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Abstract

We analyze 580 continuous GPS stations in California from 5 analysis centers to quantify the uncertainty in published velocities

and develop a composite velocity for each station. The horizontal positions are similar but the reported velocity varies by time

series algorithm. Vertical rates for individual stations differ up to 5 mm/yr, with systematic differences in some areas. The

published uncertainties show variability between analysis centers and are underreported, suggesting these formal errors do not

reflect the true velocity uncertainties. Differences by a factor of 4 are found in the vertical and is comparable to deformation

rates. An interpolated ensemble vertical velocity field is developed and regions with the highest rates of uplift or subsidence

correspond to the largest variance in velocities between analysis centers, but high station density can reduce these uncertainties.

Applications that rely on sub-centimeter GPS accuracy should consider the inherent uncertainty in published vertical velocity

rate estimates.
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Key Points: 10 

• Systematic review of California GPS positions and the published and derived velocities 11 
using data from 5 different analysis centers. 12 

• Published uncertainties show variability between analysis centers, are underreported, and 13 
do not reflect the true velocity uncertainties.  14 

• Vertical rates for individual stations differ up to 5 mm/yr, with systematic differences in 15 
areas of highest subsidence and uplift. 16 

  17 
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Abstract 18 

We analyze 580 continuous GPS stations in California from 5 analysis centers to quantify the 19 
uncertainty in published velocities and develop a composite velocity for each station. The 20 
horizontal positions are similar but the reported velocity varies by time series algorithm. Vertical 21 
rates for individual stations differ up to 5 mm/yr, with systematic differences in some areas. The 22 
published uncertainties show variability between analysis centers and are underreported, 23 
suggesting these formal errors do not reflect the true velocity uncertainties. Differences by a 24 
factor of 4 are found in the vertical and is comparable to deformation rates. An interpolated 25 
ensemble vertical velocity field is developed and regions with the highest rates of uplift or 26 
subsidence correspond to the largest variance in velocities between analysis centers, but high 27 
station density can reduce these uncertainties. Applications that rely on sub-centimeter GPS 28 
accuracy should consider the inherent uncertainty in published vertical velocity rate estimates. 29 

 30 

Plain Language Summary 31 

The continuous recordings from geodetic grade GPS sensors provides high resolution ground 32 
motion measurements. Multiple analysis centers process the raw GPS data into daily station 33 
positions and provide high quality data to the scientific community. Each analysis center applies 34 
different processing techniques and model corrections that produces differences in the final time 35 
series product. We analyze the GPS positions and published velocities for 5 analysis centers and 36 
develop a composite velocity dataset with uncertainties for 580 stations in California. The 37 
published positions are reevaluated to calculate a standardized velocity using 2 methods to assess 38 
if the differences arise from the underlying positions or the time series analysis. We find the 39 
horizontals positions are consistent but the vertical positions, which are an order of magnitude 40 
less, vary by analysis center and the greatest discrepancies are in areas of the largest observed 41 
subsidence. We further evaluate the vertical velocity field from all 5 analysis centers and develop 42 
an ensemble velocity field to characterize the spatially varying uncertainty. Our results 43 
demonstrate the importance of assessing position uncertainty using multiple analysis centers 44 
when informing geophysical models of observed ground motions.  45 

1 Introduction 46 

Global positioning system (GPS) instruments and processing techniques provide 47 
measurements with sufficient precision to quantify sub-centimeter geologic deformation (e.g. 48 
Dixon, 1991). The technological capabilities of GPS spurred efforts to design a permanent GPS 49 
network for continuous monitoring of the tectonic plate boundary in the western U.S. (Silver et 50 
al., 1998), ultimately realized by the construction of the Plate Boundary Observatory (PBO) 51 
between 2002 and 2012. The PBO network contains about 1,100 continuously recording GPS 52 
stations at a median spacing of ~20 km and contributes most of the regional geodetic 53 
observations used by the scientific community. Daily station positions and long-term velocities 54 
for these stations are freely and openly available (Blewitt et al., 2018; Herring et al., 2016), 55 
eliminating the need for user processing of raw GPS data and greatly expanding data access 56 
across multiple disciplines (EarthScope O&M Proposal; GAGE Facility Proposal). Increasing 57 
the diversity of GPS data users justifies the existence of the PBO network and demonstrates the 58 
value of the GPS infrastructure for scientific, government, and commercial activities (Leveson, 59 
2009). 60 
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More than a decade of daily GPS observations from the PBO network have provided 61 
high-precision time series that constrain both short and long-term crustal motion in the western 62 
U.S. This dataset is dominated by a broad zone of deformation extending from the Pacific Coast 63 
to the western edge of the Rocky Mountains showing large horizontal displacements (median 21 64 
mm/y). Strain localization on multiple faults across the region (e.g. Zeng et al., 2018) delineates 65 
crustal blocks whose tectonic motion is estimated at 10-45 mm/yr (e.g. Simpson et al., 2012). 66 
The dense station spacing and continuous recording enable quantification of spatiotemporally 67 
heterogeneous motion associated with volcanic activity, uplift and subsidence, and postseismic 68 
deformation (Hammond et al., 2016), whose vertical velocities are an order of magnitude smaller 69 
(median <1 mm/yr) than the horizontal. The largest contribution to vertical displacements in 70 
many areas is the solid earth elastic response to the hydrological cycle, which exhibits 71 
seasonality and non-stationarity from changes in terrestrial water storage (Argus et al., 2017; 72 
Borsa et al., 2014; Fu et al., 2015; Johnson et al., 2017). 73 

Daily station positions and long-term velocities for most western U.S. stations are 74 
estimated by multiple analysis centers using different processing algorithms, reference frames, 75 
troposphere and tidal corrections, and time-series analysis techniques (Herring et al., 2016). Each 76 
analysis center provides uncertainty estimates for their data products, but formal uncertainties 77 
calculated for geodetic datasets can underestimate time-correlated error in position data and 78 
usually do not characterize variance introduced by different processing assumptions (Herring et 79 
al., 2016). Here, we leverage the published data products from 4 different analysis centers and 80 
analyze the empirical uncertainties across the dataset. We focus on GPS station velocities, since 81 
these are widely used and available. Our goals are to 1) quantify the observed uncertainty in 5 82 
sets of published station velocities, 2) quantify differences between observed and published 83 
uncertainties, 3) assess the extent velocity differences are consistent with different velocity 84 
estimations versus consistent with different underlying GPS positions, and 4) assess whether the 85 
variability in published velocity solutions is random or correlated with the degree of active 86 
surface deformation. 87 

2 Published GPS products 88 

We analyze three-component North/East/Up (NEU) daily GPS positions and the 89 
associated secular velocity estimates from 4 analysis centers: the Geodesy Advancing 90 
Geosciences and EarthScope (GAGE) at Massachusetts Institute of Technology, Scripps Orbit 91 
and Permanent Array (SOPAC) at Scripps Institution of Oceanography, NASA Jet Propulsion 92 
Laboratory (JPL) in Pasadena, CA, and Nevada Geodetic Laboratory at the University of Nevada 93 
Reno (UNR). These 4 centers produce 5 independent position/velocity datasets (or “solutions”), 94 
which are the basis of the analysis. We occasionally refer to the north and east together as the 95 
“horizontal” directions and the up as the “vertical” direction. 96 

The “GAGE” solutions in our analysis (Herring et al., 2016) were produced using 97 
GLOBK software to combine independent daily position solutions generated by the GAMIT 98 
(Herring et al., 2015) and GIPSY OASIS II (Zumberge et al., 1997) packages. SOPAC and JPL 99 
provide independent position solutions to the NASA MEaSUREs Solid Earth Science Data 100 
Records project. The “MEASURES-JPL” solution is processed using GIPSY and the 101 
“MEASURES-SOPAC” solution is processed using GAMIT, and a combination of both 102 
solutions (Bock et al., 1997) is available from NASA as the “JPL” solution. The “UNR” solution 103 
is produced by the Nevada Geodetic Laboratory, which uses GIPSY to process daily positions 104 
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for >17,000 GPS stations around the globe (Blewitt et al., 2018). While only 2 software packages 105 
are used, each analysis center parameterizes its processing in a unique way and applies different 106 
auxiliary models and assumptions (e.g. to characterize atmospheric delay along the signal path 107 
from GPS satellite to GPS station). Furthermore, each analysis center applies a different 108 
algorithm to estimate published station velocities. 109 

Our study considers 580 GPS stations located in a tectonically active region of the 110 
western U.S.A. (30.25˚ to 41.25˚N, 118.25˚ to 121.0˚E). We use published position time series 111 
and velocities in the IGS08 reference frame for these stations for all 5 solutions (GAGE, 112 
MEASURES-SOPAC, MEASURES-JPL, JPL, and UNR; see Supporting Information). The start 113 
time, and therefor the timespan, of the position data is variable for each solution, with many PBO 114 
sites coming online in 2006, and the end time is early 2019 when the records were accessed. 115 
Additionally, we produce two standardized velocity datasets by uniformly applying two of the 116 
velocity estimation techniques (described below) to daily positions from each of the analysis 117 
centers using the entire record of published solutions. This allows us to separately attribute the 118 
variability in published velocities to differences between 1) position estimates and 2) velocity 119 
algorithms.  120 

3 GPS preprocessing and time series analysis 121 

3.1 Removal of offsets and outliers in GPS position time series 122 

Decadal-length continuous GPS time series such as those we analyze in this study 123 
typically include one or more step-like offsets caused by equipment changes or earthquakes, 124 
position outliers from system or environmental noise, and/or temporal gaps from equipment 125 
malfunction or scheduled maintenance. We use metadata provided by the Nevada Geodetic 126 
Laboratory (Blewitt et al., 2018) to provide the time of potential offsets for each GPS station, 127 
assuming that any remaining offsets are insignificant. We model potential offsets as a Heavyside 128 
step function in all three coordinate directions, which we scale by the difference between the 129 
median positions of the 14 days before and after the offset time. We subtract all estimated offsets 130 
for each GPS station to generate offset-corrected time series for further analysis. 131 

To identify outliers in each station time series, we calculate and remove a 6-month 132 
moving average from offset-corrected NEU positions, then calculate the median-average-133 
deviation of the residuals in each coordinate direction. Outliers are defined as epochs whose 134 
residual value in any coordinate direction exceeds 5 times the associated deviation. The 6-month 135 
window length is selected to capture expected seasonal and longer-period signals, while 136 
identifying shorter-period variability (e.g. periodic snow cover on GPS antennas) in the outlier 137 
estimation. Outliers, which typically occur at a few isolated days, are replaced by their 138 
corresponding values from the 6-month moving average. Since our analysis of velocities does 139 
not require complete time series, we do not estimate or otherwise provide position values for 140 
time series gaps. 141 

3.2 Time-series velocity estimates 142 

We use two methods to generate NEU velocity estimates for the 5 published position 143 
solutions. The first method (“MIDAS”) applies the non-parametric MIDAS algorithm, which 144 
utilizes median statistics to estimate robust velocities from the offset/outlier-corrected time series 145 
(Blewitt et al., 2016). The second method (“parametric”) obtains velocities from Equation 1. 146 
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𝑥(𝑡) = 𝑐' + 𝑐)𝑡 +*(𝑎, sin 2𝜋𝑡𝑛 + 𝑏, cos2𝜋𝑡𝑛)
)

,6'

		(1) 147 

The observed time series x(t) is modeled as a mean value c1, a linear velocity c2 t, and annual and 148 
semiannual sinusoids with coefficients (a1,b1) and (a2,b2), respectively. While we do not use the 149 
sinusoid terms in our analysis, including them in the model ensures that our velocity estimates 150 
are not biased for time series that span a non-integer number of sinusoidal cycles. We solve 151 
Equation 1 using robust linear least squares to derive model coefficients that minimize the misfit 152 
between the observed and modeled time series. 153 

3.3 Ensemble GPS vertical velocity field 154 

We use the GPS imaging method (Hammond et al., 2016) to estimate the vertical velocity 155 
field associated with station velocities from each analysis center, interpolating the results onto a 156 
uniform 0.1˚ grid (Figure S1a-e). Working with velocity fields rather than individual stations 157 
mitigates the impact of station-specific noise, which can obscure the underlying spatial structure 158 
of deformation (Hammond et al., 2016; Kreemer et al., 2018). We create an ensemble velocity 159 
field for California (Figure S1f) whose individual realizations are estimated by randomly 160 
selecting a velocity value for each GPS station from one of the 5 analysis centers. The process is 161 
repeated 1000 times and the mean of all iterations for each grid cell is the ensemble velocity field 162 
and the standard deviation estimates the uncertainty. The results do not considerably change 163 
when using more iterations. 164 

4 Results 165 

4.1 Solutions for each processing center 166 

4.1.1 Published velocities 167 

To assess aggregate differences between analysis centers, we compare the published GPS 168 
station velocities for each station relative to the mean of the station velocities from all five 169 
centers (henceforth “mean velocity”). Our analysis uses the robust sample statistics of the 170 
station-by-station residuals calculated by subtracting the mean velocity from published velocities 171 
in the NEU directions. We use the median of the residuals to evaluate their central tendency and 172 
assign the robust standard deviation (SD) of the residuals to 0.74 of the interquartile range, to 173 
quantify the dispersion (Table 1). Residual velocities relative to their mean range from -0.12 to 174 
0.17 mm/yr in the north and -0.10 to 0.06 mm/yr in the east. Similarly, SDs range from 0.19 to 175 
0.26 mm/yr in the north and 0.15 to 0.21 mm/yr in the east. Vertical velocities are more variable 176 
than the horizonal, with median values ranging from -0.26 to 0.30 mm/yr and the SD ranging 177 
from 0.33 to 0.74 mm/yr. 178 

The distributions of the north and east velocity residuals (Figure S2a/b) show thin tails 179 
with 95% of the residuals between ±1 mm/yr, corresponding to the lower SDs reported and 180 
indicating good agreement between the analysis centers published horizontal velocities. There is 181 
more variability in the up distributions (Figure S2c), with 88% of the residuals ranging between 182 
±1 mm/yr. The GAGE vertical velocities are positively shifted and JPL is negatively shifted 183 
relative to the mean, while the others are a factor of 3 smaller. The JPL vertical residuals have 184 
the broadest distribution (0.74 mm/yr SD) and no clear central peak.  185 
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Table 1. Summary statistics for published, parametric, and MIDAS velocities from 5 analysis 
centers. The statistics are reported as the median of the velocity residuals (relative to the 
analysis centers mean) ± the residual robust standard deviation (1s) in units of mm/yr. 

 Published Velocities (mm/yr) Parametric Velocities (mm/yr) MIDAS Velocities (mm/yr) 

 North East Up North East Up North East Up 

GAGE 0.17±0.22 -0.10±0.20 0.30±0.49 0.14±0.10 -0.05±0.09 0.47±0.29 0.11±0.09 -0.01±0.10 0.36±0.22 

SOPAC -0.01±0.26 0.05±0.17 -0.08±0.35 -0.08±0.07 0.01±0.09 -0.07±0.25 -0.12±0.09 0.04±0.09 0.09±0.19 

MEAS-JPL -0.12±0.19 -0.04±0.15 -0.08±0.33 -0.01±0.08 -0.02±0.07 -0.01±0.24 -0.01±0.08 -0.04±0.08 -0.02±0.18 

JPL -0.02±0.24 0.06±0.21 -0.26±0.74 -0.06±0.11 0.06±0.09 -0.34±0.25 0.02±0.08 0.01±0.07 -0.34±0.22 

UNR -0.02±0.20 0.02±0.17 0.08±0.44 -0.00±0.09 -0.01±0.09 -0.05±0.28 -0.00±0.07 -0.01±0.07 -0.07±0.23 

 186 

The cumulative distribution functions (CDFs) of the published velocities (Figure 1a/c/e) 187 
are visually consistent and the distributions are equivalent according to Kolmogorov-Smirnov 188 
tests for all pairs of analysis center NEU solutions. Unlike the CDFs of the velocities themselves, 189 
the CDFs of reported uncertainties (Figure 1b/d/f) show considerable variability between 190 
analysis centers, with much greater differences in the vertical than in the horizontal (by a factor 191 
of ~4). In the horizontal, reported uncertainties for the top 30% (east) to 50% (north) of all 192 
stations are systematically less than our own empirical uncertainty estimate, defined as the 193 
standard deviation (1s) of the 5 solutions and shown as the black dashed line in the rightmost 194 
panels in Figure 1. In the vertical, reported uncertainties are more consistent with empirical 195 
uncertainties. The UNR and JPL solutions provide the largest and most realistic uncertainty, with 196 
only 25% of the reported uncertainty less than the empirical assessment. We note the UNR 197 
reported uncertainty is scaled by a factor of 3 from the calculated value so it is similar to root-198 
mean-square accuracy (Blewitt et al., 2016). The CDFs of velocity uncertainties show that 199 
GAGE, MEASURES-SOPAC, and MEASURES-JPL consistently report lower uncertainties 200 
than the other analysis centers. Overall, we find that published horizontal uncertainties are 201 
underreported relative to our empirical uncertainty estimate, and vertical uncertainties vary by 202 
analysis center.  203 
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Figure 1. Cumulative distribution functions (CDFs) for the published velocities of the 5 processing centers and 
reported uncertainties for north (a and b), east (c and d), and up (e and f). The black dashed line indicates the 
CDF of the mean station velocities (in panels a, c, and e) and the CDF of the 1s uncertainties of the station 
velocities (in panels b, d, and f).  

4.1.2 Station velocity reanalysis 204 

To understand factors contributing to the velocity differences between analysis centers, 205 
we reprocess the GPS station velocities for each center using the two methods described in 206 
Section 3.2. Reprocessing velocities using MIDAS reduces the variance (1s) by ~50% and 207 
narrows the range of the residual distributions to about half the values for the published 208 
velocities (Figure S3, Table 1). Re-estimating velocities using the time series model in Equation 209 
1 also reduces variance of the residuals relative to the published velocities, but not to the same 210 
extent as the MIDAS algorithm (Figure S4, Table 1). The offsets in the means of the up residuals 211 
are present in all three velocity estimates (Figures S2c, S3c, S4c) and are a result of the vertical 212 
scale estimates applied by each analysis center when obtaining the daily positions (see Herring et 213 
al., 2016). 214 
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4.2 Vertical velocity assessment 215 

4.2.1 Comparison of station velocities in regions of active deformation 216 

Individual station velocities, averaged across all five analysis centers, reveal clear 217 
patterns of deformation across California that serve as context for our analysis below (Figure 2; 218 
Dataset S1). The northern Coast Ranges show subsidence of ~1 mm/yr while the central Coast 219 
Ranges and Sierra Nevada show uplift of ~2 mm/yr. The Central Valley is subsiding at >50 220 
mm/yr from commercial agriculture groundwater pumping (Faunt et al., 2016) and shows the 221 
largest uncertainties in vertical velocity rates. In southern California, south of the Transverse 222 
Range, the velocities show a mix of uplift and subsidence that is attributed to tectonic loading 223 
and anthropogenic aquifer usage (Argus et al., 2005; Howell et al., 2016). The overall pattern of 224 
uplift and subsidence across California is consistent with previous studies of GPS vertical rates 225 
(Amos et al., 2014; Hammond et al., 2016), but we identify stations with high velocity 226 
uncertainty as reflected in the scatter of published velocity values. Those high-uncertainty GPS 227 
stations are primarily located in the high-rate subsidence regions of the Central Valley, Los 228 
Angeles basin, and Salton Trough.  229 
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Figure 2. GPS vertical velocities for 5 published processing centers along the coastline and five linear transects 
in actively deforming regions of California. In the left panel, circle colors indicate published station velocities and 
the tick mark lengths indicate 1s uncertainties. In the middle panels, circles and error bars indicate published 
velocities and 1s uncertainties. The dashed black lines in the left panel correspond to the ~350 km transects 
shown in the middle panels. The right panel shows GPS station velocities along the California coast with specific 
labeled for reference (SF-San Francisco, SLO-San Luis Obispo, LA-Los Angeles, SD-San Diego, CV-Central 
Valley, TR-Transverse Range, SN-Sierra Nevada, NCR-North Coast Range, CCR-Central Coast Range, ST-
Salton Trough). 

Vertical velocities along five 350 km transects highlight the differences in the published 230 
velocities for areas of known deformation from tectonic, hydrological, and anthropogenic 231 
sources (Figure 2). Transect A-B extends from the central Coast Ranges to the Sierra Nevada, 232 
excluding measurements in the Central Valley with rapid subsidence. It shows slight subsidence 233 
at the coastline, uplift in the Coast Ranges (0.5 to 3.0 mm/yr), and general uplift in the Sierra 234 
Nevada (-1.0 to 5.0 mm/yr). Of note, JPL’s published velocities for the three stations on the 235 
eastern half of the transect are anomalously high by 1~4 mm/yr and uniformly exceed the 1s 236 
uncertainty of the velocity estimates for all other analysis centers. 237 

Transect C-D extends across the Los Angeles basin, crosses the San Andreas fault, and 238 
extends into the Mojave Desert. Subsidence in the Los Angeles basin (down to -2.0 mm/yr) is 239 
most pronounced near the San Gabriel Mountains, and there is almost no vertical motion in the 240 
Mojave Desert. On this transect, JPL published velocities diverge from those of other analysis 241 
centers by 1~2 mm/yr, lying outside the 1s uncertainty of the other velocities for six of eight 242 
stations.  243 

Transect E-F extends along the southern U.S. border from San Diego to Yuma, CA, 244 
traversing a region of active extensional tectonics. The coastal region shows subsidence (-3.5 to 245 
0.0 mm/yr), the Salton Trough near Brawley, CA shows uplift (1.0 to 5.0 mm/yr), and the eastern 246 
Salton Trough shows subsidence (-7.0 to 0.0 mm/yr). This transect is the most problematic from 247 
the standpoint of consistency between analysis centers. Four of the 6 GPS station exhibit velocity 248 
scatter involving two or more analysis centers and the range of velocities for individual stations 249 
(up to 6 mm/yr) is unusually high.  250 

Transect G-H extends north-south along the central Coast Ranges from San Francisco to 251 
the southern San Joaquin Valley, following the Hayward-Calaveras-San Andreas Fault system. It 252 
shows ~1.0 mm/yr subsidence in the north, with increasing uplift moving south (-1.0 to 4.5 253 
mm/yr). There is some scatter of published velocities, but the uplift trend is similarly represented 254 
by all five analysis centers. GAGE velocities are consistently higher than other analysis center 255 
velocities along the transect, with the greatest differences (~1 mm/y) toward the south. 256 

Transect I-J extends north-south through the Central Valley with rates to the north near 257 
0.0 mm/yr and strong subsidence (-45.0 to -10.0 mm/yr) at stations in the southern Central 258 
Valley caused by agricultural groundwater pumping. While the 2 stations on the transect 259 
exhibiting rapid subsidence have the largest scatter in absolute velocity of any station in our 260 
analysis, the difference relative to the 1s velocity uncertainty is better than many other stations. 261 

Motivated by the importance of correctly quantifying vertical land motion near coastal 262 
communities in the context of ongoing sea-level rise (National Research Council, 2012), we also 263 
examine a transect along the Pacific Coast of California south of Cape Mendocino. The 27 264 
stations in Figure 2 (right panel) show subsidence between San Diego and southern Los Angeles 265 
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(-3.0 to 0.0 mm/yr), transitioning to uplift in northern Los Angeles (0.0 to 2.0 mm/yr). Between 266 
Los Angeles and San Luis Obispo, subsidence (-6.0 mm/yr) is observed near the agricultural 267 
region of Oxnard (250 km), transitioning to a moderate uplift (-1.0 to 3.0 mm/yr). North of San 268 
Luis Obispo there is little vertical motion until the San Francisco area, where we observe 269 
subsidence (-2.0 to 0.0 mm/yr).  270 

Vertical land motion along California’s coast are rarely zero and exhibits areas of local 271 
subsidence that can exceed sea level rise by a factor of 2, exacerbating the impact of rising ocean 272 
waters. The variability in vertical estimates can be the same order of magnitude as sea level rise, 273 
most clearly at stations near San Diego (0~100 km) and San Luis Obispo (450~500 km). This 274 
suggests that information about vertical land motion, which is required to inform mitigation 275 
efforts to combat rising waters, is dependent on sources whose inconsistencies can result in very 276 
different conclusions about what actions may be needed.  277 

4.2.1 Velocity field uncertainty 278 

We use the ensemble velocity field (Figure 3a) and its associated uncertainties (Figure 279 
3b) to highlight regions where differences in analysis center velocities could have the greatest 280 
impact on the geophysical interpretation of vertical velocity rates. The dominant features are 281 
observed in each analysis center velocity field, but vary spatially with amplitudes differences >3 282 
mm/yr (Figure S1). The highest uncertainties in California are associated with the large-scale 283 
subsidence of the southern Central Valley from groundwater pumping for agriculture (Faunt et 284 
al., 2016). Subsidence is observed by all analysis centers (Figure S1), however the large 285 
variability in reported velocities (Figure 2, transect I-F) and relatively low station density (Figure 286 
3c) both contribute to elevated uncertainties. Another area of high uncertainty is the Salton 287 
Trough, which is also subsiding. Median station distance in this area is low (<10 km), indicating 288 
that the uncertainty originates entirely from the high variability in station velocity (Figure 2, 289 
transect E-F). 290 

The highest uplift rates in California are located in the Sierra Nevada (Figure 3a), a 291 
region of somewhat elevated uncertainty (>0.50 mm/yr) that is characterized by low station 292 
density and increased uncertainty that results from the anomalously high JPL estimates (Figure 2, 293 
transect A-B). However, relatively high uplift rates to the west of the Central Valley are not 294 
associated with increased uncertainty. Overall, regions with the highest rates of uplift or 295 
subsidence correspond to the largest variance in velocities between analysis centers, but high 296 
station density (e.g. to the west of the southern Central Valley) can reduce these uncertainties. 297 
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Figure 3. (a) The ensemble vertical velocity field and (b) standard error computed from all processing center 
solutions. (c) The median distance to GPS stations (white circles) used in imaging each grid; any grid cell with 
median distance >75 km is removed. The contour outline encompasses the Central Valley where stations are 
subsiding at rates much greater than -3 mm/yr. Location labels as in Figure 2. 

5 Discussion and Conclusions 298 

We analyzed NEU velocities for 580 GPS stations in California, comparing velocity 299 
estimates and their corresponding uncertainties from five GPS analysis centers. Taken as a 300 
whole, the velocity datasets from different analysis centers are statistically compatible. However, 301 
we find differences in vertical rates for individual stations of up to 5 mm/yr between analysis 302 
centers, and we document systematic differences in velocities along some transects. Our analysis 303 
in Section 4.1.2 shows that these differences arise about equally from different velocity 304 
estimation algorithms and different position time series. Velocity differences have implications 305 
for the physical interpretation of observed crustal deformation (Figure 2), and care should be 306 
taken when using velocities from a single analysis center. One concern is for geophysical models 307 
that use uncertainties to weight observations without accounting for the variability introduced by 308 
analysis center. An ensemble velocity field such as the one we introduce in Section 3.3 309 
represents one way to reconcile discrepancies in velocity estimates. 310 

The inconsistent reported uncertainties between analysis centers are much larger than the 311 
velocities differences themselves. Some are expected based on differences in the methodologies 312 
(e.g. Blewitt et al., 2016; Herring et al., 2016) or the applied scale height estimates for the 313 
vertical positions (Herring et al., 2016). However, systematic differences are observed in areas of 314 
the highest subsidence and uplift (Figure 3), suggesting there are underlying incompatibilities in 315 
velocity estimation for these regions. A complication with estimating vertical velocities is the 316 
interannual variability in station positions observed as time series increase in length. This non-317 
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linear ground motion can result from changes in terrestrial water storage (e.g. Borsa et al., 2014), 318 
varying intensity of groundwater usage and recharge (e.g. Neely et al., 2020), and tectonic 319 
signals (e.g. Hammond et al., 2018). Both the Central Valley (groundwater) and the Salton 320 
Trough (tectonics, groundwater), which we highlight as regions of high variability in vertical 321 
velocities, are impacted by strong non-linear surface deformation.  322 

This study provides an independent estimate of NEU velocity uncertainty from the spread 323 
between analysis center solutions, both for individual stations and for the ensemble velocity 324 
field. We find that published station horizontal velocity uncertainties are systematically smaller 325 
than our estimates, while published vertical uncertainties are analysis center dependent. 326 
Furthermore, the ensemble uncertainty (Figure 3b) shows that there is a clear spatial pattern in 327 
empirical velocity uncertainty. These observations strongly suggest that formal errors from 328 
analysis centers do not reflect the true uncertainties of velocity estimates. Ensemble uncertainty 329 
estimates, such as the one we introduce here, may provide more realistic values. We conclude 330 
that science applications that rely on sub-centimeter GPS accuracy (e.g. assessing sea level rise, 331 
InSAR correction and alignment, or hydrogeodetic water storage estimates) should carefully 332 
consider and mitigate the inherent uncertainty in published vertical velocity rate estimates.  333 
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Figure S1. GPS imaging of the vertical velocity field using published values from each 
processing center. The ensemble velocity field is produced from the mean of 1000 iterations 
using a vertical velocity randomly selected from a processing center for each station. For 
reference, the dashed outline encompasses the Central Valley. 
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Figure S2. Velocity  residual from the average of five processing centers for the (a) east, (b) 
north, and (c) vertical published values. 
 

 
Figure S3. Velocity residual using the MIDAS algorithm for from the average of five processing 
centers for the (a) east, (b) north, and (c) vertical calculated values. 
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Figure S4. Velocity residual using the time series model in Equation 1 in the main text for the 
average of five processing centers for the (a) east, (b) north, and (c) vertical calculated values. 
 

 

Data Set S1. Published velocity values compiled in to a composite velocity data set that 
contains the station name, longitude, latitude, and north/east/up velocity with empirical 
uncertainty. The interpolated vertical velocity field with uncertainty includes the longitude, 
latitude, velocity, and error for the grid.  
 


