
P
os
te
d
on

30
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
40
44
/v

1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

A matched-filter technique with an objective threshold

Shiro Hirano1,1, Hironori Kawakata1,1, and Issei Doi2,2

1Ritsumeikan University
2Disaster Prevention Research Institute, Kyoto University

November 30, 2022

Abstract

We propose an objective threshold determination method for detecting outliers from the empirical distribution of cross-

correlation coefficients among seismic waveforms. This method is aimed at detecting seismic signals from continuous waveform

records. In our framework, detectability is automatically determined from Akaike’s Information Criterion (AIC). We applied

the method of seismic signal detection to continuous records collected over 2 years. The results show that the maximum value of

network cross-correlation coefficients sampled from each constant interval can be approximated by the theory of extreme value

statistics, which provides a parametric probability density function of maxima. Using the function, outliers can be considered

with a reasonable criterion.
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Wepropose an objective threshold determinationmethod for detecting outliers from the em-
pirical distribution of cross-correlation coefficients among seismic waveforms. This method
is aimed at detecting seismic signals from continuous waveform records. In our framework,
detectability is automatically determined from Akaike’s Information Criterion (AIC). We ap-
plied the method of seismic signal detection to continuous records collected over 2 years. The
results show that the maximum value of network cross-correlation coefficients sampled from
each constant interval can be approximated by the theory of extreme value statistics, which
provides a parametric probability density function of maxima. Using the function, outliers
can be considered with a reasonable criterion.

keywords : Seismicity, Seismic event detection, Waveform cross-correlation, Mathed-�lter analysis, Information criterion,

Extreme value statistics

1. Introduction

A matched-filter (MF) analysis, which is a technique for quantifying the similarity between continuous
and template waveforms using the cross-correlation coefficient (CC), is efficient in detecting weak seis-
mic signals embedded in continuous waveform records (Gibbons & Ringdal 2006). Many types of seis-
mic events have been detected automatically using MF analysis: non-volcanic tremors and low frequency
earthquakes (Shelly et al. 2007; Ohta & Ide 2008; Aso et al. 2011), seismic swarms (Shimojo et al. 2014;
Ohmi 2015), and foreshocks and aftershocks (Bouchon et al. 2011; Kato et al. 2012; Doi & Kawakata
2012; 2013). In general MF analyses, waveforms are regarded as seismic signals when the CC between a
template and continuous waveform exceeds a threshold value. The threshold value has occasionally been
defined as a constant (Doi & Kawakata 2012; 2013) or not specified (Bouchon et al. 2011). However, given
the possibility of relatively high CC values randomly occurring for microtremors, the threshold should
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Shiga, 525-8577, Japan.
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be determined depending on the empirical frequency distributions of CC. In other previous studies, the
threshold value was defined as a constant factormultiplied by the standard deviation (𝜎) (Ohta & Ide 2008;
Aso et al. 2011)) or the median absolute deviation (MAD) (Shelly et al. 2007). Under this strategy, we can
estimate the possibility of a false positive if a probability density function (PDF) of the CC is known. Thus,
characteristics of the PDF should be investigated both theoretically and experimentally. Because event
detection is a type of outlier detection, careful attention should be given to the tails of the frequency dis-
tribution of CC; do they follow the Gaussian, exponential, or power law? Only Aso et al. (2011) showed
that the tail follows a normal distribution in their case. In this study, we first derive a normal distribution
that the CC between randommicrotremor and random template waveformmay follow and investigate the
effect of a band-pass filter, which provides reference for determining a realistic CC distribution. In this
context, we reveal a statistical background and nature of the conventional MF analysis. Next, we consider
a distribution that the maximum value of CC in every constant interval follows for robust outlier detection
using non-random continuous waveform records. The distribution of maxima in every constant interval
is given by the extreme value theory (Gumbel 1958). Subsequently, we demonstrate that the tails of CC
values are well modeled by the extreme value distribution rather than the normal distribution through
a case study of 2-years continuous records and multiple templates of foreshocks before an M5.4 crustal
earthquake in Japan. Such modeling was also done by Akuhara & Mochizuki (2014) for long term wave-
form data recorded by ocean-bottom seismometers. However, they considered the top 5% of CC values
as significant seismic signals even though the values obeyed the extreme value distribution. We have to
note that almost all of CC values are due to background noises rather than rare seismic signals, and signif-
icant signals should be outliers deviateing from the background distribution due to the noise. Given the
extreme value distribution, we employ a reasonable method for detecting outliers based on Akaike’s In-
formation Criterion (AIC). Although we focus on a specific foreshock activity in our data analysis section,
the method proposed in this study is applicable for other seismic phenomena and regions.

2. Theory and Method

2.1. Ideal frequency distribution of CC

In the following, without loss of generality, we regard velocity seismograms as the data. The frequency dis-
tribution of CC between a continuous record and an arbitrary template waveform array of length 𝑑 follows
a normal distribution whose mean is zero and variance is 𝑑−1 if the continuous record is an independent
and identically distributed (i.i.d.) random variable. Let 𝑑-dimension vectors 𝒖 ∶= (𝑢𝑖) and 𝒗 ∶= (𝑣𝑖)
(𝑖 = 1, 2,… , 𝑑) be discretized and offset-eliminated waveform arrays of length 𝑑. Their CC is given as

𝐶𝐶 = 𝒖̂ ⋅ 𝒗, (1)

where 𝒖̂ and 𝒗 are normalized 𝒖 and 𝒗, respectively, by their 𝐿2-norm. If 𝒗 is extracted from a random
waveform, the normalized vector 𝒗 is an isotropic random vector restricted on the (𝑑−1)-dimensional unit
sphere. Because eq.(1) is a projection of 𝒗 along the 𝒖̂-direction, CC can be regarded as a velocity compo-
nent along the 𝒖̂-direction of randomly hurtling particles with unit velocity (|||𝒗||| ≡ 1). Therefore, the PDF
of CC can be approximated by extending the Maxwell-Boltzmann distribution from 3-dimensional space
to 𝑑-dimensional space; see also Appendix A. In fact, the template and continuous waveform are filtered
in MF analyses because seismic waveforms have high S/N ratios in some limited frequency bands. Linear
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band-passed filtering is equivalent to the convolution of a characteristic function and the continuouswave-
form, and therefore, 𝒗 is not a complete random vector but necessarily has interdependence among some
neighbor samples (referred to as “self-interdependence”) depending on the filter. Thus, we conducted nu-
merical experiments; we calculate CC between an i.i.d. random waveform of length 108 and a random
array of length 𝑑 = 500 (Fig. 1). After 10 experiments, we confirmed that CC follows the normal distribu-
tion𝒩

(
0, 𝑑−1

)
as expected above and in Appendix A. On the other hand, if we regard the waveforms as

100 Hz time-series and apply a band-pass filter of 5 − 30 Hz that is required in the next section, we find
that the distribution is approximated as𝒩

(
0, 1.8𝑑−1

)
, as shown in Fig. 1. Therefore, we can conclude that

CC follows the normal distribution even after applying the band-pass filter if the continuous waveform is
random1.
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Figure 1: Frequency distribution of CC in a numerical experiment. CC between a raw random noise vs.
a random template follows the normal distribution 𝒩

(
0, 𝑑−1

)
, whereas CC between a filtered

random noise vs. the random template follows𝒩
(
0, 1.8𝑑−1

)
.

2.2. Frequency distribution of the maximum of CC

The assumption of i.i.d. in the previous subsection might not be valid in cases where multiple similar
earthquake events frequently occur, which radiateswaveforms similar to the templates, or themicrotremor
repeats similar patterns. In such cases, even accidentally, relatively high CC values appear around their
local peaks because of the self-interdependence. Hence, the frequency distribution of all values of CC will
be contaminated by the high values repeatedly, thus rendering the tail of the distribution wider and the
interpretation more difficult. To avoid this problem, outliers should be detected from the maximum value
of CC in every𝑀 sample by assuming that the self-interdependence of microtremors or seismic waveforms
is lost within𝑀 samples. This assumption is valid because, in general, shorter-term correlation is stronger
than longer-term correlation. Theoretically, it has been shown that the frequency of the maxima of any
distribution in every interval follows the Generalized Extreme Value (GEV) distribution (Gumbel 1958;
Coles 2001), which has been employed to model possibilities of rare events, such as floods and economic

1Narrowing the frequency bandmay increase the variance; ultimately, monochromatic signals yield high correlation frequently.
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crisis. GEV has the following cumulative density function (CDF):

𝐹GEV
(
𝑥 ∣ 𝜇′, 𝜎′, 𝑘

)
= exp

⎛
⎜
⎝
− (1 + 𝑘

(𝑥 − 𝜇′)
𝜎′ )

−1∕𝑘⎞
⎟
⎠
, (2)

where 𝑥 is a random variable, and 𝜇′, 𝜎′ and 𝑘 are the location parameter, scale parameter, and shape
parameter, respectively. We have to note that sgn(𝑘)

(
𝑥 − 𝜇′ + 𝜎′∕𝑘

)
≥ 0 must be satisfied; otherwise

the possibility is defined to be zero. It may be possible to detect outliers by fitting the distribution of the
maxima with GEV even if CC does not follow the normal distribution while their maxima follow GEV;
see Appendix C for the maximum likelihood estimation (MLE) of the GEV parameters. In particular, if
every interval contains a sufficient amount of data, the cumulative distribution converges to one of 3 spe-
cific cases depending on the shape of their tail: the Gumbel distribution, Fréchet distribution, or Weibull
distribution. In the next section, we assume that they can be approximated by the CDF of the Gumbel
distribution:

𝐹G
(
𝑥 ∣ 𝜇′, 𝜎′

)
∶= lim

𝑘→0
𝐹GEV

(
𝑥 ∣ 𝜇′, 𝜎′, 𝑘

)

=exp (−exp (−
𝑥 − 𝜇′

𝜎′ )) .
(3)

This is because of the following reasons: 1) as confirmed in the next section, the accumulated data distri-
bution shows straight falloff in semi-log plots, which is a characteristic of the Gumbel distribution, and 2)
as in Appendix C, MLE of three parameters for GEV is technically difficult in some case. We focus on and
plot 1 − 𝐹G in the following.

2.3. Method for event detection

Although the threshold for MF analyses has widely been assumed from the histogram of data, we have
no unified or objective algorithm to assume an appropriate value of the threshold. Here, we propose an
algorithm for detecting outliers reasonably and objectively on the basis of an information criterion. The
elimination of outliers for minimizing AIC has been developed in applied statistics (Kitagawa 1979; Ueda
1996; 2009; Marmolejo-Ramos et al. 2015) and implemented in bioinformatics (Kadota et al. 2003). Kita-
gata (1979), Ueda (1996; 2009), and Kadota et al. (2003) assumed that the random variable other than the
outliers follows a normal distribution and calculated AIC; Marmolejo-Ramos et al. (2015) investigated the
applicability of the method in non-Gaussian and skewed distribution cases. We assume the Gumbel dis-
tribution and calculate the difference in AIC when we increase the number of suspects, which indicates
whether the increment of the number is reasonable.
We sort 𝑁 data in the descending order (𝑥1 > 𝑥2 > ⋯ > 𝑥𝑁) and assume that the leading 𝑠 data

(𝑥1, 𝑥2,… , 𝑥𝑠) are outliers that do not follow the Gumbel distribution while other 𝑁 − 𝑠 data are sampled
from the same Gumbel distribution. Note that, unlike our notation, 𝑁 data were sampled from the popu-
lation distribution and number of all data was 𝑁 + 𝑠 in Ueda (1996; 2009). Then, AIC with the 𝑠 outliers
is represented as

1
2AIC𝑠 = −

𝑁∑

𝑗=𝑠+1
log𝑓(𝑥𝑗 ∣ 𝜃′) − log (𝑁 − 𝑠)! + 𝑠 (4)
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(Ueda 1996; 2009; Marmolejo-Ramos et al. 2015), where 𝑓 is the assumed PDF the samples follow, and
𝜃′ is the maximum likelihood parameters. In the original method, 𝑓 has been assumed to be the normal
distribution (Ueda 1996; 2009). However, the original method tends to be sensitive and detect too many
values as outliers if the true ditribution is positively skewed (Marmolejo-Ramos et al. 2015). In our case, we
assume that the true distribution is approximated by the Gumbel distribution that has positive skewness.
Therefore, instead of the normal distribution, 𝑓(𝑥𝑗 ∣ 𝜃) = 𝑃𝐺(𝑥𝑗 ∣ 𝜇′, 𝜎′) should be considered, where
𝑃G ∶=

𝑑𝐹G
𝑑𝑥

is the PDF of the Gumbel distribution.
In the following, wedonot directly calculate eq.(4) that contains uncalculatable hugenumber log (𝑁 − 𝑠)!

for our case (𝑁 ∼ 106). Instead, for sufficiently large𝑁, the difference inAIC between the cases of 𝑠 outliers
and 𝑠 + 1 outliers, 1

2
𝑑AIC𝑠, can be approximated as

1
2𝑑AIC𝑠 ∶=

1
2 (AIC𝑠+1 − AIC𝑠)

∼ log𝑃G
(
𝑥𝑠+1 ∣ 𝜇′, 𝜎′

)
+ log (𝑁 − 𝑠) + 1.

(5)

Strictly, the maximum likelihood parameters based on all 𝑁 data could differ from those estimated using
𝑁 − 𝑠 or 𝑁 − 𝑠 − 1 data. However, we assume that 𝑁 ≫ 𝑠 holds and the parameters do not change
significantly after the elimination of 𝑠 data; see also Appendix B on its effect. Because we focus on the
right tail of 𝑃G and 𝑥𝑖 is in the descending order, 𝑃G(𝑥𝑠) < 𝑃G(𝑥𝑠+1) holds, which results in

1
2𝑑AIC𝑠 <

1
2𝑑AIC𝑠+1. (6)

In other words, the difference in AIC is a monotonically increasing sequence. If 𝑑AIC𝑠 < 0 holds, from
the definition, we can reasonably regard that 𝑥𝑠+1 is also an outlier rather than a sample from the Gumbel
distribution. On the contrary, if 𝑑AIC𝑠 > 0 holds, themonotonicity guarantees that the difference is always
positive as 𝑠 increases. Thus, all 𝑥𝑖 (𝑖 > 𝑠) are not outliers. Finally, our procedure schematically illustrated
in Fig. 2 is as follows. We first obtain the MLE of the parameters 𝜇′ and 𝜎′, and then calculate 𝑑AIC𝑠 for
𝑠 = 0, 1, 2,…. We stop the calculation when 𝑠 reaches 𝑠0, which makes 𝑑AIC𝑠 positive for the first time,
and finally conclude that 𝑥1, 𝑥2,… , 𝑥𝑠0 are outliers.

3. Case Study

3.1. Data

We considered a foreshock sequence of an M5.4 earthquake: origin time = 2011-06-30 08:16:37:06(JST);
epicenter = 35.188◦N, 137.955◦E; depth = 4.3 km. According to the JMA catalog, 27 small foreshocks were
recorded within 13 h before themainshock (Table S.1); their epicenters are within 1 km from the epicenter
of mainshock and surrounded by 4Hi-net observation stations within 10 km (Fig. 3), whichmay enable us
to investigate the seismicity precisely. Thus, for each station and component, the 27 template waveforms
were extracted from 0.5 s before each arrival of P-wave, and their length was 5 s (= 500 samples), such that
the significant part of S-wave and its coda are included. To search events similar to these foreshocks, a
criterion for outlier detection based on the empirical distribution of CC is required. We thus calculated the
Network Cross-correlation Coefficient (NCC) among template waveforms due to the 27 events and 2-years

5
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Figure 2: Schematic illustration for estimating 𝑠0 = 4, where 𝑠0 is the number of outliers ouf of𝑁 = 104. (a)
Cumulative number of raw data (blue steps), estimated Gumbel distribution (gray broken line),
and cumulative number of data after elimination of 𝑥1,… , 𝑥𝑠0 (green steps). (b) Dependence of
AIC on the number of outlier candidates, 𝑠. (c) Dependence of 𝑑AIC𝑠 ∶= AIC𝑠+1 − AIC𝑠 on 𝑠,
where the definition is exemplified for 𝑠 = 6. Even though the blue step due to 𝑥5 is above the
gray line in (a), 𝑥5 is not regarded as the outlier because the step becomes closer to the gray line
after the elimination.

continuous waveforms between 2009-06-29 and 2011-06-28 before the activation of the foreshocks. NCC
is the averaged value of CC obtained in each station and component after shifting CC by lags between the
origin time and arrival time of P-wave (Gibbons & Ringdal 2006). Even after averaging, maxima of NCC
should follow GEV because maxima generated by arbitrary distribution follow GEV (Gumbel 1958; Coles
2001). In our case, we stack 12 CC time series based on 3 components of the 4 stations and obtain 27
histograms of NCC in total. Before the calculation, we applied a band-pass filter to focus on the frequency
band, in which waveforms due to foreshocks show high S/N ratios. Although Doi & Kawakata (2012)
applied a band-pass filter of 15–40Hz, we applied the filter of 5–30Hz depending on the spectra of template
waveforms; some automatic and objective determination method of the band should be developed in the
future. We eliminated 15-s daily data of 09:00:00.00-09:00:15.00 for checking the state-of-health of the
observation instrument of Hi-net to ensure that CC was not affected by the test signals.

3.2. Result: Histogram of NCC

All histograms of NCC are shown in Fig. 4. The histograms were normalized by their standard deviation,
which means that they should be well approximated by the standard normal distribution plotted by the
gray parabola in the semi-log plot if NCC follows a normal distribution. However, the tails of the NCC
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Figure 3: Distribution of observation points (triangles) and foreshock hypocenters (white circles) prior to
an M5.4 mainshock in Nagano, Japan. Waveforms observed at N.MWDH (green), N.MNYH
(blue), N.MMOH (yellow), and N.SOJH (red) stations were analyzed in this study. See Table
S.1 for detail of the 27 events within 1 km from the epicenter shown in the darkest circle.

histograms appear to be linear in the semi-log plot, and significantly different from the theoretical dis-
tribution discussed in the previous section. The difference between the theoretical model and empirical
data is over a hundredfold in 7𝜎 and ten thousandfold in 8𝜎. Therefore, the possibility of false positives
may be severely underestimated if we set the threshold value as 8𝜎 (Aso et al. 2011; Kato et al. 2012)
and implicitly assume that the histogram follows a normal distribution. This fact strongly implies that the
observed microtremor is significantly far from the i.i.d. assumed in the ideal case and has non-negligible
self-interdependence. Weekly statistics of NCC histograms (Figure. 5) show that the standard deviation is
higher than the case of the random waveform (𝜎 =

√
1.8𝑑−1, where 𝑑 = 500 × 12 in this case), which im-

plies that the microtremor is somehow biased. Hence, we should refer to the distribution of the maxima of
NCC that is less sensitive to the self-interdependence. Fig. 5 also shows that characteristics of histograms,
such as the standard deviation and kurtosis, fluctuated immediately after the week, including those on
March 11, 2011, the day the M9.0 Tohoku earthquake occurred. However, the 2 years were not separated
in our analysis because a sufficient amount of data is required to investigate the tails of histograms.

3.3. Result: Cumulative Distribution of max. of NCC

We attempted to detect seismic events that possibly occurred in the 2 years using the proposed method
in 2.3 after fitting the cumulative number of the maxima of NCC at every minute between 2009-06-29
and 2011-06-28. In total, we could select 21 outliers according to Fig. 6, which shows the cumulative
number of calculated NCC, the estimated Gumbel distribution 1 − 𝐹G

(
𝑥 ∣ 𝜇′, 𝜎′

)
, and detected outliers.

However, we classified some of these outliers as the same event because they emerged within 1 s. Finally,
we could detect 4 new events, as shown in Table 1, which have not been cataloged by the JMA. As shown
in Fig. S.1–S.4, the detected waveforms show amplitudes of maximum 10–20% of the template waveforms
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and, therefore, have relatively low S/N ratios compared to the template. Even from such noisy data, our
method provided the seismic signals without any prescribed threshold. The finding of the triplet similar
events 3–4 days before the mainshock in the foreshock region (IDs B–D in Table 1) may provide us with
new insight for considering the preparation process of the mainshock.

Table 1: Detected events by the proposed algorithm.
ID date time similar to
A 2011-05-04 19:17:00 05, 06
B 2011-06-26 11:57:47 01, 02, 04, 14, 18, 27
C 2011-06-26 12:57:45 01, 02, 04, 18, 23, 27
D 2011-06-27 07:24:14 01, 02, 04, 18, 20, 23, 27
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outliers in terms of the minimization of AIC. 17 cases accompanied by no outliers are plotted all
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4. Discussion

Compared to conventional thresholding methods, the most important advantage of our method is that
the results are objective and reasonable; the result is less affected by arbitrariness in principle. We can
suggest the possibility of false positives under the Gumbel distribution because the differences between
the distribution and cumulative number of data are almost less than tenfold (Fig. 6). The conventional
method involves a trade-off between the number of detected events and false positive depending on the
threshold value. In our method, however, the detection criterion is automatically determined depending
only on the quality of data. Thus, our method provides an objective reference of the threshold value. If we
lower the threshold than the reference, newly picked CC values are probablistically from the same trends
as the background noise because our method picked only outliers and remained CC values are regarded
as those embedded in the PDF due to the noise. However, the lower threshold reduces the possibility of
false negative as many seismilogists wish. Therefore, onemay calculate the threshold value by ourmethod
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and consider lowering it depending on their aim. Only 4 events were detected in our analysis, which may
mean that the hypocenter region had been quite inactive before the foreshock activity or our method is
excessively strict at finding many uncataloged events. Nevertheless, even if the latter is true, the detection
of 4 uncataloged events shows that our method has higher detection ability than that of JMA at that term,
at least for similar seismic events.
It is noteworthy that our method is not completely free of arbitrariness. One concern is the length of

intervals using which we selected the maxima. In our experiment, we selected an interval of 1 min (i.e.,
6,000 samples) considering computational time, but in principle, the interval can be, for example, 5 seconds
(i.e., 500 samples). With longer lengths, the data distribution may converge to the Gumbel distribution
(Gumbel 1958; Coles 2001), but the temporal resolution will decrease because relatively smaller peaks of
CC values will be neglected if a higher peak emerges in the same interval, which becomes likely for longer
intervals. In contrast, with shorter lengths, the convergence might not be achieved, and the data will
require fitting using not the Gumbel (3) but the GEV (2) distribution, which includes one more parameter
and is time-consuming (Appendix C). Therefore, the effect of the length should be quantified theoretically
and practically in the future.
The background level of CC may have daily variation (Aso et al. 2011) or long-term variation as shown

in Fig. 5, and, for precise analysis, the threshold should be determined in each term (e.g., diurnal and
nocturnal distribution of CC). In such a case, our method can be applied to each term separately, although
we ignored such variations for simplicity.
Because we analyzed continuous records only from 4 stations, it remains unclear whether the empirical

distribution can be modeled by the Gumbel distribution in general cases. A suitable approximation is
possible using other limits of GEV: the Fréchet or Weibull distribution. In practice, the shape of the tail
should be further investigated considering these possibilities in each analysis.

5. Conclusion

We developed an objective matched-filter technique based on AIC and the extreme value theory. We
showed that the CC between any template and i.i.d. random waveform follows the normal distribution,
which provides a reference for examining the deviation of data from the i.i.d. case. To reduce the possi-
bility of a false positive, we considered the maximum of CC in each interval and found that the maxima
follows the Gumbel distribution. Finally, using the distribution and AIC, we propose a reasonable method
for detecting outlier seismic signals that is less sensitive to arbitrariness than a conventional thresholding
method. Regardless of whether NCC follows the normal distribution, the proposedmethod can be applied
to analyses of seismic event detection.
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Appendix A. Approximation of the CC distribution

Here, we show that the normal distribution 𝒩
(
0, 𝑑−1

)
approximates the theoretical distribution of CC

between 𝑑-dimensional two vectors 𝒖 and 𝒗 extracted from a continuous waveform record. First, we show
that the extracted vector is statistically isotropic. From the definition, we consider𝒗(𝑡) = (𝑥𝑡, 𝑥𝑡+1,… , 𝑥𝑡+𝑑−1),
where 𝑥𝑡 is the 𝑡-th component of continuous record. Therefore, 𝐶𝐶𝑡 = 𝒖̂ ⋅ 𝒗(𝑡) is the 𝑡-th value of CC if
𝒖 is the fixed template. If 𝑡0 ∈ [𝑡, 𝑡 + 𝑑 − 1] exists such that |𝑥𝑡0| is significantly larger (or smaller) than
others, 𝒗(𝑡) itself is strongly (or less) oriented to the 𝑡0-th direction. However, simultaneously, 𝒗(𝑡+1), 𝒗(𝑡+2),
𝒗(𝑡+3)… are strongly (or less) oriented towards the 𝑡0 − 1, 𝑡0 − 2, 𝑡0 − 3… direction; this discussion is ob-
viously valid even if the continuous record has some self-interdependency. Therefore, it is impossible to
give some tendency to the direction of 𝒗, that is, 𝒗(𝑡) for all 𝑡 is statistically isotropic.
Given the isotropy, the normal distribution𝒩

(
0, 𝑑−1

)
can be obtained as the extension of the derivation

of the Maxwell-Boltzmann distribution. However, Maxwell (1860) assumed that each component of the
vector, which is 3-dimensional and 𝑑-dimensional in the original and our problem, respectively, is inde-
pendent; in our problem, this assumption does not hold because of |||𝒖̂|||

2 = |||𝒗|||
2 = 1, where 𝒖̂ and 𝒗 are

normalized 𝒖 and 𝒗, respectively, after elimination of their offset. Therefore, we loosen this constraint as
𝐸
(|||𝒗|||

2) = 1, where 𝐸( ⋅ ) indicates the mean value. After the derivation, we justify this assumption for
larger value of 𝑑.
The derivation of the Maxwell-Boltzmann distribution is purely mathematical rather than physical.

Maxwell (1860) considered that each component of particle velocity 𝒗 = (𝑣1,… , 𝑣𝑑) is a random variable
that follows the same PDF, 𝑃. Although only 𝑑 = 3 was considered in the original, we extend it into the
general case. In the following, we consider the PDF for each component of 𝒗 = (𝑣1,… , 𝑣𝑑).
By assuming that the random vector 𝒗 is statistically isotropic (i.e., “the directions of the coordinates are

perfectly arbitrary”, Maxwell wrote), 𝐸(𝑣𝑗) = 0 holds for arbitrary direction, and
∏𝑑

𝑗=1 𝑃
(
𝑣𝑗
)
, the joint

probability of 𝑣1,… , 𝑣𝑑, is coordinate-free and depends only on |||𝒗|||
2 =

∑𝑑
𝑗=1 𝑣

2
𝑗 . Because only an exponen-

tial function satisfies this property,

𝑃
(
𝑣𝑗
)
= 1
𝛼
√
𝜋
exp

⎛
⎜
⎝
−
𝑣2𝑗
𝛼2
⎞
⎟
⎠

(A.1)

is obtained under the condition of ∫ℝ 𝑃(𝑥)𝑑𝑥 = 1, where 𝛼 is a positive parameter to be determined. The
joint probability is written as

𝑑∏

𝑗=1
𝑃
(
𝑣𝑗
)
= 1
𝛼𝑑𝜋𝑑∕2

exp (−
|||𝒗|||

2

𝛼2
) , (A.2)
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and the mean value of |||𝒗|||
2 is

𝐸
(|||𝒗|||

2) = ∫
ℝ𝑑

|||𝒗|||
2

𝑑∏

𝑗=1
𝑃
(
𝑣𝑗
)
𝑑𝑣𝑗 (A.3)

= 1
𝛼𝑑𝜋𝑑∕2

∫
𝑆𝑑−1

𝑑𝜔 ∫
∞

0

|||𝒗|||
2 |||𝒗|||

𝑑−1 exp (−
|||𝒗|||
𝛼2
)𝑑 |||𝒗||| (A.4)

= 2𝜋𝑑∕2

𝛼𝑑𝜋𝑑∕2Γ (𝑑∕2)
1
2𝛼

𝑑+2Γ (𝑑2 + 1) (A.5)

=𝛼
2𝑑
2 , (A.6)

where 𝑆𝑑−1 = 2𝜋𝑑∕2∕Γ(𝑑∕2) is the area of (𝑑 − 1)-dimensional unit sphere, 𝑑𝜔 is the solid angle, and Γ is
the Gamma function. |||𝒗|||

𝑑−1 is derived from the Jacobian, and we use

∫
∞

0
𝑥𝑝 exp (−

𝑥2

𝑎2
)𝑑𝑥 =

1
2𝑎

𝑝+1Γ (
𝑝 + 1
2 ) . (A.7)

Finally, with 𝐸
(|||𝒗|||

2) = 1, we get

𝛼2 = 2
𝑑
, (A.8)

which yields

𝑃(𝑣𝑗) =
√

𝑑
2𝜋 exp

⎛
⎜
⎝
−

𝑣2𝑗
2𝑑−1

⎞
⎟
⎠
. (A.9)

Obviously, if 𝑑 is small, eq.(A.9) does not approximate the distribution of CC because the probability is not
negligible for |𝑣𝑗| > 1. Hence we have to consider the sufficiently large value of 𝑑 that makes 𝑃(|𝑣𝑗| > 1)
negligibly small. Moreover, the variance of |||𝒗|||

2 calculated as

𝐸 (
(
|𝒗|2 − 1

)2
) =𝐸

(
|𝒗|4

)
− 2𝐸

(
|𝒗|2

)
+ 𝐸(1) (A.10)

=𝛼4 (𝑑2 + 1) 𝑑2 − 2 + 1 (A.11)

=2
𝑑
, (A.12)

means that the possibility of |𝒗|2 = 1 in the strict sense becomes larger as 𝑑 increases. Therefore, the
constraint |𝒗|2 = 1 is approximately satisfied for larger values of 𝑑.
Considering that both Maxwell’s particle and our unit random vector is isotropic, the PDF (A.9) pro-

vides not only the specific component 𝑣𝑗 but also a component along all directions including 𝒖̂ in the
same manner. Therefore, the inner product of an arbitrary random unit vector 𝒗 extracted from random
continuous waveform and arbitrary fixed unit vector 𝒖̂ approximately follows the normal distributionwith
the variance of 𝑑−1.
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Appendix B. Does not the log-likelihood vary signi�cantly after

elimination of some data?

In eq.(5), we assume that themaximum likelihood parameters for all𝑁,𝑁−𝑠 and𝑁−𝑠−1 data do not vary
significantly because 𝑁 ≫ 𝑠 holds. Even so, the effect of the small difference of the parameters on AIC𝑠
appears to be unclear. In the calculation of the log-likelihood,

∑𝑁
𝑗=𝑠+1 log𝑃(𝑥𝑗 ∣ 𝜇

′, 𝜎′), even negligibly
small difference could be stacked and possibly become a significant amount.
However, we can show that the stacked amount is still negligible. Let the parameters (𝜇′, 𝜎′) and (𝜇′′, 𝜎′′)

be the MLE using all𝑁 data and𝑁 − 𝑠 data, respectively. Therefore, the error of AIC (i.e., error of the log-
likelihood) using the former instead of latter has the same order of the Kullback–Leibler divergence

𝐷(𝑃𝐺(𝜇′′, 𝜎′′), 𝑃𝐺(𝜇′, 𝜎′)) = ∫
ℝ
𝑃𝐺(𝑥 ∣ 𝜇′′, 𝜎′′) log

𝑃𝐺(𝑥 ∣ 𝜇′′, 𝜎′′)
𝑃𝐺(𝑥 ∣ 𝜇′, 𝜎′)

𝑑𝑥. (B.13)

This is equivalent to the loss function defined in eq.(3.1) of Akaike (1973), and depends only on the second
or higher order of (𝜇′′ − 𝜇′) and (𝜎′′ − 𝜎′) after the Taylor series expansion; see eq.(4.5) of Akaike (1973).
Hence, any small error of (𝜇′′ − 𝜇′) or (𝜎′′ − 𝜎′) does not vary the log-likelihood significantly.

Appendix C. MLE of GEV parameters

MLE of GEV parameters is equivalent to solving the equations below with respect to 𝜇′, 𝜎′, and 𝑘:

𝑁∑

𝑖=1

𝑧𝑖
𝑦𝑖
=0,

−𝑁 +
𝑁∑

𝑖=1

𝑧𝑖
𝑦𝑖
(
𝑥𝑖 − 𝜇′

𝜎′ ) =0,

𝑁∑

𝑖=1
(𝑧𝑖 log(𝑦𝑖) +

𝑧𝑖
𝑦𝑖
(
𝑥𝑖 − 𝜇′

𝜎′ )) =0

(C.14)

(Martins&Stedinger 2000; Coles 2001), where 𝑦𝑖 ∶= 1+(𝑘∕𝜎′)(𝑥𝑖−𝜇′) and 𝑧𝑖 ∶= 1+𝑘−𝑦−1∕𝑘𝑖 (note: 𝑘 is op-
posite in sign between Coles (2001) and Martins & Stedinger (2000)), and we eliminate some unnecessary
coefficients. To solve them using the Newton-Raphson method, the Hessian matrix that is the derivative
of eqs.(C.14) with respect to the 3 parameters should be calculated. Although the representations of the
derivatives are slightly complicated, we simply compute the matrix by the automatic differentiation using
a small complex variable (Squire & Trapp 1998). The initial values for iteration are given by 𝐿-moments
(Hosking 1990).
Unfortunately, the Newton-Raphson method sometimes fails during its iteration due to the following

reason. During the MLE process, we have to calculate the log-likelihood log𝑃GEV(𝑥𝑗 ∣ 𝜇′, 𝜎′, 𝑘) for all
the sample 𝑥𝑗, where 𝜇′, 𝜎′, 𝑘 is not necessarily the MLE of the parameters, which is attributable to the
iteration. In case of 𝑘 < 0, as mentioned in the main text, the PDF, 𝑃GEV, for 𝑥 > 𝜇 − 𝜎′∕𝑘 is zero.
Therefore, we may substitute zero into 𝑃GEV if 𝑥𝑗 > 𝜇 − 𝜎′∕𝑘 holds, and the iteration stops due to the
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numerical error (log 0 = −∞). In particular, this error tends to occur if the sample includes outliers, which
is abnormally large. Hence, the MLE of GEV parameters is technically difficult, and we may require some
ad hoc implementation. If we somehow obtain the MLE of GEV, some distributions in Fig. 6 (e.g., No.02)
would be fitted better, which can help decrease the number of false negatives.
Because we particularly focus on the case of the Gumbel distribution, the equations for maximum like-

lihood estimators are represented explicitly by taking 𝑘 →∞:

𝑁∑

𝑖=1
(1 − exp (−

𝑥𝑖 − 𝜇′

𝜎′ )) =0,

−𝑁 +
𝑁∑

𝑖=1
(1 − exp (−

𝑥𝑖 − 𝜇′

𝜎′ )) (
𝑥𝑖 − 𝜇′

𝜎′ ) =0.

(C.15)
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Table S.1: Events from the JMA catalog, which caused the observed waveforms, used as the template. The
mainshock is in the bottom.

No. Origin Time (JST) Lat.(°) Long.(°) Depth(km) M
01 2011-06-29 19:32:38.80 36.190 137.953 4.2 3.4
02 2011-06-29 19:34:44.07 36.189 137.954 3.9 1.0
03 2011-06-29 19:34:48.99 36.188 137.952 3.3 1.5
04 2011-06-29 19:35:29.14 36.185 137.955 4.3 0.9
05 2011-06-29 19:36:58.98 36.192 137.952 4.5 0.1
06 2011-06-29 19:37:05.01 36.188 137.954 4.7 1.7
07 2011-06-29 20:03:21.31 36.195 137.947 3.8 -0.1
08 2011-06-29 20:04:07.47 36.193 137.953 4.6 2.8
09 2011-06-29 20:05:22.30 36.193 137.954 4.5 2.2
10 2011-06-29 20:17:50.64 36.193 137.953 4.2 1.8
11 2011-06-29 20:37:05.29 36.189 137.948 3.5 -0.1
12 2011-06-29 20:58:58.26 36.198 137.951 4.9 2.3
13 2011-06-29 21:08:53.36 36.189 137.955 3.6 0.8
14 2011-06-29 21:21:03.53 36.188 137.955 3.6 0.6
15 2011-06-29 22:02:11.19 36.187 137.958 4.1 0.5
16 2011-06-29 22:15:55.52 36.187 137.956 3.8 0.9
17 2011-06-29 22:17:59.47 36.186 137.953 3.6 -0.3
18 2011-06-29 22:23:20.40 36.187 137.954 3.2 1.3
19 2011-06-29 22:28:37.93 36.193 137.955 4.8 0.3
20 2011-06-30 00:11:40.79 36.189 137.956 5.4 0.2
21 2011-06-30 00:56:56.58 36.190 137.954 4.2 1.5
22 2011-06-30 01:26:44.45 36.194 137.953 4.0 0.5
23 2011-06-30 01:39:53.64 36.190 137.954 4.4 1.6
24 2011-06-30 04:45:28.48 36.194 137.952 4.6 2.4
25 2011-06-30 05:26:36.43 36.194 137.952 4.5 1.5
26 2011-06-30 07:53:02.28 36.188 137.952 4.6 0.3
27 2011-06-30 08:08:38.04 36.184 137.956 4.2 1.6

2011-06-30 08:16:37.06 36.188 137.955 4.3 5.4
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Figure S.1: UD, NS, and EW components of the detected (black) and template (blue) waveforms recorded
at N.MWDH, N.MNYH, N.SOJH, and N.MMOH stations from top to bottm. The left edges of
template waveforms are aligned at the origin time of each event. ID (A) and No. (05, 06) refer
to Table 1 and S.1, respectively. The differences between the maximum and minimum value of
each [m/s] are shown in the rightside.
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Figure S.2: UD component of the detected (black) and template (blue) waveforms recorded at N.MWDH,
N.MNYH, N.SOJH, and N.MMOH stations from top to bottm. The left edges of template wave-
forms are aligned at the origin time of each event. ID (B, C, and D) and No. (01, . . . , 27) refer
to Table 1 and S.1, respectively. The diferences between the maximum and minimum value of
each [m/s] are shown in the rightside.
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Figure S.3: NS component of the detected and template waveforms.
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Figure S.4: EW component of the detected and template waveforms.
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