
P
os
te
d
on

23
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
40
03
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Performance Evaluation of UAVSAR and Simulated NISAR Data

for Crop/Non- crop Classification over Stoneville, MS

Simon Kraatz1, Shannon Rose1, Michael Cosh2, Nathan Torbick3, Xiaodong Huang3, and
Paul Siqueira1

1University of Massachusetts Amherst
2USDA ARS
3Applied Geosolutions

November 23, 2022

Abstract

Synthetic Aperture Radar (SAR) data are well-suited for change detection over agricultural fields, owing to high spatiotemporal

resolution and sensitivity to soil and vegetation. The goal of this work is to evaluate the science algorithm for the NASA ISRO

SAR (NISAR) Cropland Area product using UAVSAR and simulated NISAR data (129A). The NISAR algorithm uses the

coefficient of variation (CV) to perform crop/non-crop classification at 100 m. We evaluate classifications using three accuracy

metrics (overall accuracy, J-statistic, Cohen’s Kappa) and spatial resolutions (10, 30 and 100 m) for crop/non-crop delineating

CV thresholds (CVthr) ranging from 0 to 1 in 0.01 increments. All but the 10 m 129A product exceeded the mission accuracy

requirement of 80%. The UAVSAR 10 m data performed best, achieving maximum overall accuracy, J-statistic, and Kappa

values of 85%, 0.62 and 0.60. The same metrics for the 129A product respectively are: 77%, 0.40, 0.36 at 10 m; 81%, 0.55, 0.49

at 30 m; 80%, 0.58, 0.50 at 100 m. We found that using a literature recommended CVthr value of 0.5 was suboptimal (65%)

and that optimal CVthr values monotonically decreased with decreasing spatial resolution.

Hosted file

essoar.10504003.1.docx available at https://authorea.com/users/543271/articles/

601219-performance-evaluation-of-uavsar-and-simulated-nisar-data-for-crop-non-crop-

classification-over-stoneville-ms

1

https://authorea.com/users/543271/articles/601219-performance-evaluation-of-uavsar-and-simulated-nisar-data-for-crop-non-crop-classification-over-stoneville-ms
https://authorea.com/users/543271/articles/601219-performance-evaluation-of-uavsar-and-simulated-nisar-data-for-crop-non-crop-classification-over-stoneville-ms
https://authorea.com/users/543271/articles/601219-performance-evaluation-of-uavsar-and-simulated-nisar-data-for-crop-non-crop-classification-over-stoneville-ms


manuscript submitted to Earth and Space Science

Performance Evaluation of UAVSAR and Simulated NISAR Data for Crop/Non-
crop Classification over Stoneville, MS

S. Kraatz1*, S. Rose1, M. Cosh2, N. Torbick3, X. Huang3 and P. Siqueira1 

1Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, 
MA 01003, USA
2USDA ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD 20705, USA
3Applied Geosolutions, Durham, NH 03857, USA

Corresponding author: Simon Kraatz (skraatz@umass.edu)

Key Points:

 Crop/non-crop classifications were evaluated using UAVSAR and simulated NISAR data
using three spatial resolutions and performance metrics

 Optimal crop/non-crop delineating thresholds monotonically decreased with spatial 
resolution for each performance metric

Keywords: UAVSAR, NISAR, Cropland

Length: 7 figures + 4 tables = 11 units, plus 5416 words (including figure and table captions) = 11 units for a total of
22 out of 25 publication units.

mailto:skraatz@umass.edu


manuscript submitted to Earth and Space Science

Abstract

Synthetic Aperture Radar (SAR) data are well-suited for change detection over agricultural 
fields, owing to high spatiotemporal resolution and sensitivity to soil and vegetation. The goal of 
this work is to evaluate the science algorithm for the NASA ISRO SAR (NISAR) Cropland Area 
product using UAVSAR and simulated NISAR data (129A). The NISAR algorithm uses the 
coefficient of variation (CV) to perform crop/non-crop classification at 100 m. We evaluate 
classifications using three accuracy metrics (overall accuracy, J-statistic, Cohen’s Kappa) and 
spatial resolutions (10, 30 and 100 m) for crop/non-crop delineating CV thresholds (CVthr) 
ranging from 0 to 1 in 0.01 increments. All but the 10 m 129A product exceeded the mission 
accuracy requirement of 80%. The UAVSAR 10 m data performed best, achieving maximum 
overall accuracy, J-statistic, and Kappa values of 85%, 0.62 and 0.60. The same metrics for the 
129A product respectively are: 77%, 0.40, 0.36 at 10 m; 81%, 0.55, 0.49 at 30 m; 80%, 0.58, 
0.50 at 100 m. We found that using a literature recommended CVthr value of 0.5 was suboptimal 
(65%) and that optimal CVthr values monotonically decreased with decreasing spatial resolution. 

1 Introduction

Timely and accurate large-scale data on agricultural activity is important for tracking and 
identifying management practices, cropland distribution, and for supporting food security 
programs. Needs of agricultural monitoring community involve a combination of high (<4m) to 
moderate (<30m) spatial resolutions, frequent revisit time, and open access, operational coverage
for large spatial extents (Becker-Reshef et al 2019). Because a majority of agricultural fields are 
just over two hectares in size, spatial resolutions should ideally be on the order of 100 m or less 
to adequately capture agricultural conditions and change (Yan & Roy, 2016). Revisit times on 
the order of weeks or less are desirable, because agricultural fields may undergo substantial 
change on diurnal or greater timescale due to processes such as tilling or precipitation (H 
McNairn & Brisco, 2004). Collectively, since agriculture is closely tied to global markets and 
food security, there is a strong need for accurately monitoring agricultural activity at global scale
(Fritz et al., 2019). 

Since retrievals made by Synthetic Aperture Radar (SAR) systems now meet or exceed 
the above needs, they are well-suited for large-scale agricultural monitoring. Spaceborne SAR, 
such as the European Space Agency’s (ESA) Sentinel-1 can map Earth once every 6 to 12-days 
at moderate spatial resolution  (Torres et al., 2012). SAR data provides valuable information 
useful for cropland identification, crop type classification and estimating yield (Betbeder et al., 
2016; Huang et al., 2019; Whelen & Siqueira, 2018). For example, these data can be used to 
estimate biomass using backscatter magnitude, crop heights using interferometry and crop 
structure using polarimetry (Erten et al., 2016; Ferrazzoli et al., 1997; Wiseman et al., 2014). 
Also, unlike optical sensors, SAR can collect high quality data day and night and is largely 
unimpacted by atmospheric conditions (e.g. at C- band or longer), therefore having excellent 
potential for collecting dense time series. For these reasons, plus an increasing adoption of open 
data access policies, cheaper cloud computing resources, and a steady pipeline of future 
platforms, there has been a rapid increase in the use of SAR datasets with regards to agricultural 
applications and decision support systems.

The NASA ISRO SAR (NISAR) mission, slated for deployment in 2022, is designed to 
meet specific science requirements for applications pertaining to Ecosystems (e.g. agriculture, 
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biomass) , solid Earth and the cryosphere. NISAR will have frequent global observations (~12 
day repeat) mainly using L-band but also features S-band over selected areas, mainly over India
(NISAR Science Team, 2020). NISAR’s focus on agriculture is reflected in its science 
requirement of having the capability of routinely producing a global cropland area product and 
close collaboration with the United States Department of Agriculture (USDA), GEO Global 
Agricultural Monitoring (GEOGLAM), Joint Experiment for Crop Assessment and Monitoring 
(JECAM) and other stakeholders for calibration and validation efforts (NISAR Science Team, 
2020). 

Accuracy requirements of NISAR’s Cropland Area product are to be met using an 
algorithm based on the coefficient of variation (CV), computed over time at each pixel, to 
identify those locations with relatively higher change from crop growth stages and field 
activities. The theory behind using the temporal CV is that areas experiencing greater change 
over time are consistent with agricultural activity (cropland), while other areas that do not 
change as much over time are considered non-crop, such as built or forest. Crop and non-crop 
areas are then delineated by comparing the temporal CV values to a threshold (CVthr). The use of 
a single delineating threshold for crop and non-crop had been tested in several prior studies, 
usually achieving accuracies in the 80% range. Whelen and Siqueira (2017) applied the temporal
CV approach to AgriSAR and ALOS PALSAR data collected over Germany and Minnesota, 
respectively (Whelen & Siqueira, 2017). While ALOS has a revisit period of 46 days, the 
AgriSAR data consisted of a dense time series collected on 12 dates between April and August 
2006. Classification accuracies of 87%, 79% and 78% were achieved, respectively for AgriSAR 
L-band, AgriSAR C-band and ALOS. They also applied the temporal CV approach in a 
subsequent study, but using ALOS PALSAR data over 11 agricultural sites within the contiguous
United States (Whelen & Siqueira, 2018). That study used three approaches for setting CVthr 
values for crop/non-crop classifications: it was set according to (1) the threshold of maximum 
separation of histograms of CV values for crop and non-crop classes, (2) the threshold 
corresponding to the largest Youden J-statistic value, and (3) using a fixed CVthr value of 0.5. 
Averaged over the 11 sites investigated, the approaches performed nearly identical, all of them 
falling in a 74% to 75% range. 

Apart from Whelen and Siqueira (2017), the temporal CV approach had not been tested 
over agricultural areas using temporally dense (i.e. approximately biweekly) L-band time series 
or simulated NISAR data. There is an important need to use dense timeseries for computing CV 
values, because the biweekly observations would be better able to capture processes and 
management such as tilling, irrigation and rain, vegetation growth, and harvesting and result in 
more realistic CV values. Furthermore, computed CV values - and the ensuing CVthr values to be 
used - will also depend on factors such as the frequency of observation, cropping practices and 
landscape heterogeneity, and the spatial resolution to which thresholding will be applied. 
Therefore, there had been a strong need to collect dense L-band time series over hydrologically 
dynamic regions to evaluate the NISAR science algorithms such as that to be used to calculate 
cropland area (Chapman et al., 2019). Thus, NASA conducted the “UAVSAR AM/PM 
Campaign” throughout summer 2019, consisting of repeat flights every two weeks over forests 
and agricultural areas in the Southeast at local times of 6 a.m. and 6 p.m. (Chapman et al., 2019).
Data obtained during this campaign was also used to generate simulated NISAR products that 
more closely resemble the quality of data to be collected by NISAR (JPL, 2020). 
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Furthermore, data resembling that to be collected by NISAR – the simulated NISAR data 
- had not yet been studied in context of generating a cropland area product. This work focuses on
providing first estimates on likely accuracy levels of NISAR’s crop/non-crop classifications 
using approximately biweekly simulated NISAR data over an agricultural area near Stoneville, 
MS. Additionally, we also explore how CVthr values depend on spatial resolution, and how 
accuracy metrics differ between the UAVSAR data compared to the simulated NISAR products 
on 10 m x 10 m grids. For simulated NISAR data, three spatial resolutions were investigated: (1) 
a 10 m spatial resolution that approximately corresponds to the 12 m x 6.2 m slant range grid 
spacing of the simulated NISAR MLC product; (2) a 100 m spatial resolution corresponding to 
that at which NISAR’s Cropland Area product is to be evaluated; and (3) an in-between spatial 
resolution, here 30 m, to match the resolution of the annual USDA Cropland Data Layer (CDL) 
to be used as ground truth (Boryan et al., 2011). Our hypotheses are: (1) UAVSAR data would 
perform the best due to these observations having the highest quality, (2) that classification 
performance deteriorates with spatial resolution and (3) that optimal CVthr values have some, but 
limited, dependence on spatial resolution. 

2 Study Area, Datasets and Processing

2.1 Study Area

The study area is located in the Lower Mississippi River Basin and is part of the Big Sunflower 
River watershed within the Yazoo River Basin. The study area (“Stoneville Site” in Figure 1) is 
located near Stoneville in Washington County, MS. The site mainly consists of agricultural fields
and riparian- and bottomland- wetlands which make a useful feasibility experiment given their 
dynamic range. Agriculture predominantly consists of soybeans, corn, and cotton. USDA 
Agricultural Research Service’s (ARS) Crop Production Systems Research Unit farms are also 
located within the marked region. These research fields are routinely monitored for crop (e.g. 
growth stage) and soil conditions (e.g. soil moisture), and therefore are a valuable resource for 
evaluating NISAR algorithms. 



manuscript submitted to Earth and Space Science

Figure 1. The study area is located in the western part of Mississippi, close to Stoneville. The 
swath of SAR data collected during the 6 a.m. UAVSAR flight (27900) is indicated in blue. The 
red box indicates the region of interest this study used for crop/non-crop classification. The site 
falls within a 33 to 47 degree incidence angle range, as to match those of NISAR. 

2.2 USDA CDL

This study uses the CDL as reference for the accuracy assessments. The CDL is produced using 
observations from various spaceborne platforms such as Landsat 8 and Sentinel 2, provided on 
30 m x 30 m grids, and encompasses 106 different crops (Boryan et al., 2011). CDL accuracy 
with respect to ground truth is estimated to be in the 85-95% range for major crop types. The 
CDL of the prior year is usually made available early the following year, is freely available to the
public, and is produced operationally by the USDA National Agricultural Statistics Service 
(NASS). CDL data from 1997 onwards can be obtained at 
https://nassgeodata.gmu.edu/CropScape/. 

Figure 2 shows the original and the binary crop/non-crop result obtained from assigning 
CDL layers to crop/non-crop (Table 1). The image consists of a total of 718828 pixels (1054 
columns and 682 rows) of which 501378 (69.7 %) and 166978 (23.2 %) pixels are crop and non-
crop, respectively. The remaining 50472 (7.0%) pixels were masked if they fell into the CDL 
classes indicated in Table 1 and according to whether pixel locations fell outside the “Stoneville 
Site” shapefile (Figure 1). It is necessary to mask out open water and orchard crops because the 
temporal CV is not well-suited to these land cover classes. Temporal CV is not expected to be 
able to detect substantial change over orchards, since the difference between a harvested tree to 
one with fruits is expected to be negligible at L-band, and the soils underneath the trees don’t 
vary from bare/tilled though vegetated over a season. We also masked CDL classes related to 

https://nassgeodata.gmu.edu/CropScape/
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open water, because these areas have a low signal to noise ratio and may often indicate relatively
large CV values that would be falsely classified as crop. After excluding masked cells from 
comparisons 668356 ‘valid’ pixels remain, with a percent breakdown of 75% for crop and 25% 
for non-crop. Because the CDL is categorical and posted at 30 m x 30 m grids, to make 
comparisons at 10, 30 and 100 m, we subdivided each CDL grid into nine 10 m x 10 m grids. 

Figure 2. The 2019 USDA/NASS Crop Data Layer at study site (a), and the binary crop (yellow)
non-crop (purple) classification (b) according to Table 1. Some CDL classes for which CV 
approach is known to not perform applicable were masked

Table 1. Rules used for re-classifying the 2019 USDA NASS Crop Data Layer into binary crop/
non-crop grids. 

CDL Class Ranges CDL Class Type Crop/Non-Crop/Masked
1 to 60 Crop (e.g. Cotton, Rice …) Crop
61 to 65 Non-crop (e.g. Fallow, Forest …) Non-Crop
66 to 80 Tree crops (e.g. Cherry, Peach …) Masked
81 to 109 Other (e.g. Water, Wetlands …) Masked

110, 112 to 195 NLCD Classes (e.g. Developed, Forest) Non-Crop
196 to 255 Crops (e.g. Carrots, Garlic …) Crop

111 Open Water Masked

2.3 UAVSAR and Simulated NISAR data

SAR data was collected by the Uninhabited Aerial Vehicle SAR (UAVSAR) as part of the 
NISAR UAVSAR AM/PM campaign. The NISAR UAVSAR AM/PM was conducted in the 
Southeast during the crop season of 2019. Key features of this campaign are high frequency 
repeat observations (~2 weeks) at L-band (1.26 GHz), occurring at NISAR observing times of 6 
a.m. and 6 p.m. (local time). The campaign’s main purpose was to obtain data for testing and 
developing NISAR ecosystem science algorithms, and hence predominantly focused on 
agricultural and forested targets (Chapman et al., 2019). 

UAVSAR is NASA Jet Propulsion Laboratory’s (JPL) airborne platform providing high 
signal-to-noise (SNR) and fully polarimetric SAR observations (HH, HV, VV) at various 
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frequencies (e.g. L-band at 1.26 GHz) and at 80 MHz bandwidth (Rosen et al., 2006). All 
UAVSAR data are freely available and provided as multi look complex (MLC) data in slant-
range coordinates and ground-range projected (GRD) format (https://uavsar.jpl.nasa.gov/). 
Single look complex (SLC) data and interferometric datasets are also available for download, but
only for some of UAVSAR’s flight lines and dates.

Simulated NISAR data are generated from the UAVSAR observations. UAVSAR 
observations have relatively higher SNR and spatial resolution compared to what will be 
collected by NISAR. Therefore, additional steps were taken by NASA JPL to generate simulated 
NISAR products using UAVSAR SLCs as input, mainly by reducing spatial resolution and 
adding noise (JPL, 2020). Simulated data are available for each of NISAR’s observing mode 
(129, 138 and 143). Each mode consists of two bands, referred to as Frequency A (for HH and 
HV) and Frequency B (for VH and VV). Specifically, we use Frequency A of observing mode 
129 (129A) because of (1) its relatively higher spatial resolution compared to 129B and (2) it 
being NISAR’s predominant observing mode covering most of the globe. 

The simulated datasets also have additional features compared to other UAVSAR data 
provided by NASA JPL. For example, the simulated NISAR GRD products of a given flight line 
are all co-registered and posted on a common grid, facilitating time series analysis. Furthermore, 
the GRD product also comes with a radiometric terrain correction (RTC) calibration file. 
Although this makes the simulated GRD products attractive for processing, we opted to use the 
MLC data for the comparisons of UAVSAR and simulated NISAR data: (1) MLC data are 
available for all the UAVSAR flight lines and (2) we’re able to ensure that an identical workflow
is used for processing both UAVSAR and simulated NISAR data with respect to image co-
registration and RTC. 

The UAVSAR and simulated NISAR MLC data are the result of cross multiplying and 
multi looking the SLCs. The cross multiplications between the HH, HV, VV polarized yielding 
three complex valued and real valued results in linear units of power. Because previous studies 
indicated that the HV cross product performed best for agricultural crop/non-crop classifications,
we only tested crop/non-crop delineation with the HVHV cross product (Heather McNairn & 
Shang, 2016; Rose et al., 2020; Whelen & Siqueira, 2017). 

The study area described in Section 2.1 is covered by the UAVSAR Stoneville 6 a.m. 
flight line (27900). Seven approximately bi-weekly images were used to compute CV values at 
each pixel (Table 2). However, ahead of computing CV values (Section 3.1), we applied further 
data processing steps as described below (Section 2.3.3). 

Table 2. UAVSAR and simulated NISAR datasets used as inputs (2019).
Date UAVSAR Simulated NISAR

6-Jun NISARA_27900_19033_000_190606_L090HVHV_CX_02 NISARA_27900_19033_000_190606_L090HVHV_CX_129A_03

20-Jun NISARA_27900_19038_003_190620_L090HVHV_CX_02 NISARA_27900_19038_003_190620_L090HVHV_CX_129A_03

16-Jul NISARA_27900_19048_001_190716_L090HVHV_CX_01 NISARA_27900_19048_001_190716_L090HVHV_CX_129A_02

25-Jul NISARA_27900_19051_001_190725_L090HVHV_CX_01 NISARA_27900_19051_001_190725_L090HVHV_CX_129A_02

12-Aug NISARA_27900_19053_013_190812_L090HVHV_CX_01 NISARA_27900_19053_013_190812_L090HVHV_CX_129A_02

23-Sep NISARA_27900_19069_001_190923_L090HVHV_CX_01 NISARA_27900_19069_001_190923_L090HVHV_CX_129A_02

https://uavsar.jpl.nasa.gov/
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30-Sep NISARA_27900_19070_003_190930_L090HVHV_CX_01 NISARA_27900_19070_003_190930_L090HVHV_CX_129A_02

2.4 SAR Data Processing

The input data (UAVSAR and 129A) was subjected to further processing steps to improve the 
datasets with respect to image co-registration, RTC and re-projection from the source σ0 to a γ0 
scattering plane (Figure 3). 

Figure 3. Flowchart showing the six data processing steps. Steps 1 through 5 were applied using 
the InSAR Scientific Computing Environment software via an automated workflow (ISCE 
Docker Tools).

First, we obtain the geometry of the reference image to which all others will be co-
registered. The reference image was set as the earliest of the UAVSAR AM/PM campaign data 
for a given flightline (i.e. 6 June 2019 for UAVSAR Flightline 27900). This step also required a 
digital elevation model, and we used and the Shuttle Radar Topography Mission 30 m (SRTM1) 
data. Second, the pixel offsets of each subsequent image relative to the reference are determined. 
Third, using the pixel offsets as inputs, imagery is co-registered to the reference image. Fourth, 
the geometry information obtained in step 1 (e.g. the local and flat earth incidence angles) are 
used to apply RTC and output results in the γ0 plane (Small, 2011; Ulander, 1996). Fifth, the 
slant range MLCs were projected to UTM grids at 10 m x 10 m, 30 m x 30 m and 100 m x 100 m
spacing. Coarser spatial resolutions were investigated as the 129A MLC product appeared to be 
quite noisy due to speckle. Spatial resolutions were selected according to being consistent with 
the finest NISAR products (around 10 m), that of the CDL (30 m) and that at which NISAR’s 
crop/non-crop classifications are to be evaluated (100 m). Sixth, we then computed CV values at 
each spatial resolution (Section 3.1). Because the CDL (30 m x 30 m) and CV grids (10 m, 30 m,
100 m) have different spatial resolutions these datasets were then subdivided into 10 m x 10 m 
grids for making comparisons. Also, because the 10 m CV grids were shifted relative to the CDL
grids that had been subdivided into 10 m grids, we interpolated the CV datasets to the CDL 
grids. Therefore, all performance evaluations described in Section 3 are made using 10 m x 10 m
grids. 

Steps 1 through 5 are incorporated in our automated workflow using the InSAR Scientific
Computing Environment (ISCE) Docker Tools (IDT) (Kraatz et al., 2020), available at 
https://github.com/UMassMIRSL/isce_docker_tools. IDT is a dockerized version of ISCE 2.3.1, 
additionally modified for automated processing of UAVSAR Multi Look Complex (MLC) time 
series data and applies processing Steps 1 through 5 in Figure 3. 

3 Methods

This section focuses on the evaluation of the algorithm to be used to meet NISAR’s Level 2 
Cropland Area product science requirements. The algorithm is to have 80% accurate crop/non-
crop classifications when evaluated at 100 m x 100 m spatial resolution. The algorithm is based 
on the temporal CV approach. The basic premise of the CV approach for delineating crop and 

https://github.com/UMassMIRSL/isce_docker_tools
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non-crop areas is that actively cultivated lands (i.e. crop) experience more substantial change 
over time as compared to unmanaged lands (i.e. non-crop) (Section 3.1). Because of differences 
due to the types of crops, soil conditions and management practices within a given region of 
interest, we do not have a priori knowledge of what CVthr values provide accurate crop/non-crop 
delineation. Therefore, we iterate through a range of CVthr values, from 0.00 through 1.00 in 0.01
increments (Section 3.2) and classify each valid pixel of the CV image as crop or non-crop. For 
each CVthr value, we use the results of the confusion matrix (Section 3.3) to compute three 
different accuracy metrics: the overall accuracy (Section 3.4), Youden’s J-statistic (Section 3.5) 
and Cohen’s Kappa (Section 3.6). 

3.1 Coefficient of Variation (CV)

The CV metric represents the amount of variation in HV backscatter over time, with higher 
values indicating greater variation, and is calculated as 

CV HV=
σ HV

μHV

 (1)

where σ and µ respectively are the standard deviation and mean values of the backscatter data at 
each pixel, computed over time for the HV cross product. 

3.2 Crop/non-crop Classification

Crop/non-crop classification is determined using a fixed CVthr value, applied to the region of 
interest (ROI), where 

CV pixel{¿CV thr for ROI , non−crop
≥CV thr for ROI , crop

 (2)

3.3 Confusion Matrix

Our crop/non-crop results (Section 3.2) are compared to the ground truth (the CDL, Section 2.2) 
using a confusion matrix. The confusion matrix tabulates the number of pixels for which both 
datasets agreed on the crop and non-crop pixels, respectively the true positive (TP) and true 
negative (TN) counts. It also tabulates classification errors where our classifications indicated 
crop but the CDL did not (false positive, FP) where our classifications indicated non-crop but the
CDL did not (false negative, FN).

Table 3. Confusion matrix for crop/non-crop classification.
Observed (the CDL)

Model (the SAR-based
classifications)

Crop Non-Crop

Crop True Positive (TP) False Positive (FP)
Non-crop False Negative (FN) True Negative (TN)
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3.4 Overall Accuracy

Overall Accuracy is calculated from the confusion matrix (Section 3.3) as:

accuracy=
100∗(TP+TN )

(TP+FP+FN+TN)
(3)

3.5 Youden’s J-statistic

Youden’s J-statistic indicates the threshold for which the difference between the true positive 
(Sensitivity) and false positive (1-Specificity) rate is the greatest (Habibzadeh et al., 2016). In 
that context, it gives an equal weight to false positive and false negative values. Youden’s J-
statistic is calculated as

J=Sensitivity+Specificity−1 (4)

Sensitivity=
TP

TP+FN
(5)

Specificity=
TN

TN+FP
(6)

According to this performance metric, the optimal CVthr value is the one that yields the greatest 
value of J. In a visual representation, J is the vertical distance between a 1:1 line (the line of no 
discrimination) to a point on the ROC curve. The ROC curve is the result from plotting of 
Sensitivity vs. 1-Specificity. The ROC curve allows for easy interpretation of classification 
performance. Classifications are generally poor if the curve falls relatively close to the 1:1 line. 

3.6 Cohen’s Kappa

Cohen’s Kappa indicates the threshold for which two datasets show the best agreement, also 
attempting to account for random chance using standard assumptions (Cohen, 1960; McHugh, 
2012). As in McHugh (2012), we calculate Kappa in terms of the four confusion matrix 
categories (Section 3.3):

Kappa=
pO− pe

1−pe

(7)

where pO is the observed proportionate agreement, given by

pO=
TP+TN

TP+FP+FN+TN
(8)

and pe is the overall random agreement probability, given by
pe=pY + pN  (9)
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where pY and pN respectively are the expected probability of random agreement and 
disagreement, given by

pY=
(TP+FP )∗(TP+FN )

(TP+FP+FN+TN )
2
 

(10)

pN=
(FN+TN )∗(FP+TN)

(TP+FP+FN+TN )
2  (11)

Kappa may range between -1.0 to 1.0. Values below zero indicate poor agreement while 
1.0 represents a perfect agreement between the CDL and the SAR-based crop/non-crop 
classifications.

4 Results and discussion

CV values of UAVSAR and simulated NISAR data range from about 0 to 2.5 (Figure 4). The 
UAVSAR retrievals have low noise and can clearly delineate individual fields and other small 
features at high contrast (Figure 4a). As expected, the simulated NISAR data are noisier and 
have less contrast (Figures 4b-d). There is a considerable amount of speckle in the simulated 
UAVSAR data at 10 m (Figure 4b): intra-field CV variations are quite large, which may be 
problematic for accurate crop/non-crop classification. The speckle is not entirely surprising as 
the simulated NISAR MLCs had only been multi-looked twice in azimuth with respect to the 
SLC and have a 12 m (azimuth) x 6.2 m (range) posting. For comparison, UAVSAR’s SLC 
resolution is 0.6 m (azimuth) x 1.67 m (range) and the MLC product had been multi-looked 12 x 
in azimuth and 3 x in range for a posting of 7.2 m by 5 m. 
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Figure 4. CV values for (a) UAVSAR 10 m x 10 m and (b)-(d) simulated NISAR data 
interpolated to 10, 30 and 100 m grids. Some CDL land covers (e.g. aquaculture) were masked 
according to Table 1 and are shown in white. 

In general, features are more washed out for the simulated NISAR data, especially at 10 
m (Figure 4b). Scene-wide CV values of the 10 m simulated NISAR data (mean: 0.63, median: 
0.62) are smaller than those obtained from UAVSAR data (mean: 0.64, median: 0.66). 
Furthermore, for the simulated NISAR data CV values monotonically decrease with spatial 
resolution, and there is nearly no difference between their mean and median values over the 
scene: the mean/median CV values are 0.53 and 0.46 at 30 m and 100 m, respectively. Although 
CV values decrease at the 30 and 100 m postings, contrast between low and high CV areas are 
much improved over the 10 m posting. This should lead to relatively easier crop/non-crop 
delineation when applying a single CVthr value over the scene. 

ROC curves also provide valuable insight on the relative performance of crop/non-crop 
classifications using the different input datasets (Figure 5). ROC curves of the UAVSAR (Figure
5a) and 10 m simulated NISAR classifications (Figure 5b) respectively have the greatest and 
least separation from the line of no discrimination (the 1:1 line). This indicates that 
classifications using the UAVSAR data perform best while the 10 m simulated NISAR data 
perform worst. Classifications using the 30 m (Figure 5c) and 100 m (Figure 5d) simulated 
NISAR data perform about equally and have a degree of separation from the 1:1 line falling 
closer to that of the UAVSAR retrievals. The notable difference between the 30 m and 100 m 
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classifications is that to obtain the same vertical separation from the 1:1 line at 100 m, a smaller 
CVthr value must be used at the coarser resolution. This is result is consistent with the above-
noted decrease of mean and median CV values at coarser spatial resolutions.

Figure 5. Receiver operating characteristic curves for (a) UAVSAR at 10 m x 10 m and (b)-(d) 
simulated NISAR at 10 m x 10 m, 30 m x 30 m and 100 m x 100 m spatial resolution. The 
marked points on the curve indicate the Sensitivity and 1-Specificity values for the annotated 
value of the crop/non-crop delineating threshold (CVthr). The 1:1 line indicates the line of no 
discrimination.

Figure 6 shows the results of pixel-wise comparisons between the UAVSAR and 
simulated NISAR data, compared to the CDL at specific CVthr values. For all datasets, using 
small CVthr values lead to crop overestimation errors, while high CVthr value lead to crop 
omission errors. Visual inspection of the result indicates that the best CVthr values occur around 
0.4, 0.5, 0.4 and 0.3 respectively for UAVSAR and simulated NISAR data at 10 m, 30 m, and 
100 m. The latter three values are consistent with the results of the ROC plots and the 
monotonically decreasing CV values at coarser resolution. Furthermore, visual inspection also 
shows relatively clearly that UAVSAR data performs the best, 10 m simulated NISAR the worst,
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and that the 30 m and 100 m simulated NISAR results are comparable to one another and fall 
somewhere in between results obtained using the 10 m and UAVSAR data.

Figure 6. Crop/non-crop confusion matrix results for the UAVSAR (10 m x 10 m) and simulated
NISAR (10 m x 10 m, 30 m x 30 m and 100 m x 100 m) products (rows) as function of crop/non-
crop delineating threshold (CVthr, columns). Results show that to maintain the best classification 
accuracy with spatial resolution, it is necessary to employ smaller CVthr values as the spatial 
resolutions become coarser. 

A breakdown of optimal CVthr values by accuracy metric reveals that values obtained for 
Youden’s J statistic and Cohen’ Kappa are comparable, whereas optimal CVthr according to 
accuracy fall relatively lower (Table 4). There is a large range of optimal CVthr values for the 10 
m simulated NISAR data, indicating that the best agreement occurs when using CVthr of 0.4, 0.6 
and 0.5 for accuracy, J-statistic, and Kappa, respectively. Figure 6 shows that using CVthr of 0.4 
leads to many misclassifications of non-crop as crop. But as 75% of the landscape is crop, the 
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relative contribution of these errors is relatively smaller and high accuracy is achieved. Whereas 
the J-statistic weighs both types of errors equally, resulting in a map that appears to have 
somewhat comparable rates of crop omissions and overdetections, as proportion of the total crop 
and non-crop classes: at a CVthr of 0.57, 48972 out of 166978 non-crop grids (29%) are 
misclassified as crop, while 154095 out of 501378 crop grids (31%) are misclassified as non-
crop. In the 10 m simulated NISAR case, Kappa settles on a value in the middle, but approaches 
the threshold identified by the J-statistic with coarser resolution. 

Table 4. The unbracketed values indicate the optimal CVthr for each accuracy metric. The 
bracketed values show the metric’s maximum value, occurring at the given CVthr. N refers to the 
simulated NISAR data at 10, 30 and 100 m grids. 
Optimal CVthr UAVSAR N_10 N_30 N_100

Accuracy 0.39 (85%)
0.4

(77%)
0.34 (81%) 0.26 (80%)

J-statistic 0.5 (0.62) 0.57 (0.4) 0.46 (0.55) 0.4 (0.58)
Kappa 0.43 (0.59) 0.5 (0.36) 0.41 (0.49) 0.38 (0.50)

Plots of the three performance metrics versus CVthr reveal that accuracy is relatively less 
sensitive to changes in CVthr, compared to the other metrics (Figure 7). Overall accuracy remains 
fairly constant until CVthr values exceed 0.5. Whereas, the J-statistic and Kappa values have 
much sharper peaks, occurring at comparable CVthr values. Results for J-statistic and Kappa are 
close to zero for CVthr values less and greater than 0.2 and 0.8, respectively. The figure also 
clearly shows how optimal values trend towards smaller CVthr with coarser spatial resolutions: 
there is a particularly large contrast between the locations of peaks of the simulated NISAR data 
at 10 m as compared to 30 and 100 m: for J-statistic and Kappa, there is a CVthr difference of 
about 0.1 or greater betweeen them. 
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Figure 7. Plot of three performance metrics (Accuracy, J-statistic and Cohen’s Kappa) versus 
crop/non-crop delineating threshold for UAVSAR at 10 m x 10 m (‘U’) and simulated NISAR at 
10 m x 10 m (‘N_10’), 30 m x 30 m (‘N_30’) and 100 m x 100 m (‘N_100’) spatial resolution.

Figure 7 shows that all but the simulated NISAR classifications at 10 m are able to meet 
the 80% accuracy requirement. Results using the 30 and 100 m data only barely exceed the 80% 
requirement. We also note that there appears to be a relatively large range of CVthr values, 
approximately ranging from 0.2 to 0.4, that could also be used to achieve accuracies close to or 
greater than the 80% requirement. This indicates there there could be a considerable leeway in 
obtaining good accuracies even when only using a single CVthr value over a large region. Given 
NISAR mission requirements of 80% at one hectare scale, the simulated NISAR products meet 
these goals.

Rose et al. (2020) applied the same CV approach but using Sentinel-1 data posted at 150 
m x 150 m and year round comparisons for 2017 (Rose et al., 2020). Optimal CVthr values were 
computed for one hundred 1o by 1o areas over agricultural regions throughout the Contiguous 
United States. The study reported on a strong geographic dependence on optimal CVthr values, 
with values falling closer to 0.5 in the central US and closer to 0.3 near coastal regions. While 
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that study did not include any region in Mississippi, the nearest 1o by 1o study areas in Arkansas 
and Georgia also indicated optimal CVthr values falling somewhere between a 0.2 to 0.4 range. 
Thus, although there are many fundamental differences between this and Rose et al. (2020) (e.g. 
grid spacing and frequency), results reported here are consistent with the regionally dependent 
optimal CVthr values reported in Rose et al. (2020). While further study is needed to confirm the 
consistency between these results more thoroughly, there appears to be some potential of using 
the Sentinel-based CVthr values as initial estimates when using NISAR’data for computing 
cropland area. 

While our findings are generally consistent with our initial hypotheses, we note that 
classification performance only slightly decreased between using 30 m (81%) and 100 m (80%) 
data. More notable is that the optimal CVthr values, greatly varied according to spatial resolution 
and accuracy metric used, and that a wide range of CVthr values ranging from 0.2 to 0.4, could be
used to achieve near 80% accuracy.

5 Conclusions

This main goal of this work was to evaluate the proposed algorithm for generating crop/non-crop
classifications using NISAR data. Crop/non-crop classifications were evaluated at spatial 
resolutions consistent with the finest NISAR products (around 10 m), that of the CDL (30 m) and
that at which NISAR crop/non-crop classifications are to be evaluated (100 m). Using UAVSAR 
at 10 m resolution, we achieved crop/non-crop classification accuracy of 85%. Using the best 
currently available approximation of data to be collected by NISAR, we found that the mission 
requirement of 80% could be met in all but the 10 m case (77%). Speckle was substantial when 
using the 12 m x 6.2 m MLCs on 10 m x 10 m grids, resulting in misclassifications. And while 
results were not substantially better using 30 m (81%) or 100 m (80%) grids, we found that a 
fairly large range of CVthr values (0.2 to 0.4) may be used to approach or exceed the mission 
accuracy requirement of 80%. 

In addition to overall accuracy, this study also used Youden’s J-statistic and Cohen’s 
Kappa to measure classification performance. Both metrics were found to be substantially more 
sensitive to performance differences, compared to overall accuracy. Classifications were 
substantially worse using the simulated NISAR data at 10 m (J-statistic: 0.40, Kappa value: 0.36)
compared to those made at 30 m (J-statistic: 0.55, Kappa: 0.49) and 100 m (J-statistic: 0.58, 
Kappa: 0.50). All performance metrics considered, there was little difference between a 30 m 
and 100 m product, showing that accurate cropland products could also be produced at finer 
spatial resolutions. 

Optimal CVthr values varied considerably depending on which spatial resolution and the 
performance metric was used. Optimal CVthr values decreased monotonically with spatial 
resolution, for every performance metric. At all spatial resolutions, optimal thresholds for overall
accuracy were smallest, followed by those obtained for Kappa and the J-statistic. For example, 
using CVthr = 0.5 at 100 m, overall accuracy was only 65%. Using CVthr = 0.26 instead, improved
overall accuracy by 15%. Therefore, it will likely be necessary to consider CVthr values different 
from 0.5 to not only for maximizing the product’s accuracy, but also for achieving the 80% 
accuracy mission requirement. Because this study’s results yielded an optimal CVthr values 
similar to what was expected according to Rose et al. (2020), it may be possible to use that 
study’s CVthr values to inform on more suitable thresholds when computing cropland area from 
NISAR data. 
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user should then select the type of data and the data and click on the corresponding link. Within 
the new page that is opened, the user is then able to download the file of the same name as 
provided in Table 2. 

The CDL layer used in this study may be obtained through CropScape at 
https://nassgeodata.gmu.edu/CropScape/, by selecting 2019 in the Cropland Data Layers 
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polygon shapefile having these corner coordinates in the UTM 15 (EPSG: 32615) projection: 1) 
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