-KGEssSIMHYD = 0.80 and Ensemble-541 

KGEssSACRAMENTO = 0.69), against the SCE guided search indicating a relatively similar 542 

performance (SCE-KGEssSIMHYD = 0.81 and SCE-KGEssSACRAMENTO = 0.77). (B) Sampling 543 

insufficiency deflates the number of acceptable model runs under KGEss (only 4 even for a 544 

relaxed threshold, Figure 6e) resulting in a deficient flux map.  545 

 546 

 547 
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 548 

Figure 6. Model response (flux maps) of catchment #6 based on SIMHYD and 549 

SACRAMENTO, and the acceptability threshold of HMV – 0.10 for all error metrics. While 550 

for all SIMHYD examples parameter sampling is sufficient, it is not sufficient for 551 

SACRAMENTO under NSE and KGEss. 552 

 553 

In catchment #6 and irrespective of sampling strategy, NSE suggests a better 554 

performance of SACRAMENTO in this catchment, while KGEss favors SIMHYD. That said, 555 

both models have equally high performance for catchment #7 under KGEss (KGEss = 0.92, 556 

Figures 7b and 7e) with sufficient parameter sampling. In a case like catchment #7, we can 557 

reliably compare the model structures and their processes representation (model flux maps) to 558 

formulate MWH about catchment response; because other factors are adequately checked i.e. 559 

equally high model performance and sufficient parameter sampling for a reliable error metric 560 

(KGEss) across all model structures. For catchment #7 and KGEss, the main distinction 561 

between these two models is that SIMHYD flux map indicates a catchment response with no 562 

significant intensity-based runoff generation, while SACRAMENTO suggests intensity-based 563 

response as large as 40% of the total flow. Such competing hypotheses can further be 564 

evaluated using additional data/knowledge about the catchment response.  565 
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 566 

Figure 7. Model response (flux maps) of catchment #7 based on SIMHYD and 567 

SACRAMENTO, and the acceptability threshold of HMV – 0.05 for all error metrics. 568 

Parameter sampling is only insufficient under WIA and SACRAMENTO. 569 

 570 

Based on analyzing 222 Australian catchments, we could not derive any systematic 571 

relationship between the error metric, number of acceptable model runs, sampling 572 

sufficiency, and size/type of the flux map point cloud across these two model structures 573 

(results not presented here). Examples of the range of interplay between these factors have 574 

been presented in Figures 3-7, from which we note some features. Firstly, Figures 3-4 shows 575 

that for a given error metric and under sufficient sampling, the flux map is independent of the 576 

HMV (i.e. model performance), acceptability threshold, or number of acceptable runs (also 577 

see Khatami et al., 2019). Secondly, the number of acceptable model runs is independent of 578 

the choice of error metric. Given that WIA intervals are very compact (bounded between +1 579 

and -1), a certain range of WIA values can represent relatively larger errors and hence result 580 

in a higher number of acceptable model runs compared with NSE and KGEss; that said, this 581 

characteristic of WIA can be cancelled out by other factors and thus lead to a smaller number 582 

of acceptable model runs (e.g. compare Figures 5 and 7). The same comment applies to the 583 

impact of WIA on the size of the flux map point cloud (e.g. compare Figures 3i and 7f with 584 

comparable acceptable runs but different catchments and model structures). Thirdly, the 585 

number of acceptable runs is also not a function of the model structure, i.e. higher model 586 

dimensionality does not necessarily imply more flexibility in the model space and hence does 587 

not lead to more acceptable runs. With similar metric values, SIMHYD under KGEss (Figure 588 

5b) has about five times more acceptable runs than its corresponding SACRAMENTO 589 

example (Figure 5e) (also compare Figures 5d-f and 6d-f for SACRAMENTO flux maps of 590 

two catchments under different acceptability thresholds, sampling sufficiency, number of 591 

acceptable model runs across the three metrics).  592 

4 Discussion: evaluating catchment models as hypotheses under uncertainty 593 

The model output and hence the generated MWH are the result of an interplay 594 

between model structure and parameterization, parameter sampling sufficiency, error metric, 595 

and data information content. As shown in section 3, this interplay is complex and unique to 596 
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each case. That said, each factor can be controlled/improved to enhance model evaluation and 597 

hypotheses formulation. We further discuss a few points about each factor:  598 

4.1 On the role of error metrics  599 

A robust error metric is a necessary condition for reliable model evaluation. We 600 

conducted a one-at-a-time sensitivity analysis on the metrics NSE, KGEss, and WIA to 601 

characterize their behavior under well-defined error regimes, independent of any modeling. 602 

Willmott et al. (2015) opined that the interpretation of WIA is often more straightforward 603 

than NSE, and our sensitivity analysis is consistent with this: unlike NSE, WIA behaves 604 

consistently under bias and variability errors (Figures 2a and 2c). That said, we demonstrated 605 

that WIA’s behavior hinders its interpretation in at least three ways: (a) WIA is more 606 

sensitive to correlation errors than bias and variability errors, (b) WIA’s sensitivity to 607 

correlation errors is inconsistent across different intervals of WIA values, and (c) WIA 608 

intervals are very compact as it is bounded by ±1, hence WIA values degrade at a slower rate. 609 

We further discuss three major points about using error metrics for characterizing model 610 

performance:  611 

(i) NSE is a misleading error metric and the modeling community should abandon it. 612 

There are perceptions about the meaning of NSE values, e.g. NSE ≥ 0.5 indicates acceptable 613 

model performance (Davtalab et al., 2017; Moriasi et al., 2007) or acceptable parameter sets 614 

(Freer et al., 1996; Lane et al., 2019), the NSE = 0.6 as a threshold for acceptable model runs 615 

(Choi & Beven, 2007), NSE ≥ 0.75 indicates good model performance (Moriasi et al., 2007), 616 

etc. Despite such widespread perceptions and based on a systematic sensitivity analysis of the 617 

NSE function, we demonstrated that NSE does not consistently represent different error types 618 

and magnitudes (Figure 2a and Table 2). As discussed, evaluating model performance based 619 

on higher NSE values may lead to false positives (e.g. accepting model runs and parameter 620 

sets despite large bias errors under-represented by higher NSE), or false negatives due to 621 

lower NSE values (e.g. rejecting models with small correlation errors exaggerated by NSE). 622 

Therefore, NSE is an unreliable metric to assess model prediction accuracy, benchmark 623 

model performance, or search the model solution space. From a process representation 624 

standpoint, given that NSE penalizes error regimes inconsistently, the solution space 625 

constructed based on NSE is unreliable due to its mathematical structure, even for a 626 

sufficient/representative parameter sample, regardless of data information content and the 627 

competence of the model structure. Shortcomings are inherent to models, and subjective 628 

decisions are inherent to various modeling decisions (Melsen et al., 2019; Moallemi et al., 629 

2020a; Zare et al., 2020), including the choice of error metrics. That said, modelers can make 630 

better decisions. We believe that our study provides further evidence that NSE is inherently 631 

defective for model evaluation, and modelers and practitioners should instead use more 632 

reliable metrics such as KGEss, and ultimately aim to develop even better metrics.  633 

(ii) Cross-comparing error metrics is inherently problematic. Error metrics behave 634 

differently under a given error type/magnitude due to differences in mathematical structure 635 

(Figures 2a-c and Table 2). So, it is inherently inappropriate to cross compare the values of 636 

different error metrics, unless their values are standardized to be compatible. For example, 637 

supposing that parameter set A gives NSE = 0.7, and parameter set B gives KGEss = 0.60 for 638 

a given model, can we infer that the model performs better using parameter set A? No. We 639 

can only cross compare A and B when they are both assessed with the same error metric. The 640 

same point also applies to cross comparison of various model structures using different error 641 

metrics. 642 
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(iii) KGEss is a better metric than NSE and WIA, but it is not without its own flaws. 643 

KGEss — unlike the other two metrics — responds consistently to at least three types of bias, 644 

variability, and correlation errors. So, KGEss values can be interpreted more judiciously, and 645 

we recommend using KGEss for single-metric evaluations. Furthermore, if parameter space 646 

is sufficiently sampled, the model solution space (i.e. acceptable parameter sets) and 647 

hypothesis space (e.g. runoff generation flux maps) derived based on KGEss are relatively 648 

more reliable, as they are at least independent of how KGEss behaves under different error 649 

types and magnitudes. However, the interaction between error terms within KGEss is not 650 

apparent in its final value. For instance, KGEss = 0.8 could equally be the result of various 651 

combinations of error terms e.g. with smaller or larger bias terms (a type of model-652 

equifinality, see details in Khatami et al. (2019)). Yet, the tradeoff of the three error terms is 653 

relatively restrained/controlled under the mathematical structure of KGEss.  654 

A major limitation of KGEss is that it does not explicitly account for the 655 

heteroscedasticity of model residuals, which is a general issue with almost all error metrics. 656 

Residual heteroscedasticity implies modeling inadequacy (i.e. potential to improve modeling 657 

setup), because there is information in the residuals (rather than residuals of random errors) 658 

that is not captured by the model structure and parameterization. This can be due to a 659 

combination of model structure and parameterization, error metrics, parameter sampling 660 

(in)sufficiency, and the fact that data themselves are not error free and their errors may 661 

propagate to the model outputs. While the issue of heteroscedasticity is long recognized 662 

(Sorooshian & Dracup, 1980), it is not explicitly accounted for in KGE nor WIA (or other 663 

metrics based on absolute error (Legates & McCabe, 1999)). Despite numerous reviews and 664 

comparisons of error metrics (Bennett et al., 2013; Crochemore et al., 2015; Gueymard, 2014; 665 

Krause et al., 2005; Moriasi et al., 2007), it is not clear what role the mathematical structure 666 

of error metrics particularly play in giving rise to heteroscedastic residuals. Two general 667 

approaches to address residual heteroscedasticity have been studied. (i) To indirectly account 668 

for heteroscedasticity by transforming flow series using transformations (McInerney et al., 669 

2017) such as Box-Cox (Box & Cox, 1964; Yeo & Johnson, 2000), inverse function 670 

(Pushpalatha et al., 2012), or nth root functions (Chiew et al., 1993; Chiew et al., 1995), to put 671 

more emphasis on low flows and hence harness the heteroscedasticity of model residuals. 672 

While inverse function offers some improvements, particularly better results than logarithmic 673 

transformations, it has its own limitations (e.g. when flows become close to zero) for the 674 

estimation of the water balance, physical interpretation of error terms, and model calibration 675 

(Santos et al., 2018). (ii) There are also approaches to directly account for heteroscedasticity, 676 

which also have their own limitations. For example, Evin et al. (2014) proposed 677 

postprocessing model parameters for heteroscedasticity and autocorrelation but their 678 

approach works poorly in ephemeral catchments.  679 

Given the above, there is room to further improve KGEss by developing a new error 680 

term to account for residuals heteroscedasticity or develop new error metrics, which is an 681 

important theoretical quest with significant practical implications for practitioners. In doing 682 

so, a few points should be considered: 683 

• Redundant error terms should not be embedded in an error metric.  684 

• Error metric should function consistently across different error types/magnitudes. 685 

• Error metric should behave consistently across different periods of high and low 686 

flows.  687 

• There is no ultimate metric, no matter how elegant a metric would be, it can only 688 

characterize certain (and not all) aspects of model-observation (dis)similarity. 689 

Therefore, it is essential to only use/interpret metrics that are fit for purpose.  690 
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4.2 On the role of model structure and process representation  691 

In addition to error metric, model structure also influence the runoff generation 692 

hypotheses. For instance, as shown in Figures 5d-f, the intensity-based response of 693 

SACRAMENTO is similar across the three error metrics; while SIMHYD (Figures 5a-c) 694 

results in distinct flux maps and varying degrees of intensity-based response for each error 695 

metric. Because the partitioning of input rainfall into intensity-based runoff flux is 696 

determined by a constant model parameter in SACRAMENTO. That is, the SACRAMENTO 697 

model structure constrains the intensity-based runoff generation in these cases. That said, 698 

Figures 7e-f show that SACRAMENTO results in different flux maps, with almost twice as 699 

much intensity-based response under KGEss than WIA, in a different catchment. Whereas, 700 

SIMHYD allows for four times as much intensity-based response under WIA than KGEss, in 701 

the same catchment. So, the model structure plays a role in how model fluxes, and hence 702 

hypothesis of catchment processes, are allowed to behave for a given catchment and error 703 

metric. Undoubtedly, the representation of runoff generation mechanisms in these 704 

hydrological models are simplifications of real-world processes. Runoff generation varies in 705 

time (e.g. due to seasonality or land-use changes) and space (due to catchment heterogeneity), 706 

and often a mix of these processes causes runoff (Saffarpour et al., 2016). Particularly as we 707 

are using lumped daily models treating a catchment as a single spatial unit, heterogeneity and 708 

sub-daily variations of these processes are overlooked and aggregated into daily catchment 709 

averages. Despite such simplifications and other sources/types of modeling uncertainties, a 710 

conceptual model and its internal dynamics can still be indicative of different (dominant) 711 

catchment processes (Dunn et al., 2008; Guo et al., 2017; Lerat et al., 2012). Given that 712 

processes such as runoff generation are incorporated into conceptual models at least partly 713 

with the aim of improving realism, thus these internal components should be evaluated in 714 

addition to the final model output.  715 

Use of process-based models for evaluating runoff generation mechanisms has been 716 

previously studied. For example, Grayson et al. (1992) compared the representation of 717 

different runoff generation mechanisms in a process-based model across a few Australian and 718 

north American catchments. Buchanan et al. (2018) characterized the predominance of 719 

infiltration-excess and saturation-excess runoff across the contiguous United States. With 720 

flux mapping, we formalize a hypothesis space based on different modes of model runoff 721 

fluxes (Khatami et al., 2019), that is useful for formulating and comparing MWH for runoff 722 

generation (catchment response) across different catchments, periods, and model structures. 723 

Treating models as hypotheses, modeling would be a learning activity to formulate 724 

alternative/competing hypotheses. Testing hypotheses against catchment behavior and 725 

attributes using field data (Clark et al., 2011b; Seibert & McDonnell, 2002; Winsemius et al., 726 

2009) is the avenue towards evaluating the plausibility of these hypotheses, and to further 727 

improving model realism (Gharari et al., 2014; Hrachowitz et al., 2014; Wagener, 2003). 728 

4.3 On the role of parameter sampling sufficiency   729 

Sufficient parameter sampling is a necessary condition for reliable evaluation of 730 

models as MWH. Sampling insufficiency undermines both model performance and process 731 

representation, as demonstrated in the results (Figures 4, 6 and 7). A representative sample of 732 

the parameter space can be achieved either by guided search routines and/or large random 733 

samples. While we acknowledge that various methods have been developed to sample the 734 

parameters more effectively and efficiently (Asadzadeh & Tolson, 2013; Sheikholeslami & 735 

Razavi, 2017; Tolson & Shoemaker, 2007; Vrugt & Beven, 2018), we adopted two of the 736 

most widely used sampling strategies in hydrological modeling: large LHS to sample the 737 

parameter space and SCE to benchmark the solution space. We compared these two strategies 738 
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against one another in each modeling case, i.e. compare { Ensemble-HMV, SCE-HMV }, as 739 

a test of relative sampling sufficiency.  740 

An overview of our results across all 222 catchments show that large samples of 741 

parameter space were better only in 4% (or less) of cases (compare row 1 and 2 of Table 3), 742 

than the SCE search. This implies that it is a better approach to search the model solution 743 

space to either sample behavioral/acceptable parameter sets or benchmark the model 744 

performance. A geometry-based strategy like LHS aims to sample different regions of the 745 

parameter space more evenly than a random sample, yet LHS samples may even fail to be 746 

geometrically representative due to their inherent randomness (Goel et al., 2008), let alone 747 

sufficient for the model solution space (Tolson & Shoemaker, 2008). Relying on large 748 

samples of the parameter space, without considering the model solution space, is a major 749 

source of uncertainty for model evaluation and hypothesis formulation. Particularly, for 750 

higher model dimensionality (SACRAMENTO), the risk of relying only on large samples of 751 

the parameter space increases (the percentage of equal cases drops, e.g. from 52% to 34% for 752 

KGEss, Table 3). It is worth mentioning that in addition to model performance, WIA also 753 

obscures the evaluation of sampling sufficiency due to its compact intervals. 754 

 755 

Table 3. The percentage of catchment models (out of 222 catchments) that were sufficiently 756 

sampled with a given sampling method relative to the other one. The criteria for relative 757 

sampling superiority is Ensemble-HMV – SCE-HMV > 0.01.   758 

Sampling strategy 
SIMHYD SACRAMENTO 

NSE KGEss WIA NSE KGEss WIA 

LHS ensemble of parameter space 4% 4% 0% 3% 4% 1% 

SCE search of solution space 62% 44% 13% 74% 62% 49% 

Both are equal (by a 0.01 margin) 34% 52% 87% 23% 34% 50% 

 759 

Inadequate sampling can lead to missing some plausible model runs, under-utilizing 760 

the model structure, and hence under-representation of MWH (e.g. Figures 4a, 4b, and 6e). 761 

This is important in large-sample studies as a particular ensemble of parameter sets, 762 

regardless of the sampling strategy, may be insufficient in some modeling cases; thus 763 

impacting the conclusions based on modelling results. It is also necessary to jointly evaluate 764 

the sampling sufficiency on both parameter and solution spaces for diagnostic evaluation of 765 

model failure in hypothesis testing and rejection based on models.  766 

For instance, Hollaway et al. (2018) recently reported that given some limits of 767 

acceptability, no acceptable model run was found to simulate phosphorus load within a 768 

uniform random sample of 5 million sets for the SWAT model (based on 39 parameters). 769 

They concluded that the SWAT model structure is to be rejected as not fit-for-purpose. They 770 

primarily focused on the role of data information content, i.e. uncertainty in the calibration 771 

data, within the limits of acceptability approach. While the role of data uncertainty is 772 

undeniably crucial in model evaluation, they did not consider the role of parameter sampling 773 

sufficiency: (1) Is 5 million random parameter sets sufficient, just by the virtue of sample 774 

size, for sampling such a high dimensional parameter space? (2) Is the sampled set sufficient 775 

for the model solution space? It is therefore an open question whether or not a more adequate 776 

parameter sample would have avoided the model rejection and yielded some MWH in that 777 

study. One solution is to combine the best of the two worlds: to increase the LHS size 778 

sequentially, e.g. using Progressive LHS method (Sheikholeslami & Razavi, 2017), while 779 

comparing each sequence against a solution space benchmark.  780 
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4.4 On the limitations of this study and future directions  781 

We acknowledge that in our sensitivity experiment (section 3.1) we introduced 782 

idealized errors, while in real-world cases errors could be more complex in nature. 783 

Streamflow data are uncertain (McMahon & Peel, 2019; McMillan et al., 2018; Westerberg et 784 

al., 2011) and may encompass different epistemic errors and disinformative periods (Beven et 785 

al., 2011; Beven & Westerberg, 2011), with complex interactions with each other and other 786 

factors involved in model behavior. That said, here we performed sensitivity analysis under 787 

ideal conditions to understand the function of each error metric independent of the quality of 788 

the data and the model structure. It would also be interesting to further understand the 789 

function of error metrics under common errors in hydrological residuals such as 790 

autocorrelation and heteroscedasticity errors.  791 

We used the overall mean of the observed streamflow as the benchmark inherent in 792 

the error metrics, while it is a minimal benchmark (Schaefli & Gupta, 2007). We also did not 793 

differentiate between different periods in the data in terms of their information content or 794 

quality, nor consider the temporal dynamics of runoff generation. Future studies could look 795 

further into the dynamics of runoff generation across different seasons or multi-year periods 796 

with different characteristics. It would also be interesting to further study the correspondence 797 

between flux maps, i.e. dominant modes of model response, and catchment characteristics 798 

and attributes to further evaluate the plausibility of flux maps.  799 

Here we evaluated catchment models as hypotheses based on three distinct modes of 800 

runoff generation embedded in model structures. Other internal components of process-based 801 

models such as evapotranspiration and soil moisture could also be evaluated. Characterizing 802 

and evaluating the internal model fluxes provides an avenue to evaluate model process-803 

representation, diagnose model structural shortcomings, and ultimately improve process-804 

based models.  805 

We defined a sampling as insufficient if| Ensemble-HMV – SCE-HMV | > 0.01, i.e. 806 

based on the value of error metrics. While this can be seen as a test for sampling 807 

insufficiency, we emphasized that we cannot be certain about the adequacy of a sample based 808 

on this test. We chose the SCE guided search as it is widely used in Earth and environmental 809 

modeling. There are other methods that are shown to be more effective and efficient 810 

(Arsenault et al., 2013). While we certainly agree to embrace sampling efficiency (Tolson & 811 

Shoemaker, 2008; Vrugt & Beven, 2018), we further argue for embracing the uniqueness of 812 

the model response (and MWH), particularly in studies with large samples of catchments, 813 

models, and objective functions. Therefore, no matter how robust a search algorithm works 814 

under different numerical experiments, the parameter sampling sufficiency should also be 815 

evaluated for each modeling case given the choice of error metric and forcing data.  816 

5 Conclusion 817 

Here we demonstrated that model response is the result of a complex interplay 818 

between factors of model structure and parameterization, parameter sampling sufficiency, 819 

choice of error metric, and data information content. This interplay is unique to the 820 

underlying assumptions and conditions of each modeling case, and variations in each factor 821 

can remarkably change the model response. We argued that a hypothesis space can be 822 

constructed based on model internal (runoff generating) fluxes, that could be used to 823 

characterize and compare process-representation of different models under different 824 

assumptions. We demonstrated that deficient error metrics and insufficient parameter 825 

sampling undermine both model performance and process representation (model-based 826 

hypotheses). Conducting sensitivity analysis on the mathematical structure of three widely 827 
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used error metrics, we demonstrated that KGEss is a more reliable metric than NSE and 828 

WIA, even though KGEss has its own limitations. Furthermore, relying on large Latin 829 

Hypercube samples of the parameter space, without considering the model solution space, is 830 

a major source of uncertainty. It is ultimately our goal to advance theoretical frameworks for 831 

process-based evaluation of models as hypotheses to better understand and model human-832 

natural systems under uncertainty and non-stationarity (Khazaei et al., 2019; Lu et al., 2018; 833 

Moallemi et al., 2020b; Westerberg et al., 2017).  834 
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 849 

Appendix A: deriving the equation for KGE skill score (KGEss) 850 

Skill score refers to the relative accuracy of model predictions (or forecasts) for a 851 

particular measure of accuracy (A) given a reference value (Aref) and perfect value (Aperf), 852 

and is measured as:  853 

𝑠𝑘𝑖𝑙𝑙 𝑠𝑐𝑜𝑟𝑒 =
𝐴 − 𝐴𝑟𝑒𝑓

𝐴𝑝𝑟𝑒𝑓 − 𝐴𝑟𝑒𝑓
 854 

For A = KGE with KGEpref = 1 and benchmarked against observed mean Aref = 855 

KGE(O̅) = 1-√2, the KGE skill score (KGEss) derives as below: 856 

𝐾𝐺𝐸𝑠𝑠 =
𝐾𝐺𝐸 − (1 − √2)

1 − (1 − √2)
=

𝐾𝐺𝐸 − 1 + √2

√2
= 1 −

1 − 𝐾𝐺𝐸

√2
 857 
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