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Abstract

Significant hindcast skill for the 3-month standardized precipitation index (SPI$ {3M}$) has been so far limited to one lead

month. To increase that lead time, we propose to exploit well-known El Ni\˜no-Southern Oscillation (ENSO)–precipitation

teleconnections through ENSO-state conditioning. We condition initialized seasonal SPI$ {3M}$ hindcasts, derived from the

Max-Planck-Institute Earth System Model over the period 1982-2013, on ENSO states by exploring significant agreements

between two complementary analyses: hindcast skill ENSO–composites, and observed ENSO–precipitation correlations. Pre-

dictions conditioned on autumn (ASO)-ENSO states demonstrate significant and reliable winter (DJF) drought hindcast skill up

to lead month 4 in equatorial South- and southern North America. The area of reliable drought hindcast skill is further enlarged

when the respective region’s dry ENSO phase is already present in the antecedent summer (JJA-ENSO-state-conditioned). In

contrast to previous studies, our evaluation separates predictions and observations. Thereby, ENSO-state conditioning demon-

strates genuine hindcast skill up to lead month 4.
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Key Points:7

• We assess genuine hindcast skill by deriving the predicted drought index entirely8

from hindcasts9

• We improve drought predictions by utilizing expertise on ENSO–precipitation tele-10

connections11

• ENSO-state conditioning increases lead time of significant drought hindcast skill12

from 1 to 4 months13

Corresponding author: Patrick Pieper, patrick.pieper@uni-hamburg.de

–1–



manuscript submitted to Geophysical Research Letters

Abstract14

Significant hindcast skill for the 3-month standardized precipitation index (SPI3M ) has15

been so far limited to one lead month. To increase that lead time, we propose to exploit16

well-known El Niño-Southern Oscillation (ENSO)–precipitation teleconnections through17

ENSO-state conditioning. We condition initialized seasonal SPI3M hindcasts, derived from18

the Max-Planck-Institute Earth System Model over the period 1982-2013, on ENSO states19

by exploring significant agreements between two complementary analyses: hindcast skill20

ENSO–composites, and observed ENSO–precipitation correlations. Predictions condi-21

tioned on autumn (ASO)-ENSO states demonstrate significant and reliable winter (DJF)22

drought hindcast skill up to lead month 4 in equatorial South- and southern North Amer-23

ica. The area of reliable drought hindcast skill is further enlarged when the respective24

region’s dry ENSO phase is already present in the antecedent summer (JJA-ENSO-state-25

conditioned). In contrast to previous studies, our evaluation separates predictions and26

observations. Thereby, ENSO-state conditioning demonstrates genuine hindcast skill up27

to lead month 4.28

Plain language summary29

The time horizon of skillful seasonal drought predictions was in previous studies30

limited to 1 month. In this study, we increase that horizon to up to 4 months by exploit-31

ing a well-known and thoroughly investigated dependence of regional precipitation on32

sea-surface temperature anomalies in the equatorial Pacific Ocean. Yet, seasonal drought33

predictions still insufficiently capitalize on this expertise. Retrospective forecasts exhibit34

a better ability to predict winter droughts for a longer time horizon when these sea-surface35

temperature anomalies are sufficiently large. The magnitude of these anomalies is ob-36

servable at the start of the prediction in November and does not change fundamentally37

during the prediction time. Thus, the uncertainty associated with our prediction decreases38

when the magnitude of those observed anomalies surpasses a certain threshold, which39

generates a predictable precipitation signal over the target regions. Furthermore, pre-40

vious studies usually combine simulated with observed precipitation to derive the pre-41

dicted drought index. This facilitates the identification of skill in the prediction. Such42

an approach blurs the proportion of the predictive skill that is based on the prediction.43

In contrast to this practice, we strictly separate observations from simulations and, thereby,44

demonstrate the genuine skill of our prediction in parts of the Americas.45

–2–



manuscript submitted to Geophysical Research Letters

1 Introduction46

Reliable seasonal drought predictions can alleviate the harm caused by droughts47

through timely and accurate warnings, resulting in increased preparedness. However, the48

time horizon of reliable drought predictions is currently strictly confined to one lead month49

(Mo & Lyon, 2015; Ma et al., 2015; Yuan & Wood, 2013; Quan et al., 2012; Yoon et al.,50

2012). Here, we analyze the potential to increase this time horizon by evaluating our pre-51

dictions for times and regions known to be influenced by El Niño-Southern Oscillation52

(ENSO) teleconnections. Previous studies have shown that SST anomalies in the equa-53

torial Pacific lead the response of winter precipitation anomalies on the American con-54

tinent by roughly 4 to 6 months (Redmond & Koch, 1991; Harshburger et al., 2002). De-55

spite this expertise on lagged ENSO–precipitation teleconnections, current evaluations56

of dynamical seasonal drought predictions still insufficiently utilize this window of op-57

portunity. Exploiting this, the present study generates significant and reliable drought58

hindcast skill up to lead month 4.59

While the predictive skill of precipitation is usually unreliable over land (Kim et60

al., 2012), ENSO teleconnections affect regional precipitation and are known to gener-61

ate seasonal prediction skill (Kumar et al., 2013). Several studies established ENSO tele-62

connections as a dominant forcing for observed precipitation over many regions (Seager63

et al., 2005; Dai & Wigley, 2000; Ropelewski & Halpert, 1987, 1986). Additionally, the64

same patterns of teleconnections were identified with similar strength in simulations (Schubert65

et al., 2016, 2008). The insights about ENSO–precipitation teleconnections were also suc-66

cessfully transferred to teleconnections between ENSO and specific drought indices.67

One such drought index is the Standardized Precipitation Index (SPI) (McKee et68

al., 1993), which we use in this study. SPI is recommended by the WMO (Hayes et al.,69

2011) and widely in use (e.g., Mo & Lyon, 2015; Ma et al., 2015; Yoon et al., 2012). The70

index quantifies the standardized deficit (or surplus) of precipitation during a predefined71

accumulation period. Here, we analyze SPI with an accumulation period of 3 months72

to investigate the predictability of meteorological droughts. Analog to ENSO-precipitation73

teleconnections, ENSO–SPI teleconnections are nowadays equally well established for ob-74

servations (Manatsa et al., 2017; Hallack-Alegria et al., 2012) and simulations (Ma et75

al., 2015; Mo et al., 2009) over many regions. In summary, models usually capture ENSO–76

precipitation and ENSO–SPI teleconnections properly.77
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Ma et al. (2015) evaluated the seasonal forecast skill of SPI in ENSO composites.78

However, they focused on the relationship between seasonal drought predictability and79

forecast skill. Among several sensitivities, they also illustrate this relationship through80

ENSO composites. Their results indicate promising impacts of an active ENSO state on81

the forecast skill of general SPI variability. Yet, their results suggest that the impacts82

of active ENSO states on forecast skill of extremes, such as droughts, are less robust. How-83

ever, Ma et al. (2015) investigated forecast skill over southern China. With this contri-84

bution, we want to investigate drought hindcast skill in northern South America and south-85

ern North America. Both regions display more pronounced ENSO–precipitation telecon-86

nections than China (Dai & Wigley, 2000). We attempt to expand this expertise by in-87

vestigating the predictive potential of ENSO–SPI teleconnections during active ENSO88

states. Our investigation focuses on opportunities to increase the lead time of reliable89

drought hindcast skill.90

A remaining key challenge for seasonal predictions of meteorological droughts is91

to increase the lead time of skillful seasonal precipitation and drought index predictions92

(Wood et al., 2015). Several studies (e.g., Mo & Lyon, 2015; Yuan & Wood, 2013; Quan93

et al., 2012; Yoon et al., 2012) have demonstrated significant SPI hindcast skill up to lead94

month 1 with an accumulation period of 3 months and/or up to lead month 3 with an95

accumulation period of 6 months. In these studies, hindcast skill usually drops below the96

significance threshold when the lead time exceeds half of SPI’s accumulation period. This97

implies that significant prediction skill has been achieved only when the precipitation98

output of the model accounts for not more than half of the data of the predicted SPI,99

while the other half stems from observations. The predicted SPI with an accumulation100

period of 3 (6) months employs observed precipitation in 2 (3) months. On one hand,101

this is a valid approach to exploit the memory of the drought index introduced by its102

accumulation period. On the other hand, using observations in the calculation of the pre-103

dicted drought index obscures the quantification of the model’s predictive skill. That may104

lead to over-confidence in the performance of the model because the actual skill might105

originate from observations. Depending on the prediction time, these observations may106

impact the predicted drought index stronger than predicted precipitation. To avoid such107

obscurities, our predicted drought index is solely forecast based and does not use obser-108

vations.109
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Consequently, we analyze drought hindcast skill using SPI with an accumulation110

period of 3 months (SPI3M ), which comprises lead months 2 to 4. Instead of relying on111

a blend of observations and simulations in the predicted drought index, we attempt to112

extend predictive skill through ENSO teleconnections. We investigate the lagged impacts113

of an active ENSO state on winter (DJF) drought hindcast skill for the period 1982-2013114

in seasonal hindcasts of the Max-Planck-Institute Earth System Model (MPI-ESM), which115

were initialized each start of November. The analysis conditions our prediction on ac-116

tive ENSO states by exploring significant agreements between two complementary anal-117

yses: hindcast skill composites of ENSO states, and ENSO–precipitation correlations.118

In this process, we investigate the sensitivity of our ENSO-state-conditioned prediction119

by considering different lead times of the ENSO signal and determine which of those lead120

times maximizes ENSO-state-conditioned drought hindcast skill in our analysis. To show-121

case the potential of ENSO-state conditioning, we investigate the lead time 2-4 months122

using SPI with an accumulation period of 3 months. With this investigation, we attempt123

to quadruple the time horizon of skillful drought predictions.124

2 Data and methods125

2.1 Data126

Our seasonal prediction system (Baehr et al., 2015; Bunzel et al., 2018; Pieper et127

al., 2020a) is based on MPI-ESM, which is also used in the Coupled Model Intercom-128

parison Project 5 (CMIP5). MPI-ESM couples general circulation components for the129

ocean (Jungclaus et al., 2013) and the atmosphere (Stevens et al., 2013). Moreover, MPI-130

ESM additionally contains subsystem components for terrestrial processes (Hagemann131

& Stacke, 2015) and the marine bio-geochemistry (Ilyina et al., 2013). For this study the132

model runs with 10 ensemble members in the same resolution as in CMIP5 – MPI-ESM-133

LR (low-resolution): T63 (approx. 1.875°x1.875°) with 47 vertical layers in the atmo-134

sphere between the surface and 0.01 hPa, and GR15 (maximum 1.5°x1.5°) with 40 ver-135

tical layers in the ocean. Except for an extension of the simulation to cover the period136

1982-2013, the analyzed simulations are identical to the ensemble investigated by Bunzel137

et al. (2018). In hindcasts, initialized each start of November, we evaluate the precip-138

itation output from December till February (lead months 2 to 4).139

–5–



manuscript submitted to Geophysical Research Letters

Observed monthly precipitation is obtained from the Global Precipitation Clima-140

tology Project (GPCP). GPCP’s dataset combines observations and satellite precipita-141

tion data into a 2.5°x2.5°global grid spanning 1979 to present (Adler et al., 2003). To142

evaluate our hindcasts against these observations, the precipitation output of the model143

is interpolated to GPCP’s grid.144

2.2 Methods145

We calculate SPI3M (McKee et al., 1993) for observations and simulations to eval-146

uate modeled against observed SPI3M timeseries. SPI timeseries ought to be normally147

distributed and it is important to note that non-normally distributed SPI3M timeseries148

would impair this evaluation process. Also, differences in the goodness-of-fit between ob-149

servations and simulations would undermine our evaluation process. Consequently, a proper150

evaluation process ought to establish comparability between observed and modeled SPI3M151

timeseries by maximizing their normality both individually as well as concurrently. To152

ensure such comparability, we employ in this study the methodology proposed by Pieper153

et al. (2020b), which uses the exponentiated Weibull distribution, to compute SPI3M time-154

series.155

While analyzing these timeseries, we differentiate between two target regions that156

display strong ENSO–precipitation teleconnections: the southern USA and northern Mex-157

ico (henceforth simply referred to as North America), and northern South America (hence-158

forth simply referred to as South America).159

To quantify the strength of the ENSO signal, we calculate an ENSO-index by av-160

eraging SST anomalies, from the ERA-Interim reanalysis (Dee et al., 2011), in the Niño3.4161

region (5°S-5°N, 120°W-170°W). El Niño and La Niña events, used in the process of con-162

ditioning our prediction on active ENSO states, are identified analog to NOAA Climate163

Prediction Center, based on a threshold of ±0.5°C in the 3-month running mean Niño3.4-164

index (ONI) (Climate Prediction Center, 2015).165

We condition our prediction on active ENSO states by exploring significant agree-166

ments between hindcast skill composites of active ENSO states and ENSO–precipitation167

correlations. In this process, we calculate Brier-Skill-Scores (BSS) (Murphy, 1973) and168

Pearson correlations. BSS needs to distinguish between a drought and a non-drought event169

to quantify the hindcast skill. For this differentiation a threshold is set in accordance with170
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WMO’s SPI User Guide (Svoboda et al., 2012) to an SPI value of −1. Significances of171

BSS (Pearson correlations) are computed with a one- (two-)sided 500-sample bootstrap172

which is evaluated at the 5% significance level against the Brier-Score of a random pre-173

diction that uses theoretical climatological occurrence probabilities to predict the like-174

lihood of drought and non-drought conditions (against the null-hypotheses that the cor-175

relation is zero). We use well-known theoretical occurrence probabilities of the standard176

normal distribution for this random prediction since Pieper et al. (2020b) demonstrated177

the normality of the here employed calculation algorithm of SPI3M .178

Obtaining significant BSS hindcast skill in an ENSO composite analysis ensures179

the quality of the model’s prediction. Attaining also significant observed correlations in180

an ENSO–precipitation correlation analysis safeguards the afore ascertained quality of181

the model. Correlation and composite analyses are both linked to a sound, well-understood182

physical mechanism and, thus, complement each other in our study. Moreover, while the183

correlation analysis quantifies precipitation variations relative to fluctuations in the sig-184

nal, the composite analysis investigates the response of hindcast skill of SPI to extremes185

in the signal. By exploring grid-cell-wise significant congruences of both analyses, we es-186

tablish the robustness of our investigation. Henceforth, we refer to this procedure as con-187

ditioning our hindcast skill on ENSO states. Since the hindcasts are initialized at the188

start of November, we consequently use the ENSO information available by November189

to condition our hindcast skill.190

3 ENSO-state-conditioned drought hindcast skill191

In agreement with prior studies (Mo & Lyon, 2015; Wood et al., 2015; Yoon et al.,192

2012), BSS-assessed drought hindcast skill is poor for lead months 2 to 4 in climate mod-193

els such as MPI-ESM-LR almost everywhere around the globe (Fig 1a). Still, the best194

drought hindcast skill emerges in North and South America (black boxes in Fig 1a). In195

particular, those parts of North and South America, where observed precipitation is strongly196

coupled to variations of the ENSO-index (Fig 1b). Grid cells that demonstrate compa-197

rable high hindcast skill concurrently show large correlation values between the ENSO-198

index and precipitation (compare Fig 1c with 1d). The more skillful the model’s predic-199

tion of droughts, the higher is the correlation value between observed precipitation and200

ENSO-index. This co-occurrence affirms our presumption that MPI-ESM-LR captures201

strong ENSO–precipitation teleconnections in our target regions.202
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Confining our hindcast skill analysis to start years that exhibit La Niña (Fig 1e)203

or El Niño (Fig 1f) conditions in ASO (at the initialization at the start of November)204

substantially improves drought hindcast skill. However, some grid cells (e.g. in western205

South America, and East North Central USA) show significant BSS hindcast skill in this206

composite analysis but weak ENSO–precipitation correlations. In those grid cells, we can-207

not maintain the claim that ENSO–precipitation teleconnections depict the physical ba-208

sis for the skill improvement. Therefore, ENSO-state conditioning safeguards our anal-209

ysis against over-confidence. To condition our drought hindcast skill on ENSO states,210

we highlight grid cells (Fig 1g and 1h) exhibiting both: significant correlations between211

ENSO-index with precipitation (Fig 1d) and significant drought hindcast skill in the re-212

spective ENSO composite analysis (Fig 1e and 1f). Thereby, we achieve reliable (signif-213

icant in both analyses) ENSO-state-conditioned drought hindcast skill (Fig 1g and 1h).214

Because a specific ENSO state contributes to either drying or wettening of our tar-215

get regions, we separate our results into two cases. First, we obtain reliable SPI3M hind-216

cast skill during a region’s dry ENSO phase (indicated by brown grid cells in Fig 1g and217

1h). Second, we obtain reliable SPI3M hindcast skill during a region’s wet ENSO phase218

(indicated by green grid cells in Fig 1g and 1h). Since we investigate drought hindcast219

skill, we focus on the dry ENSO phase for the remainder of this study.220

Next, we maximize the area of reliable drought hindcast skill during the dry ENSO221

phase of our target regions. We maximize that area by examining its sensitivity to the222

prescribed lag of the ENSO signal in our analysis. Instead of selecting composites based223

on (and correlating DJF precipitation with) the ENSO signal in ASO, this sensitivity224

analysis investigates the ENSO signal in an earlier season than ASO. In this process, we225

identify that conditioning our drought hindcast skill on JJA-ENSO states maximizes the226

area of each region’s reliable drought hindcast skill (the count of brown grid cells in Fig227

1g and 1h).228

In North America (Fig 2a - c) and South America (Fig 2d - f), ENSO-index vari-229

ability imprints similar during JJA as during ASO on observed DJF precipitation (com-230

pare Fig 2a and 2d against Fig 1d). This result agrees well with the lag identified by other231

studies (Redmond & Koch, 1991; Harshburger et al., 2002). Yet, when an ENSO event232

is present in the preceding boreal summer (JJA), MPI-ESM-LR captures ENSO–precipitation233

teleconnections better (see next paragraph). As a result of exploiting this lagged rela-234
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tionship, the count of grid cells showing significant BSS drought hindcast skill increases235

in Fig 2 relative to Fig 1 by 60% (42%) in North (South) America. Consequently, also236

the count of grid cells in which we achieve reliable drought hindcast skill through ENSO-237

state conditioning increases in Fig 2 relative to Fig 1 by 44% and 46% in North- and South238

America, respectively. Consequently, ENSO-state conditioning leads to reliable drought239

hindcast skill for lead months 2 to 4 in large parts of our target regions during their re-240

spective dry ENSO phases.241

Illustrating why MPI-ESM-LR represents ENSO–precipitation teleconnections bet-242

ter, when they are present in JJA than those present in ASO, finalizes our results. Time-243

series demonstrate that active ENSO events in JJA develop a stronger ENSO signal than244

active ENSO events in ASO. This stronger ENSO signal leads, via stronger ENSO–precipitation245

teleconnections, to a more pronounced precipitation signal in observations. MPI-ESM-246

LR captures this stronger signal easier than weaker signals, stemming from active ENSO247

events in ASO. Consequently, MPI-ESM-LR represents ENSO-precipitation teleconnec-248

tions better when they are present in JJA than those only present in ASO.249

Between 1983-2013, La Niña and El Niño events observable in JJA became the strongest250

events in ASO. In contrast, comparable weak ASO events developed later than JJA (com-251

pare Fig 3a against 3d). These comparable weak events, that developed in between JJA252

and ASO, often coincided with ordinary drought-prone conditions (SPI values close to253

−1 in Fig 3b and 3c). The classification of these ordinary drought-prone conditions as254

drought or non-drought sensitively depends on SPI’s threshold used by BSS. Such thresh-255

old sensitivity is highly unfavorable for any model tasked with the demonstration of BSS-256

assessed predictive skill. Consequently, omitting these comparably weak events from our257

analysis maximizes the area of reliable drought hindcast skill as seen before. As a result258

of omitting these weak events, SPI’s DJF ensemble mean prediction demonstrates a bet-259

ter agreement with observations during the remaining stronger events (compare high-260

lighted years in Fig 3b and 3c against 3e and 3f). This improved agreement during strong261

events is apparent e.g. in North America during the years 1999, 2000, and 2011 and in262

South America during the years 1983, 1992, 1998. During these years also the most in-263

tense droughts occurred in both regions, coinciding with particularly strong La Niña or264

El Niño events. The model seems to skillfully capture distinct teleconnections during these265

strong events. Yet, these distinct teleconnections may still vary temporally and do not266

necessarily cause droughts (see also Patricola et al., 2020). These variations are also cap-267
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tured by the model. The model correctly predicts normal conditions e.g. in South Amer-268

ica during the strong El Niño event of 1988 or in North America during the phase-out269

of a strong La Niña event in 1990.270

4 Discussion271

ENSO-state conditioning reliably improves drought hindcast skill in MPI-ESM-LR272

over North and South America during their respective dry ENSO phases. For ENSO-273

state conditioning to improve drought hindcast skill, strong, large-scale ENSO–precipitation274

teleconnections need to be present. We confirm their existence and relevance through275

significant correlations between local precipitation and a lagged ENSO-index. Moreover,276

the forecast system needs to capture these ENSO–precipitation teleconnections. We as-277

certain this ability through significant drought hindcast skill in the composite analysis.278

ENSO-state conditioning classifies this drought hindcast skill as reliable only in those279

grid cells that concurrently also display significant correlations.280

We condition our prediction on the state of ENSO in two different seasons (ASO281

and JJA). Depending on the season, on which we condition, the drought prediction of282

MPI-ESM-LR exhibits different strengths. Since La Niña and El Niño events generally283

occur more often in ASO (7 and 10 times in between 1983-2013, respectively) than in284

JJA (5 and 6 times, respectively), MPI-ESM-LR demonstrates reliable drought predic-285

tions more often when they are ENSO-state-conditioned on ASO-ENSO events. Yet, when286

active ENSO events persist in JJA, they usually cause more distinct teleconnections that287

cover a larger area. Therefore, MPI-ESM-LR captures the teleconnections of these stronger288

events (which are detectable in JJA) in more grid cells than the teleconnections of the289

weaker events (which are only detectable in ASO).290

This explanation agrees with previous studies (Redmond & Koch, 1991; Harshburger291

et al., 2002) and with NOAA Climate Prediction Center’s definition of an ENSO event:292

5 consecutive overlapping seasons of ±0.5°C in the 3-month running mean Niño3.4-index293

(ONI) (Climate Prediction Center, 2015). Active ENSO events detected at initialization294

in ASO may demonstrate an exceedance of this threshold only in 4 consecutive overlap-295

ping seasons by our prediction time in DJF. Since ENSO events generally peak around296

December, events present in JJA usually strengthen over the following months. Those297

events, present in JJA, usually demonstrate an exceedance of the threshold in at least298

–10–
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6 consecutive overlapping seasons by DJF, our prediction time. In the time-period an-299

alyzed here, we identify a single exception to this pattern in 1990. In 1990, one La Niña300

event was still present in JJA, while a neutral ENSO state emerged by ASO later that301

year. Still, this La Niña event persisted for more than 5 consecutive overlapping seasons302

before the time of our prediction in DJF. According to previous studies, the imprint of303

this La Niña event on precipitation over the American continent should be notable dur-304

ing our prediction time in DJF (Redmond & Koch, 1991; Harshburger et al., 2002).305

We also checked for ENSO-state-conditioned drought hindcast skill outside of our306

target regions. Elsewhere in the world, ENSO-state conditioning only leads in single, scat-307

tered grid cells to reliable drought hindcast skill during ENSO’s dry phase (not shown).308

In MPI-ESM-LR, ENSO-state conditioning improves drought hindcast skill only in the309

investigated target regions. This indicates a plausible reason for our drought hindcast310

skill to improve stronger for longer lead times than Ma et al. (2015) were able to iden-311

tify over south China during an active ENSO.312

There appears to be little scope to extend ENSO-state conditioning to other re-313

gions that are characterized by strong ENSO–precipitation teleconnections with MPI-314

ESM-LR. MPI-ESM-LR seems to insufficiently capture these teleconnections elsewhere.315

Aside, there could be scope to employ ENSO-state conditioning in a similar manner, as316

demonstrated here, to improve the hindcast skill of surplus precipitation extremes (by317

suitably adapting the BSS threshold).318

Our seasonal hindcasts start – as usually with the satellite era – in 1982 spanning319

31 years. The composite analysis, which considers only years exhibiting a certain ENSO320

state, further reduces our dataset to 5 to 6 independent years which arguably constitutes321

a scarce database. This issue is partially mitigated by the fact that BSS evaluates the322

entire probabilistic ensemble space of the prediction. Since our ensemble space is spanned323

by 10 different ensemble members, we rely on at least 50 to 60 events for our BSS-evaluation.324

Yet, an increasing ensemble size cannot arbitrarily compensate for a limited temporal325

length of dynamical seasonal hindcasts, because different ensemble members are not com-326

pletely independent of each other. Thus, the problem of a scarce database would be fur-327

ther exacerbated if we had e.g. analyzed different ENSO flavors. Different ENSO flavors328

are certainly promising to capture variations in ENSO–precipitation teleconnections. How-329
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ever, such an analysis is not feasible with current dynamical seasonal hindcasts initial-330

ized with satellite observations.331

One way to alleviate the issue of statistical reliability is to decrease the SPI thresh-332

old that BSS uses to classify drought conditions. The threshold we use here is disputed333

within the literature. Svoboda et al. (2002) proposed to identify drought conditions in334

the US Drought Monitor by an SPI threshold of −0.8 – rather than −1, as used in this335

study. On one hand, a lower absolute value of this threshold would increase the num-336

ber of (modeled and observed) droughts and would thereby increase statistical reliabil-337

ity. On the other hand, a lower absolute value of that threshold would result in a reduced338

extremity of the analyzed droughts. Disentangling these two competing effects is diffi-339

cult, and has to the authors’ best knowledge not been investigated up to now.340

While GPCP’s precipitation data set is generally reliable, estimating South Amer-341

ican precipitation is principally delicate. Observational datasets are notably sparse in342

South America. Consequently, uncertainties might be too large to reliably classify droughts343

(Mo & Lyon, 2015). Despite these uncertainties, monthly precipitation analyses remain344

one of our most powerful tools for the task at hand.345

5 Conclusions346

This study investigates drought hindcast skill of DJF SPI3M , which comprises lead347

months 2 to 4, in an initialized MPI-ESM seasonal hindcast ensemble. The evaluation348

process of SPI hindcasts usually combines predicted and observed precipitation. Such349

a combination artificially generates predictive skill. In contrast, our evaluation strictly350

separates simulations and observations and, thereby, quantifies genuine hindcast skill of351

the forecast system. To demonstrate reliable drought hindcast skill despite this more chal-352

lenging evaluation process, we exploit well-known ENSO–precipitation teleconnections.353

During ENSO’s dry phase – when skillful drought predictions are particularly valuable354

–, we achieve reliable drought hindcast skill up to 4 lead months ahead with SPI3M in355

DJF. When the dry ENSO phase is already present in the preceding JJA, the area of356

reliable drought hindcast skill covers large parts of northern South America and south-357

ern North America. Ultimately, this study reveals the potential of ENSO-state condi-358

tioning in uncovering the predictive potential of dynamical models by exploiting ENSO–359
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precipitation teleconnections. That revelation might excite further progress towards re-360

liable and timely drought warnings.361
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Figure 1. The BSS-assessed skill of the model in predicting droughts at lead-months 2 to

4 and Pearson correlations between DJF precipitation and ASO ENSO-index on a global map

(a and b, respectively) and in our target regions (c and d, respectively). BSS for a composite

analysis which only considers years exhibiting La Niña (e) or El Niño (f) states present in ASO.

Dots indicate BSS values significantly greater than 0 (which translates to Brier-Scores signifi-

cantly greater than the ones of the random reference prediction) and Pearson correlations that

significantly differ from 0. Reliable hindcast skill during DJF achieved through conditioning the

prediction on La Niña (g) or El Niño (h) states in ASO (significant correlations (d) that spatially

coincide with significant BSS (e/f)). Colors indicate whether reliable hindcast skill is obtained

during the region’s wet (greenish) or dry (brownish) ENSO phase.
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Figure 2. Correlations between DJF precipitation and JJA ENSO-index over North America

(a) and South America (d). BSS for a composite analysis that only considers years exhibiting La

Niña (b) or El Niño (e) states present in JJA. Dots indicate again BSS (Pearson correlations)

significantly greater than (different from) 0. Reliable hindcast skill during DJF achieved through

conditioning the prediction on La Niña (c) and El Niño (f) states present in JJA.
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Figure 3. ENSO-index during JJA (a) and ASO (d). DJF SPI averaged and standardized

over the brownish colored grid points in Fig 2c (b), 2f (c), 1g (e), and 1h (f). Observations are

depicted by solid lines, while the ensemble mean is indicated by dashed lines. In JJA, the Pear-

son correlation between ENSO-index and observations (simulations) amounts to -0.67 (-0.7) in

South and 0.56 (0.7) in North America, while the correlation between the ensemble mean and

observations is 0.86 and 0.79 in South and North America, respectively. In ASO, the correlation

between ENSO-index and observations (simulations) amounts to -0.75 (-0.77) in South and 0.57

(0.73) in North America, while the correlation between the ensemble mean and observations is

0.83 and 0.77 in South and North America, respectively.
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