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Abstract

Ensemble predictions of the seasonal snowpack over Grand Mesa, CO were conducted for the hydrologic year 2016-2017 using

a multilayer snow hydrology model. Ensembles were generated from gridded atmospheric reanalysis, model predictions were

evaluated against SnowEx’17 measurements, and the signatures of the weather-dependent variability of snow physics in the

behavior of multi-frequency microwave brightness temperatures and backscattering were examined through forward modeling.

At sub-daily timescales , the ensemble standard deviation due to atmospheric forcing (i.e., mesoscale spatial variability of

weather within the Grand Mesa) is < 3 dB for dry snow, and increases to 8-10 dB at midday when there is surficial melt that

also explains the wide ensemble range (˜20 dB). Further, the ensemble mean backscatter exhibits robust (R 2 > 0.95) time-

varying, weather-dependent linear heuristic relationships with SWE (e.g., 5-6 cm/dB/month in January; 2-2.5 cm/dB/month

in late February) as melt-refreeze cycles modify the microphysical structure in the top 50 cm of the snowpack. The nonlinear

evolution of ensemble snow physics translates into seasonal hysteresis in the microwave behavior. The backscatter hysteretic

offsets between accumulation and melt regimes are robust in the Land C-bands and collapse for wet shallow snow at Ku-band.

The ensemble mean emissions behave as a limit-cycles with weak sensitivity in the accumulation regime, and hysteretic behavior

during melt that is different for deep (winter-spring transition) and shallow snow (spring-summer) and offsets that increase with

frequency. These findings suggest potential for multi-frequency active-passive remote-sensing of SWE conditional on snowpack

regime, particularly suited for data-assimilation using coupled snow hydrology-microwave models.
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Abstract:  Ensemble predictions of the seasonal snowpack over Grand Mesa, CO
were  conducted  for  the  hydrologic  year  2016-2017  using  a  multilayer  snow
hydrology  model.  Ensembles  were  generated  from  gridded  atmospheric
reanalysis, model predictions were evaluated against SnowEx’17 measurements,
and the signatures of the weather-dependent variability of snow physics in the
behavior  of  multi-frequency  microwave  brightness  temperatures  and
backscattering  were  examined  through  forward  modeling.  At  sub-daily  time-
scales,  the  ensemble  standard  deviation  due  to  atmospheric  forcing  (i.e.,
mesoscale spatial variability of weather within the Grand Mesa) is < 3 dB for dry
snow, and increases to 8-10 dB at mid-day when there is surficial melt that also
explains  the  wide  ensemble  range  (~20  dB).  Further,  the  ensemble  mean
backscatter  exhibits  robust  (R2 >  0.95)  time-varying,  weather-dependent  linear
heuristic  relationships  with  SWE  (e.g.,  5-6  cm/dB/month  in  January;  2-2.5
cm/dB/month in late February) as melt-refreeze cycles modify the microphysical
structure in the top 50 cm of the snowpack. The nonlinear evolution of ensemble
snow physics translates into seasonal hysteresis in the microwave behavior. The
backscatter hysteretic offsets between accumulation and melt regimes are robust
in  the  L-  and  C-bands  and  collapse  for  wet  shallow  snow  at  Ku-band.  The
ensemble mean emissions behave as a limit-cycles with weak sensitivity in the
accumulation regime,  and hysteretic  behavior  during melt  that  is  different  for
deep (winter-spring transition) and shallow snow (spring-summer) and offsets
that increase with frequency. These findings suggest potential for multi-frequency
active-passive  remote-sensing  of  SWE  conditional  on  snowpack  regime,
particularly  suited  for  data-assimilation  using  coupled  snow  hydrology-
microwave models.

Keywords:  seasonal snow; hydrometeorology; SWE; remote-sensing; microwave
hysteresis

1. Introduction

Snow plays an important role governing the surface energy and water budgets
at high elevations and over large regions of the world at high and even at mid
latitudes depending on time of the year. Monthly mean snow cover varies from 7%
to  40%  over  the  Northern  Hemisphere  [1] and  changes  in  snow cover  due  to
interannual  variability  and  increasing  surface  air  temperatures  affect  not  only
regional atmospheric conditions but also large-scale circulation systems including
the global monsoons  [2-5]. The water mass stored in seasonal snowpacks can be
inferred from snow covered area, snow depth and snow water equivalent (SWE)
metrics.  In  cold regions  and in  high mountains,  winter  snowpacks temporarily
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store freshwater that is subsequently released during melting, and thus modulate
the  availability  of  water  resources  [6,7].  The  large  spatial  variability  of
precipitation, clouds, winds and land-cover translates into large spatial variability
in  snow  accumulation  patterns  (snow  depth  and  SWE)  and  snowpack
microphysical properties. Temperature, grain size, and material composition (ice,
liquid  water  content,  and  particles  such  as  dust  or  pollution)  determine  local
snowpack  surface  radiative  properties,  including  emissivity  and  backscattering
behavior, that are spatially organized by topography and land-cover at the meso-
and regional scales [8,9].

Remote sensing has long been the primary strategy for large-scale monitoring
of snow because of the challenges of access to high remote mountain areas and
cold  regions  generally  [10-12].  Since  the  1970s,  passive  microwave  satellite
observations have been widely used to map areal snow cover and to estimate snow
depth and SWE. Hall et al. [13,14] lead the first studies to establish the proposition
of  passive  microwave  remote  sensing  of  snow  that  became  possible  with  the
launch of microwave radiometers onboard Nimbus 5-6-7 satellites. Rango et al. [15]
identified a linear regression equation between microwave brightness temperature
(18 GHz and 37 GHz, H- polarization) and snow depth, and demonstrated how the
rapid increase of brightness temperatures in the spring can be used as a robust
indicator of liquid water presence and the onset of the melting regime. Chang et al.
[16] followed [15] to produce SWE maps over the Northern Hemisphere based on
dual-polarization  brightness  temperature  measurements  from  the  Scanning
Multichannel  Microwave  Radiometer  (SMMR).  Subsequently,  Grody and Basist
[17] used measurements from the next generation radiometer, the Special Sensor
Microwave Imager (SSM/I) to map global snow cover. The relationship between
SWE  and  SSM/I  brightness  temperatures  over  16  land-cover  categories  was
examined  by  Tait  [18] who  reported  that  SWE  could  be  estimated  with  95%
confidence  in  smooth  non-forested  topography.  Nevertheless,  retrieving  snow
states and properties from passive microwave sensors has long been handicapped
by  coarse  spatial  resolution  (e.g.,  25  ×  25  km2 of  the  Advanced  Microwave
Scanning Radiometer - Earth Observing System, AMSR-E) that cannot capture the
spatial  heterogeneity  of  the  snowpack  resulting  in  substantial  random  and
systematic  errors  in complex topography and in the presence  of  heterogeneous
vegetation, in particular forests that emit more microwave radiation than snow [19-
21]. Increased absorption and decreased volume scattering in wet snowpacks (>
0.1% snow wetness), and especially in the top layers, result in loss of sensitivity
with  nonlinear  interactions  among  absorption,  surface  scattering,  and  volume
scattering  [22,23].  Even  in  barren  flat  terrain,  thermodynamically  driven  snow
microphysics strongly affect brightness temperatures due to high sensitivity to the
size of  dry snow crystals  that  vary with time and snowpack history,  and thus
snowpack  stratigraphy  [24,25].  Wet  snowpacks  are  especially  challenging  as
increases  in  liquid  water  content  exhibit  ambiguous  (i.e.,  noisy)  brightness
temperature behavior in the warm season after the onset of snowmelt processes.
Recent  high  spatial  resolution  (10’s  m)  radar  backscatter  measurements  at
intermediate wavelengths (e.g.,  Sentinel-1 C-Band) show little sensitivity to dry
snow accumulation, and high sensitivity to surface roughness and snow surface
microphysics, the interpretation of which can be further complicated by successive
cycles of daytime melt and nocturnal refreeze [9], and weather variations including
the spatial organization of diurnal circulations [26].

Snow hydrology models driven by near-surface atmospheric forcing provide
an alternative to estimate snowpack mass and condition through accumulation and
melt processes, although there is uncertainty associated with these states because
of imperfect  model physics and numerical  approximations  [24],  uncertainties  in
meteorological  forcing,  land-cover  and  surface  heterogeneities,  and  initial  and
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boundary  conditions  that  can  significantly  impact  model  behavior  [27].
Furthermore,  the  representation  of  spatial  variability  tied  to  topography,  wind
redistribution,  and  land-cover  among  other  drivers  of  snowpack  heterogeneity
often depend on model resolution as well, and thus are tied to scale  [28]. These
uncertainties  can  be  addressed  in  part  via  data  assimilation  of  remote-sensing
observations to guide model physics by constraining model states that effectively
amounts  to  physically-based  retrieval  [25,29-33].  Operational  (i.e.,  systematic,
uncalibrated)  robust  data-assimilation  requires  realistic  characterization  of
independent and correlated errors in the coupled snow-hydrology and radiative
transfer  dynamics  as  well  as  in  the  observations  that  are  not  known typically
although  they  can  be  learned  for  the  case  of  systematic  stationary  errors.
Ultimately, robust data-assimilation would highly benefit from additional ground-
observations  for  areal  cross-validation  (e.g.,  runoff)  or  to  further  constrain  the
model locally (e.g., snow depth) but these generally are not available in the remote
and inhospitable regions of the world where snow remote sensing is needed. An
alternative approach is to map the uncertainty space of snowpack physics toward
determining the error bounds associated with snowpack hydrological response to
variable weather and land-cover (e.g., [34]).

The  objective  of  this  paper  is  to  develop  a  quantitative  understanding  of
uncertainty propagation from spatial uncertainty in meteorological forcing of high-
elevation snowpack physics to radiometric and scattering behavior. Ultimately, the
goal is to separate uncertainty in snowpack microwave measurements from space
(backscattering coefficient and brightness temperatures) from retrieval ambiguity
tied to the spatial variability of snowpack condition. For this purpose, we rely on a
multilayer snow hydrology model (hereafter referred to as MSHM) [20,21], driven
by  atmospheric  reanalysis,  and  coupled  to  the  microwave  emission  model  of
layered snowpacks (MEMLS) [35,36]. The region of study (Grand Mesa, Colorado)
and available data sets are described in Section 2. The architecture of the coupled
snow  physics-radiative  transfer  modeling  framework  (hereafter  referred  to  as
MSHM/MEMLS)  and  the  experimental  design  are  summarized  in  Section  3.
Detailed  model  formulations  for  both  MSHM  and  MEMLS  are  provided  in
Appendices A and B, respectively. Results are presented and discussed in Section 4
focusing on seasonal snowpack hydrology (Section 4.1) and microwave behavior
(Section 4.2). Synthesis and conclusions are presented in Section 5.

2. Study Area and Datasets

2.1 Study Area

The region of study is Grand Mesa (39°N ~ 39.1°N, 108.2°W ~ 107.8°W) the
largest flat-top high mountain in the world (Figure 1). This is one of NASA’s Snow
Experiment (SnowEx) primary field sites  [33], where multi-year seasonal intense
field measurements are ongoing. We rely specifically on data collected during the
February 2017 field campaign, hereafter referred to as SnowEx’17. Land-use land-
cover  (LULC)  is  highly  heterogeneous  with  over  300  small  lakes  and  ponds,
evergreen  and  deciduous  forests,  grasslands  and  some  barren  soil  and  rock
outcrops (Figure 2).  Model  simulations are conducted in the central  part  of the
Mesa where most SnowEx’17 snowpit measurements were conducted.
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Figure 1. Topographic map of Grand Mesa with ECMWF grid cells (overlain grid on the left panel) and

43  grid  points  from  the  HRRR  model  (triangles  on  the  right  panel).  Snowpit  locations  from  the

SnowEx’17 field campaign are clustered into 9 groups corresponding to individual ECMWF grid cells (~

5  ×  5  km2)  marked  on  the  left  panel.  Each  cluster  contains  at  least  eight  snowpits.  Table  S1  in

Supplementary Information provides the central (latitude, longitude) coordinates for each grid, as well as

the coordinates of the HRRR grids fully or partially within the corresponding ECMWF grid. ECMWF-

European center for Medium Range Weather Forecasts. HRRR- High Resolution Rapid Refresh NOAA

model.

Figure  2.  Land-use  and  land-cover  (LULC)  map centered  over  Grand Mesa.  The  nine  snowpit

clusters (Table S1) corresponding to nine ECMWF grid cells marked in Figure 1 are also marked

here using the naming convention indicated in the legend.

2.2 Atmospheric Forcing

2.2.1 European Center for Medium Range Weather Forecasts (ECMWF) 

Meteorological forcing (air temperature, specific humidity, wind speed, rainfall
rate, snowfall rate, incoming shortwave radiation, incoming longwave radiation,
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and surface albedo) utilized to drive the MSHM were obtained from the ECMWF
3-hourly reanalysis data (in UTC) with the equidistant cylindrical projection of 941
×  2336  points  covering  North  America  with  (0.05°  ×  0.05°)  spatial  resolution
(Figure 1,  left  panel).  The original 3-hourly forcing was linearly interpolated to
half-hourly time-steps September 1st, 2016 and June 30th, 2017, and are available at
https:// barros-group.cee.duke.edu/data-access.

2.2.2 High Resolution Rapid Refresh (HRRR)

The Rapid Refresh (RAP) is a version of the Weather Research and Forecasting
(WRF) model developed by the NOAA Earth System Research Laboratory (ESRL)
Global  Systems  Division  (GSD).  This  is  an  hourly  updating,  cloud-resolving,
convection-allowing  model  run  operationally  by  the  National  Centers  for
Environmental  Prediction's  Environmental  Modeling  Center  (EMC)  with  a
nominal  resolution  of  13  km  [37].  The  model  domain  covers  the  entire  North
America with up to 21 forecast lead times. In the spring of 2016, a high-resolution
nested version of the RAP called the High Resolution Rapid Refresh (HRRR) was
developed  with  3-km  horizontal  grid  and  one  hour  update  and  can  forecast
meteorological  variables  up  to  18  hour  including:  air  temperature,  specific
humidity,  wind  speed,  air  pressure,  rainfall  rate,  snowfall  rate,  incoming
shortwave radiation, and incoming longwave radiation. Hourly HRRR data (data
assimilation and forecast modeling systems), specifically +01 hour forecasts, used
here are obtained from the Center for High Performance Computing (CHPC) at the
University of Utah  [38]. Time-series of HRRR meteorological data from 43 grids
over  the  Grand  Mesa  (Figure  1,  right  panel)  were  linearly  interpolated  to  the
MSHM time-step (30 min) from 2016 September 1st to 2017 June 30th. Numbering
and naming conventions and geographical correspondence between ECMWF and
HRRR grids is provided in Supplementary Information, specifically Table S1 and
Figures S1 a-b.

2.3 North American Land Data Assimilation System (NLDAS) 

Initial preprocessing showed that the time-varying ECMWF albedo values are
inconsistent  with  observed  snow  cover  conditions  over  Grand  Mesa  and
independent MODIS estimates. Surface albedo at 0.125° × 0.125° resolution (~ 12.5
× 12.5 km2) from the North American Land Data Assimilation System (NLDAS)
[39] was used instead due to its improved depiction of the diurnal variation. The
average of the four NLDAS grids in the study domain was calculated first for the
hourly  values  and subsequently  interpolated  to  half-hourly  intervals;  the  same
value is specified for all ECMWF and HRRR grids at each time-step (i.e., the spatial
variability of snow albedo across the Grand Mesa is neglected).

2.4 SnowEx’17 Field Campaign Data

Data  from  the  NASA  SnowEx  campaigns  can  be  obtained  from
(https://nsidc.org/data/snowex).  Data  relevant  for  this  study  include  snow
depth, SWE, snow density and temperature profiles  [40]. These data are used to
evaluate  co-located  MSHM  simulations  and  to  characterize  the  uncertainty
associated with sub-grid heterogeneity within ECMWF grid cells and across the
Grand Mesa.

Snowpit  observations  were  obtained  by  digging  trenches  (destructive  and
irreversible  measurements)  for  a  one-time  only  sampling  of  the  density  and
temperature  profiles,  and  thus  there  are  no  repeats  at  the  same location.  It  is
important  to  highlight  the  gap  in  spatio-temporal  scales  between  the  in-situ
snowpit data (point scale, near-instantaneous) and the ECMWF and HRRR forcing
and  MSHM  simulations  (kms,  mins-hours).  Tables  S2-S4  provide  geospatial
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coordinates of snowpit locations corresponding to ECMWF grid cells S2, SD3 and
S5 (Figure 1 and Figure 2) used in this paper to assess MSHM performance.

3. Experimental Design

3.1 MSHM/MEMLS Modeling Framework 

The architecture of the coupled MSHM/MEMLS framework is summarized in
Figure 3. The MSHM represents the snowpack as a multilayer column (1D in the
vertical, Figure 3 right panel) with layers added (by splitting individual layers) or
removed  (by  combining  individual  layers)  depending  on  precipitation  and
compaction rates to meet a minimum water equivalent depth criterion for each
layer (0.02 ± 0.01cm). Exchanges of mass and energy at the snowpack surface and
between  adjacent  layers  in  the  snowpack  column  (1D)  are  simulated  using
centered  finite-difference  approximations  following  [41].  The  formulae  used  to
describe key model processes are summarized in Appendix A, and the flowchart
that describes model structure and linkages among model physics components is
depicted  in  Supplementary  Figure  S2.  Additional  implementation  details  and
alternative  parameterizations  can  be  found  in  [20,21].  Ongoing  testing  and
implementation of the MSHM coupled to an existing distributed hydrology model
is out of the scope of the present work.   Therefore, snowpack surface conditioning
(surface roughness and transient morphology), snow erosion and redistribution by
winds, and the structural  effects  of forest cover on snow hydrology on the one
hand and on microwave behavior on the other are not described in the version of
the MSHM/MEMLS used here.  The latter are at best  accounted for only in the
time-varying  values  of  albedo  specified  and  in  the  atmospheric  forcing
(specifically, low level winds, air temperature and relative humidity) to the extent
that land-cover is parameterized in the underlying numerical weather prediction
model. 

Figure 3. Information flow diagram in the coupled MSHM/MEMLS framework. At a given time t,

the  MSHM simulates  a  snowpack  consisting  of  number  of  layers  nlayers(t),  and yields  snowpack

stratigraphy consisting of the vertical profile of layer thickness (hsnow),  snow water content (hswe),

liquid water content (LWC), density(ρs), temperature Ts including ground temperature T0, and snow

correlation  length  Lc.  At  the  surface  of  the  snowpack,  latent  heat  (LH),  sensible  heat  (SH),  net

radiation  (Rnet),  and  outmelt  (OM)  fluxes  are  also  calculated.  The  snowpack  stratigraphy  and
temperature profiles are passed onto MEMLS to simulate the vertical profiles of transmissivityt ,

volume reflectivity r, emissivity e, interface reflectivity s, and refracted angle θb where j=i. Incoming
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electromagnetic radiation (not shown) hits the snowpack surface of roughness  ms with incidence

angle  θn (not  shown).  The  MEMLS  output  is  brightness  temperature  Tb,s and  backscattering

coefficient σs at the surface for frequency f , horizontal and vertical polarization.

The  MEMLS  model  was  developed  based  on  six-flux  theory  to  simulate
multiple  volume  scattering  and  absorption  (Figure  3,  right  panel)  including
radiation trapping from internal and coherent reflections at layer interfaces (see
Figures  S3  and  S4).  It  was  first  implemented  to  simulate  multi-frequency
microwave  brightness  temperatures  [36] with  good  performance  compared  to
satellite data  [20,21], and it has been further enhanced to simulate backscattering
[35].  Implicit  in  the  MSHM/MSML  coupling  is  the  common  spatial  scale
determined  here  by  the  spatial  scale  of  the  atmospheric  forcing,  and  the
assumption that there is no subgrid-scale variability in snowpack states  (e.g., snow
types)  that  would  introduce  variability  in  the  microwave  emissions  and
backscatter  [23,26].  The  coupled  MSHM/MEMLS  modeling  framework  is  run
continuously in fully predictive mode from September (9/1/2016) through June
(6/30/2017)  at  half-hourly  time-steps  driven  by  independent  meteorological
forcing  (ECMWF,  HRRR).  SnowEx’17  snowpit  measurements  during  February
2017 are used for evaluating MSHM predictability of snowpack physical properties
and snow hydrologic states. The density of fresh snow is specified as 30 kg/m3.

3.2 Ensemble Design

The  impact  of  uncertainty  tied  to  the  spatial  variability  of  meteorological
forcing  on  the  simulated  snowpack’s  physics  and  microwave  behavior  is
investigated using ensemble forecasts (EF). Two ensemble families were designed.
Members  of  the  first  ensemble  family  (EFF1,  3  km resolution)  are  obtained by
replacing  ECMWF  forcing  with  HRRR  “perturbations”  neglecting  spatial
resolution differences between ECMWF and HRRR. EFF1 consists of 6 different
ensembles  (0-5)  each  corresponding  to  different  combinations  of  ECMWF  and
HRRR forcing as summarized in Table 1 for a total of 2,322 simulations (9 ECMWF
grids × 43 HRRR perturbations = 387 members for each of the 6 EFF1 ensembles).
Members of the second ensemble family (EFF2, 750 m resolution) are obtained by
replacing  HRRR  precipitation  analysis  at  the  native  3km  resolution  with  16
precipitation replicates obtained by fractal downscaling of the HRRR precipitation
fields  [42-45]. For reference, the cumulative snowfall and rainfall curves and the
concurrent  time-series  of  near-surface  air  temperature  (2  m)  from  the  HRRR
analysis are provided in Figure S5. EFF2 consists of 9 ensembles for each of the
HRRR  grids  nearest  to  the  centers  of  nine  ECMWF  reference  grids  with  16
members  for  a  total  of  144  simulations.  Figure  S6  illustrates  graphically  the
downscaling strategy. Note that the fractally downscaled precipitation at 750 m
resolution is itself the ensemble mean of fifty rainfall fields generated recursively
[43,45].  Whereas  it  is  possible  to  downscale  the  precipitation  to  higher  spatial
resolution,  recent  work  [9] suggests  that  there  is  robust  interpretable  scaling
behavior in SAR measurements at C- and L-bands at spatial scales in the 400-1,000
m range.

Table 1. Summary description of Ensemble Forecast Family 1 (EFF1) design. Grand Mesa ensembles

are  produced  using  9  ECMWF and 43  HRRR distinct  forcing  time-series.  Data  are  available  at

https://barros-group.cee.duke.edu/data-access.

Ensemble 0 1 2 3 4 5
Air temperature (K) ECMWF HRRR HRRR HRRR HRRR HRRR

Snowfall rate (kg/m2/s) ECMWF ECMWF HRRR HRRR HRRR HRRR
Rainfall rate (kg/m2/s) ECMWF ECMWF HRRR HRRR HRRR HRRR
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Air pressure (Pa) HRRR HRRR HRRR HRRR HRRR HRRR
Incoming shortwave radiation (W/m2) ECMWF ECMWF ECMWF ECMWF ECMWF HRRR
Incoming longwave radiation (W/m2) ECMWF ECMWF ECMWF ECMWF ECMWF HRRR

Albedo NLDAS NLDAS NLDAS NLDAS NLDAS NLDAS
Windspeed (m/s) ECMWF ECMWF ECMWF HRRR HRRR HRRR

Specific humidity (kg/kg) ECMWF ECMWF ECMWF ECMWF HRRR HRRR
Ensemble Size 387 387 387 387 387 43

The EFF1 ensemble spread is tied to the forcing uncertainty at 3 km resolution
over  the  relatively  large  Grand  Mesa  domain  (Figure  1),  whereas  ensemble
differences among each of the nine ECMWF reference grids reflect differences in
land-cover and land-form that impact surface roughness, and thus friction velocity
and  surface  winds.  The  EFF2  ensemble  spread  stems  from  increased  spatial
variability  of  precipitation  from  3  km  (HRRR  pixel)  to  750  m  (downscaled
precipitation),  and  aims  to  capture  the  uncertainty  tied  to  the  stochastic
redistribution of precipitation at HRRR sub-grid scales.

4. Results and Discussion

To characterize uncertainty in snowpack microwave behavior (backscattering
coefficient and brightness  temperatures)  tied to snowpack states  conditional  on
regional weather, we view the coupled snow hydrology-radiative transfer model
as an instrument simulator. A key challenge therefore is that the snow hydrology
model  must  represent  the  governing  physical  processes  and  capture  the
fundamental drivers of radiative properties  changes in the snowpack. Thus, we
start by evaluating the model’s capability to capture snow hydrologic processes
and  quantifying  the  range  of  uncertainty  in  snowpack  hydrologic  properties
associated  with  meteorological  forcing  in  Section  4.1.  The  active  and  passive
microwave behavior of the snowpack is examined in Section 4.2. Analysis of model
results and discussion is centered on ECMWF grid cells S2, SD3, and S5 (Figure 1)
to capture the evolution of the snowpack in the western, central, and eastern sub-
regions of Grand Mesa, respectively. Each of these three grids is collocated with
HRRR  grids  and  contains  several  snowpit  observations  obtained  during
SnowEx’17 (snowpit geo-coordinates and acquisition dates and times are provided
in Tables S2-S4).

4.1 Snowpack Hydrology

SWE and Snow Depth – SWE and snow depth predictions begin on 9/1/2016
and  last  till  6/30/2017  for  each  EFF1  ensemble  to  capture  the  full  seasonal
evolution  of  the  snowpack  in  Grand  Mesa  as  shown  in  Figure  4.  The  severe
snowfall underestimation in the ECMWF forcing is apparent in the Ensemble 0 and
Ensemble  1  results  amounting  respectively  to  100%  and  300%  difference  with
regard to Ensemble 2 and Ensemble 5 SWE and snow depth. The contrast in spread
of  the  yellow  (25th and  75th percentiles)  and  green  (max  and  min)  envelopes
between Ensembles 0 and 1 demonstrates the impact of the space-time variability
of  near-surface  air  temperature  in  driving  heterogeneity  among  ensemble
members.  Solid  and  liquid  precipitation  are  not  specifically  differentiated,  and
standard approaches, such as using near-surface air temperature below a certain
threshold  (e.g.,  273.15  K)  to  identify  snowfall,  do  not  work  well  because  the
ECMWF near-surface air temperature exhibits strong warm bias as compared to
observations and to HRRR values as well. Indeed, excessive early warming leads
to  the  dramatic  melting and snowpack  retirement  almost  two weeks  earlier  in
Ensemble  1.  Dramatic  improvement  is  achieved  when  the  HRRR  precipitation
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forcing is introduced in Ensemble 2. There are no significant differences in snow
mass accumulation and melt patterns among Ensembles 3 and 4 (not shown) and
Ensemble 5,  indicating that precipitation and air  temperature,  and in particular
snowfall, are the key local meteorological forcing necessary to capture the seasonal
snowpack  over  Grand  Mesa  as  long  as  radiative  forcing  and  winds  are
representative of regional conditions. This result is expected and consistent with
[27]  who  found  that  sensitivity  of  a  snow  hydrology  model  to  forcing  was
dominated by precipitation bias errors.

Figure 4. Time series of ensemble SWE predictions from 9/1/2016 through 6/30/2017 (left panels)

and snow depth (right panels) for Ensemble 0, 1, 2 and 5 (Table 1) from top to bottom respectively.

The blue dotted line is the ensemble mean. The green envelope identifies the ensemble range, and

the yellow envelope delimits the 25th and 75th percentiles.

Figure 5 compares SnowEx’17 snowpit measurements at S2, SD3 and S5 and
MSHM Ensemble 5 evolution of SWE (left panels) and snow depth (right panels).
For reference, the cumulative predicted snow mass (SWE) in February 2017 at the
ECMWF grid cell scale (~ 5 × 5 km2) does not reach the highest measured value
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across the Grand Mesa, which can be attributed in part to HRRR underestimation
of precipitation generally, and snowfall in particular, uncertainty in the snowpit
measurements  themselves,  as  well  as  uncertainty  due to the scale gap between
point  measurements  (the  individual  snowpits)  and  Ensemble  5  members  that
represent areal averages at the HRRR grid cell scale (3 × 3 km2). One additional
source of snow depth uncertainty is the empirical parameterization of snowpack
compaction  in  the  model  (Appendix  A,  Section  A.1).  Specifically,  the  terms
corresponding to overburden effects exhibit high sensitivity to snow accumulation,
and therefore propagate nonlinearly the uncertainty in snowfall to snow depth.

Figure 5. Time series of Ensemble 5 SWE (left column) and snow depth (right column) predictions

on February 17 at S2 (top row), SD3 (middle row) and S5 (bottom row). The blue dotted line is the

Ensemble 5 mean. The green envelope identifies the minimum and the maximum values among all

ensemble members,  and the yellow envelope delimits  the 25th and 75th percentiles.  The symbols

represent the SnowEx’17 snowpit observations following the convention in Table S2.

The model results during SnowEx’17 were organized further in two sets for
evaluation against the snowpit measurements according to spatial scale: a) local –
Ensemble  5  predictions  for  the  member  that  is  nearest  to  the  center  of  each
reference ECMWF grid (Table S1),  and b) global – Ensemble 5 mean across the
Grand Mesa. Figure 6 shows the local (top row) and global (bottom row) model
bias during February 2017. Inspection of the local bias (local Ensemble 5 member –
snowpit  average  within  the  corresponding  ECMWF grid  cell)  shows that  SWE
estimates are within ±10% of the snowpit measurements except at S1 and S5. This
indicates  that  the  HRRR  snowfall  estimates  and  the  model  handling  of  the
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snowpack  mass  and  energy  budgets  are  well  simulated  without  the  need  for
calibration or special processing of the data. The large accumulation biases at S1
(positive bias, surplus) and S5 (negative bias, deficit) are attributed to uncertainty
in wind effects. Sources of uncertainty in near-surface wind magnitudes include
the fact that HRRR near-surface winds are used directly in the simulations without
downscaling  which  introduces  large  biases  in  the  surface  friction  velocity
everywhere [46], lack of topographic corrections to account for the steep slopes at
S1  in  the  western  edge  of  the  Mesa,  and corrections  to  account  for  structured
roughness due to the presence of forest at S5. Additionally, as mentioned earlier,
the MSHM implementation used here does not simulate wind-redistribution. This
explanation  is  further  supported  by  the  temporal  variability  of  the  global  bias
(Ensemble 5 mean – snowpit average within the reference ECMWF grid cell) as
well as the west-east differences with larger negative bias to the east (e.g., SD2, SD3
and S5) on the more forested areas of the Grand Mesa as snow accumulates in the
second half of February (see Figure 2) and larger positive bias to the west (e.g., S1).

Figure 6. Evaluation of model bias at reference ECMWF grid points (Figure 1) during SnowEx’17

(Table  S1).  Top –  Local  bias  calculated  as  the  difference  between  the  Ensemble  5  Member

corresponding to the nearest  HRRR grid and the  average of  SnowEx’17  snowpit  measurements

within each ECMWF reference grid point for the entire month of February.  Bottom – Temporal

evolution of global bias calculated as the difference between the Grand Mesa Ensemble 5 mean and

the average snowpit measurements on the same day within each ECMWF reference grid point.

Snow Stratigraphy – The temporal evolution of snow density and temperature
profiles at S2 corresponding to Member 8 of Ensembles 1, 2 and 5 are shown in
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Figure 7. The average of co-located snowpit profiles is superimposed on simulated
profiles for the available dates.  As expected Ensemble 5 members  are the most
realistic in that the simulated snow depths are close to the measurements. There is
however no significant difference in the temperature gradients in the upper half of
the simulated snowpack among members of Ensembles 2 and 5, demonstrating the
governing role of the near-surface air temperature in the turbulent heat exchange
at  the  air-snow interface.  The differences  between  model  and snowpit  average
density are generally less than 50 kg/m3  at the same depth, which is adequate for
coupled  forward  modeling  of  snow  hydrology  and  radiative  transfer  using
MEMLS [20-22,34].

Figure 7. Evaluation of predicted snow density and temperature profiles at S2 by Member 8 (HRRR

grid point closest to the center of the S2 ECMWF grid point, Figure S1a) for Ensembles 1, 2 and 5 in

the top, middle and bottom rows respectively. The circles represent the average of snowpit density

(left  column,  color  scale  on  the  right)  and temperature  (right  column,  color  scale  on the  right)

measurements as a function of depth (on the left-hand side y-axis) and date (x-axis).  The measured

values are plotted at the depth of measurement in the SnowEx’17 records. The model values are

plotted at the mid-point of each layer. Time-series of simulated snowpack stratigraphy (number of

layers and layer thickness) are provided in Supplementary information (Figure S7a).

Temperature and density profiles at SD3 (Member 13) and S5 (Member 29) for
Ensemble 5 only are shown in Figure 8. Ensemble 5 model predictions capture well
the isothermal behavior of the snowpack at the three sites (bottom row in Figure 7
for S2, and Figure 8 for SD3 and S5) as well as the signature of major snowfall and
cold weather events. The temporal evolutions of the number of snowpack layers
and top layer depth simulated for the three reference grids are shown in Figure S7.
SnowEx’17 measurements of top-layer snow temperatures are generally close to
the  freezing  point  (273.15  K)  and  nearly  isothermal  throughout  the  snowpack
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except  during  two  cold  periods  on  February  15  and  February  25.  Daytime
temperatures well below the freezing level in the top 20-50 cm for these two events
that  are  well  captured  by  the  model  consistent  with  the  local  surface  energy
budget. For instance, Figure S8 shows the strong reduction in daytime snowpack
sensible heat flux at S2 in the February 22-25 period. In addition, note the short-
lived periods of steep decreases in upper snowpack temperature tied to transient
decreases  in  cloudiness  that  translate  into  approximately  halving  of  incoming
longwave radiation in the February 22-25 period (e.g., Figure S9). The contribution
of incoming longwave radiation to the surface energy budget is critical  [47], and
the reduction of incoming longwave radiation (~ 150 W/m2) on clear cold days
impacts snowpack temperatures at intermediate depths corresponding to the top
50 cm at S2 and as much ~100 cm for the deeper snowpack at SD3 and S5 (Figure 8)
due to faster cooling in less dense snow.

Figure 8.  Evaluation of predicted snow density (top row) and temperature (bottom row) profiles

against measured snowpit profiles (circles). Left column: Ensemble 5 Member 13 (HRRR grid point

closest to the center of the SD3 ECMWF grid, Figure S1a). Right column: Ensemble 5 Member 29

(HRRR grid point closest to the center of the S5 ECMWF grid, Figure S1a). The measured values are

plotted at the depth of measurement in the SnowEx’17 records. The model values are plotted at the

mid-point of each layer.  Time-series of simulated snowpack stratigraphy (number of layers and

layer thickness) are provided in Supplementary Information (Figures S7b and S7c).

Figure 9 illustrates  the behavior  of  Ensemble  5 against  measurements  from
each of  four  snowpits  within S2 on February  25.  A caveat  of  daytime snowpit
profile measurements is that they are disturbed at least in part due to excavation
and the snowpack facies is directly exposed to the environmental air, which can
explain at least in part the warmer temperatures in the deeper layers. The goal here
is to compare the ensemble spread with the snowpit measurements’ spread within
S2, where the ensemble spread captures snowpack heterogeneity tied to the space-
time  variability  of  meteorological  forcing  within  the  Grand Mesa  at  the  small
mesoscales  of  the  HRRR analysis  (3  ×  3  km2),  and the  snowpit  measurements
represent  subgrid-scale  variability.  Simulated  snow  density  profiles  replicate
closely  the  measurements  except  at  the  bottom  of  the  snowpack  where  the
measured  density  profiles  display an “inversion” with lower  densities  5-20 cm
above the snow-soil interface (e.g., top right in Figure 9). This behavior suggests
depth hoar formation at the snow-soil interface that is not explicitly represented in
the model.
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Overall, the MSHM driven by HRRR atmospheric forcing and constrained by
the mass and energy balance exhibits behavior consistent with SnowEx’17 snowpit
observations across the Grand Mesa. Figure 10 shows the continuous simulation of
snowpack temperature, density and snow correlation length profiles for the 2016-
2017 hydrologic year including accumulation and melt regimes. The decreases in
density  and  cold  temperatures  at  the  top  of  the  snowpack  during  and  after
snowfall  are  depicted  well  by  the  model,  including  the  densification  of  the
uppermost layers, the nearly isothermal profiles during warm periods that result
from surface melt retained in the top layer or can percolate and freeze as shown in
Figure 7. Note the long duration of the snow-on season in 2017 that lasts till the
end of June consistent with Landsat and Sentinel-1 satellite observations [9].

Figure 9. Evaluation of Ensemble 5 predictions of snow temperature (right) and snow density (left)

against snowpit measurements within S2 on February 25. The continuous lines represent Ensemble

5 mean values at three distinct times close to the reported time of snowpit measurements. The green

envelope  represents  the  min-max  range  of  ensemble  predictions  at  each  depth.  Each  row  is
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associated  with  one  of  four  distinct  snowpits  identified  by  distinct  markers  according  to  the

convention in Table S2.

A side-by-side survey of Figure S5 (meteorological forcing: precipitation and
air  temperature),  Figure 4  (bottom row,  snowpack SWE and snow depth),  and
Figure 10 (snowpack stratigraphy) shows modest uncertainty in SWE (~ ±15%) and
snow depth (~ ±10%) during the accumulation regime tied to snowfall uncertainty
that is maximum in the winter. At the Grand Mesa scale, uncertainty peaks in the
melting season with values up to 50% attributed to weather, and in particular air
temperature.  Interestingly,  uncertainty  in  snow  density  as  a  function  of  snow
depth (mid panel in Figure 10) is significantly larger in the fall season and through
the  warming  period  in  the  first  half  of  February  (top  panel  in  Figure  10).  It
collapses  as  the  snowpack  ages  and  becomes  deeper  during  the  accumulation
season, and large variations in density with fresh snowfall are limited to the top 50
cm. The layering in the vertical structure of snow correlation length reveals the
stratigraphy of snow microphysics (bottom panel in Figure 10) to be more complex
than suggested by the apparent simplicity of the physical parameterization used in
the  model  that  expresses  a  linear  dependence  of  snow correlation  length  with
temperature  [36,48].  This  complex  stratigraphy is  the  outcome of  the  temporal
integration  of  nonlinear  interactions  among  snow aging  processes,  the  diurnal
cycle  of  radiative  forcing  and  weather  systems  that  affect  the  snowpack
temperature,  and  the  occasional  fresh  snowfall  and  rain-on-snow  events.
Snowpack microphysical and thermodynamic stratigraphy along with snow mass
and surface roughness govern the effective radiative properties of the snowpack,
and its emissions and scattering behavior to be discussed next.

4.2 Snowpack Microwave Emissions and Scattering Behavior

The snowpack ensembles generated by the snow hydrology model were used
to  generate  dual-polarization  backscatter  coefficients  (σ)  and  brightness
temperatures (Tb) at L- (1.3 GHz), C- (5.6 GHZ) and Ku– (13.5 GHz) and Ka- (37.5
GHz) bands using MEMLS with parameters summarized in Table 2 for both EFF1
and  EFF2  ensembles.  The  objective  is  to  examine  the  propagation  of  spatial
uncertainty associated with meteorological forcing at the Grand Mesa scale in the
microwave domain, and to estimate uncertainty due to sub-grid scale variability of
precipitation,  respectively.  Only a selection of  results  that  synthesizes the main
findings is  shown here.  We quantify  sensitivity  in  terms  of  ensemble  standard
deviation and range.

Table 2. Parameters set for active and passive microwave remote sensing of snow in MEMLS. The

type of scattering coefficient refers to specific parameterization of the 6-flux scattering coefficients,

and 11 was proved to be the best [35].

Frequency (GHz) 1.3, 5.6, 13.5, and 37.5 GHz
Incidence angle (º) 50

Snow-ground reflectivity, h-pol 0
Snow-ground reflectivity, v-pol 0

Specular part of snow-ground reflectivity, h-pol 0
Specular part of snow-ground reflectivity, v-pol 0

Sky brightness temperature (K) 0
Type of scattering coefficient 11

Mean slope of snow surface undulations 0.1
Cross polarization fraction 0.2

Snow salinity (parts per thousand) 0
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Sensitivity to Meteorological Forcing – The propagation of uncertainty from the
snow hydrology to the microwave radiative transfer model is examined first by
contrasting C-band (5.6 GHz) active σ-HH and passive Tb-H and active Ka-band
(37.5 GHz) for EFF1 Ensembles 2 and 5 that differ in atmospheric forcing with
regard  to  boundary-layer  conditions  (wind  speed  and  specific  humidity)  and
incoming radiation (Table 1). Recall that there is a small net change in SWE (< 5
cm) during the month of February in Grand Mesa, and the variability on each date
reflects mostly the concurrent spatial variability of snowpack radiative properties.
The results (Figure 11) for Ensemble 2 exhibit much less variability than the results
for Ensemble 5, which can be attributed to the latter’s improved spatial variability
of the boundary-layer (including winds and specific humidity, and cloudiness) that
modulates the surface energy budget the independently of frequency across the
Grand Mesa.   Backscatter  and brightness temperatures  exhibit  highly nonlinear
sensitivity as measured by the standard deviation, respectively ±10 dB and ±2 K,
and that this sensitivity is more significant in the case of active microwave at the
longer wavelength (i.e., 5.6 GHz), albeit the range is nearly twice as large. Note the
collapse of the violin diagrams and thus uncertainty during the cold snap in late
February as well as the higher σ with larger uncertainty for Ka- compared to C-
band.  For  the  remainder  of  this  discussion,  the  discussion  will  focus  on  EFF1
Ensemble 5 results.

Figure 10. Ensemble 5 predictions of seasonal evolution of snowpack vertical profiles contoured by

temperature  (top  panel),  density  (mid  panel)  and snow correlation  length  (bottom panel)  from

9/1/2016 through 6/30/2017.
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Figure 11. Spatial variability of brightness temperatures (Tb, top panels) HH-pol and backscattering

coefficients for C- (5.3 GHz, mid-panels) and Ka- (37.5 GHz, bottom panels) bands at 18:00 UTC (1

PM MST) across the Grand Mesa from Ensemble 2 (left column) and Ensemble 5 (right column)

during February 2017. For each violin diagram, the white dot represents the median; the horizontal

black dashed line is the mean; the vertical black bar demarks the 25 th and 75th percentiles; the upper

and  lower  bounds  represent  the  maximum  and minimum  values  respectively;  and  finally,  the

colored contour is the density distribution.

Figure 12 shows the temporal evolution of backscattering coefficient σ HH-
and σ VH-pol at  5.6 GHz and 1.3 GHz contoured by Ensemble 5 SWE during
February 2017. The ensemble mean highlights the diurnal cycle of backscattering
sensitivity  that  peaks  in  the  afternoon  when  the  spatial  variability  of  HRRR
radiative forcing and planetary boundary layer conditions is the highest, and when
daytime warming of the snowpack peaks causing surficial melt for some ensemble
members. Note the much higher sensitivity overall at 5.6 GHz including for high
SWE  ensemble  members  in  the  afternoon.  The  compound  effect  of  standard
deviation of snow depth and snowpack condition explains the large range (up to
20 dB) among ensemble members (e.g.,  2/12 – 2/17, 2/19-2/22 and 2/23).  The
decrease  in  uncertainty  on  2/11,  2/17  -  2/18,  and  in  the  evening  of  2/22  is
associated with the addition of fresh snow to the snowpack across the Mesa as
shown in Figure S10. Rain-on-snow for some of the ensemble members on 2/11
and 2/17-2/18 and very warm air temperatures that cause surficial melting in the
case of other ensemble members enhance nighttime sensitivity at 5.6 GHz due to
the increase in liquid water content in the top layers of the snowpack (e.g., Figure
13). Further, nighttime temperatures above the freezing point for some HRRR grids
explain the differences in nocturnal sensitivity of the snowpack between 5.6 GHz
and 1.3 GHz in the evening of 2/10 and early morning of 2/11. 
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Figure 12.  Temporal evolution of ensemble backscattering coefficient σ-HH and σ-HV at 5.6 GHz

(top  panel)  and  1.3  GHz (bottom  panel)  contoured  by Ensemble  5  SWE.  The  black  line  is  the

Ensemble 5 mean. Note the diurnal cycle of sensitivity of the ensemble mean that is dominant at 5.6

GHz including for high SWE ensemble members.

Figure 13.  Backscattering behavior of σ-VV at 5.6 GHz and snowpack properties along the west-

east transect formed by Ensemble 5 Members 32-42 in Grand Mesa (see maps in Figure 1 and Figure

S1). LWC – liquid water content in the top snow layer. Tsnow – temperature of the top snow layer.

SD – snowpack depth. MST – Mountain Standard Time = UTC-7.
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Figure 14 shows how melting during the second week of February reduces
snowpack depth and SWE (Figure 12) and exposes deeper layers with longer snow
correlation length (red box). The signature of long correlation lengths in the top
snowpack layer exposed by melt in Figure 14 remains till the end of the month
although it becomes narrower over time as new snowfall resets the top layer snow
correlation  length  to  much  lower  values.  Nocturnal  sensitivity  (Figure  12  and
Figure 14) collapses during the severe cooling event with intermittent snowfall at
the end of the month (after 2/23). Daytime sensitivity peaks in the afternoon for
some ensemble members, and at 5.6 GHz in particular as the weather begins to
warm up on 2/26. The contrast between scattering behavior at 7 AM MST (similar
for 7 PM LST) and 2 PM MST is illustrated in Figure S11 for the month of January
and February in 2017. At 7 AM MST, Ensemble 5 variance that captures the spatial
variability attributed to meteorological forcing across the Grand Mesa at 3 × 3 km2

remains at or below 3 dB for both 1.3 GHz and 5.6 GHz with very little difference
between the two except  on January 9 (bottom left),  when there is  a  very large
snowstorm and a significant increase in snow depth. At 2 PM MST, the standard
deviation does not significantly change at 1.3 GHz, but it increases up to 8 dB at 5.6
GHz tied to surface melt.  Indeed,  daytime snowmelt  and subsequent  nighttime
refreeze previously identified by [9] in Grand Mesa using Sentinel 1, C-band (5.6
GHz)  SAR  measurements  is  the  most  important  source  of  variability  in  the
accumulation regime.
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Figure 14.  Temporal  evolution  of  Ensemble  5  backscattering  coefficients  σ-HH at  5.6 GHz (top

panel) and 1.3 GHz (bottom panel) contoured by correlation length of the snowpack top layer. The

black line is the Ensemble 5 mean.  The red box marks the overnight  period from 2/10/2017 to

2/11/2017 followed by daytime hours. UTC= Mountain Standard Time +7.

Interestingly,  the  amplitude  of  the  impact  of  surface  melting  in  daytime
backscattering is the same across scales. For the case of EFF2 when the downscaled
precipitation fields are used at 750 × 750 m2, there is little sensitivity to the spatial
variability of precipitation at 1.3 GHz (not shown), whereas the spatial variability
can be as high as 10 dB for 5.6 GHz even when snow depth and SWE differences
are small at S2 due to daytime surficial snowpack melting in the second and third
weeks of February (Figure S12). Due to cold temperatures, larger spatial variability
of snow depth in the end of February does not propagate into the backscattering
behavior of the snowpack.  Figure 15 contrasts  the interplay between snow and
rainfall  and  air  temperature  at  mid-day  for  the  3-day  period  2/20-2/13  when
significant spatial variability in mid-day liquid water content in the top layer of the
snowpack enhances the spatial variability of backscattering at 5.6 GHz. Whereas
there is high sensitivity (~10 K) for passive microwave as illustrated in Figure 16
for the same three-day period, there is high ambiguity in the relationship between
SWE and Tb, or snow depth and Tb, as a function of time-of-day (e.g., 1.3 GHz)
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and especially for the shorter wavelengths (e.g., 5.6 GHz). It is therefore desirable
for  snow remote sensing to  make either  active or  passive measurements  either
early in the morning or late in the afternoon.

Figure 15.  Diurnal cycle of 5.6 GHz σ-HH contoured by SWE (top panel), and temperature (mid-

panel) and liquid water content (LWC, bottom panel) of the top layer of the snowpack at S2 over the

period 2/10-2/13 for EFF2 (table 3).  The ~ 10dB range on 2/12 results from compounding nonlinear

effects  of  modest  sub-grid-scale  variability  of  snow depth  (Fig.  S12)  and mid-day temperatures

above the freezing level that cause melting at the snowpack surface. UTC=Mountain Standard Time

+7.
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Figure 16.  Diurnal cycle of brightness temperature Tb-H at 1.3 GHz (bottom row) and 5.6 GHz (top

row) for all Ensemble 5 members thus capturing the spatial variability of the snowpack across the

Grand  Mesa  during  the  warm  weather  period  2/10-2/23  from  left  to  right.  Note  snowpack

disappearance for some ensemble members (SWE =0) on 2/11 (e.g., Figure 13) and 2/12 due to melt.

The high ambiguity (spatial variance) introduced by the local meteorology is apparent with multiple

SWE values  for  each Tb at 5.3 GHz,  in  particular  for  intermediate  and deep snow and during

daytime.  The  green  arrow  indicates  the  direction  of  Tb  increase  during  nighttime  cooling  and

refreezing the snowpack; the dark blue arrow indicates the direction of Tb decrease during daytime

warming with substantial surficial melting.

Figure 17 shows the simulated temporal evolution of Ensemble 5 mean σ-HH
at 1.3 GHz at 7 AM MST from 1/1 through 2/28 in 2017 in terms of total snow
accumulation and day–to-day changes. The corresponding results at 5.6 GHz are
shown in Figure S13. The snowpack deepens in January due to cold weather and
several snowstorms in January corresponding to an increase in SWE as a function
of σ-HH (ΔSWE/Δσ) of 5-6 cm/dB at the monthly time-scale. The erratic weather
in  February,  results  in  much  lower  snow accumulation  with  rapidly  changing
backscatter  in  the  first  week  of  the  month  mainly  attributed  to  microphysical
changes in the top layer of the snowpack, followed by steady accumulation at a
rate  of  ~2  cm/dB  later  in  the  month.  This  behavior  demonstrates  the  time-
integrated sensitivity of backscatter to regional weather during the accumulation
phase of the seasonal snowpack. It implies that the specific history of weather and
snowpack  interactions  determines  the  backscattering  behavior,  and  it  hints
therefore  at  the  necessity  of  physically-based  retrieval  via  for  example  data-
assimilation for applications over large areas. Yurchak [49] relates (ΔSWE/Δσ) to
the variance of the Fresnel coefficient in a layered snow medium, which in turn is
proportional to the density variance in the snow medium. This approach can be
used to explain the spatial  variability of accumulation rates  (2-10 cm/dB) from
scatterometer data matching different types of snow in Greenland [26]. Using a 1-
layer snow model and one-parameter at a time sensitivity analysis, Oveigharan et
al.  [50] showed that the  backscattered power in dual polarization dual frequency
retrievals at C- and Ku-bands is more sensitive to snow density and grain radius
rather than to snow depth.  This raises the question of the possibility to retrieve
information on snowpack stratigraphy. Furthermore, the time-matched history of
consecutive changes in SWE (ΔSWE) and changes in backscatter (Δσ-HH) in Figure
17 and Figure S13 suggests that it is possible to use changes in backscatter to detect
individual  snowstorm  activity  and  associated  snowfall  above  a  minimum
thresholds of Δσ (~0.3 dB/day).
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Figure  17. Snowpack  monitoring  in  Grand Mesa  at  1.3  GHz HH-pol  during  the  accumulation

season,  January-February  2017.  Top  — Heuristic  linear  relationship  between  snowpack

accumulation and backscatter (R2 > 0.95) that reflects the integration of variable weather conditions

in January and February in the simulated snowpack.  Bottom — SWE and backscatter increments,

respectively ΔSWE and Δσ-HH, are calculated as the difference between today’s and yesterday’s

values at 7AM MST. MST- Mountain Standard Time = UTC-7.

The  full  evolution  of  the  Ensemble  5  mean  of  simulated  backscatter  and
brightness temperatures of the seasonal snowpack across Grand Mesa is shown
respectively in Figure 18a and 18b from 9/1/2016 through 6/30/2017 for different
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frequencies and time-of-day. Results for different polarizations at 7 AM MST, and
even at mid-day albeit complicated by mid-day melting exhibit similar behavior
(Figure S14). 

Figure 18. a) Seasonal evolution of Ensemble 5 mean backscatter at 7PM MST across the Grand

Mesa throughout the snow season from 9/1/2016 through 6/30/2017. Overall behavior is similar

for all  polarizations.  b)  Seasonal evolution of Ensemble 5 mean brightness temperatures at 7PM

MST  across  the  Grand  Mesa  throughout  the  snow  season  from  9/1/2016  through  6/30/2017.

Overall behavior is similar for all polarizations. MST- Mountain Standard Time = UTC-7.

The  temporal  evolution  of  backscatter  data  show  hysteresis  between  the
accumulation  and the  melt  phase  is  synthesized by  the  conceptual  diagram in
Figure  19a.  Evidence  of  nonlinear  behavior  is  apparent  in  the  winter-spring
transition season with melt-refreeze cycles (April), and in the melt regime for deep
snow as the snowpack ripens (May) and for ripe shallow snowpack conditions late
in  the  season  (June).  Hysteretic  backscatter  offsets  decrease  with  frequency
increases, and essentially collapse at Ku-band in the melt regime for which case
sensitivity to small changes in wet shallow snowpacks introduce large uncertainty
(i.e., noise). Although the range of conditions simulated here is limited by model
simplicity and strict focus on uncertainty tied to meteorological forcing and not to
model structure or model parameters, the results suggest that there is potential to
take advantage of hysteresis at lower frequencies (e.g., L- and C-band in the melt
regime)  and  power  at  higher  frequencies  (e.g.,  Ku-band  in  the  accumulation
regime) to improve the signal-to-noise ratio in SWE remote sensing. 

The temporal evolution of microwave emissions maps a closed trajectory (e.g.,
limit-cycle) in the (Tb, SWE) phase-space that shows very little sensitivity during
the accumulation phase when SWE > 10 cm followed by large nonlinear sensitivity
in the return phase with clear separation of the behavior of deep snow in early
winter-spring transition and shallow snow in late spring. Further, the limit-cycle at
13.5 GHz in Figure 18b (13.5 GHz) shows high sensitivity to melt-refreeze cycles at
7 PM in the winter-spring transition that are not apparent at 1.3 GHz.  This reflects
the freezing of daily melt, in contrast with the limit-cycle at mid-day (Figure S15)
where the presence of liquid water in the top layer of the snowpack makes the 13.5
GHz brightness temperatures limit-cycle behave like the 1.3 GHz limit-cycle albeit
with  wider  hysteretic  offset.  This  behavior  is  synthesized  in  the  conceptual
diagram in Figure 19b. The transient cooling in early spring followed by warming
in late  spring is well  documented in  [21] for brightness temperatures  at  higher
frequencies (up to 37 GHz), and the differences in the hysteretic offsets at different
frequencies provide a physical basis for early heuristic remote sensing algorithms
[15,16]. Because of dynamic nonlinear sensitivity and dramatic changes between
early and late melt regimes, and because of sensitivity to seasonal weather at local
and regional scales (e.g., Figure 17), finding unique relationships for retrieval is
challenging (i.e., calibration of model parameters). Nevertheless, coupling of snow
hydrology  and  microwave  models  provides  a  framework  for  physically-based
interpretation  and  disambiguation  of  microwave  measurements  of  snowpack
properties toward a monitoring system that can be achieved by data-assimilation.
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Figure  19.  Conceptual  synthesis  of  microwave  hysteresis:  a) Synthesis  of  seasonal  snowpack

backscatter behavior as a function of SWE exhibiting hysteresis  between accumulation and melt

phases at L- and C-bans (e.g. 1.3 and 5.6 GHz). Hysteresis is not present at Ku-band (e.g., 13.5 GHz)

and higher frequencies; b) Synthesis of seasonal brightness behavior as a function of SWE exhibiting

hysteresis between accumulation and melt phases at L- and C-bands.

5. Synthesis and Conclusion

Ensemble predictions of the seasonal snowpack over Grand Mesa, CO were
conducted for the hydrologic year 2016-2017 using a multilayer snow hydrology
model coupled to a microwave emission model. Atmospheric forcing ensembles
were designed based on atmospheric reanalysis at 3-5km spatial resolution and
exploratory  simulations  were  conducted  using  fractal-downscaled  precipitation
between  3  km and 750 m.  SWE and snow depth  predictions  driven  by  HRRR
atmospheric forcing (EFF1, Ensemble 5;  Table 1) at  3 km resolution show good
agreement with snowpit observations. Despite neglecting topographic and land-
cover  variations  across  the  Grand  Mesa,  the  local  bias  SWE  predictions  are
generally less than 50 mm (< 10% actual SWE, Figure 10 top panel) except at S1
and VS, where steep slopes and strong winds are expected to play an important
role  in  snow redistribution.  Although the  effect  of  uncertainty  in  snowfall,  air
temperature and wind redistribution is apparent in the assessment of global bias
(Figure 10 bottom panel), the modified Willmott Agreement Index (Appendix C)
[51] that  measures  the  agreement  between  the  spread  of  the  observations  and
model predictions is generally above 0.8, which is indicative of robust skill in space
and time. The model performance meets with advantage the desired requirements
for global observations from space by the Decadal Survey of Earth Sciences and
Applications from Space [46], that is 10% uncertainty in SWE 3-5 km resolution,
and thus it is suitable to examine the uncertainty propagation from meteorological
forcing  to  snowpack  states  to  radiometric  and scattering  behavior  with an  eye
toward  remote  sensing  of  SWE.  Ultimately,  the  goal  is  to  be  able  to  separate
uncertainty in snowpack measurements from space (backscattering coefficient and
brightness  temperatures)  from  retrieval  ambiguity  tied  to  spatial  scale,  snow
hydrology regime, and snowpack heterogeneity.
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The  signatures  of  the  sub-seasonal  variability  of  snow  physics  were
investigated through forward modeling akin of an exploratory observing system
simulation  experiment  (OSSE)  in  Grand  Mesa.  Specifically,  the  co-evolution  of
radar backscattering coefficients and brightness temperatures at L- (1.3 GHz), C-
(5.6 GHz), Ku- (13.5 GHz), and Ka- (37.5 GHz) bands was examined during snow
accumulation  and  melting  phases  toward  assessing  their  interpretability  and
sensitivity. At daily time-scales during the accumulation season the sensitivity to
atmospheric  forcing (i.e.,  spatial  variability  of  weather  within the Grand Mesa)
remains below 3 dB for cold weather conditions (i.e., dry snow), and increases to 8-
10  dB  at  mid-day  when  temperatures  rise  above  freezing  in  the  presence  of
surficial melt. Sub-grid scale variability of precipitation at 750 m in this study had a
modest impact on snow depth, SWE and backscatter in the accumulation regime
for dry snow. However, microwave sensitivity increases by as much as 300% as
small differences in snowpack vertical structure are amplified when liquid water
content is present. Therefore, surficial melting is the process governing backscatter
sensitivity to sub-grid scale variability. At mid-day this sensitivity amounts to 3-10
dB of uncertainty measured by the standard deviation of the ensemble backscatter
in Grand mesa, but it can be constrained below 3 dB if measurements are made
early in the morning or late in the afternoon. Intermittent melt coupled with spatial
variability of snow accumulation explains the wide range of the ensemble (~20 dB).

At monthly time-scales during the accumulation season, robust linear heuristic
functional  relationships  between  ensemble  mean  backscatter  and  SWE  can  be
found  across  the  Grand  Mesa  (e.g.,  ~5-6  cm/dB  in  January;  ~2-2.5  cm/dB  in
February at L- and C-bands). The nonstationary of these functional relationships
reflects the cumulative impact of atmosphere-snowpack interactions over time, in
particular melt-refreeze cycles that modify the microphysical and thermodynamic
structure  in  the  top  50  cm  of  the  snowpack.  This  finding  is  consistent  with
conclusions by [9] using C-band SAR measurements from Sentinel-1.

Analysis of full seasonal simulations reveals hysteresis in the mean backscatter
behavior  between  accumulation  and  melt  phases  with  hysteretic  offsets  that
become noisier as frequency increases especially for shallower and ripe snowpacks
in  late  spring.  The  hysteretic  behavior  is  captured  as  well  by  the  temporal
evolution of microwave emissions, with brightness temperatures following very
distinct  trajectories  in the melt  regime for  deep and shallow snowpacks.  These
physical ties between snow hydrology and microwave behavior provide a physics-
based framework  to  increase  the  potential  for  remote  sensing  of  SWE through
physical disambiguation of remotely-senses microwave behavior. For instance, a
multi-frequency approach to SWE measurement conditional on snow state could
consist of using Ku-band and brightness temperatures during the accumulation
regime, and C- and, or L-band in the melt regime. It also provides a framework for
active-passive  sensing  for  instance  by  making  use  of  passive  sensing  in  the
accumulation regime to detect freeze-melt cycles (e.g., different between day-to-
day changes in L- band backscatter and L-band brightness temperatures) and, or
using active C-band or L-band in the early spring, followed by passive in the late
spring.

Sub-grid scale effects of topography, land-cover and in particular forests, are
not explicitly addressed in this study, and a key question is whether compound
uncertainty remains below 3 dB at the Grand Mesa scale (~300 km2) and ~10 km2

resolution and, or alternatively their backscatter contribution can be isolated and
parameterized.  In  the melt  regime,  independently  of  spatial  scale  and sub-grid
scale  variability,  snow wetness  alone  introduces  large  ambiguities  that  can  be
addressed by probing the other snowpack states resolved in the snow hydrology
model. Therefore, a coupled snow hydrology-radiative transfer approach should
be  advantageous  toward  global  systematic  implementation  of  SWE  retrieval.
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Although more systematic evaluations are needed to inform snow remote sensing,
one important  implication  of  these  results  is  that  calibrated  empirical  or  semi-
empirical retrieval algorithms are not transferable from one location to another, or
from one season to another. Note that only a limited number of frequencies and
polarizations  is  fully  analyzed  in  this  study,  but  the  framework  can  be
implemented  using  other  radiative  transfer  models  and  is  suitable  to
systematically  explore  realistic  remote-sensing  architectures.  One  practical
advantage of active-passive combinations is the development of straightforward
error models for data-assimilation given the unambiguous relationships between
snowpack properties and the microwave signal.

Supplementary  Materials: The  following  are  available  online  at  www.mdpi.com/xxx/s1,  Figure  S1a.
Numbering order convention for HRRR grids in Figure 1 (right panel) corresponding to the ID numbers in
Table  S1.  Figure  S1b. Illustration  of  overlap  of  several  HRRR  Grids  with  one  ECMWF  grid  including
hypothetical distribution of SNOWEx’17 snowpits within ECMWF grid. The diamonds are placed at the center
of each grid. Figure S2. Structure of 1-D MHSM workflow. The first snowpack layer forms when the following
two conditions are met: (1) The air temperature is below the freezing point (273.15 K); and (2) precipitation is
present. In the melting season, liquid precipitation is added the snowpack’s melting outflow directly.  Figure
S3. Geometry of the layered snowpack with an electromagnetic  wave incident from above at an incidence

angle  θn [36].  Notation: layer thickness  d j,  layer temperature  T j,  transmissivity  t j,  volume reflectivity  r j,

emissivity e j, and interface reflectivity s j, refracted angle θ j−1 for layer number j ranging from 1 (bottom) to n

(top),  snow-ground  reflectivity  s0 and  ground  temperature  T 0.  [e j+r j+t j=1 as  required  by  energy

conservation]. Figure S4. Schematic view of incoming and outgoing radiation between adjacent snow layers in
MEMLS [36]. Notation as in Figure S2.  Figure S5. Illustration of recursive fractal precipitation downscaling
scheme from 3 km (HRRR resolution) to 750 m. At each stage 50 fields are generated, but only the ensemble
mean is downscaled to the next stage.  Finally, each of 16 ensemble means at 750 m resolution is used to
generate  a member  of  EFF2 for  each ECMWF pixel.  Figure S6. MHSM predicted time-varying  snowpack
stratigraphy in terms of number of  layers and depth of  top layer during February 2017 corresponding to
results presented in Figures 10 and 11 for EFF1 Ensemble 5: a) ensemble member 8 at S2; b) ensemble member
13 at SD3; and c) ensemble member 29 at S5. The time-series are plotted in UTC = LST + 7. Figure S7. MSHM
predicted time-series of temperature in the upper two layers of the snowpack (top row) and snowpack surface
heat flux (bottom row) at S2 for EFF1 Ensemble 5 Member 8. Specified air temperature from the HRRR model
at grid 8 (Figure S1a) is provided for reference. The time-series are plotted in UTC = LST + 7. Figure S8. HRRR
incoming longwave radiation flux during February 2027 at Grid 8 (Figure S1a). Time-series are plotted in UTC
= LST + 7. Table S1. Geographical correspondence between ECMWF and HRRR grids in Figure 1.  Table S2.
ECMWF reference grid S2: HRRR grid points (center of HRRR grid cell) and snowpit locations. Bold red letters
identify the HRRR grid ID (Figure S1) nearest to the ECMWF grid center point. Table S3. Same as Table S2, but
for ECMWF reference grid SD3. Table S4. Same as Table S2, but for ECMWF reference grid S5. Table S5. Same
as Table S2, but for ECMWF reference grid Ex. Table S6. Same as Table S2, but for ECMWF reference grid S1.
Table S7. Same as Table S2, but for ECMWF reference grid S3.  Table S8. Same as Table S2, but for ECMWF
reference grid S4. Table S9. Same as Table S2, but for ECMWF reference grid SD2. Table S10. Same as Table
S2, but for ECMWF reference grid VS.
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Appendix A: The Multilayer Snow Hydrology Model (MSHM)

The MSHM simulates snow hydrological processes in the snowpack column
and quantifies energy and water fluxes at the land-atmosphere interface driven by
meteorological  forcing.  The flowchart  of  model  components  and how they  are
connected is depicted in Supplementary Figure S1. The model formulation used in
this  manuscript  is  described  here;  additional  implementation  details  and
alternative parameterizations can be found in [20,21]. Each variable’s unit is in ().

A.1 Compaction 
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When SWE changes due to snowmelt, sublimation, rain-on-snow events, and
snowfall, the snow depth  hsnow (m) is decreased by the compaction ratio  CR (1/s)
that is parameterized with metamorphism and overburden effects as follows:

CR=| 1
hsnow

d ∆hsnow

dt |
metamorphism

+| 1
hsnow

d ∆hsnow

dt |
overburden

( A1 )

| 1
hsnow

d ∆hsnow

dt |
metamorphism

=−2.778×10−6×C×e
−0.04× (Tsnow−T i)

( A2 )

| 1
hsnow

d ∆hsnow

dt |
overburden

=
−P snow

η
×e

−0.08× (T snow−T i)×e−0.021× ρsnow

( A3 )

where

C={ 1 ρsnow≤150kg /m3

2×e
−0.046×(ρsnow−150 ) ρ snow>150kg/m

3

( A4 )

η is  the  viscosity  coefficient  at  T i(¿273.15K ),  Psnow is  the  pressure  due  to  the
snowpack  weight  (N/m2),  ρ snow and  T snow are  the  snow  density  (kg/m3)  and
temperature (K), respectively.

A.2 Snowpack Temperature

The heat energy transfer equation is

csnow× ρw×hswe×
∂T snow

∂t
=K snow×

∂T snow

∂ z
+ϕ

(A 5 )

in which ρw (¿1000 kg /m3
) is the water density,  csnow is the specific heat capacity of

the snowpack (J/kg/K), and heat conductivity of the snowpack K snow (W/m/K) is
calculated by 

K snow=Ka+(7.75×10−5×ρgs+1.105×10
−5× ρgs

2 )× ( K i−Ka )
(A 6 )

where K i and Ka are, respectively, the heat conductivity of ice and air (W/m/K),
ρgs is the snow density weighted by SWE hswe (m) and liquid water content  LWC
(m):

ρ gs=ρsnow×
hswe−LWC

hswe

(A 7 )
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External forcing term ϕ (W/m2) is null except at the bottom and at the top layer
of the snowpack. For the bottom layer:

ϕ=K ss×
T soil−T snow

hsoil+hsnow

( A8 )

K ss,  T soil and  hsoil are  the  heat  conductivity  of  interacted  snow-soil  system
(W/m/K), superficial soil temperature (K) and soil depth (m), respectively.  For
the top layer:

ϕ=NSR+NLR+S+L
(A 9 )

the net shortwave radiation fluxNSR (W/m2)  and the net longwave radiation flux
NLR (W/m2) equal to

NSR=SW × (1−Alb )

( A10 )

NLR=LW−ε×σ ×T snow
4

(A11 )

SW  and  LW  are the downward shortwave and longwave radiation flux  (W/m2),
Alb and ε  are the surface albedo and emissivity, respectively, and σ  is the Stefan-
Boltzmann constant.

Then,  the sensible  heat flux  S (W/m2) is  estimated by the air  specific heat
capacity ca (J/kg/K), air density ρa (kg/m3), air temperature T a (K) and windspeed
U  (m/s) like:

S=ca× ρa×CDT×U× (T a−T snow )
( A12 )

while the latent heat flux  L (W/m2)  is the product of  air density, latent heat of
vaporization Lv (J/kg) and sublimation rate S (m/s):

L=ρa× Lv×S

(A 13 )
and S is adapted by the Penman-Monteith equation:

S=
∆× (NSR+NLR )+γ ×Lv×ρa×CDT ×U × (qa−qsnow

¿
)

ρw× Lv×[∆+γ ×(1+CDT )]

( A14 )

where qa is the specific humidity (kg/kg) of air and ∆ (Pa/K) that is the slope of
saturation-vapor  versus  temperature  curve  at  the  air  temperature  can  be
approximated as:

∆=
esnow

¿
−ea

¿

T snow−T a

(A 15 )
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of  which  the  saturated  vapor  pressure  of  snow  esnow
¿  and  air  ea

¿ are  expressed
similarly:

esnow
¿

=611.2×exp¿
¿

ea
¿
=611.2× exp¿

¿

The psychrometric  constant  γ (Pa/K) and  the snowpack’s  saturated specific
humidity qsnow

¿ (kg/kg) are calculated by

γ=
ca×Pa

0.622×Lv

(A 18 )

qsnow
¿

=0.622×
esnow

¿

Pa

( A19 )

where Pa (Pa) is the air pressure.

A.3 Conductance Factor and Aerodynamic Drag Coefficient

The parameterization of the conductance factor  CDT  in Equation (A11) and
(A13) is like:

CDT=
1

Rsnow+
1
A

(A 20 )

of which the snow surface resistance R snow is defined as a piecewise function of SW :

R snow={ 100 SW ≥50W /m2

1000 SW <50W /m2

(A21 )

and aerodynamic drag coefficient A is from Louis, 1979:

A=
0.16

(ln
z
zr )

2×(1−
b×R i

1+c×√R i
)

( A22 )

here z (m) is the height at which the windspeed U  is and zr (m) is the roughness
height of snow; b and c are coefficients depending on stability conditions: b=1 and
c=4.7 when the boundary layer is stable (Ri>0.25); whereas b=9.4 and

c=5.3×
0.16

(ln
z
zr )

2×b×√
z
zr

( A23 )

for unstable boundary layer (Ri≤0.25).
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Besides, the Richardson number Ri is given by

Ri=
9.81×z×(θa−θ snow)

U2×
θa+θ snow

2
( A24 )

of which θa and θ snow are the potential temperature (K) of air and top layer snow,
which are calculated as follows (1.02×105 Pa is the standard atmospheric pressure):

θa=T a(1.02×10
5

Pa
)
0.286

(A 25 )

θ snow=T snow( 1.02×10
5

Pa
)
0.286

( A26 )

A.4 Melt

Snowpack melting is triggered when the energy need to melt snowpack (Qmelt)
exceeds 0, and Qmelt (J/m2) is the sum of the net heat flux NHFL and the snowpack
“cold content” Qcc:

Qmelt=NHFL+Q cc

( A27 )

where NHFL (J/m2) is the product of the MSHM’s time step size ∆ t  (s) and forcing
terms on the right hand side of Equation (A4):

NHFL=∆ t×(K snow×
∂T snow

∂z
+ϕ)

( A28 )

while Qcc (J/m2) is written as:

Qcc=csnow×ρw×hswe×(T ¿¿snow−T i)¿ (A 29 )

Furthermore, the melting occurs in two phases: ripening and deep melting, for
which the snowpack both becomes isothermal (i.e.,  T snow=T i)  and the criteria  is
based on the difference between Qmelt and Qripen (J/m2) which is the energy need to
ripen the snowpack:

Qripen=Lm× ρw×LWCmax

(A 30 )

here Lm (J/kg) is the latent heat for melting and LWCmax (m) that depends on ρ snow

and hsnow is the maximum liquid water content retained in the pore spaces against
gravity by surface tension forces of snow grains:
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LWCmax={
0.01×hsnow ρsnow<400 kg/m

3

(0.25×
ρ snow

ρw

−0.099)×hsnow ρsnow≥400 kg /m3

(A 31 )

Ripening happens when Qmelt<Qripen, under which there is no water melting out
and the internal LWC is proportional to LWCmax:

LWC=LWCmax×
Qripen−Qmelt

Qripen

( A32 )

On the contrary, deep melting takes place and initiates the meltwater hmelt (m):

hmelt=
Qmelt−Qripen

Lm× ρw

(A 33 )

by which the diminution of SWE ∆ hswe (m) and LWC  are determined:

∆ hswe={
hswe hmelt≥hswe

hmelt−LWCmax LWCmax≤hmelt<hswe

0 hmelt<LWCmax

( A34 )

LWC={
0 hmelt≥hswe

LWCmax LWCmax≤hmelt<hswe

hmelt hmelt< LWCmax

( A35 )

Note the liquid water capacity is reached on the second condition, hence ∆ hswe

is actually the infiltration or runoff released from the snowpack, and the snowpack
is completely melted in the first case (hmelt≥hswe), so there is no LWC left; whereas all
meltwater is held within the snowpack in the last one.

A.5 Rain-on-Snow 

Rain-on-snow  event  only  occurs  when  rainfall  rate  Pr is  not  nil  and  air
temperature T a is above freezing point (T i), in which case only the top-layer snow
will  be influenced and its  status is  dependent  of the thermodynamic energy of
snowpack (E snow) and rain (Erain), both of which consist of different components:

E snow=Qcc+Qripen⏟
H ripen

+Lm× ρw×hswe⏟
Hmelt

(A36 )

where H ripen (J/m2) and Hmelt (J/m2) is the heat released from the rain to ripen and
melt the snow layer, respectively.
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Erain=cw×M r×(T¿¿a−T i)⏟
Qwc

+Lm×M r⏟
H fro

¿ ( A37 )

here Qwc (J/m2) is the “warm content” of the rainfall and H fro (J/m2) is the released
heat after the rain drop becomes totally frozen.  cw is the specific heat capacity of
water (J/kg/K) and M r is the rainfall mass (kg/m2) during a model’s time step (i.e.,
the product of Pr and ∆ t).

The warm rainfall  would melt  the top-layer  snow completely  in two cases:
Erain≥ Esnow or  H ripen≤ Erain<E snow,  under  both  circumstances  falling  rain  joins  the
snowpack’s  melting outflow directly.  On another hand, when  Erain≤Qcc,  all  rain
freezes  and  adds  to  the  snowpack  mass  with  releasing  energy  to  arise  the
snowpack temperature by ∆T snow (K):

∆T snow=(T i−T snow)×(
Erain

Qcc⏟
1

+

M r

ρw

×ρi

hswe×ρw⏟
2

)

(A 38 )

among which 1 and 2 marking the fractional increase toward T i are the adjusting
term  of  energy  and  mass,  respectively;  while  the  boxed  item  is  actually  the
increment of snow mass (SWE). ρi is the ice density (kg/m3).

If  Erain<H ripen or  Qwc≥Qcc, the rain will be absorbed by the isothermal mushy
snowpack and promote hswe by the same magnitude in Equation (A38), as well as
LWC by ∆ LWC  (m):

∆ LWC=min(
M r

ρw

,LWCmax−LWC)
( A39 )

A.6 Dividing and Combining Snow Layers

The MSHM will  activate the dividing mechanism which only separates  the
top-layer snow into n+1 new layers and specifies their properties, without acting
on the lower layers beneath the top one, if the round ratio (n) of top-layer SWE to a
specific threshold (Thres) is greater than 1:

n=floor (
hswe

Thres )
( A40 )

in which the floor operation rounds the fraction to the nearest integer less than or
equal to it.

As presented in Figure S2, the snow properties from the layer m to m+n remain
the same with the original top layer after the dividing behavior:

ρ snow
m+n

=…=ρsnow
m+1

=ρsnow
m

(A 41 )
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T snow
m+n

=…=T snow
m+1

=T snow
m

(A 42 )

Lc
m+ n

=…=Lc
m+1

=Lc
m

( A43 )

except for snow depth and SWE:

hsnow
m+n−1

=…=hsnow
m+1

=H snow
m

=
Thres× ρw

ρ snow
m

( A 44 )

hswe
m+n−1

=…=hswe
m+1

=H swe
m

=Thres
(A 45 )

hswe
m+n

=hswe
m

−Thres×n
(A 46 )

hsnow
m+n

=
hswe
m+n× ρw

ρsnow
m

( A47 )

On the other hand, when the snow depth hsnow
j  at layer j is less than or equal to

a critical value, the MSHM will combine all mass-related terms, such as  hsnow
j  and

hswe
j , with the lower layer j−1:

hsnow
j

¿hsnow
j

+hsnow
j−1

(A 48 )

hswe
j

¿h swe
j

+hswe
j−1

(A 49 )

whereas  ρ snow
j ,  T snow

j  and  Lc
j  are  averaged  and  weighted  by  SWE  through  two

consecutive snow layers:

ρ snow
j

=
hswe

j ×ρ snow
j

+hswe
j−1×ρ snow

j−1

hswe
j

+hswe
j−1

(A 50 )

T snow
j

=
hswe

j ×T snow
j

+hswe
j−1×T snow

j−1

hswe
j

+hswe
j−1

( A51 )

Lc
j
=

hswe
j ×Lc

j
+hswe

j−1×Lc
j−1

hswe
j

+hswe
j−1

(A52 )

Appendix B: The Microwave Emission Model of Layered Snowpacks (MEMLS)

MEMLS was developed based on six-flux theory to simulate multiple volume
scattering and absorption, which contains radiation trapping resulted from internal
reflections and coherent ones between layer interfaces. It was first implemented to
simulated  brightness  temperatures  [36] and  recently  expanded  to  simulate

35

1074

1075

1076

1077
1078
1079

1080

1081

1082

1083

1084

1085

1086

1087
1088

1089

1090
1091

1092

1093

1094
1095
1096

1097

1098

1099

1100

1101
1102
1103
1104



Remote Sens. 2020, 12, x FOR PEER REVIEW 35 of 38

backscattering [35]. The latter made their code publicly available, and we use it in
this work.

In MEMLS, the snowpack is described as a column consisting of  n horizontal
layers (j = 1, 2 …  n) with flat boundaries at the surface and interfaces between
layers.  Each  layer  is  characterized  by  layer  thickness,  transmissivity,  density,
reflectivity,  emissivity  and temperature  that  determine  the  observed  snowpack
brightness temperature T b given by the sky brightness temperature T sky (Figure S3).

As illustrated by Figure S4, the outgoing radiation (A j and D j) from layer j and
the incoming radiation (B j and C j) can be expressed as follows:

A j=r jB j+ t jC j+e jT j

(B1 )
D j=t jB j+r jC j+e jT j

(B 2 )

B j=s j−1 A j+(1−s j−1)D j−1

(B3 )

C j=(1−s j ) A j+1+s jD j

(B4 )

where  D0 (when  j=1) on the right hand side of Equation (B3) is defined as the
ground temperature T 0; while An+1 (when j=n) on the right hand side of Equation
(B4) is given by  the downwelling sky radiation  T sky. Similarly, we can derive the
main model output ― the whole snowpack brightness temperature T b from

T b=Bn+1=snT sky+(1−sn ) Dn

(B5 )

Dn can be determined by substituting Equations (B3) and (B4) into Equations (B1)
and (B2):

A j=r j [ s j−1 A j+(1−s j−1 ) D j−1 ]+t j [ (1−s j ) A j+1+s j D j ]+e jT j

(B6 )

D j=t j [s j−1 A j+(1−s j−1 ) D j−1 ]+r j [ (1−s j ) A j+1+s j D j ]+e jT j

(B7 )

This coupled linear system of equations can be written in matrix form:

A=M1 A+M 2D+E
(B8 )

D=M 3 A+M 4D+F

(B 9 )

among  which  M 1,  M 2,  M 3 and  M 4 are  n×n matrices  including  reflectivity  r,
transmissivity  t , and emissivity  e;  E and  F are  n×1 vectors containing boundary
T sky and surface temperature T 0.

      After linear algebra, the final expression for D is
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D=(I−M 5)
−1

[M 3 ( I−M1 )
−1E+F ]

(B10 )

where I  is the identity matrix and M 5 is

M 5=M 3 [ ( I−M 1 )
−1M 2 ]+M 4

(B11 )

Appendix C: Modified Wilmott Agreement Index [51]

WAI d , p
local

=1−
( yd , p−xd , p )

2×√ 1
Ns (d , p )

∑
s=1

Ns (d , p )

(xd , p
s

−xd , p )
2
+
1
Nr∑r=1

Nr

( yd−xd , p )
2

(C1 )

WAI d , p
global

=1−
( yd−xd , p )

2×√ 1
Ns (d , p )

∑
s=1

Ns (d , p )

(xd , p
s

−xd , p )
2
+
1
Nr ∑r=1

Nr

( yd−xd , p )
2

(C 2 )

yd , p is the model SWE (or snow depth) simulated over the HRRR grid that is
nearest to the ECMWF grid point p on day d at time t = Tref, where Tref = 10 AM
LST = 17:00 UTC;

Nr (=43) is the number of HRRR grids;
Ns (d , p ) is the number of snowpits within pixel p on day d, which is different

for each pixel p;
xd , p
s  is the observed SWE (or snow depth) at site s within pixel p on day d;

xd , p is the mean of the observations from all sites within pixel p on day d;
yd is the ensemble mean on day d at time t = Tref.
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