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Abstract

Atmospheric rivers (ARs) affect surface hydrometeorology in the US West Coast and Midwest. We systematically sought optimal

AR indices for expressing surface precipitation impacts within the Atmospheric River Tracking Method Intercomparison Project

(ARTMIP) framework. We adopted a multifactorial approach. Four factors—moisture fields, climatological thresholds, shape

criteria, and temporal thresholds—collectively generated 81 West Coast AR indices and 81 Midwest indices from January 1980

to June 2017. Two moisture fields were extracted from the MERRA-2 data for ARTMIP: integrated water vapor transport

(IVT) and integrated water vapor (IWV). CPC US Unified Precipitation data were used. Metrics for precipitation effects

included two-way summary statistics relating the concurrence of AR and that of precipitation, per-event averaged precipitation

rate, and per-event precipitation accumulation. We found that an optimal AR index for precipitation depends on the types

of impact to be addressed, associated physical mechanisms in the affected regions, timing, and duration. In West Coast and

Midwest, IWV-based AR indices identified the most abundant AR event time steps, most accurately associated AR to days

with precipitation, and represented the presence of precipitation the best. With a lower climatological threshold, they detected

the most accumulated precipitation with the longest event duration. Longer duration thresholds also led to higher accumulated

precipitation, holding other factors constant. IWV-based indices are the overall choice for Midwest ARs under varying seasonal

precipitation drivers. IVT-based indices suitably capture the accumulation of intense orographic precipitation on the West

Coast. Indices combining IVT and IWV identify the fewest, shortest, but most intense AR precipitation episodes.
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Abstract14

Atmospheric rivers (ARs) affect surface hydrometeorology in the US West Coast and Mid-15

west. We systematically sought optimal AR indices for expressing surface precipitation16

impacts within the Atmospheric River Tracking Method Intercomparison Project (ART-17

MIP) framework. We adopted a multifactorial approach. Four factors—moisture fields,18

climatological thresholds, shape criteria, and temporal thresholds—collectively gener-19

ated 81 West Coast AR indices and 81 Midwest indices from January 1980 to June 2017.20

Two moisture fields were extracted from the MERRA-2 data for ARTMIP: integrated21

water vapor transport (IV T ) and integrated water vapor (IWV ). Metrics for precip-22

itation effects included two-way summary statistics relating the concurrence of AR and23

that of precipitation, per-event averaged precipitation rate, and per-event precipitation24

accumulation. We found that an optimal AR index for precipitation depends on the types25

of impact to be addressed, associated physical mechanisms in the affected regions, tim-26

ing, and duration. In West Coast and Midwest, IWV -based AR indices identified the27

most abundant AR event time steps, most accurately associated AR to days with pre-28

cipitation, and represented the presence of precipitation the best. With a lower clima-29

tological threshold, they detected the most accumulated precipitation with the longest30

event duration. Longer duration thresholds also led to higher accumulated precipitation,31

holding other factors constant. IWV -based indices are the overall choice for Midwest32

ARs under varying seasonal precipitation drivers. IV T -based indices suitably capture33

the accumulation of intense orographic precipitation on the West Coast. Indices com-34

bining IV T and IWV identify the fewest, shortest, but most intense AR precipitation35

episodes.36

Plain Language Summary37

[Atmospheric rivers (AR), the long narrow filaments of enhanced water vapor trans-38

port in the lower troposphere, are known to accompany extreme rain and winds. They39

are important weather systems for US water resources on the West Coast and in the Mid-40

west. In our study, we asked which impacts, in which region, and in what time scale and41

period were of concern. We then used an approach combining climate significant- or extreme-42

event criteria, image processing, and statistical analysis to create 81 West Coast AR in-43

dices and 81 Midwest indices from January 1980 to June 2017 for answering the ques-44

tions with detailed visualization. We found that an optimal AR index for precipitation45
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depends on the defined precipitation impacts, regional physical mechanisms of precip-46

itation, season, and duration. Integrated water vapor (IWV ) can represent the broad-47

stroke presence and accumulation of precipitation in regions studied. Longer duration48

thresholds also led to higher accumulated precipitation. Combined moisture with wind49

fields using integrated water vapor transport (IV T ), is necessary to get extreme West50

Coast AR orographic precipitation. IWV well represents moderate to extreme Midwest51

AR precipitation events for all seasons. Combination of IV T and IWV is useful to get52

snapshots of extreme precipitation events.]53

1 Introduction54

Atmospheric rivers (ARs) are long, narrow filaments of enhanced water vapor trans-55

port that is typically associated with a low-level jet and extratropical cyclone (Ralph et56

al., 2018). When these moisture-laden ARs make landfall or penetrate inland, water va-57

por condenses and can release enhanced precipitation (e.g., Guan et al., 2010, 2013; Luo58

& Tung, 2015). AR precipitation in many parts of the world is paramount for water re-59

sources (e.g., Guan et al., 2010; Dettinger et al., 2011; Rutz & Steenburgh, 2012; Det-60

tinger, 2013; Lavers & Villarini, 2015; Eiras-Barca et al., 2016; Blamey et al., 2018; Lit-61

tle et al., 2019). However, heavy rainfall can lead to floods and ensuing socioeconomic62

damage. Studies have shown that in North America, ARs have significant surface hy-63

drometeorological effects on the western North America (e.g., Ralph et al., 2006; Neiman64

et al., 2008; Leung & Qian, 2009; Ralph et al., 2011; Dettinger, 2011; Rutz et al., 2014;65

X. Chen et al., 2018) and the US Midwest (e.g., Lavers & Villarini, 2013; Nayak & Vil-66

larini, 2017).67

The first and critical task to study ARs is to develop AR identification methods.68

There have been many AR detection and tracking methods for different purposes in the69

literature, as noted in the Atmospheric River Tracking Method Intercomparison Project (ARTMIP,70

Shields et al., 2018; Rutz et al., 2019; O’Brien et al., 2020). These different detection meth-71

ods are primarily based on either one or both measurements of Integrated Water Vapor72

(IWV ) and Integrated Water Vapor Transport (IV T ).73

Ralph et al. (2004, 2005, 2006) created an objective AR identification method us-74

ing satellite-based IWV for case studies in the North American West Coast. They de-75

fined ARs with IWV content > 20 mm, length > 2000 km, and width < 1000 km. Sim-76
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ilar approaches have since been widely applied (e.g., Neiman et al., 2008; Wick et al.,77

2013). Furthermore, IV T derived from reanalysis or models incorporates the effects of78

advection. Zhu and Newell (1998) first defined ARs through IV T . Lavers et al. (2012)79

and Lavers and Villarini (2013), respectively, established percentile-based IV T thresh-80

olds to study ARs affecting Britain and Central US. Guan and Waliser (2015) applied81

85th percentile seasonal climatological thresholds to IV T for global AR detection. Mean-82

while, Rutz et al. (2014) used absolute thresholds, preferring IV T ≥ 250 kg m−1 s−1 to83

IWV ≥ 20 mm as a threshold to emphasize inland-penetrating ARs in the Western US.84

IV T -based detection method is increasingly chosen over IWV -based ones in re-85

search and operation as horizontal moisture transport is qualitatively related with oro-86

graphic precipitation (e.g., Neiman et al., 2009; Rutz et al., 2014; Guan & Waliser, 2015).87

The combination of IV T and IWV (IV T+IWV thereafter) was recently adopted (e.g.,88

Eiras-Barca et al., 2016; Gershunov et al., 2017). The IV T + IWV method was pro-89

posed to reduce erroneous detection of ARs from considering only one of the measure-90

ments (Eiras-Barca et al., 2016). It requires both IV T and IWV values to meet their91

corresponding thresholds simultaneously.92

Furthermore, the duration of an AR is important for its hydrometeorological ef-93

fects. Longer-lived ARs are more likely to bring higher rainfall (in total and on average)94

and streamflow than shorter-duration ones (Ralph et al., 2013; Nayak & Villarini, 2018).95

However, there has not been a consensus in duration criteria. Duration thresholds were96

not used in some early case studies (e.g., Ralph et al., 2004). Subsequently, a minimum97

of at least 8 (Ralph et al., 2013), 12 (Payne & Magnusdottir, 2016), 18 (Lavers et al.,98

2012; Lavers & Villarini, 2013; Nayak & Villarini, 2017; Gershunov et al., 2017), or 2499

consecutive hours (Sellars et al., 2015) were included as a part of detection algorithms.100

Although systematic comparisons among different AR identification methods are101

underway (Shields et al., 2018; Rutz et al., 2019; Ralph et al., 2019), the relationships102

between the methods and associated AR precipitation remain to be quantified. Impor-103

tant questions to ask include: between the two common detection measurements of IV T104

and IWV , which one, or both, should be used when surface precipitation is concerned?105

How do more restrictive duration criteria perform if long-lived ARs produce larger amounts106

of precipitation than short-lived ones (Ralph et al., 2013)? In probing these questions,107

we attempted to establish an optimal AR detection algorithm suited for expressing sur-108

–4–
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face precipitation impacts. We used a multi-factorial ensemble analysis, well suited for109

uncertainty quantification, focusing on the percentile-based approaches within the ART-110

MIP framework of prevailing detection methods and reanalysis data from January 1980111

to June 2017. The paper is organized as follows: data and methods are in section 2. Sur-112

face precipitation effects associated with different AR detection indices are analyzed and113

discussed in section 3. Sections 4 and 5 provide discussions and conclusions, respectively.114

2 Data and Methods115

2.1 Data116

2.1.1 MERRA-2 data for ARTMIP117

The two conventional moisture measurements for AR detection, IV T and IWV ,118

were extracted from the Modern-Era Retrospective analysis for Research and Applica-119

tions, Version 2 (MERRA-2) source data for ARTMIP through Climate Data Gateway (NCAR120

CDG, 2019). This dataset was calculated by the Center for Western Weather and Wa-121

ter Extremes at the University of California, San Diego, according to the following for-122

mula (Shields et al., 2018):123

IV T = −1

g

∫ 200

1000

q(p)|Vh(p)| dp, (1)124

IWV = −1

g

∫ 200

1000

q(p) dp (2)125

The three variables, horizontal wind (Vh = (u, v) where u is the zonal and v the126

meridional winds in m s−1), specific humidity (q in kg kg−1), and pressure (p in hPa),127

used in the formula were from NASA MERRA-2 (Gelaro et al., 2017). The horizontal128

spatial resolution and temporal resolution of the vertically integrated fields are 0.5◦ lon-129

gitude by 0.625◦ latitude and 3 hours. We used all of the MERRA-2 Tier 1 data avail-130

able at the time of download, from January 1980 to June 2017, to create climatological131

thresholds. Then, we applied the AR detection algorithm to the dataset to generate AR132

indices.133

–5–



manuscript submitted to JGR: Atmospheres

2.1.2 CPC US Unified Precipitation Data134

The NOAA Climate Prediction Center (CPC) Unified Gauge-Based Analysis of Daily135

Precipitation over the Contiguous United States (hereafter, CPC) provides daily precip-136

itation on a fine-resolution (0.25◦ latitude by 0.25◦ longitude) from January 1948 to the137

present (Higgins et al., 2000; Xie et al., 2007; M. Chen et al., 2008). Gibson et al. (2019)138

evaluated this product and found overall good agreement with the in-situ Parameter-139

Elevation Regressions on Independent Slopes Model (PRISM) dataset (Daly et al., 2008).140

As described in the next subsection, these AR indices were defined by various AR de-141

tection criteria applied to the ARTMIP MERRA-2 data. Their original spatial and tem-142

poral resolutions are those of the MERRA-2. We spatially interpolated the coarser AR143

index values (0 or 1) with bilinear interpolation to the CPC data’s finer mesh, then rounded144

off the results to integers. Each CPC daily precipitation measurement was divided evenly145

over the twenty-four hours centered at 00 UTC, then aggregated into the AR indices’146

3-hourly intervals.147

2.2 AR Detection Algorithm148

As shown in Figure 1, we used 4 factors—moisture fields, climatological thresholds,149

shape criteria, and temporal thresholds—to generate an ensemble of 81 AR indices for150

the US West Coast and 81 for the Midwest. First, we used IV T , IWV , or IV T+IWV151

as the moisture field. Then, for each grid point, we selected moisture field values at 1200152

UTC every day during neutral or weak El Niño–Southern Oscillation (ENSO) events from153

January 1980 to June 2017. We called these test values. Here, we adopted the bi-monthly154

NOAA Multivariate ENSO index (MEI.v2, e.g., Wolter & Timlin, 1993) and preserved155

only test values in the months when the MEI.v2 index was within ±1. Three monthly156

climatological thresholds were calculated for each set of test values—IV T , IWV , or IV T+157

IWV —at each grid point. In addition to the common 85th percentile (e.g., Lavers et158

al., 2012; Lavers & Villarini, 2013; Guan & Waliser, 2015; Eiras-Barca et al., 2016), we159

also used the 75th and the 95th percentiles as thresholds. Consequently, at any given160

grid point and time, a moisture value equal to or exceeding a threshold suggests the po-161

tential presence of AR.162

Figure 2 plots these three levels of climatological thresholds of IV T and IWV fields163

over North America for January and August. The threshold at each grid point elevates164

–6–
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Figure 1. Schematic diagram illustrating the multifactorial AR detection algorithm.

successively, increasingly restricting AR detection, from 75th to 95th percentile. The IV T165

maxima corresponded to extratropical storm tracks and ITCZ over the North Pacific and166

the North Atlantic. The IWV maxima co-located with tropical and extratropical warm167

oceans as well as maritime tropical air mass. Consistent with Clausius–Clapeyron equa-168

tion, IV T and IWV thresholds were generally higher in the summer (August) than in169

the winter (January). To relate identified ARs with surface precipitation effects, we de-170

fined the regions of West Coast and Midwest based on the boundaries of CPC precip-171

itation data. The regions of the West Coast (situating between 33◦–48.5◦ N and 124.375◦–172

114.375◦ W) and Midwest (between 37◦–47◦ N and 94◦–84◦ W) are outlined in red. This173

seasonal difference was more evident in the Midwest than the West Coast. Regardless,174

the IV T maximum over the Northeast Pacific Ocean expanded towards the West Coast175

in January, then retreated in August.176

Figure 2 also compares the monthly percentile thresholds in this study against the177

absolute thresholds used by Gershunov et al. (2017), defined as 250 kg m−1s−1 in IV T178

and 15 kg m−2 in IWV . The monthly percentile thresholds exhibit more spatial details179

–7–
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Figure 2. Three levels (75th, 85th, and 95th) of climatological thresholds of IV T (a, kg

m−1s−1) and IWV (b, kg m−2) over North America for January and August derived from neu-

tral or weak ENSO events between January 1980–June 2017. The red boxes outline the West

Coast and Midwest regions in this study. White lines (250 kg m−1s−1 in IV T and 15 kg m−2 in

IWV ) are the absolute thresholds in Gershunov et al. (2017).

–8–
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as well as seasonal variability than the absolute ones. Through visual inspection, one can180

infer the different outcomes of AR detection if solely based on these thresholds. In Jan-181

uary, absolute IV T and IWV thresholds resulted in fewer instances of landfalling ARs182

in both West Coast and Midwest compared with the respective 75th and 85th percentile183

thresholds. This is because the majority of the monthly percentile threshold values in184

these two regions are below the absolute thresholds. The absolute thresholds, however,185

permitted more frequent January AR detection along the West Coast and southern Mid-186

west than the 95th percentile threshold values. These were also true for West-Coast AR187

detection using IV T in August; however, in the Midwest, the absolute IV T threshold188

was less restrictive to August AR detection than all IV T monthly percentiles. The ab-189

solute IWV threshold allowed overall more August AR detection than the monthly per-190

centiles in the plotted domain.191

The variability of AR detection across various thresholds above attests to the ne-192

cessity of additional constraints. At each time step, we identified the grid points whose193

IV T or IWV values exceeded their corresponding climatological thresholds and kept only194

the data of those making landfall in the West Coast or penetrating into the Midwest.195

Then, we used the principal curves method (Hastie & Stuetzle, 1989) to determine the196

length of the curvy patterns formed by aggregating the maximum IV T or IWV values197

at each latitude and longitude. The width was calculated as the total Earth surface area198

of the identified grid points divided by the length. The geometry thresholds were fur-199

ther applied. A subset of potential AR data was extracted if a length was greater or equal200

to 1500, 1800, or 2000 km while the ratio of length to width was greater or equal to 2201

(Figure 1). It is noted that, for the detection of West Coast land-falling ARs, this length202

was estimated using only the segment of data over the Pacific; for the ARs penetrating203

into the Midwest, it was estimated using the entire segment. The subsets of data were204

further filtered and aggregated into AR events that persisted for equal to or more than205

12, 18, or 24 hours with breaks shorter than 24 hours within an event. The length of break206

criterion was based on Lavers and Villarini (2013).207

At this point, 81 members of AR indices for each of the West Coast and Midwest208

regions from January 1980 to June 2017 were completed. Each index identifies the spa-209

tial and temporal information of AR events that satisfied one of the 81 combinations of210

the criteria form by the four factors. We proceeded with systematic analysis of the re-211

lationships between these ARs and surface precipitation in the West Coast and the Mid-212

–9–
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aa ab

ba bb

True=1 
False=0

Preci-
pitation

?

No 
Preci-

pitation
AR?

No  
AR?

Two-way Summary Table

Unit: Days

Coarse-Grain Regional Scale
Fine-Grain  

Grid-point Scale

Figure 3. A two-way summary table with the terms for evaluating AR indices’ relationships

with surface precipitation on coarse- and fine-grain scales.

west. The AR detection and detailed analysis were executed via distributed-parallel com-213

puting on a high-performance computing cluster with Hadoop system in the backend and214

the R language-based DeltaRho software in the frontend (Cleveland & Hafen, 2014; Tung215

et al., 2018).216

2.3 Coarse- to Fine-Grain Two-Way Summary Table217

We built a two-way summary table (Figure 3) to explore the relationships between218

ARs identified by the indices and the surface precipitation in the West Coast and the219

Midwest. We took two spatial scales into account: regional coarse-grain scale and grid-220

point fine-grain scale. On the coarse-grain scale, we regarded either West Coast or Mid-221

west as one entity. Within each entity, days centered at 00 UTC with at least one AR222

time step identified in a 3-hourly AR index were defined as AR days. Days without any223

AR time steps were considered as no AR days. Precipitation was based on the CPC US224

Unified Precipitation Data. The aa in the summary table was total AR days with pre-225

cipitation; the ab was AR days without precipitation; the ba was days with no ARs but226

with precipitation; and the bb was days with no ARs and no precipitation.227

From the summary table, four statistics were derived: AR Related Precipitation,228

Precision, Accuracy, and F1 score. The names loosely follow those in statistical classi-229

fication (e.g., Hastie et al., 2001). However, the statistics here did not validate any pre-230

dictive modeling of precipitation.They were used to compare the MERRA-2 AR indices’231

performance of relating to CPC surface precipitation effects. They may, however, pro-232

vide empirical upper limits of a predictive model using only an AR index to predict pre-233

cipitation within the data, spatial, and temporal domains in the study. AR Related Pre-234

–10–
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cipitation is defined as235

aa

aa + ba
=

aa

DP
, (3)236

with DP the total days with precipitation. It specifies how often surface precipitation,237

if existed, was related to the ARs identified by an index. In predictive modeling, AR Re-238

lated Precipitation is called Sensitivity in statistics or Probability of Detection in weather239

forecast. Precision is defined as240

aa

aa + ab
=

aa

DAR
, (4)241

with DAR the total days with ARs according to an index. It describes how often the de-242

tected ARs were actually related with precipitation. In weather forecast, Precision equals243

to 1-False Alarm Ratio. Accuracy is defined as244

aa + bb

aa + ab + ba + bb
=

aa + bb

D
, (5)245

with D the total 13695 days in the data. For each AR index, it measures how often days246

with/without ARs were correctly associated with precipitation/no precipitation. The F1247

score,248

2 ∗AR Related Precipitation ∗ Precision

AR Related Precipitation + Precision
, (6)249

is the harmonic mean of AR Related Precipitation and Precision. An AR index with a250

low F1 score has both poor AR Related Precipitation and poor Precision, therefore an251

overall poor AR-precipitation relation.252

Each of these four statistics had one resultant value for each index on the coarse-253

grain scale in either West Coast or Midwest. On the fine-grain scale, they were multi-254

plied by the number of grid points inside a region: 2069 in the West Coast and 1508 in255

the Midwest. The different sample sizes were taken into account in interpreting the re-256

sults (section 3.2).257

3 Analysis and Results258

3.1 Identified AR occurrence summary statistics259

Figures 4 and 5 visualize three summary statistics of AR occurrence obtained with260

162 AR indices. These figures are Cleveland dotplots (Cleveland & McGill, 1984) cre-261

ated in the Trellis display framework (Becker et al., 1996). The number of AR events262
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manuscript submitted to JGR: Atmospheres

(Figure 4a), the accumulated time of these events measured in 3-hourly time steps (Fig-263

ure 4b), and the average duration per event in days (Figure 5) are plotted on each panel,264

conditional on 18 combinations of regions (West Coast or Midwest), moisture fields (IV T ,265

IWV , or IV T+IWV ), and AR length criteria (1500, 1800, or 2000 km). The results266

are 18 packets, or subsets, of values. Each packet has 9 paired values of a summary statis-267

tic in the y-axis and one of the AR persistent duration thresholds (12, 18, or 24 hours268

along the x-axis), grouped with color by climatological thresholds (75th, 85th, or 95th269

percentiles).270

Figure 4a shows that, from January 1980 to June 2017, each 75th and 85th per-271

centile climatological threshold-based AR index captured O(1000) events in either West272

Coast or Midwest regions, except for a few IV T+IWV -based ones with the most re-273

strictive combinations of length and persistent duration criteria in the West Coast. In274

Figures 4b and 5, IWV -based indices identified the most AR time steps and longest av-275

erage per-event duration; IV T+IWV -based indices identified the least and the short-276

est. Note that the per-event duration of each AR event was calculated as the summa-277

tion of persistent AR time segments, excluding the break times. Increasing the restric-278

tiveness of climatological threshold from 75th to 95th percentile while holding other fac-279

tors constant, the number of identified AR time steps decreased dramatically, so did the280

average duration per event.281

However, more restrictive climatological thresholds did not always yield fewer AR282

events (Figure 4a). Among IV T - and IWV -based Midwest AR indices, the 85th per-283

centiles permitted more AR events but fewer time steps than the 75th percentiles, ow-284

ing to the latter’s tendency to yield longer per-event durations (Figure 5). Furthermore,285

the identified Midwest ARs had overall more total time steps than that of West-Coast286

ARs (Figure 4b). Midwest ARs had longer average per-event durations than those in the287

West Coast; the differences were the largest at the 75th percentiles and the least at the288

95th percentiles (Figure 5).289

In Figures 4 and 5, the effects of length criteria were only secondary to climato-290

logical thresholds. However, increasing the thresholds of AR persistent duration from291

12 to 24 hours resulted in shorter accumulated time steps (Figure 4b) and, in most cases,292

longer average per-event duration (Figure 5) of the identified ARs. It also led to decreas-293

ing AR event counts (Figure 4a).294
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Figure 5. Similar to Figure 4, but for average per-event duration (unit: Day) identified by 81

West-Coast (top row) and 81 Midwest (bottom row) AR indices.
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3.2 Coarse- to fine-grain daily AR-precipitation occurrence relation anal-295

ysis296

3.2.1 Coarse-grain analysis297

At the outset, we aimed to identify the AR indices that represent the precipitation298

occurrence as complete and correct as possible. Figure 6a shows the coarse-grain Accu-299

racy in dotplots. An Accuracy of 1 means there was precipitation if and only if ARs were300

detected by an index. In general, indices associated with more AR time steps (Figure 4b)301

also exhibited higher Accuracy at the coarse-grain scale. Indeed, Midwest ARs bore higher302

Accuracy than the West Coast ARs given otherwise the same factors. The IWV -based303

AR indices yielded the highest Accuracy in both regions. Among them, indices using the304

75th percentile climate threshold had Accuracy exceeding 0.64 in the West Coast and305

0.74 in the Midwest. More restrictive climatological thresholds resulted in lower Accu-306

racy. The lowest values were within the 95th-percentile-based IV T + IWV indices—307

below 0.09 for the West Coast and 0.14 for the Midwest ARs. More restrictive length308

and temporal criteria that detected fewer AR events or time steps also depressed Accu-309

racy values, while the effect of length was minor in comparison to other factors.310

Figure S1 shows the AR Related Precipitation, i.e., the fraction of total days with311

precipitation attributable to identified ARs. It has a very similar pattern to Figure 6a.312

In particular, when 75th-percentile IWV -based indices were used, more than 64% and313

74% of precipitation days occurred in the presence of ARs in the West Coast and Mid-314

west, respectively. However, 95th-percentile IV T+IWV -based indices could only cap-315

ture less than 9% and 14% of precipitation days in the respective regions. On the other316

hand, Precision values in Figure S2 display a very different pattern from Figures 6a or317

S1. For the West Coast landfalling ARs, 21 out of 81 indices had Precision equal to 1,318

with the rest approximately 1. That means each index very precisely associated AR days319

with precipitation. For ARs influencing the Midwest, the Precision values were slightly320

smaller but still larger than 0.998.321

The F1 scores in Figure 6b summarizes for each AR index the combined perfor-322

mance of relating to the presence of precipitation (Precision) and explaining the occur-323

rence of precipitation (AR Related Precipitation) at the coarse-grain scale. Unlike Ac-324

curacy, F1 score does not consider days with no AR and no precipitation, expressed as325

the bb term in (5). In practice, we are more concerned about the relationship between326
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the presence of AR and that of precipitation than the absence of both. Therefore, F1327

score is a more sensible measurement than Accuracy. Furthermore, the score could be328

considered as adjusted Precision, with which indices gained high Precision via narrow-329

ing to extreme samples are penalized. The adjustment differentiated the overall high Pre-330

cision values (Figure S2) to the pattern of F1 scores (Figure 6b), which resembles Fig-331

ures 6a and S1 but have larger magnitudes across the board.332

3.2.2 Fine-grain analysis333

We established for each index a two-way summary table for each individual grid334

point in West Coast and Midwest for fine-grain analysis. The distributions of fine-grain335

F1 scores are summarized using boxplots for the 81 West Coast AR indices, each with336

2069 points (Figure 7a) and 81 Midwest indices with 1508 points (Figure 7b).337

In Figure 7a, the interquartile ranges (IQR) of the 81 F1 distributions, as indicated338

by the box lengths, vary from ∼0.017 to ∼0.089 for the West Coast AR indices. Spa-339

tial inhomogeneity of precipitation captured by different indices contributed to this vari-340

ation. Another important influencer was the different AR days, DAR, as inferred by the341

AR time steps (Figure 4b), resulted from different indices. Indeed, the smaller IQRs are342

seen among the most restrictive indices with the fewest AR time steps, such as the 95th-343

percentile IV T + IWV -based ones. Moreover, the minimum, first quartile (Q1), sec-344

ond quartile/median (Q2), third quartile (Q3), and maximum of each subset of F1 scores345

decrease with more restrictive criteria. This is consistent with the coarse-grain analy-346

sis (Figure 6b). When the climate threshold, length, and time criteria were fixed, the IWV -347

based indices slightly outperformed IV T -based ones and were significantly better than348

IV T + IWV -based ones. The 75th-percentile IWV -based indices yielded the largest349

median F1 scores, all exceeding 0.5.350

The IQRs of fine-grain F1 score distributions for the 81 Midwest AR indices (Fig-351

ure 7b) are smaller than those for West Coast AR indices (Figure 7a). This is most cer-352

tainly due to the ∼30% smaller sample size in the Midwest than that of the West Coast.353

The differences among the F1 score distributions in the Midwest are qualitatively sim-354

ilar to those in the West Coast. Nevertheless, the F1 scores in the Midwest are overall355

higher. The 75th-percentile IWV -based indices struck the highest median F1 scores at356

∼0.65. These are consistent with the coarse-grain F1 analysis (Figure 6b).357
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3.3 Deep Analysis at the Finest Granularity358

In section 3.2, we studied the presence or absence of ARs in relation to those of pre-359

cipitation, as reflected by the ensembles of indices in the North American West Coast360

and the US Midwest. Past studies consistently showed that in general, ARs contributed361

to a fair amount of annual precipitation—up to 50% depending on the location—in the362

contiguous United States (Dettinger et al., 2011; Rutz & Steenburgh, 2012; Lavers & Vil-363

larini, 2015; Nayak & Villarini, 2017). Hence, in the next step, we analyzed the amount364

of AR-related precipitation associated with different indices. We quantified precipita-365

tion impacts with event-average rate (3.3.1) and event-accumulated precipitation (3.3.2366

and 3.3.3) and compared them across the AR indices.367

3.3.1 Event-Average Surface Precipitation Effects368

For each AR index, we tracked the surface area of an AR at each recorded time step.369

We then calculated the areal-averaged surface precipitation rate at each time step. The370

event-average surface precipitation rate was calculated as the event time-mean of areal371

averages. As an example, Figure 8 compares the event-average precipitation rate across372

a group of AR indices with the 1500-km length and 18-hr persistent duration criteria us-373

ing boxplots, conditional on locations, climatological thresholds, and moisture fields. The374

values of precipitation rates shown are the original values plus one and transformed with375

base-2 logarithm to accommodate the wide range.376

All indices for Midwest ARs in Figure 8 were prone to associate with more event-377

average precipitation than those for the West Coast ARs. As the climatological thresh-378

olds on moisture fields became increasingly more restrictive, the indices pointed to heav-379

ier event-average precipitation rates. One conspicuous feature in Figure 8 is that IV T+380

IWV -based indices are the strongest performer in both regions. As already shown in sec-381

tion 3.2, the combined moisture field posed the most restrictive criterion, detecting the382

fewest events with the shortest lifespan per event. The analysis further shows its propen-383

sity to crop out AR features with the highest precipitation rates. This is consistent with384

previous studies (Neiman et al., 2008; Nayak & Villarini, 2018).385

Another distinct feature in Figure 8 is the disparate performance of IV T -based in-386

dices between the West Coast and the Midwest. IV T -based AR indices were associated387

with higher event-average precipitation in the West Coast than IWV -based ones. How-388
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Figure 8. Boxplots of base-2 logarithmic transformation of event-average precipitation rate

plus 1 (in mm hr−1) over unit area according to IV T , IV T + IWV , and IWV -based AR indices

with the same 1500-km length and 18-hr persistent duration criteria, conditional on locations and

climatological thresholds labeled as percentile in 75th, 85th, and 95th.

ever, this was not the case in the Midwest. This difference is likely due to the orographic389

origin of precipitation on the West Coast. Compared with IWV , the horizontal trans-390

port of moisture expressed by the IV T better indicated the vertical lifting and conden-391

sation processes upon convergence at the coastal mountains’ windward side. Notably,392

the 95th percentile IV T -based West Coast AR index captured the intense orographic393

precipitation that IWV missed.394

The effects of shape and temporal criteria on the detected ARs’ relations to event-395

average surface precipitation rate were inconclusive across different climatological thresh-396

olds and moisture fields (Figures S3 and S4). Overall, longer persistent duration crite-397

ria appeared to be associated with more average precipitation. Still, the climatological398

thresholds and moisture fields had the first-order influences on the event-average surface399

precipitation rate.400
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t=1 t=2 t=3 t=n-2 t=n-1 t=n…

AR Precipitation rate (mm hr-1) Area swept by the AR event

Figure 9. Schematic interpretation of spatial-averaged granule-level AR event-accumulated

precipitation.

3.3.2 Deep Analysis of Accumulated Precipitation at Fine Granular-401

ity402

Although the event-average surface precipitation is a useful metric for an AR in-403

dex’s overall precipitation intensity, it is even more indicative of an AR’s hydrometeo-404

rological impact when combined with total event duration. Therefore, we further quan-405

tified such hydrometeorological impact using event-accumulated precipitation averaged406

inside a surface area swept by a detected AR. We defined, for each AR index, this area407

with all grid points visited at least once by the detected AR throughout its lifetime within408

the West Coast or Midwest region (shown in Figure 9). Given this area, we calculated409

the areal average of precipitation at each time step, then summed through all time steps410

to obtain event-accumulated precipitation for the AR event.411

Figures S5 and S6, respectively, show the swept-area distributions resulted from412

West Coast and Midwest AR indices. The area of the West Coast region is about 1.38413

times that of the Midwest region, as shown by the data upper bounds in these figures.414

As expected, these areas decreased with increasing climatological thresholds; the areas415

increased with more restrictive persistent duration thresholds; IV T + IWV -based in-416

dices restricted the areas to the smallest among all moisture fields, other factors being417

equal. Using the 75th percentile climatological thresholds, IWV -based indices tended418

to sweep a slightly broader area than IV T -based ones. In the Midwest region, the me-419

dian areas of the 75th-percentile IWV -based AR indices were identical to the area up-420

per bound; at least 50%—but fewer than 75%—of the AR events covered the entire Mid-421

west region. The 75th-percentile IV T -based AR indices had median areas smaller than422

but very close to this upper bound. However, the areal differences between IWV - and423

IV T -based indices diminished at 95th percentile thresholds.424
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Figure 10a compares the event-accumulated precipitation per unit area, plus one425

and transformed with base-2 logarithm, across the 81 West Coast AR indices using box-426

plots. The IQRs straddle one order of magnitude, with medians at ∼3–10 mm and Q3s427

reaching as high as ∼16 mm. The climatological and persistent duration thresholds af-428

fected the resultant accumulated precipitation the most. We see that the more restric-429

tive duration thresholds retained higher accumulated precipitation events when other430

factors were fixed. The effects of changing the climatological thresholds, however, are431

not as simple.432

The AR indices based on the 75th percentile IWV performed as well as, if not bet-433

ter than, any other 75th percentile indices in the West Coast region. Increasing the cli-434

matological threshold of IWV beyond this point did not necessarily increase accumu-435

lated precipitation (Figure 10a). Since the area swept by the ARs decreased (Figure S5)436

and the event-average precipitation likely increased (e.g., Figure 8), the shorter event du-437

ration (Figure 5) was responsible for this decline in accumulated precipitation. However,438

among the IV T - and IV T + IWV -based indices, increased climatological thresholds439

resulted in increased event-accumulated precipitation (Figure 10a). Even so, the event440

duration decreased (Figure 5). Again, this could be attributed to the orographic effect441

on intense precipitation, a prominent influencer of accumulated precipitation retained442

by IV T and IV T + IWV but missed by IWV with restrictive climatological thresh-443

olds. IV T ’s prowess in capturing the accumulated precipitation stands out with the 95th-444

percentile threshold, considering that 95th-percentile IV T - and IWV -based indices swept445

over similar sizes of areas (Figure S5), and IV T indices tended to have shorter event du-446

ration than IWV ones (Figure 5).447

Figure 10b compares the accumulated precipitation across the 81 Midwest AR in-448

dices using boxplots. In general, detected Midwest ARs tended to bring twice the amount449

of event accumulated precipitation than the West Coast ARs. The Q2s, or median val-450

ues, are at ∼8–16 mm and Q3s extending to ∼30 mm. Similar to the West Coast AR451

indices, more restrictive persistent duration thresholds led to higher accumulated pre-452

cipitation. Different from the West Coast, indices based on IWV outperformed those453

based on IV T or IV T + IWV and resulted in the most accumulated precipitation in454

the Midwest across all climatological thresholds.455
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Moreover, increasing the climatological thresholds decreased accumulated precip-456

itation regardless of choices of moisture field. Comparison between Figures 10a and 10b457

shows that the choice of moisture field affected the detected AR’s accumulated precip-458

itation differently by region. AR indices with longer event duration (Figure 5) tend to459

be associated with more event-accumulated precipitation in the Midwest, whereas in-460

dices with larger event-average precipitation rate (Figure 8) are related to more precip-461

itation accumulation in the West Coast. This strongly suggests that the choice of mois-462

ture field for AR indices that best expresses surface precipitation impacts on a geograph-463

ical region ultimately depends on the physical understanding of the region’s precipita-464

tion processes.465

3.3.3 Seasonal Effects on Event-Accumulated Precipitation466

Previous studies have demonstrated the seasonality of AR occurrence (Neiman et467

al., 2008; Lavers & Villarini, 2015; Nayak & Villarini, 2017). With seasonality as a point468

of departure, we further examined the event-accumulated precipitation. In particular,469

section 3.3.2 showed that the climatological threshold and moisture field choices for an470

AR index significantly affected its resultant accumulated precipitation. Figure 11, there-471

fore, compares the accumulated precipitation across a group of AR indices using box-472

plots conditional on locations, climatological thresholds, seasons, and moisture fields. For473

simplicity, only indices with 1500-km length and 18-hr persistent duration thresholds are474

shown.475

Among landfalling West Coast ARs, there was a clear seasonal cycle in the accu-476

mulated precipitation that maximized in the winter and minimized in the summer. The477

phase of this seasonal cycle remained unchanged across all climatological thresholds. This478

is consistent with the rainy and dry seasons in the West Coast, as well as the previous479

conclusion that warm seasons had less AR-related precipitation in the West Coast (Neiman480

et al., 2008). Moreover, the combined effects of climatological threshold and moisture481

field on the event-accumulated precipitation also had seasonality. In the warm spring and482

summer, IWV -based indices with the 75th climatological threshold led to the most ac-483

cumulated precipitation. While in the fall and winter, IV T -based indices with the 95th484

threshold corresponded with the most precipitation accumulation. This was likely due485

to the significant orographic enhancement during the landfall of winter ARs but not sum-486

mer ARs that Neiman et al. (2008) found.487
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Figure 11. Boxplots of base-2 logarithmic transformation of event-accumulated precipitation

(mm), plus 1, over unit area swept by AR in West Coast and Midwest during different seasons—

spring (SPR: March–May), summer (SUM: June–August), fall (FAL: September–November), and

winter (WIN: December–February)—according to IV T , IV T +IWV , and IWV -based AR indices

with the 1500-km length and 18-hr persistent duration criteria, labeled as climate threshold in

percentile 75th, 85th, or 95th in the purple box.

In contrast, among the Midwest ARs, as the climatological threshold increased, the488

accumulated precipitation maxima shifted from the spring-summer to the fall, and the489

amount in the winter increased. These suggest a dichotomy of synoptic systems asso-490

ciated with Midwest ARs: In addition to extratropical cyclones, the warm-month ARs491

received a significant amount of precipitation from maritime tropical air masses. Unlike492

in the West Coast, IWV -based Midwest AR indices were associated with the most me-493

dian precipitation across all climatological thresholds and seasons.494

4 Discussions495

A single optimal AR detection algorithm expressing the surface precipitation im-496

pacts does not exist. A hint of bifurcation in our analysis started in Figure 2, in which497
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the Midwest climate thresholds underwent a greater seasonal change than that of the498

West Coast. In section 3.3, we further found that, with meandering south-north moun-499

tain ranges in the West Coast, IV T -based detection algorithms captured the intense oro-500

graphic precipitation better than the IWV -based ones. This is consistent with the trend501

to use IV T -based detection algorithms (Guan & Waliser, 2015). However, in the Mid-502

west, in the absence of prominent orographic lifting, IWV -based AR indices were as-503

sociated with most event-average precipitation and event-accumulated precipitation.504

Midwest ARs recruit moisture from tropical sources such as the Gulf of Mexico,505

Caribbean Sea, subtropical eastern North Pacific, and the Atlantic coast of Central Amer-506

ica (Dirmeyer & Kinter, 2009, 2010). The diverse sources complicate the ARs’ charac-507

teristics (Dirmeyer & Kinter, 2010). In section 3.3.3, the seasonality of event-accumulated508

precipitation in the Midwest shifted its peak phase from warm to cold seasons along with509

rising climate thresholds (Figure 11), suggesting a rolling change of moisture sources and510

baroclinicity as the seasons progressed. On the other hand, West Coast AR’s peak phase511

remained the same regardless of the changing climate threshold. There is a caveat, how-512

ever. The West Coast’s south-north geographic features are inhomogeneous. The land-513

falling AR characteristics between the Pacific Northwest and California coast are differ-514

ent in terms of occurrence frequency, occurrence time, and distribution and intensity of515

related precipitation (Neiman et al., 2008). Therefore, to further refine the AR detec-516

tion algorithms, the entire North American West Coast ARs could be divided into north-517

west and southwest ARs. Such spatial division could better quantify ARs’ contribution518

to precipitation in each region. To illustrate this, we divided the West-Coast region at519

California’s north most boundary of 42◦. Figure S7 shows that the the Northwest ARs520

(Figure S7a) tended to yield much more event-accumulated precipitation than the South-521

west ARs at the 75th and 85th climate thresholds, while the difference appeared to be522

less at the 95th threshold (Figure S7b). Nevertheless, in either region, the effects of the523

climate thresholds, persistent AR durations, and moisture fields on the resultant event-524

accumulated precipitation are qualitatively consistent with those in the entire West-Coast525

region (Figure 10) in section 3.3.2.526

The combined IV T+IWV -based indices should be used cautiously. It is only the527

best of both worlds when the goal is to extract snapshots of extreme precipitating events.528

As seen in Figure 8, it led to the highest event-average precipitation rate in both West529

Coast and Midwest. This was, however, achieved through few and short events (Figures 4a,530
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5). In fact, they performed the worst in AR–precipitation relation metrics such as Accuracy531

and F1 scores (Figures 6, 7).532

Moreover, climate thresholds and moisture fields had first-order influences on the533

associated surface hydrometeorological impacts. However, more restrictive persistent du-534

ration thresholds can help obtain higher event-accumulated precipitation if that is the535

goal of detection (Figure 10).536

The above findings appear to be robust against the inherently nonstationary time537

series. To demonstrate this, we divided the data into two time periods: (1) January 1981–538

December 1998 and (2) January 1999–December 2016. Similar to Figure 10, Figures S8539

and S9 show the boxplots of event-accumulated precipitation per unit area but for the540

81 West Coast and 81 Midwest AR indices during the first and the second periods, re-541

spectively. The resultant distributions across all AR indices in these two separate pe-542

riods are qualitatively similar to those in the entire study period (Figure 10). However,543

West Coast ARs yielded more event-accumulated precipitation in the first period (Fig-544

ure S8a) than during the second period (Figure S9a), as suggested by the median and545

maximum values. The disparity suggests a wetter AR-related climate condition in the546

West Coast in the first period than the second. While in the Midwest, AR-related event-547

accumulated precipitation does not show a pronounced difference between the two pe-548

riods (Figure S8b and S9b). Still, the maximum values might have increased in the sec-549

ond period. The Midwest extreme AR-related event-accumulated precipitation warrants550

detailed study in the future. Moreover, Figure S10 shows the seasonality of event-accumulated551

precipitation conditional on climate thresholds during the two separate periods. Still,552

the results are comparable to those in Figure 11.553

Calculation of IV T -based indices requires height-dependent horizontal winds, so554

reanalysis data are indispensable. Previous studies have suggested that AR character-555

istics were robust across different reanalysis data (Nayak & Villarini, 2017; Ralph et al.,556

2019). We used MERRA-2 here since Nayak and Villarini (2017) recommended high-resolution557

products for AR impact assessments. Nevertheless, we showed that depending on the558

goal, IWV could provide optimal AR indices. When IWV is useful, researchers can use559

satellite or radiosonde water vapor measurements in lieu of reanalysis.560
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5 Conclusions561

This paper investigated the optimal AR detection algorithm for expressing AR’s562

surface precipitation effects using the MERRA-2 data for ARTMIP. We applied a data-563

driven approach by first asking which impacts, in which region, and in what time scale564

and period were of concern. We then used an algorithm combining climatological thresh-565

olds, image processing, and statistical methods to create large ensembles of AR indices566

for answering the questions with uncertainty quantification aided by detailed data vi-567

sualization. Specifically, we varied the values of four factors—moisture fields, climato-568

logical thresholds, shape criteria, and duration thresholds—to generate an ensemble of569

81 AR indices for the US West Coast and 81 indices for the Midwest regions from 1980570

to 2017 (Figure 1). With CPC US Unified data, we examined the AR indices’ associa-571

tion with the surface precipitation impacts, including the daily co-occurrence (section572

3.2), event-average precipitation rate (section 3.3.1), and per-event accumulation (sec-573

tions 3.3.2 and 3.3.3).574

The identified Midwest ARs had more accumulated time steps (Figure 4b), longer575

average per-event durations (Figure 5), more event-average precipitation (Figures 8, S3,576

and S4), and more event-accumulated precipitation (Figures 10, S8, and S9) than the577

West Coast ARs. The results were sensitive to the selection of moisture field and clima-578

tological threshold in index generation. In West Coast and Midwest, IWV -based AR579

indices identified the most abundant AR event time steps and most accurately associ-580

ated AR to days with precipitation. These were observed at the coarse-grain regional581

(Figure 6) and fine-grain grid-point scales (Figure 7). A restrictive climate threshold,582

such as the 95th percentile, emphasized extreme instances but limited event duration;583

therefore, it led to higher event-average precipitation rates. The most restrictive com-584

bination of 95th percentile IV T+IWV -based indices yielded the highest average pre-585

cipitation (Figures 8, S5, and S6).586

However, it is important to use both event-average and event-accumulated precip-587

itation as metrics for surface hydrometeorological impacts when scrutinizing the AR in-588

dices. Therefore, we defined an area swept by each AR event (Figures 9, S5, and S6) and589

calculated the event-accumulated precipitation per unit area for each AR index (Figures 10,590

S8, and S9). On the West Coast, the 75th percentile IWV -based indices were associated591

with the most accumulated precipitation, while the 95th percentile IV T captured the592
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accumulated precipitation the best (Figures 10a, S8a, and S9a). This could be explained593

by the IV T ’s better representation of intense coastal orographic precipitation. IWV -594

based AR indices with the longest persistent duration thresholds were associated with595

the most accumulated precipitation in the Midwest across a range of climate thresholds596

(Figures 10b, S8b, and S9b). Therefore, we recommend to use IWV -based algorithm to597

identify AR-related surface precipitation in the Midwest but IV T -based algorithm to598

capture the orographically-induced precipitation in the West Coast.599

Even more, the AR event-accumulated precipitation showed seasonality (Figures 11600

and S10). The accumulated precipitation of all West Coast landfalling ARs had a clear601

seasonal cycle with the maximum in the winter and the minimum in the summer. How-602

ever, for the Midwest ARs, the phase of the seasonal cycle depended on the climatolog-603

ical threshold. Increasing the climatological threshold from the 75th to the 95th percentile604

shifted the maxima from the spring–summer to fall and accentuated winter precipita-605

tion; this reflects the effects of seasonal change of moisture sources, convective instabil-606

ity, and atmospheric baroclincity.607

In conclusion, an optimal AR detection algorithm should be adaptive to the types608

of impact to be addressed, the associated physical mechanisms in the affected regions,609

timing such as the phase in the seasonal cycle, and event durations. The systematic en-610

semble approach we used was made possible by distributed parallel computing with data611

and, specifically, the divide-and-recombine approach using the R-based DeltaRho back-612

ended by a Hadoop system. This study’s findings provide useful information for future613

creators and users of AR indices who consider surface precipitation in their decision pro-614

cesses. Our detection algorithms and computational approach can be applied to climate615

model output, such as CMIP6, to explore the changes of ARs and AR-related surface616

precipitation impacts in climate change scenarios.617

Acknowledgments618

The authors are grateful to R. Cannoodt, D. Crabill, Y. Song, M. Bowers and Purdue619

ITAP RCAC for their help on computing with data. We are indebted to two anonymous620

reviewers and the discussions with ARTMIP scientists, especially T. O’Brien, J. Rutz,621

and C. Shields. We also thank W. L. Downing and C. Shen for insightful comments. Data622

for this research are openly available through NCAR CDG (2019), NOAA/OAR/ESRL623

PSL (2021). AR indices further generated are available as Purdue data in NCAR CDG624

–29–



manuscript submitted to JGR: Atmospheres

(2021); special thanks to P. Ullrich and C. Shields for helping make the data available.625

The work is supported by DARPA-BAA-16-43-D3M-FP-051.626

References627

Becker, R. A., Cleveland, W. S., & Shyu, M. J. (1996). The visual design and con-628

trol of trellis display. Journal of Computational and Graphical Statistics, 5 (2),629

123–155. doi: 10.1080/10618600.1996.10474701630

Blamey, R. C., Ramos, A. M., Trigo, R. M., Tomé, R., & Reason, C. J. (2018).631
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West-Coast or Midwest AR event-accumulated precipitation over unit area in (1) January

1981–December 1998 and (2) January 1999–December 2016 are shown, with or without

being conditional on the season.
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Figure S1. Dotplots of coarse-grain AR Related Precipitation calculated for 81 West-Coast

(top-row) and 81 Midwest (bottom-row) AR indices. The fraction of total days with precipitation

attributable to identified ARs (in ratio) are plotted on each panel, conditional on 18 combinations

of regions (West Coast or Midwest), moisture fields (IV T , IWV , or IV T+IWV ), and AR length

criteria (1500, 1800, or 2000 km). The results are 18 packets, or subsets, of values. Each packet

has 9 paired values of AR Related Precipitation in the y-axis and one of the AR persistent

duration thresholds (12, 18, or 24 hours along the x-axis), grouped with color by climatological

thresholds (75th, 85th, or 95th percentiles).
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Figure S2. Similar to Figure S1, but for Precision.
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log2 (Event−average Precipitation Rate (mm/hr) + 1)
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Figure S3. Based on the West Coast AR indices, boxplots of base-2 logarithmic transformation

of event-average precipitation rate plus 1 (in mm hr−1) over unit area. Each figure has nine

packets from combinations of three moisture(IV T , IWV , or IV T + IWV ) and three AR length

criteria (1500, 1800, or 2000 km). Each packet has nine boxplots grouped by color into three levels

of climatological thresholds (75th, 85th, or 95th percentile). Within each triplet, from bottom to

top, the persistent duration thresholds increase from 12, 18, to 24 hours. Each boxplot includes

the colored box spanning from Q1 to Q3 of the distribution, a black dot marking the median,

and the whiskers are marked in grey. The whiskers extend to the most extreme data point that is

no more than 1.5 times the length of the box (IQR) away from the box. Any data points outside

the whiskers are marked as potential outliers in light blue.

March 21, 2021, 1:17am



X - 6 ZHANG ET AL.: OPTIMAL AR INDEX FOR PRECIPITATION

log2 (Event−average Precipitation Rate (mm/hr) + 1)
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Figure S4. Similar to Figure S3, but based on the Midwest AR indices.
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Area Swept by the AR Event (Square Kilometers, 10^5))
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Figure S5. Similar to Figure S3, but for boxplots of surface area (in 105 km2) swept by

the detected ARs for each AR event for the West Coast. Each figure has nine packets from

combinations of three moisture(IV T , IWV , or IV T + IWV ) and three AR length criteria

(1500, 1800, or 2000 km). Each packet has nine boxplots grouped by color into three levels of

climatological thresholds (75th, 85th, or 95th percentile). Within each triplet, from bottom to

top, the persistent duration thresholds increase from 12, 18, to 24 hours.
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Area Swept by the AR Event (Square Kilometers, 10^5))
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Figure S6. Similar to Figure S5, but for the Midwest.
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