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Abstract

1. Abstract Wave propagation and diffusive transport phenomena could work as evidence of the mechanical discontinuities

in material. For the problem of poor efficiency of the existing fracture simulation methods, this paper proposes crack-bearing

material characterization approach by processing wave travel-time using seven data-driven classification techniques. To that end,

we perform classification models to predict discontinuities orientation, dispersion, and spatial distribution prediction by learning

from the different-waves simulation model. The travel-time measured by multiple sensors placed around the material perform as

our input data of machine learning method. As a result, this work found that machine learning models exhibit best classification

performance on classifying crack dominant orientations. Combination of compressional wave and shear wave are enough to

capture the crack information in the material, however, the pressure diffusion also able to optimize our algorithms. Voting

classifier and gradient boosting classifier perform the best for purposes of characterization. When compare the performance

of different mechanical discontinuities, embedded closed discontinuities shows high accuracy than open discontinuities on the

classification models.
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1. Abstract  

Wave propagation and diffusive transport phenomena could work as evidence of the mechanical 

discontinuities in material. For the problem of poor efficiency of the existing fracture simulation 

methods, this paper proposes crack-bearing material characterization approach by processing wave 

travel-time using seven data-driven classification techniques. To that end, we perform 

classification models to predict discontinuities orientation, dispersion, and spatial distribution 

prediction by learning from the different-waves simulation model. The travel-time measured by 

multiple sensors placed around the material perform as our input data of machine learning method. 

As a result, this work found that machine learning models exhibit best classification performance 

on classifying crack dominant orientations. Combination of compressional wave and shear wave 

are enough to capture the crack information in the material, however, the pressure diffusion also 

able to optimize our algorithms. Voting classifier and gradient boosting classifier perform the best 

for purposes of characterization. When compare the performance of different mechanical 

discontinuities, embedded closed discontinuities shows high accuracy than open discontinuities on 

the classification models.  

 

2. Introduction  

2.1. Motivation 

"Discontinuity" is a general term denoting any separation in a rock mass having zero or low tensile 

strength (Zhang et al., 1998). Discontinuities include many types of mechanical breaks such as 

fault, joints and fractures than weakened the strength of the rock mass (Osogba et al., 2020). 



Mechanical breaks are highly related to the capacity of reservoir rocks to contain or storage the 

fluids (Misra et al., 2020). Fractures are an important storage space in oil and gas reservoirs. This 

study focusses on mechanical discontinuity. Nevertheless, it is a challenge task to characterize the 

discontinuities in the rock. Observation and analysis the core data is one way obtain the crack 

characterization. Meanwhile, it is also possible to predict the distribution of cracks according to 

rock rupture criterion by rupturing the core. However, these methods always influenced by the 

sample number and experimental environments. As the development of the machine learning 

algorithms, the motivation of our study is that if the classification models can characterize crack-

bearing material with high accuracy based on sonic waves and pressure diffusion travel times 

without destroy core data. This work is focus on the discussion of discontinuities orientation, 

dispersion and spatial distribution in formation by processing the different-waves travel-time to 

data-driven methods. The main purpose of classification algorithms is to learn from the existed 

training travel time and evidence, to be able to make predictions for testing data. Then, the 

developed models can be applied to any new travel time dataset to predict the crack information.  

 

3. Workflow  

Figure 1 is the detail description of the workflow to build the classification models. A good starting 

point is to accurately identify the current fracture system created by discrete fracture network 

(DFN). All cases in this study are start from model simulation. The model has a dimension of 

150mm by 150mm discretized using 500 by 500 grids. The wave source and 28 sensors are located 

around a 2D squared crack-bearing material designed with 100 discontinuities. Crack length is 

selected randomly from an exponential distribution in the range of 0.3mm - 3mm. The wave source 

is located in the middle of the left boundary. Sensors are equally settled at the other three 

boundaries. Each boundary has 10 sensors, 28 receivers in total. The travel time of the front wave 

at 28 sensors will be recorded as our dataset.  

 



 

Figure 1. Model development and evaluation workflow 

Then, the simulation travel time were divided into two parts: training and testing dataset. For 

example, our tests use 70% data as training data. Classification models will be trained on the 

training dataset. Cross validation approaches split the original training data into one or more 

training subsets to balance the response variances. The remaining 30% data is working as testing 

data to evaluate the classifiers accuracy.  

 

The paper is structured as follows. We provide the physics-based simulation model we use as 

reference to be fed in our data-driven model. Then we followed the discussion of the classification 

models. The comparison presentation is followed by computational results supporting by our 

proposed model. We wrap up the paper with a few conclusions and further directions of work. 

 

3.1.Properties of the material with embedded discontinuities 

3.1.1. Properties of the Background material 

In this work, we use sandstone with 20% porosity as the material background. Therefore, the 

velocity set of wave/diffusion is set on the basis of the behavior of the porous sandstone physical 

ground.  The present work aims to learn more about the classification behavior when using P-wave, 



S-wave, and pressure diffusion velocity in sandstone samples to characterize the fracture system. 

Without considering the water saturation and pressure effect in the real field, we assume the 

compressional wave velocity is 3760 m/s. The shear wave velocity values in a porous material will 

always be less than compressional wave. The shear wave in our cases are assumed to be 2300m/s. 

Then, our approach draws on the solution to the diffusive-pressure equation that mimics pressure 

front propagation phenomena. The travel time calculation will get from fast-marching method 

(FMM) described in section 3.3.  

3.1.2. Variable Spatial properties of mechanical discontinuity  

The spatial distribution classification of mechanical discontinuities in the formation are creating 

using intensity functions. These functions describe the crack occurrence probability in the 

investigated material. In the classification of spatial distribution, type 1 is the random distribution 

means cracks have an equal probability in the domain. Type 2 is the linear distribution followed 

by the linear probability function that related to y axis: 

                                                                𝝀(𝒙, 𝒚) = 𝒚                                                                    (1) 

Then, when gaussian function applied on the crack-bearing material as intensity function:  

                                                 𝝀(𝒙, 𝒚) = 𝒄 ∗ 𝒆𝒙𝒑
(−𝒅∗(𝒙−𝒙𝒐)𝟐+(𝒚−𝒚𝒐)𝟐))

                                              (2) 

where 𝒙𝑜 and 𝒚𝐨 is the center of the Gaussian distribution both set to 250, d controls the variance 

of the distribution is set to 0.00005, and c controls the minimum value of the intensity function 

equal to 1 in our case. When adding two Gaussian crack clusters in the material, the equation is 

similar to Eq.2.  

3.1.3. Variable transport properties of mechanical discontinuity  

Transport phenomenon, in physics, any of the phenomena involving the movement of various 

entities, such as mass, momentum, or energy, through a medium, fluid or solid, by virtue of 

nonuniform conditions existing within the medium. The transportation through pores media in our 

study is driven by the wave energy and pressure difference between matrix and the mechanical 

discontinuities. The travel time of the wave front are expected to capture the characteristic of the 

mechanical discontinuities.  

3.1.4. Default transport properties  

https://www.sciencedirect.com/topics/engineering/shear-wave-velocity


One aim of this study is to compare the classification model performance for open and embedded 

closed discontinuities. We assume the open cracks are filled with air; closed ones are cemented by 

0 % porosity limestone. The following sections will discuss the wave velocity used for different 

discontinuities.  

3.1.4.1. P-wavefront case 

For embedded open discontinuities, the compressional wave is travelling through the air. The 

travel time calculation used 340 m/s as the fracture velocity. That shows a large contrast compared 

to the matrix velocity which is 3760 m/s. On the other hand, the wave velocity through the 

cemented discontinuities is the same as wave velocity traveled in the limestone without pores.  

3.1.4.2. S-wavefront propagation case 

The shear wave travels slower than P-wave because they do not change the volume of the material 

through when propagate. S-waves are waving that shear material. An important distinguishing 

characteristic of an S-wave is its inability to propagate through fluid or gas because they cannot 

transmit the shear stress. In our experiments, the open discontinuities are filled with air that not 

able to propagate S-wave. We set the S-wave velocity as a small value, 1m/s. For embedded closed 

discontinuities, S-wave travels around 4200m/s through limestone which is 1.6 times slower than 

compressional wave.   

3.1.4.3. Pressure front propagation case 

The pressure diffusion propagation was control by its diffusivity. Diffusivity is an important 

parameter indicative of the diffusion mobility. It explained the velocity of diffusion that related to 

porous media permeability, porosity, compressibility and fluid viscosity. The equation of 

diffusivity expressed in Eq.4. The mainly difference is the permeability of fracture and matrix. For 

closed discontinuities, the crack permeability is lower than matrix. On the contrary, open crack is 

more permeable than sandstone matrix.  

3.2. Transmitter-receiver configuration 

In our study, we focus on analysis the crack system inside 2-D crack-bearing material. The material 

size is 150mm by 150mm which divided into 500 by 500 grids. The 2D squared numerical model 

has 1 wave source and 28 receivers. The wave source is in the middle of the left boundary, and the 

remaining three boundaries have 28 receives equally located. Then the fast-marching method 



(FMM) will apply to simulate the propagation of the wave/diffusion front from this single source 

to the receivers around the crack-bearing material as the initial dataset for classification.  

3.3. Fast Marching Method (FMM) for First Arrival Simulation   

 

The fast-marching method (FMM) is a front-tracking method created by James Sethian for solving 

boundary value problems of the Eikonal equation. Eikonal equation characterizes the evolution of 

a closed surface as a function of time with specified velocity on the given surface, express as:  

 𝒇(𝒙)|𝜵𝒖(𝒙)| = 𝟏  for 𝒙 ∈  𝜴 (3) 

 𝒖(𝒙) = 𝟎  for 𝒙 ∈  𝝏𝜴 (4)  

where 𝑢(𝑥) represents the travel time of the front wave to reach the location x, 𝑓(𝑥) stands for the 

speed at x known as velocity function, Ω is the open set with well-behaved boundary, ∂Ω is the 

boundary, and x is the coordinate system. As described, this equation is a non-linear partial 

differential equation to solve the wave propagation problems. In this paper, we use FMM to 

approximate the solution to the Eikonal equation. Scikit-fmm is a python extension module which 

implements the fast-marching method used in our program.  

For pressure diffusion propagate front, the Eikonal equation is described based on diffusivity.  

                                                            √𝜶(𝒙)|𝜵𝝉(𝒙)| = 𝟏                                                              (5)  

Where, the diffusivity 𝜶(𝒙) defined as:  

                                                                        𝜶(𝒙) =  
𝒌(𝒙)

𝝓(𝒙)𝝁𝑪𝒕 
                                                             (6) 

Eq. 5 tells that the pressure “front” propagates in the reservoir with a velocity given by the square 

root of diffusivity. For homogeneous reservoirs,  𝝉(𝒙) is related to physical time through a simple 

expression of the form  𝑡(𝑥) =
𝜏(𝑥)2 

𝑐
 where the constant c depends on the specific flow geometry 

(Xie, 2015). For linear, radial, and spherical flows, c is 1⁄4 2, 4, and 6, respectively (Kim et al. 

2009). 

3.4. Dataset description – samples, features, target  

Data collection is a critical step towards the development of machine learning models. Before 

beginning to train the model, we should transfer our data in a way that can be fed into a machine 



learning model. The preprocessing in this work is to deal with features on the same scale by using 

the standardization approach. This study will include three tasks: (1) classify the dominant crack 

orientation with different fracture dispersion; (2) classify the crack dispersion with dominated 

orientation; (3) classify the crack spatial distribution. All 2D numerical models are using the 

discrete fracture network (DFN) method to various types of mechanical discontinuities system.  

Task 1 will build classification model to identify four dominant crack orientations of 0°, 45°, 

90° and 135° . Figure 2 shows the experimental configurations for different orientations at 

dispersion equal to 10. For each orientation, 10,000 sample’s travel time are recorded as the model 

dataset. It took around 2 hours on a Dell workstation with 3.5GHz Intel Xeon CUP and 32GB 

RAM. The front wave travel times at different sensors are features of data-driven model.  

 

Figure 2. Experiment configuration for orientation classification with dispersion = 10 

Features are columns in the input dataset. It can be further simplified by feature engineering to 

avoid overfitting. The samples from different orientation are labeled as 0, 1, 2, 3 which are our 

model targets. In a word, features briefly explained the input fed into the system and the label 

would be the output models are expecting. For the classification of dispersion, we built three crack-

bearing models with distinct dispersions around dominant crack orientation set as vertical in our 

case. The outputs are labeled as 0, 1, 2 which stand for dispersion equal to 0, 500 and 1000. The 

simulation models are presented in figure 3. When the dispersion factor is set to 0, the crack 

orientations are equally distributed in all directions. As a comparison, when dispersion is set to 

1000, orientations are nearly aligned along the direction of dominant orientation. The entire dataset 



comprising 30,000 samples, such that each sample has 28 features and 1 target for only 

compressional wave.    

 

Figure 3. Experiment configuration for dispersion classification with vertical orientation  

 

Final task is to identify four type of spatial distribution created using intensity functions that shows 

in figure 4. Each type of distribution model is embedded with 100 fractures with randomized 

length, orientation, and dispersion. The fracture systems are created by the DFN method. The 

dataset will have 40,000 samples, with 4 targets. The data will be divided to training and testing 

data to be applied in data-driven models.  

 

Figure 4. Experiment configuration for spatial distribution classification 

 

4. Data-Driven Classification of Materials with Embedded Open Mechanical Discontinuities  

4.1. Comparison of accuracy - P wave  

In this section, we trained 7 data-driven classifiers on p-wave travel time recorded at 28 sensors 

and investigated their performances on three characterization tasks for material with embedded 

open mechanical discontinuities. The pores in the background material and the embedded 



mechanical discontinuities (i.e. cracks) are assumed to be filled with air. The source-sensor 

configuration for generating the dataset is the same as the numerical experiment described in the 

previous section. The dataset used for the training and testing are the p-wave travel time recorded 

by the 28 sensors placed around the material. Hyperparameters of the 7 data-driven classifiers are 

tuned by performing grid search with 5-fold cross-validation.  Our hypothesis is that multi-point 

measurements of p-wave travel time can be processed by data-driven classifiers to identify certain 

bulk aspects of the network/cluster of open (i.e air filled) mechanical discontinuities. 

 

4.1.1. Classification of the Dominant Crack Orientation 

Task 1 contains 4 different types of the crack clusters that differ in orientation with fixed dispersion 

around the dominant orientation. In order to compare the effects of dispersion on this task, we set 

one experiment at dispersion equal to 10, and the second experiment at dispersion equal to 50. We 

recorded p-wave traveltimes for 20,000 samples of materials with a specific orientation for 4 

different orientations (0°, 45°, 90°, 135°). The complete dataset has 28 features represents the 

sensor locations. 70 % of the entire data is set as training data, and the remaining is testing data. 

The four orientations are labeled as 0, 1, 2, 3 as our testing target. In other words, a target value of 

0, 1, 2, and 3 represents crack orientation of 0°, 45°, 90° and 135°. The classification accuracy is 

presented as the bar plot in figure 5. The mean accuracy of 7 classifiers for dispersion equal to 10 

is around 0.89. As a comparison, the higher dispersion which gives more uniform cracks shows 

better performance. The average accuracy of this experiment is around 0.98. However, the best 

classification performance for these two experiments are both from voting classifier.  

4.1.2. Classification of the Crack Spatial Distribution  

Task 2 exploiting the spatial distribution features (i.e., direction feature and density feature) of the 

cracks under classification models to identify different types of spatial distribution in crack-

bearing materials. Four types of spatial distribution of cracks, as shown in the upper panel of 

Error! Reference source not found.. Spatial distribution of cracks is affected by the mechanical 

properties and the surrounding environment of the material. Each type of crack-bearing model is 

embedded with 100 fractures of randomized length, orientation, and dispersion. Similar with the 



previous test, the dataset has 20,000 samples with four target and 28 features. The accuracy for the 

classifiers is about 0.81.  

4.1.3. Classification of the Crack Dispersion with Dominated Orientation      

In this part, a numerical experiment is conducted to classify the three diverse crack dispersion: 0, 

500, 1000 with dominated orientation. The orientation for three dispersions is set as vertical 

(Orientation = 0°). The dataset includes 15,000 samples, 5000 for each dispersion. The target for 

each sample is either 0, 1 or 2, depending on the dispersion of the crack cluster. The overall 

accuracy is around 0.60 for the 7 models. The best classifiers are gradient boosting and voting 

classifier which gives the accuracy around 0.61.  

 

 

Figure 5. Open Mechanical Discontinuities Classification performance for P wave 

4.2. Comparison of accuracy - P + S wave  

It is obvious that the accuracy of the P wave model for the classification of dispersion is not 

satisfied. Especially the classification of dispersion, the accuracy only reaches 0.6. We add shear 

waves (S wave) inside to capture more information. The simulation model will record the P and S 

wave travel time at 28 sensors for each case. The dataset contains thousands of samples, 56 features 

and several targets depend on the task purpose. It has been proved that the overall accuracy of 7 



classifiers has been risen in varying degrees. The following three sections will further discuss how 

the accuracy changed case by case. 

4.2.1. Classification of the Dominant Crack Orientation 

The model sets are the same with the upper section, four orientations are our target labeled as 0, 

1, 2, and 3. For dispersion equal to 10, we have 20,000 samples. 6000 of them generated the testing 

data to evaluate the classification performance. The average accuracy increased from 0.89 to 0.95 

which means the S wave helps the classifier to characterize the crack states. On the other hand, 

when dispersion set at 50, the accuracy also rises 0.01 and finally achieve 0.99. the classification 

of those two cases are more reliable when adding S sonic front wave travel time.  

4.2.2. Classification of the Crack Spatial Distribution  

Turning now to the experiment evidence for spatial distribution classification. Processing and the 

dataset used by is comparable to that used in the upper sections. As can be seen from the 

comparison of figure 5 and 6, this study did not show any significant increase in Naive Bayes 

classifier. However, the overall accuracy of the 7 classifiers was found increased from 0.81 to 0.85 

after adding the features of S wave.  

4.2.3. Classification of the Crack Dispersion with Dominated Orientation  

Then this system of classification was developed for the purpose of distinguishing the crack 

dispersion. What is striking about the figures is that this case has a significant improve.  

 

Figure 6. Open Mechanical Discontinuities Classification performance for P + S wave 



Overall, comparison of the two results reveals more than 50% growth. The final accuracy can 

reach 0.95. 

4.3. Comparison of accuracy - P + S wave + Pressure Diffusion   

The previous cases were designed to determine the effect of mechanical waves. Furthermore, we 

added pressure diffusion as another set of features. The feature number expended to 84 features. 

Similarity, the sensor located around the material recorded the front time of the sonic waves and 

pressure diffusion. This task expected to be the best performance in our study. Then more 

evaluation metrics are used to analysis the classification results such as precision, recall and F-1 

score. The section below describes the cases designed in this task.  

4.3.1. Classification of the Dominant Crack Orientation 

As mentioned, the four dominant orientations are 0°, 45°, 90° and 135° which labeled as 0, 1, 2, 

3. The large dataset has 20,000 rows and 84 columns stand for the features from three different 

waves. The classifiers accuracy is 0.95 and 0.99 for dispersion equal to 10 and 50, respectively. 

The table below illustrates precision, recall and F1 score for both low and high dispersion are good 

enough. precision, recall and F-1 score can even reach 1 at higher dispersion case. It means the 

performance of this task are perfect for determine the dominant orientation.  

4.3.2. Classification of the Crack Spatial Distribution  

This case is the classification to identify the crack spatial distribution such as random, Linear, 

Single Gaussian and Double Gaussian. No significant differences were found after the pressure 

diffusion added. The overall accuracy is remaining around 0.85. Precision, recall and F-1 score are 

0.92 indicates a good model.  

4.3.3. Classification of the Crack Dispersion with Dominated Orientation  

The last case in this chapter is the dispersion classification. The average accuracy of 7 classifiers 

increased to 0.96. The results in this chapter indicate that the classifier performance for open crack 

characterization in the material. The next chapter, therefore, moves on to discuss the difference 

between open and embedded closed mechanical discontinuities.  



 

Figure 7. Open Mechanical Discontinuities Classification performance for P + S wave and 

Pressure Diffusion  

 

Table 1. Evaluation metrics for P + S wave and Pressure Diffusion   
  

5. Data-Driven Classification of Materials with Embedded Closed Mechanical 

Discontinuities  

5.1. Comparison of accuracy - P wave  

As we mentioned at the beginning of our study, the matrix is set as sandstone with 20% porosity. 

And the embedded closed mechanical discontinuities are fully filled by limestone. The first task 

is capturing the information of mechanical P wave from 28 sensors around the material. Then 4 

cases are used to test the classifiers.  

5.1.1. Classification of the Dominant Crack Orientation 

This section will have two cases: 1). Four dominant crack orientations with dispersion equals 10. 

2). Four dominant crack orientation with dispersion is 50. The higher dispersion case gives better 

accuracy than lower case. The accuracy of case 1 is 0.995 and case 2 already reach 0.999. The 

finding of this section is the same with open crack: higher dispersion model is more reliable.  



5.1.2. Classification of the Crack Spatial Distribution  

Then, we check the accuracy of the cemented crack model for spatial distribution classification. 

The overall accuracy is around 0.87 for 7 classifiers when using compressional wave travel time 

as dataset. The model capacity may further ameliorate in the latter parts after have the shear wave 

and pressure diffusion.  

5.1.3. Classification of the Crack Dispersion with Dominated Orientation  

The dispersion classification is the worst case compared to the other cases. The accuracy is around 

0.6. SVC and Voting classifiers have the highest accuracy are about 0.61. Most classifiers do not 

perform very well on materials with different crack dispersions which is same as the open crack. 

That’s the reason why we introduce shear wave to our model. The next section will discuss the 

findings with compressional and shear waves.  

 

Figure 8. Embedded Closed Mechanical Discontinuities Classification performance for P wave 

5.2. Comparison of accuracy - P + S wave  

This section set out with the aim of assessing the importance of shear waves in closed mechanical 

discontinuities. The classification of crack dispersion has the greatest improvement among the four 

cases. However, the accuracy of crack orientation classification remains similar with the upper 

section. In summary, characterization of crack dispersion requires higher information content 

captured by the sensors as compared to the characterization of crack orientation in the crack cluster.  



5.2.1. Classification of the Dominant Crack Orientation 

The best classifier for classify the dominant crack orientation is voting classifier for both lower 

and higher dispersion. The overall accuracy for both cases can reach 0.90. Moreover, the higher 

dispersion case can reach 1.00. No obvious changes are made in the classification of orientation.   

5.2.2. Classification of the Crack Spatial Distribution  

The spatial distribution case has been proved can be increased by adding feature numbers. The 

average of 7 classifiers changes from 0.87 to 0.89. However, the Naïve Bayes classifier is 

decreased to 0.72. Beyond that, the other classifiers are around 0.9. The best accuracy is about 

0.95 from gradient boosting classifier.  

5.2.3. Classification of the Crack Dispersion with Dominated Orientation  

The dispersion case with only compressional wave travel time has poorly performance. Figure 8 

reveals that there has been a steep rise with more sensor information. Numerically, the accuracy 

dramatically increases from 0.60 to 0.94. This combination of findings provides some support for 

the significant meaning of adding the shear wave.  

 

Figure 8. Embedded Closed Mechanical Discontinuities Classification performance for P + S 

wave 

5.3. Comparison of accuracy - P + S wave + Pressure Diffusion  

 



5.3.1. Classification of the Dominant Crack Orientation 

A more comprehensive study would consider how the model perform after add pressure diffusion. 

The data-driven classifiers were trained and tested on simulated dataset generated for simple sonic 

wave propagation and pressure diffusion through simple crack-bearing materials. According to 

Figure 9, both lower and higher dispersion cases for orientation classifier can achieve 1.00 when 

using 84 features in the model. The results, as shown in Table 1, indicate that precision, recall and 

F-1 score are also each 1.00.  

5.3.2. Classification of the Crack Spatial Distribution  

The experimental procedure is the same as in previous cases. It is investigated that spatial 

distribution classification gets the benefit from the pressure diffusion.  Overall, the model accuracy 

increased to 0.90. The worst model is from Naïve Bayes around 0.67. The other models have 

performed well with an accuracy in the range of 0.87 to 0.95. Further statistical tests revealed 

precision, recall and F-1 score is around 0.93.  

5.3.3. Classification of the Crack Dispersion with Dominated Orientation  

The classification of dispersion has been significant improved by shear waves. Then the pressure 

diffusion also helped to further optimize the data-driven model. The final classifiers accuracy is 

about 0.96. Gradient boosting and voting classifiers have the best performance gives accuracy 

around 0.98.  

 

Figure 9. Embedded closed mechanical discontinuities classification performance for P + S wave 

and pressure diffusion 



 

Table 2. Evaluation metrics for P + S wave and pressure diffusion  

In general, gradient boosting and voting classifiers are the top two among the 7 classifiers from 

our study. In the following section, we will compare the difference of open and closed mechanical 

discontinuities for these two models.  

6. Comparison of Data-Driven Classification of Materials with Embedded Closed vs. Open 

Mechanical Discontinuities  

In this section, in order to simplify and clear the comparison of two types of discontinuities, we 

named our cases from case1 to case4. Case1 and case2 represent the classification of orientation 

with lower and higher dispersion, respectively. Case3 stands for the dispersion classification with 

vertical cracks. Finally, case4 is used to classify the spatial distribution. Each case will have three 

experiments: 1) with compressional waves only, 2) with compressional and shear waves, 3) 

combination of P, S waves and pressure diffusion. Then, we move on to discuss our findings after 

comparing.  

6.1. Gradient Boosting Classifier  

The horizontal bar plot shows the difference between closed and open discontinuities accuracy. 

There are several important differences between closed and open discontinuities. Positive value 

means cemented crack has better performance compared to open crack.  Instead, the negative one 

such as case3 means that open crack has well performance for dispersion classification when using 

P and S waves. The most important clinically relevant finding was that add more features to the 

data-driven model will help to reduce the difference between open and closed crack.  



 

Figure 10. Comparison of open and closed mechanical discontinuities-Gradient Boosting 

6.2. Voting Classifier  

The voting classifier is an ensemble method that combines predictions of other 6 classifiers 

described above based on a certain rule. In our study, voting classifier performs the best for 

purposes of characterization. This finding in Figure 11 broadly supports the conclusion from 

gradient boosting classifier.  

 

Figure 11. Comparison of open and closed mechanical discontinuities-Voting Classifier 

7. Classification model optimization  



7.1. Feature selection – Univariate filter methods 

As the number of features increases by adding wave information, the model becomes more 

complex. Dimensionality reduction is the process of reducing the number of feature sets. In 

general, avoiding overfitting is a major motivation for performing feature reduction. Remove 

redundant features also helps to save computation time. Meanwhile, less data means that 

algorithms will train faster. Dimensionality reduction could be done by many feature selection 

methods. The univariate filter method is a common feature selection tool by using statistical tests 

to evaluate the features. Univariate filter methods evaluate each feature individually without 

considering feature interactions and providing scores to each feature. Chi-square is statistic way 

to show the relationship between categorical variables. Mutual information is a measure of 

dependency between random varies relies on the computation of the feature probability 

distribution. In this test, we set threshold for both chi-square and mutual information score to select 

features. The threshold we selected is 0.2 means only use the features that both chi-square and 

mutual information score higher than 0.2. The reduction features create the new training and testing 

dataset with new feature numbers. The classification models on the training dataset will test on 

testing dataset to evaluate the generalization of model performance. Consider that the cases for 

distinguish crack dominate orientation accuracy have already reach 1.00, we only apply this 

technique on the classification of dispersion and spatial distribution to reduce the overfitting and 

improve model performance. The number of features selected is changing case by case. However, 

from the evaluation metrics like model accuracy and F-1 score, the model performance reduced 

by dimensionality reduction. That means the model is not overfitting from the dataset.  

7.2. Sensor addition  

As we discussed, all the features from the model are not deductible. Features could be strongly 

relevant, relevant, weakly relevant or irrelevant (Bottou, 2010). Even if some features are 

irrelevant, having too many is better than missing those that are important. To the end, we can try 

to add sensor numbers around the material to improve the model. The sensor number increased 

from 28 to 40, each boundary will have 14 sensors instead of 10. The source is still one located in 

the middle of the left boundary, and other feature characterization remains same as the previous 

experiments. By doing this, the feature number for only compressional wave changed to 40, and 



80 for P and S wave. Finally, we have 120 features after adding pressure diffusion. As a result, no 

clear benefit of additional features could be identified in this analysis. 

8. Conclusions 

In this study, we proposed classification algorithms to capture crack characterizations by 

measuring the sonic wave and pressure diffusion arrival times. FMM simulation is implemented 

to simulate the wave front travel time. The arrival times are used as input dataset to train and test 

7 selected data-driven methods. The findings of this study have several important implications for 

future practice. 

• Use both compressional and shear wave travel times can improve the data-driven model.  

• Apply pressure diffusion with sonic waves can optimize the machine learning algorithms.  

• Embedded closed discontinuities performs better than open discontinuities on the 

classification models.  

• Voting classifier and gradient boosting classifier outperform other models in this study.  

• This study shows that machine learning models exhibit best classification performance on 

classifying crack dominant orientations. The model accuracy and F-1 score can reach 1.00 

when combine sonic waves and pressure diffusion.  

• Neither reduce feature dimensionality nor add sensor numbers can improve the algorithms.  

 

9. Recommends for future work  

• Build a robust model to trace the development of dynamic crack in the material. 

• Regression model can be used to in the similar way to analysis the fracture system.  

• Use full set of travel time may improve the model performance. 

• The effect of other crack parameter such as crack length or numbers can also be 

investigated. 

• 3-D model could be created for the same purpose with better accuracy.  
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