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Abstract

The Southern California Bight (SCB), an eastern boundary upwelling system, is impacted by global warming, acidification and

deoxygetation, and receives anthropogenic nutrients from a coastal population of 20 million people.

We describe the configuration, forcing, and validation of a realistic, submesoscale resolving ocean model as a tool to investigate

coastal eutrophication. This modeling system represents an important achievement because it strikes a balance of capturing

the forcing by U.S. Pacific Coast-wide phenomena, while representing the bathymetric features and submesoscale circulation

that affect the vertical and horizontal transport of nutrients from natural and human sources.

Moreover, the model allows to run simulations at timescales that approach the interannual frequencies of ocean variability,

making the grand challenge of disentangling natural variability, climate change, and local anthropogenic forcing a tractable task

in the near-term. The model simulation is evaluated against a broad suite of observational data throughout the SCB, showing

realistic depiction of mean state and its variability with remote sensing and in situ physical-biogeochemical measurements of

state variables and biogeochemical rates. The simulation reproduces the main structure of the seasonal upwelling front, the

mean current patterns, the dispersion of plumes, as well as their seasonal variability. It reproduces the mean distributions of

key biogeochemical and ecosystem properties. Biogeochemical rates reproduced by the model, such as primary productivity

and nitrification, are also consistent with measured rates. Results of this validation exercise demonstrate the utility of fine-scale

resolution modeling in support of management decisions on local anthropogenic nutrient discharges to coastal zones.
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Abstract18

The Southern California Bight (SCB), an eastern boundary upwelling system, is impacted19

by global warming, acidification and oxygen loss, and receives anthropogenic nutrients from20

a coastal population of 20 million people. We describe the configuration, forcing, and vali-21

dation of a realistic, submesoscale resolving ocean model as a tool to investigate coastal eu-22

trophication. This modeling system represents an important achievement because it strikes a23

balance of capturing the forcing by U.S. Pacific Coast-wide phenomena, while representing24

the bathymetric features and submesoscale circulation that affect the transport of nutri-25

ents from natural and human sources. Moreover, the model allows to run simulations at26

timescales that approach the interannual frequencies of ocean variability, making the grand27

challenge of disentangling natural variability, climate change, and local anthropogenic forc-28

ing a tractable task in the near-term. The model simulation is evaluated against a broad29

suite of observational data throughout the SCB, showing realistic depiction of the mean30

state and its variability with satellite and in situ measurements of state variables and bio-31

geochemical rates. The simulation reproduces the main structure of the seasonal upwelling32

front, the mean current patterns, the dispersion of wastewater plumes, as well as their33

seasonal variability. Furthermore, it reproduces the mean distributions of key biogeochemi-34

cal and ecosystem properties and their variability. Biogeochemical rates reproduced by the35

model, such as primary production and nitrification, are also consistent with measured rates.36

Results of this validation exercise demonstrate the utility of fine-scale resolution modeling37

in support of management decisions on local anthropogenic nutrient discharges to coastal38

zones.39

Plain Language Summary40

We applied and validated an ocean numerical model to investigate the effects of land-41

based and atmospheric nutrient loading on coastal eutrophication and its effects on carbon,42

nitrogen and oxygen cycles of the Southern California Bight, an upwelling-dominated marine43

embayment on the U.S. West Coast. The model is capable of high resolution, multi-year44

hindcast simulations, which enable investigations to disentangle natural variability, climate45

change, and local human pressures that accelerate land-based and atmospheric nutrient46

loads. The model performance assessment illustrates that it faithfully reproduces monitored47

ocean properties related to algal blooms, oxygen and water acidity, among others, that48

can be traced to land-based and atmospheric inputs of nutrients and carbon from human49

activities. The model performance assessment helps to constrain uncertainties in predictions50

to support ongoing conversations on approaches to reduce the effects of climate change,51

including considerations of management of local nutrient and carbon inputs.52

1 Introduction53

Human-driven eutrophication has resulted in profound impacts to coastal ecosystems54

around the world. These impacts are arguably the best studied in estuaries and enclosed55

bays (e.g. Chesapeake Bay; Cerco and Cole (1993); Boesch et al. (2001)) and semi-enclosed56

seas such as the Baltic Sea (Savchuk & Wulff, 2007; Cederwall & Elmgren, 1990), the57

Mediterranean Sea (Arhonditsis et al., 2000), and the Gulf of Mexico (Justić et al., 2005;58

Laurent et al., 2018). To date, few investigations of coastal eutrophication have occurred in59

Eastern Boundary Upwelling systems (EBUS). While strong upwelling and vigorous surface60

currents would generally limit the extent to which coastal eutrophication could occur (Fennel61

& Testa, 2019), such investigations have also been limited by coupled physical biogeochem-62

ical numerical modeling approaches that can adequately resolve fine-resolution bathymetry63

and the complexities of submesoscale circulation (McWilliams, 2016; Dauhajre et al., 2019),64

while simulating a sufficient duration (several years) to distinguish oceanic versus terrestrial65

forcing. These submesoscale circulation features, including fine scale eddies and filaments66

< 5 km in horizontal resolution, strongly control the magnitude and variability of nearshore67
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upwelling and associated nutrient transport. Thus, high resolution, submesoscale-resolving68

numerical models are a necessary prerequisite for mechanistic modeling studies and source69

attribution of oceanic versus terrestrial drivers of coastal eutrophication in EBUS. Inad-70

equate modeling system and lack of numerical model validation have been identified as71

significant barriers to effective, evidence-based solutions to coastal eutrophication (Boesch,72

2019).73

All the necessary ingredients are present to motivate a numerical modeling investigation74

of the role of coastal eutrophication in driving ocean acidification and oxygen loss in the75

Southern California Bight (SCB), a large marine open embayment found in the California76

Current System (CCS) on the U.S. Pacific Coast. First, the SCB is a biologically-productive77

region, and thus of high economic and ecological importance. Seasonal upwelling of nutrient-78

rich deep water maintains high rates of biological productivity over broad scales. At the79

same time, upwelling draws water masses that are naturally low in dissolved oxygen, pH,80

and carbonate saturation state (ΩAr) onto the shelf and into the photic zone (Sutton et al.,81

2017). Second, the SCB has one of the most spatially comprehensive and longest-running82

coastal observational systems in the world. Several physical and biogeochemical variables83

are sampled regularly and extensively, creating an ideal setting for model-data comparisons.84

Third, the SCB is home to one of the most densely populated coastal regions in North Amer-85

ica, where the discharges of primary or secondary treated wastewater from a population of86

20 million people are released to the coastal zone via ocean outfalls, along with the urban87

and agricultural runoff from 75 rivers. These nutrient sources rival natural upwelling in88

magnitude (Howard et al., 2014), roughly doubling available nitrogen to nearshore coastal89

waters. Intensifying ocean acidification, oxygen loss and harmful algal blooms have moti-90

vated California policy makers to consider reducing anthropogenic nutrients as a climate91

change mitigation strategy (Ocean Protection Council, 2018), but wastewater treatment92

plant upgrades and methods to increase control or reduce non-point sources would cost93

billions. A numerical modeling approach is needed to disentangle the effects of natural94

upwelling and climate change from anthropogenic nutrient loading from land-based and95

atmospheric sources.96

To support such investigations, the regional oceanic model system (ROMS, Shchepetkin97

and McWilliams (2005)) coupled to the biogeochemical elemental cycling model (BEC,98

Moore et al. (2004)) has been recently adapted for the CCS (Renault, McWilliams, et99

al., 2020; Deutsch et al., 2020). A downscaled model domain was established, scaling from100

a 4 km horizontal resolution configuration spanning the entire CCS, to a 1 km resolution101

grid covering the much of the California coast (latitude < 40.25◦N), to a 0.3 km grid in the102

Southern California Bight (SCB), where investigations of local anthropogenic inputs were103

focused. Modeling experiments investigating submesoscale transport (captured at model104

resolutions ≤ 1 km) have demonstrated an up to ten-fold increase in the magnitude of in-105

stantaneous vertical N fluxes (Kessouri, Bianchi, et al., 2020) relative to mesoscale transport106

represented by a 4 km model (Section 2.2). Furthermore, a finer horizontal resolution of107

bathymetry improves the representation of coastal currents, submesoscale circulation, and108

coast-offshore connectivity (Dauhajre et al., 2019). For this reason, investigations of coastal109

eutrophication are simulated here at 0.3 km horizontal resolution. Simulations conducted110

with the 4 km ROMS-BEC model domain have been validated for regional-scale atmospheric111

forcing, physics, and biogeochemistry, including O2, carbonate saturation state, primary112

productivity, and hydrographic parameters, demonstrating that the model captures broad113

patterns of critical properties in the CCS (Renault, McWilliams, et al., 2020; Deutsch et114

al., 2020). However, additional focused validation of nearshore, anthropogenically-enhanced115

gradients in nutrients, primary production, oxygen and pH in model simulations conducted116

at 0.3 km resolution are needed to gauge model utility to investigate the impacts of coastal117

eutrophication on ocean acidification and oxygen loss.118

We employed this downscaled, submesoscale-resolving physical-biogeochemical model119

to investigate the effects of land-based and atmospheric nutrient inputs in driving coastal120

–3–



manuscript submitted to Journal of Advances in Modeling Earth Systems

eutrophication and ocean acidification and oxygen loss. The aim of this manuscript is to: 1)121

document the SCB ROMS-BEC model configuration, including the effects of land-based and122

atmospheric inputs of nutrients and organic carbon, intended to support investigations of123

coastal eutrophication, and 2) present a validation of SCB ROMS-BEC simulations against124

available observations, focusing on anthropogenically-enhanced gradients in nutrients, pri-125

mary production, oxygen, and pH.126

2 SCB coupled physical and biogeochemical model description, configu-127

ration and forcing128

2.1 Model description129

2.1.1 Ocean hydrodynamics130

Ocean hydrodynamics is modeled with the Regional Oceanic Modeling System (ROMS)131

(Shchepetkin & McWilliams, 2005), a free-surface, terrain-following coordinate model with132

3-D curvilinear coordinates that solves the primitive equations with split-explicit time steps.133

It contains state-of-art numerical algorithms that provide an accurate and stable representa-134

tion of physical processes down to scales of tens of meters, and allows for offline downscaling135

of high-resolution sub-domains within larger domains. The offline downscaling is based136

on the Orlanski scheme for the baroclinic mode (Marchesiello et al., 2001) and a modified137

Flatcher scheme for the barotropic mode (Mason et al., 2010). Vertical mixing in the bound-138

ary layers is represented by a K-profile parameterization (W. G. Large et al., 1994). The139

U.S. West Coast hindcast model has been successfully run over two decades at 1 and 4 km140

horizontal resolution using high-resolution spatial and temporal atmospheric forcing that141

represent the effects of wind drop-off, the current feedback on the surface stress, and high-142

frequency wind fluctuations (Renault, Hall, & McWilliams, 2016a; Renault, Molemaker,143

McWilliams, et al., 2016). For this study, we further downscale to 0.3 km resolution to144

capture submesoscale processes, and run the model for 4 consecutive years between January145

1997 and December 2000.146

2.1.2 Biogeochemistry147

Ocean biogeochemical modeling approaches can have a broad range of complexities,148

ranging from few functional groups (e.g. NPZD models, Fasham (1993)), to multiple bio-149

geochemical cycles (e.g. C, N, O) and plankton functional groups. To provide a repre-150

sentation of biogeochemical cycles, ROMS is dynamically coupled to the Biogeochenical151

Elemental Cycling (BEC) model (Moore et al., 2004; Gruber, 2004; Gruber et al., 2011;152

Deutsch et al., 2020). A schematic of BEC is shown in Fig. 1(b). BEC is a multi-element153

(C, N, P, O, Fe, Si) and multiplankton model that includes three explicit phytoplankton154

functional groups (picoplankton, silicifying diatoms, N-fixing diazotrophs), one zooplankton155

group, and dissolved and sinking organic detritus. The impacts of calcifying phytoplankton156

(coccolithophores) on the carbon system is represented implicitly. Remineralization of sink-157

ing organic material follows the multi-phase mineral ballast parameterization of Armstrong158

et al. (2001).” and “Sedimentary processes have also been expanded. Particulate organic159

matter reaching the sediment is accumulated and slowly remineralized with a timescale of160

330 days, to provide a buffer between particle deposition and nutrient release. Nitrogen loss161

to the sediment is parameterized according to the empirical diagenetic model for sediment162

denitrification of Middelburg et al. (1996). Water column denitrification is only active when163

oxygen concentrations fall below 5 mmol m−3. Sedimentary release of Fe is based on the164

benthic chamber measurements of (Severmann et al., 2010) for the California-Oregon coast,165

and increases as bottom water oxygen concentrations decrease. Atmospheric dust deposition166

follows the parameterization by Mahowald et al. (2006) and provides an additional source167

of iron at the surface, although of minor importance compared to sedimentary iron release168

in the region (Deutsch et al., 2020). The ecosystem is linked to a carbon system module169

that tracks dissolved inorganic carbon (DIC) and alkalinity, and an air-sea gas exchange170
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Figure 1: a) ROMS-BEC model configurations. dx = 4 km is the black box, dx = 1
km is the blue box, dx = 0.3 km is the red box. Background color contours show the
topography from dx = 4 km. b) Schematic of the biogeochemical elemental cycling model.
The schematic shows state variables (boxes) and biogeochemical rates and feedback (arrows).

module that allows realistic representation of dissolved gases (e.g. O2, CO2 and nitrous171

oxide), based on the formulation of Wanninkhof (1992).172

2.1.3 Model configuration173

The SCB model domain extends along a 450 km stretch of the coast, from Tijuana to174

Pismo Beach, and about 200 km offshore. This grid, shown in Fig. 1a), is composed of 1400175

x 600 grid-points, with a nominal resolution of dx = 0.3 km. The grid has 60 σ-coordinate176

vertical levels using the stretching function described in Shchepetkin and McWilliams (2009),177

with the following stretching parameters: θs = 6, θb = 3, and hc = 250 m. The model is178

run with a time step of 30 seconds, and output is saved as 1-day averages.179

The oceanic forcing of the 0.3 km domain originates from multi-level offline downscal-180

ing. A 4 km simulation is initialized and forced at the open boundaries by a preexisting181

North-east Pacific-wide ROMS solution at 12 km resolution (Renault, McWilliams, et al.,182

2020), initialized and forced on the boundaries by the global model Mercator Glorys2V3183

(http://www.myocean.eu), and is run for the period 1995-2010, after a spin-up of 2 years.184

A 1 km simulation is initialized and forced from the 4 km model, starting in October 1996185

and ending in December 2007. The 0.3 km simulation is initialized and forced at its bound-186

aries by the 1 km simulation starting from January 1997 and ending in December 2000. The187

bathymetry used in this configuration comes from the Southern California Coastal Oceanic188

Observation System (SCCOOS) 3 Arc-Second Coastal Relief Model Development (90 m189

horizontal resolution).190

The oceanic model is forced by hourly outputs from the atmospheric uncoupled Weather191

Research and Forecast model (WRF06; Skamarock and Klemp (2008)). Using bulk for-192

mulae (W. B. Large, 2006), WRF06 provides heat, surface evaporation, momentum and193

atmospheric data and is run at 6 km resolution over a domain similar to the 4 km (Fig. 1194

and used for Renault, Hall, and McWilliams (2016b)), and includes a wind-current coupling195

parameterization necessary to attain more realistic simulations of the oceanic eddy kinetic196

energy (EKE) and circulation (Renault, Molemaker, McWilliams, et al., 2016; Renault,197

Masson, et al., 2020).198
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Model simulations were conducted from 1997-2000, a period chosen to capture the199

effects of all three phases of the El Niño–Southern Oscillation (ENSO); it also captures the200

beginning of the "modern" state of point source management in the SCB, where several large201

Publicly Owned Treatment Plants (POTW) were in transition from primary to secondary202

treatment. (We will refer to submarine point sources outfalls from the treatment plants as203

"POTW" hereafter.)204

2.2 Importance of submesoscale circulation205

Figure 2: (Upper panel) Timeseries (1997-2001) of the vertical eddy flux of nitrate at 40
m depth calculated as follow: wN = wN + w′N ′, where the overbar represents a monthly
average, and the prime the deviation from this average, for region covering the entire South-
ern California Bight. The minimum and maximum values (i.e. the envelope) of the flux are
shown in blue for the 4 km solution, in red for the 1 km solution and in green for the 1/3
km. (Lower panel) Snapshot of the vertical flux of nitrate in spring at 40 m off the coast of
Palos Verdes that shows higher magnitudes and enhanced variability as resolution increases.

Downscaling to dx = 0.3 km allows the model to represent ocean circulation that206

includes baroclinic and barotrophic eddies and turbulence generated at the submesoscale207

(Capet, Campos, & Paiva, 2008). Resolving submesoscale eddies dramatically increases208

the variability of vertical fluxes of biogeochemical tracers and other material properties,209

eventually allowing a more accurate representation of chemical and biological constituents.210

Figure 2(upper panel) shows the temporal variability and horizontal distribution of vertical211

eddy fluxes of nitrate at 40 m from 3 different resolutions with the ROMS model (see212

section 2.1.3). Submesoscale dynamics increase instantaneous fluxes by more than one213

order of magnitude, with more frequent and vigorous fine-scale structures (Fig. 2(bottom214

panels)) when increasing the resolution from 4 km to 1 km, and similarly another order of215

magnitude when increasing resolution from 1 km to 0.3 km. Intensification of vertical flux of216

nitrate at the euphotic depth has previously been shown in idealized models (Mahadevan,217

2016; Lévy et al., 2012) and in realistic simulations in the central California upwelling218

system (Kessouri, Bianchi, et al., 2020), but has never been modeled in the SCB at this219

resolution. Submesoscale eddies have been associated with increased productivity in the220
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oligotrophic ocean (Mahadevan, 2016) and decreased productivity in the upwelling region221

(Kessouri, Bianchi, et al., 2020). Our submesoscale-resolving simulation at dx = 0.3 km is an222

opportunity to quantify the balances of nitrogen, dissolved oxygen, carbon and productivity223

using a more realistic representation of the physical circulation, as well as a representation224

of urban anthropogenic inputs to the ocean.225

Inclusion of submesoscale dynamics energizes frontogenesis by mesoscale straining and226

mixed layer instabilities (Capet, Klein, et al., 2008; Capet, Campos, & Paiva, 2008; Capet,227

McWilliams, et al., 2008). Oceanic fronts are a driver of significant nutrient supply to the228

upper ocean. They have also been recognised as areas of enhanced biomass in many regions229

of the global ocean (Woodson & Litvin, 2015), as well as important locations for fisheries (e.g.230

(Galarza et al., 2009)). In our set of simulations, we show that the increased number of fronts231

and submesoscale instabilities promote intense variability of nitrate transport as shown232

in figure 2, as well as increased heterogeneity at the subsurface chlorophyll a maximum.233

However, surface phytoplankton biomass is only intensified if the timescale of the enrichment234

is sufficiently long and maintained in these small scale features. Modeling at this scale235

allows for a more accurate simulation of biogeochemical tracers and rates, as described in236

subsequent sections.237

2.3 Terrestrial and atmospheric forcing of freshwater, nutrients and carbon238

Model simulations were forced with a monthly time series of spatially-explicit inputs239

(Fig. 3, upper), including freshwater flow, nitrogen, phosphorus, silica, iron, and organic240

carbon representing natural and anthropogenic sources (Sutula et al., 2021b). These data241

include POTW ocean outfalls and riverine discharges (1997-2017) and spatially-explicit242

modeled estimates of atmospheric deposition. POTW effluent data were compiled from per-243

mit monitoring databases and communication with sanitary agencies. Monthly time series244

of surface water runoff from 75 rivers are derived from model simulations and monitoring245

data (Sutula et al., 2021b). Direct atmospheric deposition is derived from the Community246

Multi-scale Air Quality (CMAQ) model (Byun et al., 2006), and follows the implementation247

of Deutsch et al. (2020). In this paper, we discuss in detail the formulation of the river and248

wastewater outfall inputs.249

2.4 Configuration of river and wastewater outfall forcing in the model250

Ocean outfalls and coastal rivers are modeled as mass sources into the ocean (Fig. 3,
upper). To accomplish this, we add explicit volume fluxes to the otherwise divergence-free
flow in the ocean. The inclusion of these fluxes makes it possible to account for associated
sources of tracers, while satisfying conservation laws. Specifically, our approach allows for
the proper influx of fresh water in the ocean, without resorting to a ‘virtual salt’ flux,
which is a common approach in larger scale ocean models (Kang et al., 2017). Since we
explicitly include known volume fluxes for both rivers and outfall pipes, specification of
tracer concentration is sufficient to correctly model the source terms. The tracer evolution
equations that are used in ROMS are implemented by using control volumes (Shchepetkin
& McWilliams, 2005) where for each tracer concentration C = C(x, y, z, t),

∂
t

C dV

∂t
=

x
unC dA. (1)

where V = V (x, y, z, t) is the volume of the entire domain, un is the normal velocity into the
volume and A = A(x, y) is the total area of grid cells source is being input. Additionally,
we enforce mass conservation which implies;

∂V

∂t
=

x
un dA. (2)
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Figure 3: (Upper panel) Location of rivers and POTW outfalls along the SCB. (Lower
panel) Location of monitoring stations used for the validation, including POTW quarterly
monitoring surveys, CalCOFI seasonal observations, showing the line numbers, Santa Mon-
ica Bay Observatory (SMBO), and San Pedro Oceanographic Timeseries (SPOT), mooring.
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In absence of rivers and outfalls, the flow is volume conservative, and the integral on the251

right hand side of Equation 2 is zero. Using Equations 1 and 2, it is easy to see that the mean252

concentration of a tracer can be lowered if the average concentration of the flux entering the253

control volume is less than the mean concentration in that volume. In this manner, fresh254

water rivers will lower the salinity of the water in which they enter. All 75 rivers and 23255

POTW pipes that are considered in this study are implemented in this manner.256

Each individual source is based on the following equation:

S(x, y, z, t) =
W (x, y, z)Qs(t)Cs(t)

Vs
(3)

With:257

S(x, y, z, t): volume source of contaminant (mmol m−3 s−1).258

W (x, y, z): non-dimensional shape function (with values between 0 and 1).259

Qs(t): water volume flux from the source (m3 s−1).260

Cs(t): concentration of the tracer C in the source water (mmol m−3).261

Vs: effective volume of the source (m3).262

263

For each source, Qs(t) and Cs(t) are prescribed as time series. The shape function
W (x, y, z) distributes the tracer spatially and in the water column, representing non-resolved
mixing and dilution effects. Its values represent the relative intensity of the in situ tracer
injection, with values between 0 and 1. Tracer concentration C is distributed in the water
column as C(x, y, z, t) = W (x, y, z)Cs(t) The effective 3D volume of the source is calculated
from the shape function W (x, y, z) as:

Vs =
y

W (x, y, z) dV (4)

where the integral is over the model domain. For convenience, we assume that W (x, y, z)
can be separated into a horizontal shape function A(x, y), multiplied by a vertical shape
function H(z) (both non-dimensional and with values between 0 and 1), such that:

Vs =
x

A(x, y) dx dy

∫
H(z)dz = AsHs (5)

Here, As represents the effective source surface area (m2), and Hs the effective source264

thickness (m). The functions A(x, y) and H(z) are defined differently for POTW and rivers.265

They are assumed to be fixed in time; a time-dependent generalization (for example to266

mimic variations in the depth of the POTW buoyant plume) is straightforward. For POTW267

inputs, at each main diffuser, the horizontal distribution A(x, y) of the source is shown in268

Fig. S1. This method of weighting the plume in different cells allows the effluent to be269

properly diluted vertically and horizontally at this resolution and prevents the model from270

developing numerical instabilities.271

Each large treatment plant has specialized outfall configurations that are taken into
account for representation in the model (Fig. S1). The flow is divided in two at Hyperion
Treatment Plant (HTP) located 6km off Marina Del Rey (Santa Monica Bay) (Fig. S1A)
and Point Loma Wastewater Treatment Plant (PLWTP) in San Diego coast (Fig. S1D) to
account for their Y-shaped diffuser, partitioning 50% of the flow to each diffuser. Orange
County Sanitation District (OCSD) located 6km off Huntington Beach (Fig. S1C) has one
flow through its L-shaped diffuser. Joint Water Pollution Control Plant (JWPCP) in Palos
Verdes shelf (Los Angeles) (Fig. S1B) has three diffusers, the Y-shape northern typically
discharges 17.5% of the flow for each leg of the Y-diffuser, and the southern L-shape diffuser
discharges 65% of the flow. The vertical profile of the POTW sources is defined by a
Gaussian function centered at a height z above the bottom (hb), to mimic a buoyant plume,
so that H(z) is given by:

H(z) = e−z
2/d2

s (6)
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Where z = −hb + hs, with272

hb: bottom depth (m).273

hs: depth of the buoyant plume above the bottom (m).274

ds: vertical scale of the POTW plume (m).275

We further assume hs = 20 m and ds = 10 m, as in Uchiyama et al. (2014).276

We distribute the SCB rivers on one horizontal grid point (0.3 km wide), where we277

assume A(x, y) = 1, and similarly distribute the source vertically, with the Gaussian function278

centered at the surface. hs here is simply the water column depth to put the maximum input279

at the surface. Because in ROMS the thickness of vertical grid cells varies in time, to ensure280

tracer conservation the calculation of the input source volume Vs must be done at each time281

step, even in the case of a time-independent source shape function W (x, y, z). Effectively,282

only Hs = H(z) needs to be recalculated at each time step.283

3 Model performance assessment approach284

The conceptual approach for model performance assessment is comprised of three com-285

ponents, addressing different aspects of skill assessment: 1) statistical comparison of model286

output to observational data for state variables by region and season; 2) comparison of model287

output to observational data for biogeochemical rates; 3) evaluation of model behavior com-288

pared to expected biogeochemical dynamics for coastal zones. Comparison of model output289

to observational data by region and season is designed to document model skill at reproduc-290

ing the statistics (e.g., mean values and variability) of ocean physical and biogeochemical291

parameters at the spatio-temporal scales more relevant for evaluating human impacts on the292

coastal environment. Comparison of model output to observational data for biogeochemi-293

cal rates assures that model is capturing the appropriate transformations in nutrients and294

carbon that structure the ecosystem response to eutrophication. Finally, the evaluation of295

model behavior compared to the expected physical and biogeochemical dynamics for coastal296

zones is a more qualitative evaluation of model performance to document that the model297

broadly reproduces oceanographic phenomena in a way that reflects our understanding of298

nearshore ocean environments.299

3.1 Description of Observational Datasets300

3.1.1 Ship-Based Ocean Monitoring301

The SCB is home to a suite of long-running monitoring programs that make it one of302

the best observed coastal ecosystems in the world (3, lower). Among them, the Califor-303

nia Cooperative Oceanic Fisheries Investigations (CalCOFI) program (McClatchie, 2016),304

initiated in the 1950s, samples the SCB quarterly each year, collecting hydrographic and305

biogeochemical measurements in coordination with the Southern California Coastal Ocean306

Observing System (SCCOOS). These observations are augmented nearshore by quarterly307

surveys of nearshore water column and benthic parameters conducted collaboratively since308

1990 by POTW agencies as a part of their regulatory monitoring requirements (Howard309

et al., 2014; McLaughlin et al., 2018; Booth et al., 2014; Nezlin et al., 2018). These pro-310

grams provide good temporal and geographical coverage of both the offshore (CalCOFI) and311

nearshore (POTW) areas, coinciding with the model period, and include publicly available312

water quality data for targeted sites measured quarterly. We validated model output against313

observed temperature, dissolved oxygen, nitrate, ammonium, chlorophyll, carbon-system314

parameters (pH and aragonite saturation state), primary production, and nitrification.315

In situ measurements have inherent uncertainty, due to a combination of measurement316

sensitivity and sampling frequency and intensity, making them an imperfect “truth” with317

which to compare to model output. However, this uncertainty is not the same for all param-318

eters. Both temperature and dissolved oxygen are collected using high resolution probes,319

though the two programs used in this study incorporate slightly different calibration pro-320
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tocols for dissolved oxygen, lending greater confidence to data-model comparisons for these321

datasets. Chlorophyll is measured on discrete bottle samples in the CalCOFI program,322

a high quality measurement, but inferred from in situ fluorescence measurements in the323

POTW monitoring program, adding uncertainty to these measurements. Nitrate and am-324

monium concentrations are measured on discrete bottle samples for both programs, but the325

detection limits are more sensitive in the CalCOFI program. Furthermore, nutrients are not326

measured with the same sampling density in POTW monitoring programs as sensor data.327

Similarly, primary production is measured at a subset of locations in the CalCOFI program328

and as a short-term special study in Southern California Bight Regional Marine Monitoring329

Program (Bight Program). Details on measurements and sample collection protocols for the330

CalCOFI program can be found on their website (https://calcofi.org ; McClatchie (2016))331

and for the POTW monitoring programs in Howard et al. (2014). We also use selected332

nutrient observations from the Santa Monica Bay Observatory (SMBO) mooring located in333

the Santa Monica Bay (Leinweber et al., 2009). Figure 3 shows a map of all monitoring334

stations used in this study. The repository of data can be found in Kessouri, McLaughlin,335

et al. (2020).336

3.1.2 High Frequency Radar and Acoustic Doppler Current Profilers337

High Frequency Radar (HF) data from the database of the University of California, San338

Diego (https://hfrnet-tds.ucsd.edu/thredds/catalog.html) provide surface currents along the339

west coast of the United States, including the SCB. Seasonally averaged data from 2012-2020340

were used to analyze trends of surface currents in the Bight compared to the model. Acous-341

tic Doppler Current Profilers (ADCP) provide current data in the water column. ADCP342

measurement data from Orange County Sanitation District (OCSD) for the period June343

1999 to June 2000 and Los Angeles County Sanitation District (LACSD) during November344

2000 to June 2007 were used to validate vertical profiles of currents.345

3.1.3 Remote sensing observations346

Satellite ocean color measurements for chlorophyll were used to characterize horizontal347

gradients at finer scales and higher density than possible with the ship-based monitoring.348

We use monthly averaged surface chlorophyll concentration from the period 1997 to 2000349

derived from the SeaWiFS sensor at 4 km spatial resolution. Large gaps in the dataset350

can occur because of dense cloud cover that occurs in late spring and early summer. The351

products of the Vertically Generalized Production Model (VGPM) net primary production352

algorithm (Behrenfeld & Falkowski, 1997) were also considered for this validation. Despite353

limitations, satellite data provide a valuable representation of the spatial distribution of354

chlorophyll, temperature, and primary production at seasonal scales over the region.355

3.2 Performance Statistics356

Our approach to a statistical assessment of agreement between model predictions versus357

observations reflect the fact that the hydrodynamic model, under the influence of realistic358

forcings (e.g. wind fields) and without data assimilation, develops its own intrinsic vari-359

ability in circulation, e.g. submesoscale eddies (McWilliams, 2007). The resulting modeled360

state variables would not necessarily overlap with observations on a point-by-point basis,361

but would be comparable to observations when averaged over appropriate spatio-temporal362

scales. We assessed a suite of statistics and metrics, following the methodology of Allen et363

al. (2007), to assess how well the model reproduces the magnitude and gradients of selected364

state variables, whether the model agreement has an apparent bias, and how well the model365

reproduces natural variability. We calculated six metrics, defined in the following, where N366

is the total number of appropriate observational data, D represents each individual observa-367

tional datum, D is the mean of the observational data,M is the model estimate representing368

an observation, and M is the mean of the model estimate. The metrics considered include:369
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The Pearson correlation coefficient, reflecting the degree of linear correlation between
the observed and model variable, and the statistical significance (p-value) of this correlation:

rxy =

∑N
n=1(Dn −D)(Mn −M)√∑N

n=1(Dn −D)2
√∑N

n=1(Mn −M)2
; (7)

The Cost Function (CF), which gives a non-dimensional value indicative of the “goodness
of fit” between two sets of data, quantifying the difference between model results and mea-
surement data:

CF =
1

N

N∑
n=1

|Dn −Mn|
σD

(8)

where σD is the standard deviation of the observations;370

The Percentage Bias (PB) (the sum of model error normalized by the data):

PB =

∑
(D −M)∑

D
∗ 100; (9)

The Ratio of the Standard Deviations (RSD):

RSD =
σD
σM

(10)

where σM is the standard deviation of model outputs;371

The Nash-Sutcliffe Model Efficiency (ME) (Nash & Sutcliffe, 1970), a measure of the
ratio of the model error to the variability of the data:

ME = 1−
∑

(Dn −Mn)2∑
(D −D)

; (11)

And the two-sample t-test, or Welch’s t-test (Welch, 1947; Derrick et al., 2016):

H = (D −M)/

√
σ2
D

N
+
σ2
M

N
. (12)

We score the model performance following Table 1 per the methodology of Allen et al.372

(2007).373

Statistic Excellent Good Reasonable Poor

Cost Function (Moll & Radach, 2003) <1 1-2 2-3 >3
Nash Sutcliff Model Efficiency (Nash & Sutcliffe, 1970) >0.65 0.65-0.5 0.5-0.2 <0.2
Percentage Bias (Maréchal, 2004) <|0.1| |0.1-0.2| |0.2-0.4| >|0.4|
H (Welch, 1947) 0 1
Correlation Coefficient 1-0.9 0.9-0.8 0.8-0.6 <0.6
p-value <0.05 >0.05
Ratio of Standard Deviations 1-0.9, 1-1.1 0.9-0.8, 1.1-1.2 0.8-0.6, 1.2-1.4 <0.6, >1.4

Table 1: Model performance
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4 Model performance assessment findings374

4.1 Ocean circulation375

The SCB is situated at the confluence of water masses from the subarctic Pacific via the376

California Current, and from the eastern tropical North Pacific via the California Undercur-377

rent, which all interact with the local topography, the coast, and the atmosphere to sustain378

variability in circulation on inter-annual, seasonal, and intraseasonal time scales (Dong et379

al., 2009; Bograd et al., 2015). The effects of this variability in circulation has profound380

consequences for coastal ocean biogeochemistry (Gruber et al., 2011; Bograd et al., 2015;381

Nagai et al., 2015; Nezlin et al., 2018), and is therefore critical that the model accurately382

simulates spatial and temporal variability in circulation patterns.383

Figure 4 shows the hydrodynamic characteristics of the SCB in the model compared to384

data. In the northern SCB, the model shows similar qualitative and quantitative patterns385

for the horizontal circulation compared to HF data (Fig. 4(a)-(b)) and as seen in Dong et386

al. (2009). The circulation in the SCB is characterized by northward currents in the first 20387

km of the coast and cyclonic circulation in the middle of the SCB that is stronger in summer388

and weaker in winter. The model successfully reproduces observed current patterns, with389

similar current magnitudes. The intensity of the northward coastal branch of the current is390

on average about 0.15-0.3 m s−1 in summer versus 0.05-0.15 m s−1 in winter. The offshore391

southward branch is generally about 0.3 m s−1 all year round (Fig. 4(a)-(b)). The dominant392

current in the coastal band (15 km from coast) of the SCB flows northward, and follows the393

topography along isobaths on the shelf (Fig. 4(g)-(h)).394

The simulated June 1999-June 2000 variability of the current in depth is shown in395

the vertical profiles extracted off the coast of Palos Verdes and Orange county compared396

to the ADCP data at the same locations (Fig. 4(c)-(f)). The location of both of these397

profiles are a few kilometers from the contintental slope and therefore capture a suite of398

physical processes, including mesoscale and submesoscale eddies, fronts, jets, and internal399

tides (Capet, McWilliams, et al., 2008; Kim et al., 2011; Dong et al., 2009). The model400

generally reproduces the means and range of the variability shown in these close to shore401

horizontal currents, which demonstrates that ROMS at dx = 0.3 km resolution captures the402

submesoscale variability described in Section 2.2.403

In the northern SCB, cyclonic vortices are generated inside the Santa Barbara Chan-404

nel (Fig. 4(i)) when the northward current that flows along the Ventura coast meets the405

eastern side of the Channel Islands, with higher intensity in summer (Fig. 4(a) versus (b))406

(Winant et al., 2003). Submesoscale eddies are particularly prominent in this region, in407

particular persistent cyclonic eddies that drive an upward doming of isopycnals (Fig. 4(j))408

(McGillicuddy Jr, 2016), which supplies nutrients to the euphotic layer. The model correctly409

reproduces this vertical transport, described in Brzezinski and Washburn (2011), and the410

high concentrations of nitrate and other nutrients in the upper layers of the Santa Barbara411

Channel, as further detailed in Section 4.3.1.412

In the central and southern SCB (latitude < 34.7◦N), the model successfully captures413

flow regimes around the large POTW outfalls, indicating that it can appropriately represent414

the dispersal of wastewater plumes in these regions. In the Santa Monica and San Pedro415

Bays, topography drives the circulation of currents inside the Bays, converging back to416

the main current offshore (Fig. 4(g)-(h)). On top of the Hyperion and JWPCP outfalls417

(in the Santa Monica Bay and offshore of the Palos Verdes peninsula, respectively), the418

current is mostly south-eastward. Near the OCSD outfall, the current direction varies in419

winter between south-eastward and north-westward, but is primarily southward in summer420

(Fig. 4(a)-(b), (e)-(f)). At the PLWTP outfall, the current is narrow, with a dominant421

south-eastern direction, parallel to the coast, demonstrated by both model and HF radar422

data.423
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Figure 4: a) Mean surface currents in the Southern California Bight from HF data during
2012-2020 (thick red arrows) and model during 1999-2000 (black arrows) in summer and
b) winter. c)-f) Vertical profiles of horizontal velocity components from ADCP instruments
(thick red lines) and model (thinner black lines). The two dashed lines indicate the 5th
and 95th percentile current values. c)-d) ADCP data come from the LACSD mooring A3
stationed at the teal ‘X’ in a)-b) and e)-f) come from the OCSD mooring OC-T-1 located
at the teal ‘O’. g) Mean model current direction and speed (colored) at 40 m depth with
bathymetry contoured in summer and h) winter. i) Surface model vorticity normalized by f
in spring in Santa Barbara Channel showing cyclonic eddies. j) Cross-section of temperature
and density isopycnals as drawn by the dashed line in (i) from model to show eddy-driven
uplifting of the isopycnals in the center of Santa Barbara Channel.
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4.2 Vertical gradients and seasonal variability of temperature and mixed424

layer depth425

Figure 5: (a) Average seasonal profiles of temperature in the Santa Monica Bay. The
red lines and red bars show the spatio-temporal mean and the variability from the model
respectively. The black dots and the gray shading show the spatio-temporal mean and the
variability from in situ data (City of LA stations), respectively. (b) Hovmöller diagram of
temperature at the location of the Hyperion POTW outfall (HTP) in the Santa Monica
Bay issued from the model. The black line shows the simulated time-series of mixed layer
depth. The deepest mixing occurs during El Niño 1998 (>40 m). Colored dots are average
concentrations from in situ measurements.

The model successfully reproduces the three-dimensional and seasonal variability of426

physical tracers, here exemplified by temperature. Temperature is the parameter in which we427

have the highest confidence in the observational record, because observations are abundant,428

and sensors are accurate and precise, regularly calibrated, and with negligible drifts. The429

greatest source of observational uncertainty is temporal under-sampling, but some sources430

of model bias may also be important (e.g., from atmospheric forcing, wind, or shortwave431

detailed in Renault, McWilliams, et al. (2020)). Quantitative statistical analysis indicates432

that model performance is ‘excellent ′ or ‘good ′ for nearly all metrics for all regions and433

seasons (see Table 2). The lowest performance of the model is characterized as ‘reasonable ′434

for certain sub-regions (Palos Verdes, Orange County, and San Diego) in spring and fall435

(Palos Verdes only) (see Supporting Information Table S2). As noted above, this may be436

due to under-sampling during these months, which can be highly variable because the region437

is shifting between a well-mixed to a more stratified ocean regime. Detailed information438

on the other sub-regions and their statistical comparison can be found in the Supporting439

Information, Tables S1 to S4.440

Following common practices (de Boyer Montégut et al., 2004), we define the mixed layer441

depth (MLD) as the depth at which temperature decreases from its surface value by more442

than 0.2◦C. On average, the MLD deepens from the coast to offshore, and varies with season443
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(e.g. in Santa Monica Bay in Fig. 5b). The model successfully simulates the seasonal cycle444

of MLD along the coast. For example, the model recreates the observed seasonal deepening445

of the mixed layer in the Santa Monica Bay to depths greater than 16-20 m (the typical446

depth of the upper signature of the POTW plumes, see Section 4.3.2) nearly every winter447

(black line in the Fig. 5b).448

Regular winter shows a homogeneous upper layer of < 14◦C temperature, and a mixed449

layer located at 18-20 m in the coastal region and 40-60 m offshore. The surface ocean is450

colder around the Channel Islands (SST<12◦C) (see Fig. 19). In the open ocean, the model451

reproduces the de-stratification with deepening of the thermocline to about 70m and a MLD452

at about 40m (Fig. 6c and d). In summer, stratification is the strongest, reflecting an intense453

vertical temperature gradient, and the MLD (both in the model and in the observations) is454

found few meters below the surface (approximately 10 m). Temperature varies rapidly from455

more than 20◦C at the surface in the southern domain (16-17◦C in the northern domain)456

to less than 12◦C at 50m depth over the entire SCB (see also Fig. 19). In the open ocean,457

the model succeeds in reproducing the stratification that brings the seasonal thermocline to458

50m and the MLD to 15m (Fig. 6c) and e)).459

The model reproduces interannual variability in MLD under the influence of El Niño-460

Southern Oscillation (ENSO, hereafter referred to as El Niño, i.e., the period from fall 1997461

to spring 1998 in Fig. 5b), when the MLD reached 40 m. We show that during winter of462

El Niño year, the entire water column of the SCB is warmer than on average, and surface463

temperature is more homogeneous, varying between 15.5 and 17◦C (Fig. 6a). In the open464

ocean, during El Niño, with warmer upper layer than regular winters, the model shows465

good performance in reproducing the deepening of the seasonal thermocline (>120 m) and466

of the MLD (>50 m) (e.g. offshore Santa Monica Bay in Fig. 6a and b). These patterns of467

variability in temperature are consistent with regional observations of El Niño in the SCB468

(Todd et al., 2011).469

4.3 Dissolved Inorganic Nitrogen470

4.3.1 Spatial patterns and seasonality of nitrate471

Nitrate observations are only broadly available in the offshore CalCOFI dataset, so472

only large-scale regional patterns in nitrate concentration can be validated. There is a clear473

seasonality of nitrate, where surface concentrations are higher in spring and summer, and474

decrease in fall and winter (Fig. 7). The model reproduces the average seasonal patterns475

observed in the in situ nitrate data across multiple regions. The model also captures along-476

shore variability in coastal nitrate concentrations, reproducing values greater than 25 mmol477

N m−3 off Santa Barbara, 20 mmol N m−3 off Los Angeles, and 15 mmol N m−3 off San478

Diego.479

The model also reproduces observed patterns in the depth of the nitracline (Mantyla480

et al., 2008; Nezlin et al., 2018), which tends to follow sloping density surfaces in the481

region. These patterns include: the high values at the euphotic depth limit (∼50m below482

the surface) along the Santa Barbara coast in spring; the doming of the nitracline in the483

center of the Santa Barbara Channel (Fig. 7b); the 20 to 30 m deep nitracline along the484

Los Angeles coast; and the deepening of the nitracline from about 30 m at the coast to485

more than 60 m offshore in San Diego. In the offshore region of the SCB, the model is486

consistent with observations showing high nitrate (>20 mmol N m−3) around the Channel487

Islands (not shown) as compared to less than 5 mmol N m−3 farther offshore. This pattern488

is strongest in winter and summer, when the offshore regions are particularly oligotrophic489

(surface NO−3 < 1 mmol m−3) throughout the SCB.490
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Santa Monica: Temperature

H Correlation
Coefficient

p-value Cost
Function

Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.96 E 7E-06 E 0.05 E -0.04 E 1.10 G 0.81 E 716
Spring 0 E 0.98 E 8E-07 E 0.10 E -0.10 G 0.78 R 0.51 G 716
Summer 0 E 0.97 E 9E-06 E 0.04 E -0.02 E 1.07 E 0.93 E 712
Fall 0 E 0.89 G 3E-06 E 0.09 E -0.08 E 0.98 E 0.51 G 718
All Seasons 0 E 0.95 E 3E-05 E 0.08 E -0.07 E 1.02 E 0.73 E 2862

Table 2: Statistical comparison between in situ data and model outputs for temperature
profile in Santa Monica Bay (City of LA stations). Letters next to numbers indicate model
performance: E = Excellent, G = good, R = reasonable, P = Poor.

Santa Monica: Ammonium

H Correlation
Coefficient

p-value Cost
Function

Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.94 E 0.06 P 0.54 E 0.24 R 1.86 P 0.68 E 20
Spring 0 E 0.85 G 0.14 P 0.58 E -0.57 P 0.69 R -0.61 P 21
Summer 0 E 0.58 P 0.42 P 0.72 E 0.19 G 1.76 P 0.29 R 21
Fall 0 E 0.91 E 0.09 P 0.42 E 0.07 E 1.47 P 0.80 E 21
All Seasons 0 E 0.81 G 0.10 P 0.36 E -0.03 E 1.23 R 0.60 G 83

Table 3: Statistical comparison between in situ data and model outputs for ammonium
profile in Santa Monica Bay.
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Figure 6: (a) Cross section of average temperature following line 86.7 from CalCOFI
monitoring stations during an El Niño winter (12/1997 to February 1998). (b) Profile
at station P2. Black dots are CalCOFI in situ data, red line is the simulated profile.
The horizontal line is the MLD (black is CalCOFI, red is simulated). Diamonds (black is
CalCOFI, red is simulated) is the depth of the maximum gradient to estimate the depth of
the seasonal thermocline at 12◦C. (c-d) are similar to (a-b) for average winter, and (e-f) are
for average summer.
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Figure 7: (a-c) Time series of nitrate concentration at 50 m depth in three different locations
of the SCB: (a) is near the center of Santa Barbara Channel, (b) is offshore the Santa
Monica Bay, and (c) is offshore San Diego. Model outputs are represented by the lines
for three different years, with the dots showing mean values from in situ measurement
from CalCOFI, and gray bars the standard deviation from the mean. The time-series show
prominent interannual variability in addition to seasonal variability. While the years 1997
and 1999 show similar nitrate distributions, the El Niño period between the end of 1997
to 1998 is significantly different, showing nearly uniform concentrations between November
1997 through May 1998. This is caused by the deepening of the thermocline during El Niño,
which depresses the nutricline. (d-f) Cross sections showing the average springtime nitrate
concentration in (d) the Santa Barbara region (e) the SM region, and (f) the SD region.
Background are model outputs and dots are CalCOFI in situ measurements. Model and in
situ data agree on the vertical and seasonal patterns in the three regions. They highlight
the main differences in these three regimes, consisting of a shallower nitracline in the Santa
Barbara Channel, and a deeper nitracline in southern waters. (g-h) Comparison of nitrate
concentrations during (g) winter El Niño (January-March 1998) and (h) during an upwelling
event (the first week of May 1999) to illustrate the ability of the model (vs. in situ CalCOFI
data) to simulate the vertical displacement of the nitracline during these specific events.
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Figure 8: As for Fig. 5, but for ammonium concentration. These profiles are showing
agreement on intensity, seasonality and shape of the vertical profile with exceptionally high
concentrations at mid-depth.

4.3.2 Vertical gradients and seasonal variability of ammonium491

Ammonium concentrations above a natural background concentration of 1 mmol N492

m−3 are indicative of POTW wastewater plumes. The model reproduces the observed493

average vertical profile of ammonium in the Santa Monica Bay, falling within the range of494

observed variability (Fig. 8a). Similar figures for other regions are shown in the Supporting495

Information (Fig. S6-Fig. S9). All regions show a similar maximum concentration between496

30 to 45 m below the surface, in all seasons. The highest concentrations are seen in summer,497

when stratification is stronger, while lower concentrations in winter likely reflect increased498

dilution by seasonal mixing from the deepening of the mixed layer (Fig. 8b). Near ocean499

outfalls, both model and observations show mid-depth peaks of ammonium concentration,500

occasionally exceeding 10 mmol m−3, which considerably overshadow values observed away501

from outfalls. In the model, these high ammonium concentrations are caused by wastewater502

plumes.503

The main source of uncertainty in data-model comparisons is the limited spatial and504

temporal coverage of measurements. Ammonium is typically measured near ocean outfalls505

and is therefore biased towards high concentrations, but the dataset is highly variable.506

Methodological difficulties exist with the measurement of ammonium in seawater, and as507

such, we excluded non-detectable ammonium values in our analyses. Near the submarine508

outfalls, ammonium concentrations are likely extremely heterogeneous due to buoyant plume509

filaments, as observed in DiGiacomo et al. (2004) and in Warrick et al. (2007) in the Santa510

Monica Bay, as well as in other regions (e.g. Florida, in Marmorino et al. (2010)). These511

plume filaments are caused by horizontal advection and straining of the discharged effluent512

by currents. As a result, the under-sampling of ammonium may have led to poor statistical513

agreement between observations and model output. The model shows high to moderate514

agreement for the shape of the profile and the mean concentration (Table 3). However,515
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p-values for the correlations were not always significant. Similarly, there were often biases516

and low performance regarding variability statistics. This low model performance can be517

explained by the following two reasons: (1) spatial sampling is likely missing plume filaments,518

for example observational data points with high ammonium values that are capturing the519

plume are recorded next to very low or non-detectable values; and (2) the resolution of520

the model (0.3 km), as well as model averaging over the day, season, and depth range521

causes plume filaments to appear more uniformly spread near the outfalls. Because plume522

filaments are lost in this averaging, the model represents plumes as cloud-like distributions523

around outfalls; nevertheless, the average ammonium concentration of wastewater plumes524

is reasonably well represented. Detailed information on the other sub-regions and their525

statistical comparison can be found in the Supporting Information Tables S1 to S4.526

4.3.3 Horizontal gradients of ammonium527

Both in situ observations (dots in Fig. 9, Fig. 8a) and model output (background528

colours in Fig. 9 and red line in Fig. 8a) show high concentrations of ammonium in the529

subsurface layer below the thermocline (Fig. 9c), which we refer to as "high-ammonium530

plume". This high-ammonium plume can extend from Huntington Beach to South Ventura,531

encompassing three of the four major wastewater treatment plant outfalls in the SCB (See532

Section 2.4). Both model and observations show that the width and strength of the high-533

ammonium plume are greatest in summer compared to other seasons. The Santa Monica534

Bay Observatory mooring (SMBO, Leinweber et al. (2009)) located 17 km north-west of the535

submarine pipe Hyperion in Santa Monica Bay (Fig. 9g) frequently recorded concentrations536

higher than 2 mmol m−3, and up to 4 mmol m−3 at mid-depth (Fig. 9e), consistent with the537

model (Fig. 9f). The depth of the maximum variability is at 40 m in the model, and slightly538

shallower in the SMBO data, possibly because of a mismatch in the time period (1997-2000539

for the model, and 2004-2010 for the SMBO). During winter, the model indicates vertical540

mixing and dilution of the plume at the surface. Accordingly, ammonium concentrations541

decrease slightly at depth (Fig. 9a) and increase at the surface, reaching values up to 2-6542

mmol m−3, also consistent with observations around the outfall pipes (Fig. 8a).543

4.3.4 Spatial patterns in rates of nitrogen transformation544

Although we had no in situ nitrogen transformation rates with which to compare model545

output during the simulation period, several datasets exist for the region that can serve546

as a test for whether the model is simulating reasonable patterns in rates via the right547

mechanisms. We found that modeled rates do agree with observed nitrogen transformation548

rates. Nitrification rates, the sequential oxidation of NH+
4 to NO−3 via NO−2 , have been549

observed to be higher within wastewater plumes in the SCB (McLaughlin et al., 2021), a550

pattern driven by high ammonium concentrations in the discharges (McLaughlin, Nezlin, et551

al., 2017). In both observations and the model, nitrification predominately occurs below the552

euphotic layer. Modeled vertically-integrated nitrification rates vary between 0.15 and 1.5553

mmol N m−2d−1, consistent with observations within the SCB and in the California Current554

(Table 5). The model also reproduces higher nitrification rates within wastewater plumes555

(See Supporting Information Fig. S22). There is also good agreement between observed and556

modeled rates of nitrate and ammonium uptake by phytoplankton communities (McLaughlin557

et al., 2021) and (Kudela et al., 2017). Modeled nitrate uptake rates vary between 2 and 11558

mmol N m−2d−1 and ammonium uptake rates vary between 6 and 51 mmol N m−2d−1 in559

the Los Angeles and Orange County coasts, consistent with observations in the SCB (Table560

5).561

4.4 Chlorophyll concentrations562

In general, the model was found to reproduce vertical and horizontal gradients in chloro-563

phyll concentration in different subregions (Fig. 12). The timing of blooms was consistent564
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Figure 9: (a-d) Colors show seasonal average ammonium concentration between 30 and 45
m depth from the model, and dots from observations. High values highlight the movement
and dispersion of subsurface wastewater plumes along the Orange and Los Angeles counties.
The highest concentrations are located within a narrow coastal band of about 10 - 15 km
width, and are carried along the topography by the mean currents. (e-f) show a statisti-
cal comparison of the vertical profiles of ammonium at the SMBO mooring and the same
location in the model. The anthropogenic ammonium plume signature is apparent, albeit
intermittently, 17 km away from the Hyperion outfall. (g) shows the simulated vertical max-
imum concentration of NH+

4 averaged during a representative day to illustrate the dispersal
of the effluent toward SMBO originating from the 2 diffusers of Hyperion Treatment Plant
(HTP).
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with changes in mixing and nutrient delivery in the SCB. We present three different subre-565

gions characterized by distinct hydrodynamic regimes: the Santa Barbara Channel, the Los566

Angeles coast, and San Diego coast.567

There are several sources of uncertainty in the chlorophyll, primary production, phyto-568

plankton growth, and grazing rates observational records. For chlorophyll, bottle measure-569

ments are accurate and precise, but measure a limited portion of the water column. Sensors570

are accurate and precise in their measurement of fluorescence and have a rapid response571

time, providing vertically resolved profiles; however, the algorithm to convert fluorescence572

to chlorophyll concentration is inaccurate for the SCB. As a result, a correction factor has573

been applied to Bight data which adds uncertainty to the observational dataset (Nezlin et574

al., 2018). Satellite measurements of chlorophyll are inferred from ocean color (Kahru et575

al., 2009). This method works well offshore, but breaks down nearshore where terrestrially-576

derived colored dissolved organic matter creates uncertainty in reported satellite chlorophyll577

estimates on the order of 100% or greater (Zheng & DiGiacomo, 2017). For primary pro-578

duction, the incubation method to derive the rates is sensitive and precise (Cullen, 2001),579

though measured rates are subject to bottle effects and there is some ambiguity as to whether580

the experiments measure net primary production or gross primary production (Regaudie-de581

Gioux et al., 2014). Phytoplankton growth and zooplankton grazing are also determined582

experimentally, and duplicate measurements indicate that these methods are not very pre-583

cise, with differences between duplicates ranging from 80% to 200% (Landry et al., 2009; Li584

et al., 2011). For all three measurements, spatial and temporal under-sampling, particularly585

during seasons with high variability, adds uncertainty to the data-model comparison.586

4.4.1 Horizontal gradients in chlorophyll587

Despite the uncertainties outlined above, the model successfully simulates horizontal588

gradients in chlorophyll in the three subregions (Santa Barbara, Los Angeles and San Diego).589

The model captures the early, wide-spread spring bloom in the Santa Barbara Channel,590

which occurs as a combination of a coastal bloom driven by spring upwelling, followed by a591

bloom in the central and southwestern regions of the Channel (near the islands) in spring592

and summer (Fig. 10). The latter is driven by the strengthening of the cyclonic circulation593

in the Channel, which transports nutrients to the upper layers, and is regularly observed594

in the region (Brzezinski & Washburn, 2011). The model captures the strong seasonality595

in chlorophyll, wherein concentrations change from near zero in winter to up to 8 mg Chl596

m−3 in spring. Of the three regions, the blooms off Santa Barbara extends further into597

late summer and fall, where the average concentration is approximately 1-2 mg Chl m−3, a598

pattern replicated in both model and observations .599

In the Los Angeles subregion, the model predicts broad patterns in chlorophyll concen-600

trations, including a persistent bloom in the San Pedro Bay, consistent with observations601

(Nezlin et al., 2012), and validated by comparison with remote sensing (Fig. 11). Both602

satellite-derived and modeled chlorophyll show concentrations in the San Pedro Bay consis-603

tently higher than 3 mg Chl m−3 year-round, often extending into the Santa Monica Bay.604

The model also reproduces the strong offshore gradients in chlorophyll, where across less605

than 15 km offshore surface concentrations are reduced 3 to 4 fold (<1 mg Chl m−3) further606

decreasing towards the open ocean. The model also reproduces the timing and magnitude of607

the blooms in the Santa Monica and San Pedro Bays. The difference in timing of maximum608

chlorophyll concentrations between the Santa Monica and San Pedro Bays likely reflects609

differences in nutrient supply. Nutrients, in particular ammonium, are available near the610

surface during winter (see Section 4.3.2), reflecting more vigorous mixing of the wastewater611

plume and land-based nutrient supply by rivers (in particular in the San Pedro Bay) during612

winter storms (Lyon & Stein, 2009). Storms and winter mixing events have been connected613

to phytoplankton blooms in the region (Nezlin et al., 2012; Mantyla et al., 2008). Fur-614

ther offshore in the Los Angeles region, the model recreates the weak seasonality of surface615

chlorophyll, with higher concentrations during winter and spring, and lower concentrations616
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Figure 10: Comparison of seasonally-averaged surface chlorophyll between SeaWiFS remote
sensing data (left panels) and the model (right panels) in the Santa Barbara Channel, where
an important seasonal bloom is observed.
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in summer and fall. In the offshore region of the Santa Monica Bay, the seasonal cycle is617

marked by the increase of surface phytoplankton between March and May as shown in Fig.618

12b. Mean chlorophyll values reach up to 3 to 4 mg Chl m−3 in April and May, although619

concentrations below 2 mg Chl m−3 are more common, consistent with observations over620

the same period.621

Figure 11: Comparison of seasonally-averaged surface chlorophyll between SeaWiFS remote
sensing data (left panels) and the model (right panels) for years 1998-2000 in the Santa
Monica and San Pedro Bays, where major POTW outfalls are found. The figure highlights
the persistent coastal phytoplankton bloom, and the sharp inshore-offshore gradients.

Offshore of the San Diego coast, the model recreates a slight increase in surface chloro-622

phyll in March; however, concentrations are generally below 1 mg Chl m−3 year-round (Fig623

12(c)). The oligotrophic conditions of the southern Bight (Nezlin et al., 2012; Mantyla624

et al., 2008) have been attributed to a deeper nitracline, which in turns supports a deep625

chlorophyll maximum layer (Mantyla et al., 2008). This feature is well represented in the626

model, which reproduces relatively high concentrations of chlorophyll in subsurface layers627

(generally between 20 and 90 m depth in the region).628
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Figure 12: Comparison of surface chlorophyll concentration between different years of
model output, and a climatology from CalCOFI in situ data. (a) is near the center of Santa
Barbara Channel, (b) is offshore the Santa Monica Bay, and (c) is offshore San Diego. The
model reproduces different productivity regimes across the Southern California Bight, with
highly productive waters in the northern region, where average concentrations greater than
3 mg m−3 are observed for more than half of the year, and oligotrophic southern regions,
where average surface concentrations rarely exceed 1 mg m−3.
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4.4.2 Vertical gradients and seasonal variability of chlorophyll629

Figure 13: As for Fig. 5, but for chlorophyll concentration. Vertical profiles show a good
agreement between simulated and in situ data, and display the formation of a subsurface
chlorophyll maximum in summer, and a surface maximum in winter and spring. Concentra-
tions in winter vary up to +5 mg Chl m−3. Note the very low concentrations during 1998
El Niño in the entire water column.

The goodness-of-fit statistical metrics (correlation coefficient and cost function) for630

chlorophyll are generally excellent or good for most seasons for all sub-regions (Table 4).631

We were most concerned with performance for these metrics because the remaining statistics632

may be affected by the aforementioned uncertainties due to the fluorometry calibration. The633

observational measurements should be internally consistent (if not accurate), so the shapes634

of profiles should be “correct” even if the magnitude is off due to poor calibration, and the635

model was able to replicate these shapes accurately. Despite calibration issues, the model636

reproduced chlorophyll reasonably well for the northern Bight sub-regions of Santa Monica637

Bay (Fig. 13) and Ventura/Oxnard (SI Fig. S11). Similar figures for other regions are shown638

in the Supporting Information (Fig. S10-Fig. S13). All show that the model is reproducing639

the magnitude and general shape of observed profiles. However, the model did not capture640

the variability for most regions (except for Palos Verdes), generally scoring reasonable or641

poor in the ratio of standard deviations for most seasons, particularly spring. This is likely642

a result of the spatial and temporal averaging. Chlorophyll is highly variable in space643

and time and under-sampling in either of these dimensions will adversely affect variability644

estimates for a region and season. Therefore, reasonable performance for these metrics645

was not unexpected. This suggests that the model may provide a conservative estimate646

of phytoplankton biomass in the southern Bight, while reproducing accurate spatial and647

temporal patterns in that biomass.648

In addition to transporting nutrients from depth, upwelling ’seeds’ surface waters with649

subsurface water masses dominated by selected phytoplankton species, stimulating surface650

blooms near the coast (Seegers et al., 2015). The model successfully reproduces this process,651
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wherein the subsurface chlorophyll maximum shoals and intensifies in spring, forced by the652

vertical movement of the thermocline driven by upwelling. This seasonal dynamics occurs653

across the domain in the model.654

Offshore, in the more oligotrophic portion of the SCB, the model predicts that more655

than 60% of the maximum concentration of phytoplankton biomass remains below the sur-656

face year-round, constantly fed by subsurface nutrients injections. This is consistent with657

observations of a deep chlorophyll maximum throughout the region (Nezlin et al., 2018;658

Mantyla et al., 2008; Seegers et al., 2015), and with observations at the San Pedro Oceanic659

Time-Series (SPOT) located between the Palos Verdes Peninsula and Catalina Island (Fig.660

3, lower panel). At SPOT, a region weakly influenced by anthropogenic nutrients inputs661

at the surface, the model realistically simulates the seasonal cycle of chlorophyll. While662

ammonium does not exceed typical "natural" values of ∼1 mmol m−3 below the surface,663

chlorophyll concentrations regularly reach more than 2 mg m−3 between 20 and 40 m in664

summer, in agreement with in situ measurement (Teel et al., 2018; Beman et al., 2011).665

(Additional figures to support the analysis are reported in the Supporting Information, Fig.666

S23.)667

However, in regions more heavily influenced by anthropogenic nutrients, such as the668

Santa Monica Bay, the chlorophyll maximum progressively deepens from the surface in669

winter to about 25 to 30 m depth in spring and summer, with chlorophyll concentrations670

exceeding 5 mg Chl m−3 (Fig. 13a). This subsurface chlorophyll maximum is maintained671

for four to five months (Fig. 13b) before the stratification is weakened by winter mixing.672

4.4.3 Primary production673

Validation of the rates of primary production, phytoplankton growth and zooplankton674

grazing (Table 5) provides an independent check on mechanisms responsible for chloro-675

phyll as a state variable. The spatial and temporal frequency of these data, garnered from676

CalCOFI observations and literature values, is low. The most data as well as the most677

standardized methodologies are available for primary production. However, many of the678

primary production measurements used in this validation do not temporally coincide with679

the model period. Despite these uncertainties, the model generally reproduces expected680

large-scale patterns and seasonal variability in primary production.681

This large scale variability was also mentioned in Deutsch et al. (2020). Model and data682

both show lower productivity in winter (Fig. 14a,c) and higher in spring (Fig. 14b,d), when683

the primary production is high along the coastal band, in the northern Bight around the684

Channel Islands (Fig. 14d), consistent with observations (Fig. 14b). This is also consistent685

with the so-called "green ribbon" of high-chlorophyll observed along the coast throughout686

the SCB (Lucas et al., 2011). The model reasonably reproduces the seasonal cycle of primary687

production in each of the subregions.688

Phytoplankton are generally limited by a combination of nutrients and light, the latter689

of which is only limiting at depth in the SCB (Deutsch et al., 2020).690

In winter, nitrogen is high at the surface in the northern SCB, and thus is not limiting.691

In the southern SCB, light and nitrogen are co-limiting due to stronger stratification, leading692

to oligotrophic conditions. In spring and through the summer, nitrogen is limiting nearly693

everywhere except in the Santa Barbara Channel and near the Channel Islands, where694

upwelling and submesoscale eddies maintain high nutrients at the surface.695

The scatter plots in Fig. 14e-f show a comparison of the simulated primary production696

between the in situ CalCOFI data and that derived from remote sensing (empirically ad-697

justing the Behrenfeld-Falkowski Vertically Generalized Production Model [VGPM]). The698

model shows a correlation coefficient of about 0.6 with CalCOFI, similarly to that reported699

by Kahru et al. (2009) when comparing the VGPM product with CalCOFI. The model700
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Santa Monica: chlorophyll

H Correlation
Coefficient

p-value Cost
Function

Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.99 E 9E-06 E 0.48 E 0.09 E 0.91 E 0.94 E 714
Spring 0 E 0.93 E 9E-05 E 0.90 E -0.42 P 0.52 P -0.49 P 716
Summer 0 E 0.99 E 1E-08 E 0.58 E -0.07 E 0.60 R 0.47 R 712
Fall 0 E 0.99 E 8E-08 E 0.48 E 0.16 G 0.75 R 0.76 E 718
All Seasons 0 E 0.99 E 4E-08 E 0.50 E -0.01 E 0.73 R 0.80 E 2860

Table 4: Statistical comparison between in situ data and model outputs for chlorophyll
profile in Santa Monica Bay.

Figure 14: (a)-(b) Maps of vertically integreated Vertically Generalized Production Model
(VGPM) net primary production and CalCOFI in situ measurements plotted as dots for (a)
winter (January and February) and (b) spring (April to June). (c)-(d) Maps of vertically
integrated primary production from the model, in (c) winter and (d) spring. Note the higher
values for CalCOFI in situ measurements as compared to the satellite estimate, in better
agreement with the model.
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shows a stronger correlation with VGPM data, with a correlation coefficient of the order of701

0.8.702

Finally, while slightly outside our model domain and simulation period, the modeled703

phytoplankton growth and zooplankton grazing rates were within the same order of mag-704

nitude as the measured rates from the California Current Long Term Ecological Research705

project (CC-LTER, see Landry et al. (2009), and Table 5) in the northern portion of the706

Bight.707

Bight 13 Literature Model

Primary production (g C m−2 y−1) 47.4, 1037.4 250, 1660
Nitrification (mmol m−3 d−1) 0, 0.225 0.02, 0.08 0.001, 0.27
NO−3 Uptake Rate (mmol N mg Chl−1 d−1) 0.005, 2.16 0.03, 0.15
NH+

4 Uptake Rate (mmol N mg Chl−1 d−1) 0.10, 8.30 0.08, 0.15
Total Phytoplankton Growth µ (d−1) 0.05, 0.8 0.3, 0.4
Grazing (d−1) 0.02, 0.5 0.3, 1.5

Table 5: Comparison of biogeochemical rates between published literature and model. Val-
ues are minimum and maximum. Literature values come from Landry et al. (2009); Li et
al. (2011). Bight 13 is extracted from (McLaughlin et al., 2021) study.

4.5 Carbonate system and oxygen parameters708

The model predicts changes in dissolved oxygen and carbon-system parameters related709

to photosynthesis and respiration, as well as horizontal transport and vertical mixing. As710

described in section 4.4.1, the coasts of Los Angeles and Santa Barbara are hot-spots of711

intensified plankton activity, and both systems are impacted by high variability and small-712

scale eddy circulation. In the upper layers, photosynthesis increases both dissolved oxygen713

and pH (Figs. 16 and 18), consistent with observations in these regions. The Santa Monica714

Bay shows the highest oxygen production rates (60 mmol m−2 d−1), followed by the Santa715

Barbara coast (57 mmol m−2 d−1), while rates in the Orange County and San Diego coasts716

are nearly two times lower. Oxygen and carbon are further replenished at the surface by717

air-sea gas exchange with the atmosphere. Export of newly-fixed organic carbon leads in718

both regions to high remineralization rates that consume oxygen and release carbon dioxide719

at depth. We simulate similar high organic matter export (around 30 mmol m−2 d−1) in720

the Santa Barbara and Los Angeles coasts (see Supporting Information: Fig. S24).721

The reliability of these predictions can be tested by validation of dissolved oxygen and722

carbonate system parameters. There are several sources of uncertainty in the dissolved723

oxygen, pH, and aragonite saturation state observational records, which affect data-model724

comparisons. For dissolved oxygen, sensors are relatively accurate and precise and have a725

rapid response time (< 1s) when generating vertically resolved profiles. Repeated field mea-726

surement accuracy for CTD dissolved oxygen sensors was reported to be approximately 8727

mmol m−3 (Coppola et al., 2013). The pH observational record is particularly fraught with728

uncertainty. An evaluation of pH sensor data in the SCB indicated that, while sensor pH729

measurements were well correlated with discrete bottle samples collected at the same depth,730

there was a clear bias in pH, with sensor measurements under-predicting bottle measure-731

ments and high variability in the differences between paired bottle and sensor measurements732

(∆pH ranging from +/- 0.5) (McLaughlin, Dickson, et al., 2017). The aragonite saturation733

state is estimated using an algorithm developed for the region (Juranek et al., 2011) for both734

in situ observations and model output, because complete measurements of carbon-system735

parameters required to calculate ΩAr are missing. For all three variables, spatial and tem-736
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poral under-sampling, particularly during seasons with high variability, adds uncertainty to737

the data-model comparison.738

4.5.1 Vertical gradients and seasonal variability of dissolved oxygen739

The model reproduces observed seasonal and spatial patterns in dissolved oxygen con-740

centration (Fig. 15), accurately simulating magnitude, vertical and horizontal gradients,741

and variability. Quantitative statistical analysis (see Table 6) indicated that the model per-742

formance was ‘excellent ′ or ′good ′ for nearly all metrics for all regions and seasons. The743

lowest performance of the model was characterized as ‘poor ′ for two sub-regions for the744

Nash-Sutcliff Model Efficiency during Spring, and ′reasonable ′ for some metrics in some745

sub-regions, which may be related to under-sampling during seasons with high variability,746

as described above. Similar to temperature, we tested whether the variability in spring747

may be impacting the performance statistics by extracting random profiles for the region748

(not shown, expressed with large error-bars in the spring season plots in Fig. 16), which749

show how dissolved oxygen on a single arbitrary day can more closely align with the ob-750

servations. This supports the hypothesis that observational uncertainty is behind the lack751

of observational agreement with the model. Model performance was lowest in the Orange752

County and San Diego subregions, where model predictions tended to overestimate dissolved753

oxygen, consistent with the chlorophyll under-prediction, a likely consequence of the lack of754

cross-border inputs from Mexican waters.755

The model also reproduces the seasonality in dissolved oxygen in all subregions (Fig.756

16), characterized by large meridional and vertical variability. Near the Channel Islands,757

dissolved oxygen varies at 50 m by up to 140 mmol O2 m−3 between the highest winter758

values and the lowest summer values, reflecting the dynamics of upwelling, productivity, and759

air-sea gas-exchange. Offshore the coasts of Santa Monica and San Diego, the variability760

between winter and summer is of the order of 80-90 mmol O2 m−3. Surface concentrations761

are everywhere above 240 mmol O2 m−3 year-round, consistent with observations. The762

highest summer concentrations are observed at the depth of the deep chlorophyll maximum,763

reflecting photosynthesis, while decreasing at depth to below 150 mmol O2 m−3. These764

patterns are generally consistent with observations in the same regions.765

During the 1998 El Niño event, the model shows a net decrease of dissolved oxygen near766

the surface, and a net increase below it. During this period, the entire upper layer (0-80767

m) is characterized by a homogeneous oxygen concentration of about 240 mmol O2 m−3768

over almost the entire SCB (not shown). Only the San Pedro and Santa Monica Bays show769

higher concentrations, which we attribute to the local anthropogenic nutrient enrichment770

and subsequent blooms (see Fig. 19). This is consistent with observations of the 1998 El771

Niño event in California coastal waters (Chavez et al., 2002; Booth et al., 2014).772

Figure 15: As for Fig. 5, but for oxygen concentration.
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Santa Monica

Oxygen
H Correlation

Coefficient
p-value Cost

Function
Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.97 E 9E-07 E 0.14 E -0.09 E 1.20 G 0.77 E 716
Spring 0 E 0.91 E 3E-04 E 0.26 E -0.23 R 1.03 E 0.37 R 702
Summer 0 E 0.99 E 2E-10 E 0.07 E 0.07 E 0.99 E 0.86 E 712
Fall 0 E 0.97 E 2E-06 E 0.19 E -0.14 G 1.49 P 0.42 R 718
All Seasons 0 E 0.97 E 3E-06 E 0.14 E -0.11 G 1.18 G 0.69 E 2848

pH
H Correlation

Coefficient
p-value Cost

Function
Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.99 E 2E-08 E 0.01 E 0.01 E 0.59 P 0.57 G 632
Spring 0 E 0.97 E 2E-06 E 0.02 E -0.02 E 1.45 P 0.15 P 702
Summer 0 E 0.96 E 9E-06 E 0.01 E 0.01 E 1.01 E 0.85 E 712
Fall 0 E 0.97 E 3E-06 E 0.01 E 0.01 E 1.49 P 0.78 E 715
All Seasons 0 E 0.97 E 5E-06 E 0.01 E -0.01 E 1.12 G 0.84 E 2761

Table 6: Statistical comparison between in situ data and model outputs for dissolved oxygen
and pH profile in Santa Monica Bay.

4.5.2 Vertical gradients and seasonal variability of carbon-system parame-773

ters774

Together with pH, the saturation state of aragonite (ΩAr) is often used as a metric775

to identify the potential impact of Ocean Acidification on marine calcifiers, because it is a776

measure of the availability of carbonate ions for calcium carbonate precipitation (Bednarsek777

et al., 2019). ΩAr shows similar vertical variability as dissolved oxygen (Juranek et al., 2009;778

Alin et al., 2012). Similar to oxygen loss, reduction in pH and ΩAr in the upper layers is779

generally caused by coastal upwelling or by local physical processes (Feely et al., 2018). We780

utilize sensor pH data sets to evaluate vertical profiles in the carbonate system. Because of781

the known uncertainty in pH measurements, we are most concerned with how well the model782

reproduced the shape of the profiles (i.e., goodness of fit estimates, as with chlorophyll).783

Sensor-derived pH profile measurements should be internally consistent within a data set784

(if the sensor is working properly and if pressure issues are minimal), providing some value785

to goodness of fit assessments. Given these constraints, the data-model comparisons for786

pH sensor data were generally ‘excellent ′ or ‘good ′ for all sub-regions and all seasons. Un-787

surprisingly, the model performance reproducing observational means and variability was788

generally ‘reasonable ′ or ‘poor ′ for most sub-regions and seasons, with some, if not most, of789

this disagreement due to difficulties in conducting a validation of the model with large un-790

certainties in sensor-derived pH profiles. Recently, the CalCOFI program has incorporated791

ΩAr into its sampling design. Although the data do not line up with the model period, they792

are useful for evaluating seasonal variability in the model . Generally, the model reproduces793

seasonal and vertical variability in ΩAr, with higher saturation states in the summer and794

fall, when waters are generally more stratified, and lower values in winter and spring, when795

upwelling brings undersaturated waters closer to the surface. ΩAr is also much lower and796

more highly variable at depth . These patterns are consistent with observations throughout797

the SCB (McLaughlin et al., 2018).798
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Figure 16: Comparison of dissolved oxygen concentration between different years of model
output, and a climatology from CalCOFI in situ data. SB is near the center of Santa
Barbara Channel, SM is offshore the Santa Monica Bay, and SD is offshore San Diego. Left
panels show surface concentrations, right panels concentrations at 50 m depth.

Figure 17: As for Fig. 5 but for dissolved pH.
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Figure 18: Comparison of the saturation state of aragonite between different years of model
output, and a climatology from CalCOFI in situ data. SB is near the center of Santa Barbara
Channel, SM is offshore the Santa Monica Bay, and SD is offshore San Diego. Left panels
show surface values, right panels values at 50 m depth.
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5 Summary799

In this study, we demonstrated the readiness of a high-resolution, dynamically down-800

scaled, physical-biogeochemical model to mechanistically investigate links between a com-801

prehensive reconstruction of terrestrial and atmospheric nutrient inputs, coastal eutrophi-802

cation, and biogeochemical change in the SCB coastal waters. This modeling platform is803

an important achievement because it strikes a balance of capturing the forcing of coast-804

wide basin mesoscale phenomena, while capturing the combined effects of bathymetry and805

submesoscale eddies that intensify transport of nutrients and biological material. Moreover,806

this model allows to run hindcast simulations of primary production, ocean acidification and807

oxygen loss at timescales that can approach the multi-annual frequencies of intrinsic ocean808

variability, making the grand challenge of disentangling natural variability, climate change,809

and local anthropogenic forcing a tractable task in the near-term.810

ROMS has a long history of validation and management acceptance through various811

applications in the CCS (e.g. Marchesiello et al. (2003); Capet et al. (2004); Capet, Colas, et812

al. (2008); Capet, Campos, and Paiva (2008); Capet, McWilliams, et al. (2008); Shchepetkin813

and McWilliams (2011); Renault, Molemaker, Gula, et al. (2016)). In contrast, experience814

with BEC within the SCB is more limited. Our validation study of coastal eutrophication815

gradients in the SCB nearshore complements the U.S. West Coast-wide study of (Deutsch816

et al., 2020) and strengthens confidence that the basic CCS BEC model formulation, forcing817

and parameterization is appropriate not only for coastwide analyses, but also for detailed818

local studies of coastal eutrophication in the highly urbanized SCB. The representation of819

physical processes such as vertical mixing and horizontal circulation was consistent across820

the model and measurements. The model reproduces the main structure of the climato-821

logical upwelling front and cross-shore isopycnal slopes, and the mean current patterns and822

associated temperature gradients. We also demonstrate good agreement between model823

simulations and the mean distributions and variability of key ecosystem metrics, including824

surface nutrients and productivity, and subsurface O2 and carbonate saturation. The spatial825

patterns of primary production, phytoplankton growth rates, and zooplankton grazing are826

broadly consistent with measured rates. The distribution of primary production is governed827

by the trade-off between nutrient and light limitation, a balance that reproduces and explains828

the observed spatial variations in the depth of the deep chlorophyll maximum. Statistical829

measures of model agreement on biogeochemical state variables was excellent to good and830

the range of predicted biogeochemical rates on par with observations. Under the realistic831

flow fields produced by ROMS, the conformity of model predictions with a rich observational832

dataset is a strong demonstration of model validity for coastal eutrophication applications.833

We also demonstrated that the model responds with confidence to the variability caused by834

El Niño, modifying the vertical distribution of the physical and biogeochemical properties835

across the upper ocean of the entire Bight, as illustrated by the three-dimensional change836

in key ocean variables shown in Fig. 19.837

While the broad agreement between the model and observations for a range of variables838

is encouraging, there remain aspects of the model that require further study and improve-839

ment. For example, phytoplankton diversity is limited in the model, preventing it from840

properly simulating events such as dinoflagellate-driven red tides, which occur over short841

periods on limited coastal scales in the spring. Despite the good performance of the model842

in reproducing total primary production and grazing rates, the model does not include mul-843

tiple zooplankton functional groups, thus providing little information on the dynamics and844

transfer of energy of higher trophic levels. From a hydrodynamics point of view, with a hor-845

izontal resolution of 300m, the model does not directly resolve physical processes occurring846

at sales of tens of meters (Dauhajre et al., 2019), for example the dilution and entrainment847

of buoyant wastewater plumes, which is now parameterized, or the vertical and horizontal848

transport of tracers in the very nearshore surf zone.849

Quantitative and qualitative results of confidence assessments are essential for informing850

management decisions, evaluating management strategies, and providing a basis for risk851
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analyses. The most successful management approaches are those that explicitly incorporate852

uncertainty (e.g. Taylor et al. (2000)). An assessment of model validation must consider853

the complex combination of model and observational uncertainties (Allen et al., 2007),854

including: 1) uncertainty/error in the model, with the inclusion of intrinsic variability; 2)855

uncertainty/error in measured data; 3) uncertainty from the difference in spatial scales of the856

model output relative to the measured data used in the comparison (specifically, comparing857

a 0.3 km grid cell to a discrete sampling station); and 4) uncertainty from the difference in858

temporal averaging of the model output relative to the measured data. For parameters in859

which we have high confidence in the observational record, i.e., temperature and dissolved860

oxygen, model performance statistics show excellent agreement for mean profiles, vertical861

and horizontal gradients, as well as seasonal variability. The model reproduces chlorophyll862

reasonably well, albeit with some biases, which can be in part attributed to a simplified863

representation of plankton diversity, measurement uncertainty, sparseness of in situ data,864

cloud cover and algorithm biases in satellite products. Variables such as pH and ammonium865

show lower agreement, likely due to measurement uncertainty and sampling bias, but general866

spatial and temporal patterns are correctly reproduced in the model.867

Greater clarity is needed in the requirements for model performance and uncertainty to868

support decisions on management of SCB coastal water quality and eutrophication (Boesch,869

2019). These requirements are likely to be driven largely by the approach that will be used870

to interpret a "significant impact" (e.g. existing water quality pH and dissolved oxygen871

criteria, or biologically relevant thresholds; (Weisberg et al., 2016)), as these have signif-872

icant implications for required model precision and accuracy on different spatial and and873

temporal scales. Future efforts to constrain uncertainty could include sensitivity analyses874

and model ensemble comparisons of BEC with other biogeochemical models that feature875

increasingly complex representations of planktonic functional groups, benthic communities,876

and sediment-pelagic interactions. Finally, long-term investments are needed in coupled877

chemical-biological observations of phytoplankton and zooplankton diversity and community878

structure. These observations are critical to provide understanding of the evolution of lower879

trophic ecosystem structure with climate change, and their relationship with biogeochemical880

cycles linked to ocean acidification and oxygen loss (Sailley et al., 2013). Ultimately, the881

need to constrain uncertainty will likely scale with the economic import of management882

decisions under consideration, which could range from increased monitoring requirements883

to multi-billion dollar non-point source controls and wastewater treatment plant upgrades.884
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• Table S1: Statistical comparison of vertical profiles of temperature, dissolved oxygen,1225

chlorophyll a, pH, and ammonium concentration at Ventura/Oxnard (City of Oxnard1226

stations) monitoring region. Letters next to numbers indicate model performance: E1227

= Excellent, G = very good, R = reasonable, P = Poor.1228

• Table S2: Same as Table S1 for Palos Verdes (LACSD stations) monitoring region.1229

• Table S3: Same as Table S1 for Orange County (OCSD stations) monitoring region.1230

• Table S4: Same as Table S1 for San Diego (City of San Diego stations) monitoring1231

region.1232

• Figure S1: Spatial distribution of the point sources to simulate and to dilute the1233

freshwater, nutrients and organic matter fluxes for the 4 majors POTW underwater1234

outfalls locations. Color contours show bathymetry. Vertically integrated, the grid1235

cells with the red dots discharge 4/9 of the respective flow at each diffuser, the grid1236

cells with yellow dots north, south, east and west of the red dots discharge 1/9 of the1237

discharge, and the yellow dots in the corners discharge 1/36 of the volume flux.1238

• Figure S2:Seasonal profiles of average temperature off of Palos Verdes. The red line1239

andred bars are the spatial and temporal means and the variability from the model.1240

The blackdots and the gray shade are the spatial and temporal mean and the vari-1241

ability fromin situdata (LACSD stations). These profiles are showing agreement on1242

intensity, seasonality andshape of the vertical profile with exceptionally high concen-1243

trations at mid-depth.1244

• Figure S3:Same as Fig S2 for Oxnard/Ventura using City of Oxnard stations1245

• Figure S4:Same as Fig S2 for Orange County using OCSD stations1246

• Figure S5: Same as Fig S2 for San Diego using City of San Diego stations.1247

• Figure S6:Seasonal profiles of average ammonium concentration off of Palos Verdes.1248

Thered line and red bars are the spatial and temporal means and the variability from1249

the model.The black dots and the gray shade are the spatial and temporal mean1250

and the variabilityfromin situdata (LACSD stations). These profiles are showing1251

agreement on intensity,seasonality and shape of the vertical profile with exceptionally1252

high concentrations at mid-depth.1253

• Figure S7:Same as Fig S6 for Oxnard/Ventura using City of Oxnard stations1254

• Figure S8:Same as Fig S6 for Orange County using OCSD stations.1255

• Figure S9:Same as Fig S6 for San Diego using City of San Diego stations.In situdataare1256

missing but we wanted to report out the depth of maximum anthropogenic plume,1257

incontrary to other subregion, in San Diego area, the plume rarely reaches 20 m.1258

• Figure S10:easonal profiles of average chlorophyllaconcentration off of Palos Verdes.The1259

red line and red bars are the spatial and temporal means and the variability from the-1260

model. The black dots and the gray shade are the spatial and temporal mean and1261

thevariability fromin situdata (LACSD stations). These profiles are showing agree-1262

ment onintensity, seasonality and shape of the vertical profile with exceptionally high1263

concentrationsat mid-depth1264

• Figure S11:Same as Fig S10 for Oxnard/Ventura using City of Oxnard stations1265

• Figure S12:Same as Fig S10 for Orange County using OCSD stations1266
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• Figure S13:Same as Fig S10 for San Diego using City of San Diego stations1267

• Figure S14:Seasonal profiles of average dissolved oxygen concentration off of Palos1268

Verdes.The red line and red bars are the spatial and temporal means and the vari-1269

ability from themodel. The black dots and the gray shade are the spatial and temporal1270

mean and thevariability fromin situdata (LACSD stations). These profiles are showing1271

agreement onintensity, seasonality and shape of the vertical profile with exceptionally1272

high concentrationsat mid-depth1273

• Figure S15:Same as Fig S14 for Oxnard/Ventura using City of Oxnard stations.1274

• Figure S16:Same as Fig S14 for Orange County using OCSD stations1275

• Figure S17:Same as Fig S14 for San Diego using City of San Diego stations.1276

• Figure S18:Seasonal profiles of average pH (seawater scale) off of Palos Verdes. The1277

red lineand red bars are the spatial and temporal means and the variability from1278

the model. Theblack dots and the gray shade are the spatial and temporal mean1279

and the variability frominsitudata (LACSD stations). These profiles are showing1280

agreement on intensity, seasonalityand shape of the vertical profile with exceptionally1281

high concentrations at mid-depth.1282

• Figure S19:Same as Fig S18 for Oxnard/Ventura using City of Oxnard stations.1283

• Figure S20:Same as Fig S18 for Orange County using OCSD stations.1284

• Figure S21:Same as Fig S18 for San Diego using City of San Diego stations.1285

• Figure S22:Average nitrification rate in Santa Monica and San Pedro bays. This1286

figureshows the high rates around the locations of the outfalls that results from the1287

release of highconcentrations of ammonium below the thermocline1288

• Figure S23:(upper panel) Hovmöller of ammonium concentration at San Pedro Oceanic1289

Time-series(SPOT) located mid-distance between Los Angeles coast and Catalina Is-1290

land. (lower panel) idem as(b) for chlorophyllaconcentration. The Hovmöllers show1291

1) ammonium concentration offLos Angeles coast are not affected by anthropogenic1292

loads. 2) Deep chlorophyllamaximumis trapped below at subsurface for 701293

• Figure S24:Summer time 1997-2000 average carbon export at 40 m in the SCB. The1294

mapshows hot-spots of intense carbon export in Santa Barbara and Los Angeles1295

coasts.1296
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Ventura/Oxnard

Temperature
H Correlation

Coefficient
p-value Cost

Function
Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.95 E 2E-05 E 0.06 E -0.04 E 1.11 G 0.77 E 469
Spring 0 E 0.98 E 7E-07 E 0.09 E -0.09 E 0.80 G 0.59 G 468
Summer 0 E 0.98 E 1E-06 E 0.04 E -0.02 E 1.08 E 0.94 E 468
Fall 0 E 0.89 G 5E-04 E 0.09 E -0.08 E 0.97 E 0.50 R 469
All Seasons 0 E 0.95 E 3E-05 E 0.08 E -0.06 E 1.03 E 0.74 E 1874

Oxygen
H Correlation

Coefficient
p-value Cost

Function
Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.98 E 1E-06 E 0.14 E -0.09 E 1.20 R 0.77 E 469
Spring 0 E 0.92 E 1E-04 E 0.25 E -0.21 R 1.06 E 0.47 R 454
Summer 0 E 0.99 E 1E-09 E 0.07 E 0.08 E 1.03 E 0.84 E 468
Fall 0 E 0.98 E 1E-06 E 0.19 E -0.14 G 1.52 P 0.44 R 469
All Seasons 0 E 0.98 E 1E-06 E 0.14 E -0.010 G 1.20 R 0.73 E 1860

Chlorophyll-a
H Correlation

Coefficient
p-value Cost

Function
Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.99 E 1E-08 E 0.43 E -0.06 E 0.90 E 0.96 E 469
Spring 0 E 0.97 E 3E-06 E 0.86 E -0.42 P 0.51 P -0.47 P 468
Summer 0 E 0.96 E 1E-05 E 0.59 E -0.04 E 0.64 R 0.51 G 468
Fall 0 E 0.94 E 5E-05 E 0.53 E 0.20 R 0.71 R 0.50 R 469
All Seasons 0 E 0.99 E 9E-11 E 0.50 E -0.01 E 0.71 R 0.79 E 1874

pH
H Correlation

Coefficient
p-value Cost

Function
Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.99 E 2E-08 E 0.01 E 0.01 E 0.62 R 0.57 G 455
Spring 0 E 0.97 E 2E-07 E 0.01 E -0.01 E 1.45 P 0.25 R 454
Summer 0 E 0.97 E 2E-06 E 0.01 E 0.01 E 1.06 E 0.84 E 468
Fall 0 E 0.98 E 6E-07 E 0.01 E 0.01 E 1.43 P 0.75 E 467
All Seasons 0 E 0.98 E 1E-06 E 0.01 E -0.01 E 1.13 G 0.89 E 1844

Ammonia
H Correlation

Coefficient
p-value Cost

Function
Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.86 G 0.34 P 0.53 E 0.24 R 1.56 P 0.58 G 11
Spring 0 E 0.99 E 0.02 E 1.40 G -1.87 P 0.36 P -10.52 P 12
Summer 0 E 0.92 E 0.25 P 2.59 R 0.28 R 1.62 P 0.67 E 12
Fall 0 E 0.92 E 0.26 P 4.42 P -2.77 P 0.35 P -10.48 P 12
All Seasons 0 E 0.89 G 0.04 E 0.77 E -0.49 P 0.91 E 0.01 P 47

Table S1: Statistical comparison of vertical profiles of temperature, dissolved oxygen, chloro-
phyll a, pH, and ammonium concentration at Ventura/Oxnard (City of Oxnard stations)
monitoring region. Letters next to numbers indicate model performance: E = Excellent, G
= very good, R = reasonable, P = Poor.
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Palos Verdes

Temperature
H Correlation

Coefficient
p-value Cost

Function
Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.95 E 2E-05 E 0.04 E -0.01 E 1.13 G 0.87 E 469
Spring 0 E 0.94 E 6E-05 E 0.24 E -0.11 G 0.75 R 0.19 P 466
Summer 0 E 0.98 E 7E-07 E 0.03 E 0.03 E 1.19 G 0.91 E 466
Fall 0 E 0.88 G 7E-04 E 0.11 E -0.11 G 0.75 R -0.27 P 468
All Seasons 0 E 0.94 E 5E-05 E 0.07 E -0.06 E 0.98 E 0.74 E 1869

Oxygen
H Correlation

Coefficient
p-value Cost

Function
Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.99 E 9E-09 E 0.03 E 0.02 E 1.05 E 0.94 E 469
Spring 0 E 0.83 G 3E-03 E 0.24 E -0.22 R 0.87 G 0.01 P 466
Summer 0 E 0.97 E 2E-06 E 0.08 E 0.08 E 0.87 G 0.69 E 466
Fall 0 E 0.97 E 7E-04 E 0.08 E -0.06 E 1.14 G 0.76 E 467
All Seasons 0 E 0.98 E 1E-06 E 0.06 E -0.05 E 0.97 E 0.88 E 1868

Chlorophyll-a
H Correlation

Coefficient
p-value Cost

Function
Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.75 R 0.01 E 0.70 E 0.25 R 0.83 G 0.19 P 469
Spring 0 E 0.83 G 2E-03 E 0.72 E 0.06 E 1.01 E 0.65 E 466
Summer 0 E 0.67 R 0.04 E 0.73 E 0.38 R 1.28 R 0.17 P 466
Fall 0 E 0.99 E 1E-10 E 0.48 E 0.25 R 1.01 E 0.91 E 468
All Seasons 0 E 0.95 E 2E-05 E 0.55 E 0.30 R 1.00 E 0.70 E 1869

pH
H Correlation

Coefficient
p-value Cost

Function
Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 1 P 0.99 E 2E-07 E 0.03 E -0.03 E 1.36 R -2.96 P 469
Spring 0 E 0.84 G 2E-03 E 0.01 E 0.01 E 1.44 P 0.67 E 466
Summer 1 P 0.99 E 2E-09 E 0.03 E 0.03 E 1.62 P -2.80 P 466
Fall 1 P 0.96 E 9E-06 E 0.02 E 0.02 E 1.54 P -1.29 P 468
All Seasons 0 E 0.96 E 1E-05 E 0.01 E 0.01 E 1.50 P 0.73 E 1869

Ammonia
H Correlation

Coefficient
p-value Cost

Function
Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter N/A N/A N/A N/A N/A N/A N/A 0
Spring N/A N/A N/A N/A N/A N/A N/A 0
Summer 0 E 0.82 G 0.18 P 0.31 E 0.15 G 1.05 E 0.53 G 18
Fall 0 E 0.79 R 0.21 P 0.30 E 0.32 R 1.38 R -0.15 P 18
All Seasons 0 E 0.84 G 0.16 P 0.30 E 0.32 R 1.34 R -0.01 P 36

Table S2: Same as Table S1 for Palos Verdes (LACSD stations) monitoring region.
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Orange County

Temperature
H Correlation

Coefficient
p-value Cost

Function
Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.96 E 1E-05 E 0.05 E -0.01 E 1.27 R 0.84 E 160
Spring 0 E 0.95 E 3E-05 E 0.11 E -0.11 G 0.81 G 0.44 R 533
Summer 0 E 0.99 E 2E-08 E 0.02 E -0.01 E 0.96 E 0.98 E 533
Fall 0 E 0.92 E 2E-04 E 0.08 E -0.07 E 1.06 E 0.66 E 536
All Seasons 0 E 0.95 E 3E-05 E 0.07 E -0.05 E 1.07 E 0.79 E 1762

Oxygen
H Correlation

Coefficient
p-value Cost

Function
Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.98 E 1E-06 E 0.14 E -0.12 G 1.03 E 0.67 E 150
Spring 0 E 0.90 E 4E-04 E 0.19 E -0.16 G 0.96 E 0.51 G 533
Summer 0 E 0.99 E 5E-08 E 0.07 E 0.07 E 0.91 E 0.80 E 534
Fall 0 E 0.92 E 4E-07 E 0.09 E -0.02 E 1.06 E 0.80 E 536
All Seasons 0 E 0.95 E 9E-06 E 0.09 E -0.06 E 1.07 E 0.81 E 1753

Chlorophyll-a
H Correlation

Coefficient
p-value Cost

Function
Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.98 E 8E-07 E 0.97 E 0.53 P 2.25 P 0.49 R 160
Spring 0 E 0.74 R 0.02 E 2.24 R 0.29 R 2.12 P 0.46 R 533
Summer 0 E 0.94 E 7E-05 E 0.57 E -0.16 G 0.83 G 0.76 E 535
Fall 0 E 0.92 E 1E-04 E 0.55 E 0.41 P 1.32 R 0.62 G 536
All Seasons 0 E 0.91 E 3E-04 E 0.47 E 0.33 R 1.80 P 0.63 G 1764

pH
H Correlation

Coefficient
p-value Cost

Function
Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.98 E 1E-06 E 0.01 E 0 E 1.26 R 0.88 E 160
Spring 0 E 0.79 R 0.01 E 0.01 E -0.01 E 1.32 R 0.28 R 533
Summer 1 P 0.96 E 2E-05 E 0.02 E 0.02 E 1.32 R -1.13 P 534
Fall 1 P 0.98 E 1E-06 E 0.03 E -0.03 E 2.02 P -2.62 P 536
All Seasons 0 E 0.93 E 9E-05 E 0.01 E -0.01 E 1.43 P 0.51 G 1763

Ammonia
H Correlation

Coefficient
p-value Cost

Function
Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter N/A N/A N/A N/A N/A N/A N/A 0
Spring N/A N/A N/A N/A N/A N/A N/A 0
Summer 1 P 0.97 E 0.14 P 0.86 E 0.83 P 3.89 P -2.38 P 48
Fall 0 E 0.71 R 0.50 P 0.43 E 0.37 R 0.44 P -8.71 P 48
All Seasons 1 P 0.76 R 0.14 P 0.62 E 0.63 P 2.36 P -1.67 P 96

Table S3: Same as Table S1 for Orange County (OCSD stations) monitoring region.
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San Diego

Temperature
H Correlation

Coefficient
p-value Cost

Function
Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.98 E 3E-08 E 0.02 E -0.01 E 0.92 E 0.95 E 875
Spring 0 E 0.93 E 1E-05 E 0.09 E -0.09 E 0.77 R 0.30 R 870
Summer 0 E 0.98 E 5E-08 E 0.04 E -0.01 E 0.99 E 0.94 E 872
Fall 0 E 0.92 E 3E-05 E 0.08 E -0.08 E 0.79 R 0.29 R 752
All Seasons 0 E 0.98 E 4E-07 E 0.05 E -0.05 E 0.83 G 0.70 E 3369

Oxygen
H Correlation

Coefficient
p-value Cost

Function
Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.96 E 1E-06 E 0.11 E -0.09 E 1.05 E 0.74 E 875
Spring 1 P 0.87 G 3E-04 E 0.33 E -0.32 R 0.87 G -0.45 P 870
Summer 0 E 0.99 E 5E-12 E 0.27 E -0.20 R 1.47 P 0.51 G 872
Fall 0 E 0.92 E 3E-05 E 0.22 E -0.16 G 1.59 P 0.37 R 752
All Seasons 0 E 0.97 E 4E-07 E 0.18 E -0.16 G 1.18 G 0.55 G 3369

Chlorophyll-a
H Correlation

Coefficient
p-value Cost

Function
Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.99 E 6E-09 E 0.51 E 0.60 P 2.59 P 0.39 R 868
Spring 0 E 0.94 E 4E-06 E 0.84 E 0.36 R 1.59 P 0.73 E 866
Summer 0 E 0.99 E 6E-09 E 0.27 E 0.18 G 1.28 R 0.90 E 870
Fall 0 E 0.89 G 2E-04 E 0.35 E 0.43 P 2.05 P 0.50 R 728
All Seasons 0 E 0.98 E 9E-09 E 0.57 E 0.39 R 1.66 P 0.70 E 3332

pH
H Correlation

Coefficient
p-value Cost

Function
Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter 0 E 0.99 E 5E-09 E 0.01 E -0.01 E 1.07 E 0.49 R 875
Spring 1 P 0.91 E 5E-05 E 0.02 E -0.02 E 1.41 P -0.96 P 872
Summer 1 P 0.99 E 1E-09 E 0.02 E -0.02 E 2.32 P -0.07 P 844
Fall 1 P 0.98 E 2E-04 E 0.01 E -0.01 E 1.77 P -0.14 P 752
All Seasons 1 P 0.98 E 6E-08 E 0.02 E -0.02 E 1.59 P -0.18 P 3343

Ammonia
H Correlation

Coefficient
p-value Cost

Function
Percentage
Bias

Ratio of Standard
Deviations

Nash-Sutcliffe
Model Efficiency

Number of
observations

Winter N/A N/A N/A N/A N/A N/A N/A 0
Spring N/A N/A N/A N/A N/A N/A N/A 0
Summer N/A N/A N/A N/A N/A N/A N/A 0
Fall N/A N/A N/A N/A N/A N/A N/A 0
All Seasons N/A N/A N/A N/A N/A N/A N/A 0

Table S4: Same as Table S1 for San Diego (City of San Diego stations) monitoring region.
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Figure S1: Spatial distribution of the point sources to simulate and to dilute the freshwater,
nutrients and organic matter fluxes for the 4 majors POTW underwater outfalls locations.
Color scale is bathymetry. Vertically integrated, the grid cells with the red dots discharge
4/9 of the respective flow at each diffuser, the grid cells with yellow dots north, south, east
and west of the red dots discharge 1/9 of the discharge, and the yellow dots in the corners
discharge 1/36 of the volume flux.
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Figure S2: Seasonal profiles of average temperature off of Palos Verdes. The red line and
red bars are the spatial and temporal means and the variability from the model. The black
dots and the gray shade are the spatial and temporal mean and the variability from in situ
data (LACSD stations). These profiles are showing agreement on intensity, seasonality and
shape of the vertical profile with exceptionally high concentrations at mid-depth.

Figure S3: Same as Fig S2 for Oxnard/Ventura using City of Oxnard stations.
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Figure S4: Same as Fig S2 for Orange County using OCSD stations.

Figure S5: Same as Fig S2 for San Diego using City of San Diego stations.
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Figure S6: Seasonal profiles of average ammonium concentration off of Palos Verdes. The
red line and red bars are the spatial and temporal means and the variability from the model.
The black dots and the gray shade are the spatial and temporal mean and the variability
from in situ data (LACSD stations). These profiles are showing agreement on intensity,
seasonality and shape of the vertical profile with exceptionally high concentrations at mid-
depth.

Figure S7: Same as Fig S6 for Oxnard/Ventura using City of Oxnard stations
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Figure S8: Same as Fig S6 for Orange County using OCSD stations.

Figure S9: Same as Fig S6 for San Diego using City of San Diego stations. In situ data
are missing but we wanted to report out the depth of maximum anthropogenic plume, in
contrary to other subregion, in San Diego area, the plume rarely reaches 20 m.
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Figure S10: Seasonal profiles of average chlorophyll a concentration off of Palos Verdes.
The red line and red bars are the spatial and temporal means and the variability from the
model. The black dots and the gray shade are the spatial and temporal mean and the
variability from in situ data (LACSD stations). These profiles are showing agreement on
intensity, seasonality and shape of the vertical profile with exceptionally high concentrations
at mid-depth.

Figure S11: Same as Fig S10 for Oxnard/Ventura using City of Oxnard stations.
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Figure S12: Same as Fig S10 for Orange County using OCSD stations.

Figure S13: Same as Fig S10 for San Diego using City of San Diego stations.
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Figure S14: Seasonal profiles of average dissolved oxygen concentration off of Palos Verdes.
The red line and red bars are the spatial and temporal means and the variability from the
model. The black dots and the gray shade are the spatial and temporal mean and the
variability from in situ data (LACSD stations). These profiles are showing agreement on
intensity, seasonality and shape of the vertical profile with exceptionally high concentrations
at mid-depth.

Figure S15: Same as Fig S14 for Oxnard/Ventura using City of Oxnard stations.
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Figure S16: Same as Fig S14 for Orange County using OCSD stations.

Figure S17: Same as Fig S14 for San Diego using City of San Diego stations.

–58–



manuscript submitted to Journal of Advances in Modeling Earth Systems

Figure S18: Seasonal profiles of average pH (seawater scale) off of Palos Verdes. The red line
and red bars are the spatial and temporal means and the variability from the model. The
black dots and the gray shade are the spatial and temporal mean and the variability from in
situ data (LACSD stations). These profiles are showing agreement on intensity, seasonality
and shape of the vertical profile with exceptionally high concentrations at mid-depth.

Figure S19: Same as Fig S18 for Oxnard/Ventura using City of Oxnard stations.
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Figure S20: Same as Fig S18 for Orange County using OCSD stations.

Figure S21: Same as Fig S18 for San Diego using City of San Diego stations.
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Figure S22: Average nitrification rate in Santa Monica and San Pedro bays. This figure
shows the high rates around the locations of the outfalls that results from the release of high
concentrations of ammonium below the thermocline.

Figure S23: (upper panel) Hovmöller of ammonium concentration at San Pedro Oceanic
Time-series (SPOT) located mid-distance between Los Angeles coast and Catalina Island.
(lower panel) idem as (b) for chlorophyll a concentration. The Hovmöllers show 1) am-
monium concentration off Los Angeles coast are not affected by anthropogenic loads. 2)
Deep chlorophyll a maximum is trapped below at subsurface for 70% of the time and reach
concentration of about 2 mmol Chl m−3. Depth of the subsurface chlorophyll a maximum
shows a seasonal cycle where it varies between 20 and 40m.
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Figure S24: Summer time 1997-2000 average carbon export at 40m in the SCB. The map
shows hot-spots of intense carbon export in Santa Barbara and Los Angeles coasts.
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