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Abstract

An observationally-constrained time series of historical aerosol effective radiative forcing (ERF) from 1750 to 2019 is developed

in this paper. We find that the time history of aerosol ERFs diagnosed in CMIP6 models exhibits considerable variation

and explore how the time history of aerosol forcing influences the probability distributions of present-day aerosol forcing and

emergent metrics such as climate sensitivity. Using a simple energy balance model, trained on CMIP6 climate models and

constrained by observed near-surface warming and ocean heat uptake, we derive estimates for the historical aerosol forcing.

We find 2005-2014 mean aerosol ERF to be -1.1 (-1.8 to -0.5) W m-2 relative to 1750. Assuming recently published historical

emissions from fossil fuel and industrial sectors and biomass burning emissions from SSP2-4.5, aerosol ERF in 2019 is -0.9 (-1.5

to -0.4) W m-2. There is a modest recovery in aerosol forcing (+0.025 W m-2 decade-1) between 1980 and 2014. This analysis

also gives a 5-95% range of equilibrium climate sensitivity (ECS) of 1.8-5.1C (best estimate 3.1C) with a transient climate

response (TCR) of 1.2-2.6C (best estimate 1.8C).
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Key Points: 16 

• We determine the most plausible time history of aerosol forcing that matches surface 17 

temperature and Earth energy uptake constraints 18 

• Constrained aerosol forcing shows a modest recovery between 1980 and 2014, slower 19 

than the rate simulated by many CMIP6 models 20 

• The best estimate aerosol forcing using this method is -1.10 W m-2 for 2005-14 relative to 21 

1750. 22 

  23 
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Abstract 24 

An observationally-constrained time series of historical aerosol effective radiative forcing (ERF) 25 

from 1750 to 2019 is developed in this paper. We find that the time history of aerosol ERFs 26 

diagnosed in CMIP6 models exhibits considerable variation and explore how the time history of 27 

aerosol forcing influences the probability distributions of present-day aerosol forcing and 28 

emergent metrics such as climate sensitivity. Using a simple energy balance model, trained on 29 

CMIP6 climate models and constrained by observed near-surface warming and ocean heat 30 

uptake, we derive estimates for the historical aerosol forcing. We find 2005-2014 mean aerosol 31 

ERF to be -1.1 (-1.8 to -0.5) W m-2 relative to 1750. Assuming recently published historical 32 

emissions from fossil fuel and industrial sectors and biomass burning emissions from SSP2-4.5, 33 

aerosol ERF in 2019 is -0.9 (-1.5 to -0.4) W m-2. There is a modest recovery in aerosol forcing 34 

(+0.025 W m-2 decade-1) between 1980 and 2014. This analysis also gives a 5-95% range of 35 

equilibrium climate sensitivity (ECS) of 1.8-5.1°C (best estimate 3.1°C) with a transient climate 36 

response (TCR) of 1.2-2.6°C (best estimate 1.8°C). 37 

Plain Language Summary 38 

There are two main human drivers of climate change: (i) Greenhouse gas emissions, which warm 39 

the planet; and (ii) air pollution (aerosols) that offset some of this warming. Unfortunately, 40 

disentangling the effects of historical aerosol cooling is difficult based on the available 41 

observations. Therefore, we often use climate models to estimate how much aerosols have 42 

cooled the Earth since the start of the Industrial Revolution. Over the mid-to-late 20th Century, 43 

some climate models simulate less warming compared to 1850 than has been observed. This may 44 

be because aerosol cooling in some climate models is too strong. Our approach combines the 45 

relationships between aerosol emissions and their cooling effects on temperature from 11 climate 46 

models with simpler representations of the underlying physics. This simpler mathematical 47 

framework allows us to more fully account for uncertainty in both the aerosol cooling and its 48 

effects on surface temperature and ocean heat uptake by running a much larger set of 49 

simulations.  Our results suggest that the effect of aerosol cooling has only unwound slowly 50 

since 1980, and that it is difficult to determine how sensitive the climate is from this method. 51 

1 Introduction 52 

Aerosol effective radiative forcing remains one of the most uncertain components of the 53 

present-day climate (Bellouin, Quaas, et al., 2020). Uncertainty in present-day forcing reduces 54 

our ability to confidently predict the future climate response to emissions (Forster et al., 2013) 55 

and the level of historical greenhouse gas warming masked by the cooling effect of aerosols 56 

(Samset et al., 2018). Aerosol forcing is the largest uncertainty governing future committed 57 

warming (Matthews & Zickfeld, 2012; Smith et al., 2019) and remaining carbon budgets 58 

consistent with Paris Agreement targets (Mengis & Matthews, 2020). In most future socio-59 

economic scenarios, aerosol forcing is projected to become less negative over the 21st century 60 

(Gidden et al., 2019; Huppmann et al., 2018; Rogelj et al., 2018), promoting an increase in the 61 

rate of warming unless there is a concurrent reduction in greenhouse gas emissions (Shindell & 62 

Smith, 2019). The time history of aerosol ERF is a necessary input to many reduced-complexity 63 

climate models (Nicholls et al., 2020), which in turn may be driven by simple emissions-to-64 

forcing based relationships; these simple models find enormous utility when coupled to 65 

integrated assessment models (Huppmann et al., 2018). 66 
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Given its large uncertainty, aerosol forcing has remained an active research area. Several 67 

studies have quantified the aerosol effective radiative forcing (ERF) in the present day relative to 68 

pre-industrial based on observations, models, energy balance arguments, or a combination of 69 

approaches (Andrews & Forster, 2020; Bellouin, Quaas, et al., 2020; Boucher et al., 2013; 70 

Fiedler et al., 2019; Forest, 2018; Forest et al., 2002, 2006; Myhre, Shindell, et al., 2013; Skeie et 71 

al., 2018; Smith et al., 2020; Zelinka et al., 2014). Fewer studies have attempted to diagnose a 72 

time series of historical aerosol forcing. Murphy et al. (2009) used observations of ocean heat 73 

uptake, surface temperature and radiative forcing of long-lived greenhouse gases and volcanic 74 

eruptions since 1950 to determine the residual forcing, which was mostly attributed to aerosols. 75 

Skeie et al. (2011) and Lund et al. (2018) used chemistry-transport models with prescribed 76 

meteorology, evaluated at frequent time slice years since pre-industrial, to determine historical 77 

aerosol forcing since 1750. Shindell et al. (2013) used timeslices from 1850, 1930, 1980 and 78 

2000 in full-complexity climate models to estimate the historical aerosol forcing. The most 79 

complete historical aerosol forcing time series, for 1750 to 2011, is given in Annex II (Prather et 80 

al., 2013) of the Intergovernmental Panel on Climate Change Working Group 1 Fifth Assessment 81 

Report (AR5), which takes in multiple lines of evidence including the Skeie et al. (2011) and 82 

Shindell et al. (2013) modelling studies. 83 

Our goal is define an aerosol ERF time series from 1750 to 2019 that is consistent with 84 

energy balance constraints from observations; effectively to provide an update to AR5 Annex II 85 

that takes into account more recent evidence. Here we take a combination of the climate 86 

modelling and energy balance approaches. Under the Radiative Forcing (RFMIP) and Aerosol 87 

Chemistry (AerChemMIP) Model Intercomparison Projects, historically time-varying aerosol 88 

forcing can be diagnosed directly from CMIP6 models. However, in the multi-model mean, 89 

CMIP6 model simulations of global-mean surface air temperature (GSAT) are cooler than 90 

observations throughout the latter part of the 20th Century before recovering to near-present 91 

levels of warming today (Flynn & Mauritsen, 2020). One hypothesis is that aerosol forcing in the 92 

20th Century may be too strong in some CMIP6 models, coupled with high transient climate 93 

response (TCR) that causes implausibly rapid recent warming in many models (Tokarska et al., 94 

2020). Nevertheless, CMIP6 models remain an important line of evidence in determining 95 

historical aerosol forcing. Unlike for greenhouse gases, proxy records for aerosol forcing are 96 

sparse before widespread surface radiation measurements became available in the 1950s 97 

(Bellouin, Quaas, et al., 2020; Moseid et al., 2020). No global observations of aerosols were 98 

available until the satellite era (late 1970s), whereas CMIP6 models provide aerosol forcing 99 

estimates from 1850. Therefore, we use CMIP6 model forcing over the industrial era to inform 100 

our estimates of historical aerosol ERF, and “correct” for these responses by constraining the 101 

forcing estimates to observations of GSAT and Earth energy uptake (EEU). 102 

2 Methods and Data 103 

This section describes how the historical ERF time series are generated and how 104 

observational constraints are used with a simple energy-balance climate model to produce a best 105 

estimate and range of historical aerosol forcing estimates. A number of historical aerosol forcing 106 

time series are investigated. The primary focus of this study is an ensemble of time series 107 

generated from a simple relationship of global annual emissions to global annual historical 108 

aerosol ERF, using historical aerosol emissions time series and tuning this relationship (which 109 

we call a “forcing emulator”) on CMIP6 models where historical aerosol forcing estimates exist. 110 

Following the observational constraining we refer to this time series as “CMIP6-constrained”. 111 
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We also investigate replacing the CMIP6 emissions time series with scaled estimates of 112 

historical aerosol forcing from 11 CMIP6 models and one chemistry-transport model. This 113 

provides a total of 13 different historical aerosol forcing scenarios. 114 

 115 

Throughout this paper, a probabilistic approach is taken, sampling 100,000 historical 116 

forcing timeseries per scenario with the same number of simple climate model configurations. 117 

Uncertainties in the non-aerosol components of historical forcing (greenhouse gases, land-use 118 

change, black carbon deposition on snow, aviation contrail and contrail cirrus, and natural 119 

forcings) are also taken into account. The resulting GSAT and EEU time series from each 120 

ensemble member is compared to the observational constraints and a weighted posterior 121 

distribution produced of historical aerosol ERF. 122 

2.1 Aerosol effective radiative forcing timeseries 123 

2.1.1 CMIP6 model output 124 

We start with 1850 to 2014 (or beyond) transient aerosol ERF derived from 11 GCMs 125 

(Fig. 1; Table 1). Seven models were provided under RFMIP (Pincus et al., 2016), three under 126 

AerChemMIP (Collins et al., 2017) and one used a similar method to AerChemMIP but with 127 

Atmospheric Model Intercomparison Project (AMIP) sea-surface temperatures (SSTs) rather 128 

than model-diagnosed SSTs (Golaz et al., 2019). 129 

 130 

Table 1: CMIP6 models providing transient historical aerosol ERF estimates. Runs extended 131 

beyond 2014 in RFMIP experiments followed an SSP2-4.5 forcing pathway.  132 

Model Long name Model variants Modelling 

protocol 

Ensemble 

members 

Time period References 

CanESM5 Canadian Earth 

System Model, 

verison 5.0.3 

r1i1p2f1 

r2i1p2f1 

r3i1p2f1 

RFMIP 3 1850-2100 Swart et al. 

(2019) 

E3SM-1-0 U.S. Department of 

Energy (DOE) 

Energy Exascale 

Earth System 

Model (E3SMv1) 

3 ensemble 

member pairs 

(non-ESGF) 

AMIP and 

AMIP with pre-

industrial 

aerosols 

3 1870-2014 Golaz et al. 

(2019) 

GFDL-ESM4 Geophysical Fluid 

Dynamics 

Laboratory ESM4.1 

r1i1p1f1 AerChemMIP 1 1850-2014 Dunne et al. 

(2020) 

GFDL-CM4 Geophysical Fluid 

Dynamics 

Laboratory CM4.0 

r1i1p1f1 

r3i1p1f1 

RFMIP 2 1850-2100 Held et al. 

(2019) 

GISS-E2-1-G Goddard Institute 

for Space Studies 

ModelE 2.1-G 

r1i1p1f2 RFMIP 1 1850-2100 Kelley et al. 

(2020) 

HadGEM3-

GC31-LL  

Met Office Hadley 

Centre Global 

Coupled Model 3.1 

r1i1p1f3 

r2i1p1f3 

r3i1p1f3 

RFMIP 3 1850-2099 Williams et al. 

(2018) 

IPSL-CM6A-

LR 

Institut Pierre 

Simon Laplace 

r1i1p1f1 RFMIP 1 1850-2100 Boucher et al. 

(2020) 
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Climate Model 6A 

(low resolution) 

MIROC6 Model for 

Interdisciplinary 

Research on 

Climate, version 6 

r1i1p1f1 

r2i1p1f1 

r3i1p1f1 

RFMIP 3 1850-2100 Tatebe et al. 

(2019) 

MRI-ESM2-0 Meteorological 

Research Institute 

Earth System 

Model version 2.0 

r1i1p1f1 AerChemMIP 1 1850-2014 Yukimoto et 

al. (2019) 

NorESM2-LM Norwegian Earth 

System Model, 

version 2 

r1i1p2f1 

r2i1p2f1 

r3i1p2f1 

RFMIP 3 1850-2100 Seland et al. 

(2020) 

UKESM1-0-LL UK Earth System 

Model 

r1i1p1f2 AerChemMIP 1 1850-2014 Sellar et al. 

(2019) 

 133 

 134 

In all cases, aerosol ERF is diagnosed as the top-of-atmosphere radiation flux difference 135 

between parallel climate model experiments, one with time-varying aerosols, and one with pre-136 

industrial aerosols (Table 2). In the RFMIP models, SSTs, sea ice and non-aerosol forcings are 137 

given as a pre-industrial climatology in both the transient (CMIP6 name piClim-histaer) and 138 

control (piClim-control) experiments, with aerosols following the 1850 to 2014 (or 2100, in 139 

models running the SSP2-4.5 extension) emissions from CMIP6 in the transient run (Hoesly et 140 

al., 2018; van Marle et al., 2017). The pre-industrial control is a 30-year climatology. In 141 

AerChemMIP models we use historical (1850-2014) SSTs, sea ice and forcings (histSST) as the 142 

perturbation experiment, and historical SSTs, sea-ice and non-aerosol forcings with pre-143 

industrial aerosols (histSST-piAer) as the control. E3SM also followed this method (described in 144 

Golaz et al. (2019)). 145 

 146 

Table 2: Experiment definitions for the RFMIP and AerChemMIP model runs used in this study. 147 

Protocol Experiment Control 

RFMIP CMIP6 name piClim-histaer CMIP6 name piClim-control 

Pre-industrial SSTs & sea ice Pre-industrial SSTs and sea ice 

Pre-industrial non-aerosol forcing Pre-industrial non-aerosol forcing 

Historical aerosol forcing Pre-industrial aerosol forcing 

AerChemMIP CMIP6 name histSST CMIP6 name histSST-piAer 

Historical SSTs & sea ice Historical SSTs & sea ice 

Historical non-aerosol forcing Historical non-aerosol forcing 

Historical aerosol forcing Pre-industrial aerosol forcing 

 148 

Figure 1 shows the aerosol effective radiative forcing with respect to 1850 from CMIP6 149 

models. Most models show a peak in negative aerosol forcing at some point between 1975 and 150 

2010 before recovering in recent years. 151 
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 152 
Figure 1: CMIP6 diagnosed net aerosol effective radiative forcing relative to an 1850 153 

climatology. Individual years are shown in dots with an 11-year Savitzky-Golay smoothing filter 154 

applied to show solid lines. The black point and line represents the 17-model mean and range 155 

from Smith et al. (2020) for 1850-2014, which did not include E3SM-1-0. 156 

 157 

2.1.2 Separation of aerosol components 158 

For each CMIP6 model, the shortwave (SW) aerosol-radiation and aerosol-cloud 159 

interaction components of the ERF (ERFariSW and ERFaciSW) are determined using the 160 

Approximate Partial Radiative Perturbation (APRP) method (Taylor et al., 2007; Zelinka et al., 161 

2014). The LW ERF from aerosol-cloud interactions (ERFaciLW) was determined using the 162 

difference between all-sky and clear-sky forcing (difference in cloud radiative effect) with the 163 

LW ERF from aerosol-radiation interactions (ERFariLW) estimated as the difference between 164 

ERFLW and ERFaciLW. The APRP is not exact and a small residual term arises that varies over 165 

time and by model (Fig. S1), some of which is related to a small surface albedo adjustment 166 

(Ghan, 2013), but only the time-varying shapes and relative magnitudes of ERFari and ERFaci to 167 

each other are important for this decomposition. 168 

 169 

For the RFMIP models we calculate the APRP using the difference of each year of the 170 

piClim-histaer run against every year of the piClim-control run before averaging across the 30 171 

piClim-control years to determine the ERFari and ERFaci from each year of 1850 to 2014 (or 172 

2100). This method removes some non-linearities in the APRP (particularly in relation to the 173 

cloud fraction adjustment part of ERFaci) alongside minimising the influence of internal 174 

variability. For the AerChemMIP models and E3SM-1-0, APRP was calculated using the parallel 175 

all-forcing and 1850-aerosol forcing AMIP ensemble members and averaged. In all cases where 176 

modelling groups provided more than one ensemble member, the APRP decomposition is 177 

calculated separately in each ensemble member and then averaged. 178 
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2.1.3 Forcing emulator 179 

Simple emissions-based relationships are then fit to the APRP-derived ERFari and 180 

ERFaci in each CMIP6 model: 181 

 182 ERFari	 = 	
��

�� + 	��
�� +		��
��        (1) 183 ERFaci	 = 	−� ln(1 + 

��/�
�� + (
�����/������))     (2) 184 

 185 

In eqs. (1) and (2), 

��, 
�� and 
�� refer to global annual total emissions in Tg yr-1 of 186 

SO2, black carbon (BC) and organic carbon (OC), and 	
��, 	��, 	��, �, �
�� and ������ are 187 

scaling coefficients. 	 values can be interpreted as the radiative efficiency of emission of each 188 

aerosol species. Strictly, eqs. (1) and (2) represent radiative effects rather than radiative forcings. 189 

Radiative forcings are given by the difference of radiative effects in eqs. (1) and (2) calculated 190 

between the emissions in the year of interest and the pre-industrial year (either 1850 or 1750).  191 

 192 

Equation (1) follows from studies showing that ERFari scales linearly with emissions 193 

(Johnson et al., 2019; Lund et al., 2018; Mahajan et al., 2013; Rap et al., 2013). Equation (2) is 194 

an extension of the simple relationship of Stevens (2015) and is based on the understanding that 195 

the change in cloud albedo is logarithmic with sulfate burden, and that burden scales with 196 

emissions (Carslaw et al., 2013; Charlson et al., 1992). Including carbonaceous aerosol in eq. (2) 197 

represented by the sum of BC and OC emissions is useful as some CMIP6 models include the 198 

effects of BC and/or OC on the change in cloud condensation nuclei. The resulting aerosol-cloud 199 

interactions can be substantial, for example a negative ERFaci to BC emissions in the MIROC6 200 

model (Thornhill et al., 2021). Equation (2) is found to give a good heuristic approximation of 201 

global-mean ERFaci to a more sophisticated aerosol indirect effect model (Ghan et al., 2013) as 202 

shown in Smith, Forster, et al. (2018). The sum of BC and OC emissions is used following the 203 

original Ghan et al. (2013) aerosol indirect model which considers primary anthropogenic 204 

emissions to be BC+OC, and to limit the number of free parameters in eq. (2) to three. 205 

 206 	
��, 	��, 	��, �, �
�� and ������ parameters in eqs. (1) and (2) are estimated using a 207 

least-squares curve fit of each CMIP6 model’s ERFari and ERFaci (Table 3). A multi-model 208 

mean emulation is performed where the ERFari and ERFaci from the 11 models is averaged and 209 

eqs. (1) and (2) applied. The multi-model mean 	 coefficients (-2.5, +28.5 and -8.5 mW m-2 (Tg 210 

yr-1)-1 for SO2, BC and OC respectively) are of similar magnitudes to the radiative efficiencies 211 

from Aerocom models (Myhre, Samset, et al., 2013) for SO2 and BC, and a little stronger for OC 212 

here. The radiative efficiency coefficients are negative for BC and positive for OC in the IPSL-213 

CM6A-LR model. However, using coefficients derived from the AerChemMIP single-forcing 214 

experiments for BC, OC and SO2 in IPSL-CM6A-LR-INCA gives a much less good fit to the 215 

historical aerosol forcing in IPSL-CM6A-LR than our fitted coefficients, and while the fitted 216 

coefficients may not be representative of the true physical behavior in this model, allowing these 217 

values as part of the prior sampling allows for a larger diversity of aerosol forcing time series. 218 

We do not attribute a nitrate forcing to avoid overfitting and because most models do not include 219 

the effects of nitrogen compounds on aerosol formation. In reality, nitrate formation may 220 

compete with sulfate formation for available ammonium. Model evidence suggests this is of 221 

limited importance historically (Thornhill et al., 2021), but may become more important in future 222 

scenarios where the nitrate to sulfate emissions ratio is projected to increase (Bellouin et al., 223 

2011; Hauglustaine et al., 2014).  224 
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 225 

The best-fit values for �
�� and ������ span several orders of magnitude. We treat these 226 

terms as shape parameters, describing how linear or logarithmic the change in ERFaci is with 227 

increasing anthropogenic SO2 and carbonaceous aerosol emissions. With large �
�� and ������ 228 

values, a linear response in ERFaci to emissions is exhibited (from the Taylor expansion of 229 ln(1 + �) ≈ � for small �). The degree of logarithmic behaviour that ERFaci exhibits to 230 

emissions differs considerably between GCMs (Wilcox et al., 2015) and the possibility that 231 

ERFaci may be linear with emissions in some CMIP5 models was discussed in Booth et al. 232 

(2018).  233 

 234 

 235 

Table 3: Forcing emulator coefficients corresponding to eqs. (1) and (2) for each model and the 236 

emulation of the multi-model mean forcing. Emissions are in terms of TgSO2 for 	��� and TgC 237 

for 	 ! and 	�!. 238 

 ERFari (mW m-2 (Tg yr-1)-1) ERFaci 

Model "SO2 "BC "OC #  

(W m-2) 

$%&' (TgSO2 

yr-1) 

$()�&) (TgC 

yr-1) 

CanESM5 -2.5 32.6 -0.4 0.727 58.9 24.6 

E3SM-1-0 -0.9 24.8 -12.6 2.048 155.9 71.3 

GFDL-CM4 -2.6 26.9 -2.1 3.501 692.7 382.9 

GFDL-ESM4 -2.6 102 -30.4 3096 913 500 202 620 

GISS-E2-1-G -6.7 146 -44.1 0.563 117.9 16.0 

HadGEM3-GC31-LL -2.9 10.2 1.5 1.004 95.4 77.2 

IPSL-CM6A-LR -0.7 -56.1 8.8 1.097 358.3 518.9 

MIROC6 -1.8 38.7 -14.2 0.773 117.2 35.0 

MRI-ESM2-0 -3.2 4.5 -10.0 7.404 1276 907.4 

NorESM2-LM -1.5 -18.3 9.7 13 502 1 915 000 944 800 

UKESM1-0-LL -2.4 2.6 0.0 0.741 39.5 228.1 

Multi-model mean 

emulation 

-2.5 28.5 -8.5 1.223 156.5 76.7 

 239 

 240 

Figure 2 shows the emulated fits to each CMIP6 model from eqs. (1) and (2) as colored 241 

curves with the APRP-derived forcing from the GCMs in grey using an 1850 reference. The gray 242 

curves in Figure 2 show that most models show a peak in ERFari that is weakening in recent 243 

years, whereas for ERFaci is approximately constant up to 2014 or with a slower weakening 244 

trend. It can be seen that the emulated relationships (colored curves) give good representations of 245 

each component of the aerosol forcing in each model. We extrapolate these CMIP6 model-246 

specific emulations back to 1750 in each model, resulting in a small positive forcing in 1750 247 

relative to 1850. Where models do not provide an SSP2-4.5 future projection, we also extend 248 

these time series forward using eqs. (1) and (2). Finally, we re-base all emulated time series to a 249 

1750 reference (fig. 3), where the impacts of the different shapes for historical aerosol forcing 250 

due to different parameter combinations are more clearly seen. One notable feature in all time 251 

series is an increased forcing between 2014 and 2015 in the emulated curves owing to a 16% 252 

reduction in global SO2 emissions from the CMIP6 historical to SSP2-4.5 datasets over one year.  253 
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 254 

 255 
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Figure 2: simple emissions-based fits from eqs. (1) and (2) to ERFari (left), ERFaci (centre) and 256 

total aerosol forcing (right) for 11 CMIP6 models. Gray curves show the relevant forcing 257 

components from each GCM diagnosed using the APRP method. 258 

 259 

 260 

 261 
Figure 3: Emulated emissions to forcing curves, relative to 1750. The multi-model mean 262 

emulation is shown in black. 263 

2.1.4 Ensemble generation 264 

To simulate time-varying aerosol forcing we take probabilistic ensembles for both the 265 

magnitude and the shape of the historical aerosol forcing. To generate historical shapes, we take 266 

100,000 samples of 	
��, 	��, 	��, �
�� and ������ based on their distributions from the 11 267 

participating GCMs (Table 3). A joint kernel-density estimate of the 	 coefficients is used to 268 

derive a distribution which is then sampled from for ERFari (Fig. 4a-c). Accounting for 269 

correlation between the coefficients maintains the connection that different aerosol species are 270 

often co-emitted. For ERFaci, we take ln	(�
��) and ln	(������) from each model and derive a 271 

joint kernel distribution from these two parameters (Fig. 4d). Logarithms of the values in Table 3 272 

are used because the total ERFaci in Eq. (2) has a logarithmic relationship to emissions and 273 

individual model estimates of these parameters span several orders of magnitude. � is not a 274 

degree of freedom in this setup because the resultant ERFaci time series will be scaled as 275 

described below. 276 

 277 
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 278 
Figure 4: Joint distributions of (a) 	
�� and 	��, (b) 	
�� and 	��, (c) 	�� and 	��, (d) 279 ln	(�
��) and ln	(������). The grayscale 2D hexbin histogram of points represents a density of 280 

the 100,000 drawn sample sets and the coloured points are fits to each CMIP6 model. 281 

 282 

We combine the sampled 	 and � coefficients with 100,000 samples of the absolute 283 

values of the 1850 to 2005-15 ERFari and ERFaci from the process-based assessment in fig. 8 of 284 

Bellouin, Quaas, et al. (2020; hereafter the “Ringberg assessment”), using the distributions that 285 

do not account for energy budget constraints. We run the emissions emulator in eqs. (1) and (2) 286 

using a update of the historical CEDS emissions to 2019 (O’Rourke et al., 2020) for energy and 287 

industrial sectors and BB4CMIP (for biomass burning) under a historical+SSP2-4.5 assumption 288 

(the emissions are much less sensitive to the choice of scenario for biomass burning than for 289 

energy and industry). Critically, the updated CEDS emissions account for phenomena such as an 290 

earlier and more gradual reduction in SO2 emissions from China than were in the original CMIP6 291 
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dataset (Paulot et al., 2018), as well as other corrections, and avoids arbritrarily choosing a 292 

scenario for post-2014 emissions. Differences in these time series are plotted in Fig. S2. 293 

 294 

This process rescales the 	 coefficients and selects � in each ensemble member 295 

consistent with the present-day ERFaci. These 100,000 sampled time series are then rebased to a 296 

1750 baseline by subtracting the 1750 forcing from the 1850 forcing, producing 100,000 297 

candidate historical time series of aerosol forcing for the period 1750-2019 that differ in shape 298 

and magnitude (Fig. 5). 299 

 300 

 301 
Figure 5: Sampled ERFari, ERFaci and total aerosol ERF time series before constraint. 302 

Overplotted are three individual ensemble members (colored lines) that have present-day total 303 

aerosol forcing close to the ensemble median with different time histories. The 5-95% and 16-304 

84% ranges of the ensemble are shown as light and dark grey bands with the ensemble median in 305 

black. 306 

2.1.5 Scaled model forcing 307 

 308 

Alongside the emissions-based aerosol forcing time series, we repeat the analyses using 309 

scaled historical ERFari and ERFaci from each CMIP6 model, where the shapes of the historical 310 

forcing derived from the APRP method (Fig. 2) in each model are fixed, but the pre-industrial to 311 

present-day magnitudes are allowed to vary. We also use RFari and RFaci time series generated 312 

from the Oslo-CTM3 chemistry transport model (Lund et al., 2018, 2019) for 1750-2020 under 313 

historical+SSP2-4.5. In these 11 CMIP6 models plus Oslo-CTM3, the magnitude of 1850 to 314 

2005-15 forcing is allowed to vary according to the Ringberg assessment distributions, and the 315 

generated time series are extrapolated backwards to a 1750 baseline. Unlike the emissions time 316 

series run with the forcing emulator, the historical shapes of ERFari and ERFaci from these 12 317 

model estimates are fixed. 318 
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2.2 Non-aerosol forcing time series 319 

The non-aerosol component forcings are also generated from a 100,000-member Monte 320 

Carlo ensemble. As they are either less uncertain or smaller in magnitude (or both) than the 321 

aerosol forcing they are not the main focus of this paper but are generated to provide a consistent 322 

view of the total ERF, including uncertainty estimates, so that energy budget constraints can be 323 

applied. Detailed information is provided in Supplementary Text S1 with a summary of the key 324 

data sources in Table 4. 325 

 326 

Table 4: Non-aerosol forcing present-day uncertainties and key references. 327 

Forcing type Description Key references 

Well-mixed greenhouse 
gases 

Concentrations to radiative forcing; 
tropospheric adjustments 

Etminan et al. (2016); Gidden et al. (2019); 
Hodnebrog, Aamaas, et al. (2020); 
Hodnebrog, Myhre, et al. (2020); 
Meinshausen et al. (2017, 2020); Smith et 
al. (2020); Smith, Kramer, et al. (2018) 

Ozone Analysis of CMIP6 models; precursor 
emissions to forcing  

Skeie et al. (2020); Smith, Forster, et al. 
(2018); Stevenson et al. (2013) 

Other anthropogenic Land use forcing (including 
irrigation); black carbon on snow; 
aviation contrails; stratospheric water 
vapor from methane oxidation 

Bond et al. (2013); Ghimire et al. (2014); 
Lee et al. (2020); Myhre, Shindell, et al. 
(2013); Sherwood et al. (2018) 

Volcanic Forcing from stratospheric aerosol 
optical depth 

Global Volcanism Program (2013); Gregory 
et al. (2016); Kovilakam et al. (2020); 
Larson & Portmann (2016); Toohey & Sigl 
(2017) 

Solar Total solar irradiance; tropospheric 
adjustments 

Gray et al. (2009); Matthes et al. (2017); 
Smith, Kramer, et al. (2018); Vieira et al., 
(2011) 

 328 

2.3 Simple climate model 329 

We use our 100,000 member ensemble of aerosol and non-aerosol forcings and run them 330 

in a two-layer energy balance model, including efficacy of deep-ocean heat uptake (Geoffroy, 331 

Saint-Martin, Bellon, et al., 2013; Geoffroy, Saint-Martin, Olivié, et al., 2013; Held et al., 2010). 332 

To perform this many simulations precludes the use of a comprehensive GCM and similar 333 

constrained Monte Carlo ensemble methods using reduced-complexity models have been done 334 

previously (Meinshausen et al., 2009; Smith, Forster, et al., 2018). The structural uncertainty 335 

associated with the choice of simple climate model has been found to have limited impact on 336 

global mean temperature projections in historical simulations (Nicholls et al., 2020). We choose 337 

to use the two-layer model due to its computational efficiency, inclusion of both EEU and 338 

GSAT, and its proven ability as a useful emulator of complex GCMs (Palmer et al., 2018). We 339 

use the formulation from the two Geoffroy et al. papers, hereafter G13a and G13b. The two-layer 340 

model can be written as 341 

 342 

*+,- ./012.3 = 4 + 56+,- 	− 	78(6+,- − 69::;)       (3) 343 

7*9::; ./<==>.3 	= 78(6+,- − 69::;)           (4) 344 

 345 
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where *+,- and *9::; (W yr m-2 K-1) are the heat capacities of the ocean mixed layer and deep 346 

ocean, 6+,- and 69::; (K) are the respective layer temperature anomalies, 5 (W m-2 K-1) is the 347 

climate feedback parameter (using the convention that negative values indicate stabilizing 348 

feedbacks), 4 (W m-2) is the effective radiative forcing, ? (dimensionless) is the efficacy of deep 349 

ocean heat uptake and 8 (W m-2 K-1) the heat transport between the two layers. The relatively 350 

small heat capacity of the land surface and atmosphere compared to the ocean means that it can 351 

be neglected and the GSAT anomaly is given by 6+,-. 352 

 353 

All available 44 CMIP6 models that published both abrupt-4xCO2 and piControl 354 

simulations to the Earth System Grid Federation as of 2 July 2020 were used to tune the two-355 

layer model using the method set out in G13a and G13b. Models that were available on different 356 

resolutions (e.g. NorESM2-LM and NorESM2-MM), and physical and Earth system models 357 

from the same group (e.g. CNRM-CM6-1 and CNRM-ESM2-1) were treated as separate models, 358 

but different physics versions of the same model were not (e.g. r1i1p1f1 and r1i1p3f1 from 359 

GISS-E2-1-G). The two-layer model is tuned to the GSAT and TOA radiation imbalance of each 360 

CMIP6 model’s abrupt-4xCO2 run. There are five free parameters in the G13b model: 8,  ?, 5, 361 *+,- and *9::;. Radiative forcing from a quadrupling of CO2 (4@×) is also calibrated using this 362 

method with the abrupt-4xCO2 experiments. Table S1 sets out the parameters for each model 363 

and Fig. S3 shows the temperature evolution in CMIP6 models for the model output and the 364 

simulated two-layer model fits for abrupt-4xCO2. The ECS is an emergent parameter from this 365 

model and is calculated as 4@×/−25. The inclusion of the efficacy of ocean heat uptake in the 366 

two-layer model leads to different and often larger estimates of climate sensitivity than from a 367 

“Gregory regression” of TOA energy imbalance against global mean temperature anomaly for 368 

the first 150 years of abrupt-4xCO2 (the so-called “effective” climate sensitivity, EffCS). The 369 

strengthening of climate feedbacks over time as temperatures approach equilibrium in abrupt-370 

4xCO2 experiments results in the long-term equilibrium ECS being in the region of 10-30% 371 

larger than EffCS (Rugenstein et al., 2020). The version of the two-layer model that includes 372 

efficacy of ocean heat uptake captures this effect somewhat, and we cautiously refer to our 373 

derived climate sensitivity as ECS for this reason.  374 

 375 

A joint kernel density estimate distribution of the six input parameters to the two-layer 376 

model are sampled based on the values resulting from the 44 CMIP6 model tunings (marginal 377 

distributions for each parameter are shown in Fig. S4). The joint distribution allows for 378 

correlation between model parameters to be taken into account when sampling (Table S2). 379 

 380 

Internal variability in GSAT is simulated by analysing the piControl run in all available 381 

models (49 as of 2 July 2020). Global mean temperatures from the piControl simulations are 382 

detrended to remove any residual drift with the residuals around the long term trend taken to be 383 

the internal variability. The autocovariance matrix of these residuals in each model is constructed 384 

by regressing the time series with itself at lag 1 year, lag 2 years, …, lag n years where n is the 385 

length of the model’s piControl simulation. This input is then used as the covariance of a 386 

multivariate Gaussian distribution that governs the time-dependent internal variability of 387 

temperatures in each model. For each ensemble member simulated, one of the 49 CMIP6 models 388 

is selected at random, and 270 years (1750-2019) of internal variability generated based on the 389 

underlying distribution in the selected GCM. This allows for a more realistic construction of 390 

internal variability than a memoryless process noting that in reality events such as ENSO tend to 391 
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cluster warm and cool years, and also provides for the recreation of low-frequency long-term 392 

internal variability that is present in some models such as CNRM-ESM2-1 (Fig. S5). 393 

2.4 Observational constraints 394 

We use GSAT estimates from 1850-2019 and total Earth system energy uptake 395 

observations from 1971-2018 to constrain our simulations. To estimate GSAT we use the 396 

Cowtan & Way (2014) dataset of infilled global-mean surface temperatures (GMST; near-397 

surface temperatures over land and sea-ice and sea-surface temperatures over open ocean) for 398 

1850-2019, multiplied by a time-varying ratio of GSAT/GMST from CMIP5 models under the 399 

historical and RCP8.5 pathways from 1861 to 2014 (Richardson et al., 2016). This ratio 400 

converges towards 1.08 for the recent past (Rogelj et al., 2019) and we extend this ratio forward 401 

to 2019. Both observations and model output are rebased to the 1850-1900 mean as a proxy for 402 

pre-industrial following the IPCC Special Report on 1.5°C. This results in a central estimate of 403 

GSAT warming of 1.10°C for 2010-19 relative to 1850-1900 with a warming trend of 0.30°C per 404 

decade since 2010. 405 

 406 

For observations of total Earth energy uptake, we use data from the Global Climate 407 

Observing System (GCOS) observational dataset that includes estimates from ocean heat uptake, 408 

cryosphere, atmosphere and land surface (Von Schuckmann et al., 2020). The ocean has 409 

absorbed 89% of the total energy uptake in the Earth system since 1960 owing to its larger 410 

thermal capacity compared to other components of the Earth system. The two-layer model only 411 

tracks heat uptake into the ocean, but to be physically consistent with the total observed EEU we 412 

assume that the heat uptake of the atmosphere, cryosphere and land is taken into account in the 413 

heat uptake of the mixed layer of the ocean. The GCOS dataset extends back to 1960, but we 414 

focus on the period from 1971-2018 due to the limited coverage of deep ocean temperature 415 

observations before the advent of expendable bathythermographs (XBTs) in the late 1960s 416 

(Palmer, 2017). Our constraint is based on the agreement of EEU calculated in the two-layer 417 

model with the total EEU from 1971 to 2018 in GCOS of 358 ± 37 ZJ (1 s.d.). 418 

 419 

Following the running of the two-layer model, each of the 100,000 ensemble members is 420 

assigned a weight CD based on how well it reproduces GSAT and EEU observations. The 421 

weighting is based on the model weighting technique of Knutti et al. (2017): 422 

 423 

CD =	expH−I 	JKLMN,PQRKLMN,SQ 	+ JTTU,PQ
RTTU,SQVW	     (5) 424 

 425 

where XY,D is a measure of how well the model reproduces observations for variable Z for 426 

ensemble member [, and \Y,] is the “radius of model quality” (Sanderson et al., 2015). The 427 

radius of model quality is a subjective choice and for both GSAT and EEU we use assessed 428 

uncertainties. For GSAT, X̂ 
_`,D represents the root-mean-square error (RMSE) of each 429 

ensemble member’s simulated temperature compared to observations and \^
_`,]= 0.12°C based 430 

on the “likely” (> 66%) range of GMST from the 1850-1900 period to 2006-15 in IPCC Special 431 

Report on Global Warming of 1.5°C. For EEU, we use Xaab,D as the difference in EEU between 432 

the model ensemble member and the GCOS best estimate of 358 ZJ (1971-2018) and use the 433 
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GCOS uncertainty of \aab,]= 37 ZJ. Unlike in Knutti et al. (2017) we do not downweight 434 

similar ensemble members.  435 

 436 

Following calculation of each CD, the ensemble weights are normalised such that ∑CD =437 1. Although subjective, our choices for the goodness-of-fit to the constraints ensure that GSAT 438 

and EEU have approximately equal influence on the total weighting given to each ensemble 439 

member (Fig. S6). An ensemble member will receive a high weight if it is close to both observed 440 

GSAT and observed EEU resulting in fewer high-weight ensemble members than using a single 441 

constraint only. Results using just one constraint are reported in the supplementary material.  442 

3 Results 443 

Figure 6 shows the aerosol ERF time series that best fit the observational constraints of 444 

GSAT and EEU for the CMIP6-constrained ensemble plus 12 climate models. Also shown are 445 

the projections of GSAT and EEU with the applied ensemble weighting. The weighted 5 to 95% 446 

range from the CMIP6-constrained time series using both GSAT and EEU as constraints is 447 

shown as a grey band with the weighted mean as a grey line. The 1750-2019 aerosol ERF is 448 

determined to be -0.90 W m-2 (-1.55 to -0.35 W m-2 5-95% range), comprised from -0.31 (-0.62 449 

to -0.08) W m-2 for ERFari and -0.59 (-1.18 to -0.10) W m-2 for ERFaci. The central estimate of 450 

total aerosol forcing is equal to the -0.9 (-1.9 to -0.1) W m-2 assessed for 1750-2011 in AR5, with 451 

a narrower “very likely” (> 90%) range in this study. 452 

 453 

 454 
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Figure 6: Weighted historical time series of (a) ERFari, (b) ERFaci and (c) total aerosol ERF 455 

time history shapes from each forcing scenario. Curves derived from CMIP6 models and Oslo-456 

CTM3 are scaled and ensemble-weighted as described in section 2 and do not represent raw 457 

model output. (d) and (e) shows the weighted ensemble simulated global mean surface 458 

temperature and ocean heat uptake. Solid lines are weighted ensemble means and shaded regions 459 

show the weighted 5th-95th percentiles for the CMIP6-constrained time series. 460 

 461 

With the CMIP6-constrained time series, aerosol ERF exhibits a slight recovery between 462 

1980 and 2014 of +0.025 W m-2 decade-1. This is a lower aerosol recovery than seven of the 11 463 

CMIP6 models, although the constrained 5-95% range is wide (-0.074 to +0.111 W m-2 decade-1) 464 

and includes the means from all but the UKESM1-0-LL model (Fig. 7). These results indicate 465 

that a rapid aerosol forcing recovery is unlikely and not consistent with the enegy budget 466 

constraints, but whether aerosol forcing has been strengthening, weaking or stable in recent 467 

decades is not conclusive. 468 

 469 

 470 
Figure 7: Histograms of linear aerosol forcing trends for 1980-2014 simulated by the 100,000 471 

member Monte Carlo ensemble (thin black histogram) and weighted after application of 472 

observational constraints in the CMIP6-constrained time series (thick grey histogram). The mean 473 

of these distributions are shown as grey and black lines above the histograms with 5th and 95th 474 

percentiles of the constrained and unconstrained distributions. The trends of each CMIP6 475 

model’s aerosol forcing are shown as colored lines, calculated as a 35 year regression from 1980-476 

2014 and error bars showing 5-95% confidence ranges in the slope of the regression.  Numbers 477 

provided in Table S3. 478 

 479 

 480 

Figure 8 uses the GSAT and EEU constraints to show the present-day distributions of 481 

aerosol forcing. Alongside this we use the ensemble weights to calculate distributions of ECS 482 
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and TCR from the ensemble given the two-layer model parameter distributions and ensemble 483 

weights. To calculate TCR we take the approach of Jiménez-de-la-Cuesta & Mauritsen (2019) 484 

noting the TCR is approximately 4@× 2(−5 + 78)⁄ . The mean, 68% and 90% range for these 485 

parameters along with their unconstrained (prior) distributions are shown in Table 5. All 13 486 

historical time series are shown in Table S4 for both GSAT and EEU constraints, and in Tables 487 

S5 and S6 using only GSAT or EEU respectively. 488 

 489 

A diversity of constrained present-day aerosol ERF distribution shapes is possible for the 490 

aerosol forcing from each model’s historical time evolution. In particular there are a group of 491 

models (the two from GFDL, HadGEM3-GC31-LL, GISS-E2-1-G and NorESM2-LM) where 492 

present-day ERFari is relatively weak and few values less than -0.5 W m-2 satisfy the 493 

observational constraints. For ERFaci, neither the CMIP6 models nor the CMIP6-constrained 494 

time series support a strong negative forcing and the constrained distributions are less skewed 495 

than the Ringberg assessment range. All historical aerosol forcing time series constrain the 496 

present-day aerosol forcing to a narrower range than the full process-based distributions of the 497 

Ringberg assessment. As discussed in Bellouin, Quaas, et al. (2020), energy budget constraints 498 

do not favour a present-day aerosol forcing more negative than -2 W m-2, and this is also borne 499 

out by our distributions in Fig. 8c. 500 

 501 

 502 
Figure 8: Distributions of (a) ERFari, (b) ERFaci, (c) total aerosol ERF, (d) ECS and (e) TCR. 503 

Thin black curves show the prior distributions for aerosol forcing, ECS and TCR. 504 

 505 
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High values of ECS and TCR are also constrained out when applying observational 506 

constraints (Fig. 8d,e). The prior distributions in thin black curves allow for ECS values much 507 

larger than those seen in CMIP6 models as values of net feedback 5 sampled in the prior 508 

distribution (Fig. S4) can be close to zero. Interestingly, the choice of historical aerosol forcing 509 

time series is less important for constraining ECS and TCR than for the present-day aerosol 510 

forcing, and in every case the constrained distribution favours lower climate sensitivity than the 511 

energy-balance derived prior. The constrained distribution of ECS is not tight (1.8 to 5.1°C 5-512 

95% range with a best estimate of 3.1°C), which is lower than the raw CMIP6 model range 513 

inferred from the two-layer model fits (1.9 to 7.1°C; Table S1). The best estimates reported in 514 

the main body of the text, Table 4 and Figs. 6 and 7 relate to the weighted mean of the 515 

constrained distributions; the median estimates are provided in Supplementary Tables 4-6. 516 

Transient climate response falls in the 5-95% range of 1.2 to 2.6°C (best estimate 1.8°C). 517 

 518 

Table 5: Ensemble percentiles for aerosol forcing, ECS and TCR, for the CMIP6-informed 519 

constrained distributions. End dates of 2010 represent a 2005-14 mean. 520 

 Time period 5% 16% mean 84% 95% 

Total Aerosol ERF 

(W m-2) 

1750-2019 -1.56 -1.26 -0.90 -0.54 -0.35 

1750-2010 -1.78 -1.50 -1.10 -0.70 -0.48 

ERFari (W m-2) 1750-2019 -0.62 -0.47 -0.31 -0.15 -0.08 

1750-2010 -0.77 -0.59 -0.40 -0.21 -0.12 

ERFaci (W m-2) 1750-2019 -1.18 -0.93 -0.59 -0.26 -0.10 

1750-2010 -1.36 -1.08 -0.69 -0.31 -0.12 

ECS (°C) Constrained 1.76 2.15 3.10 3.94 5.11 

TCR (°C) Constrained 1.24 1.43 1.83 2.22 2.57 

 521 

 522 

4 Discussion and conclusions 523 

Comprehensive climate models are the best tools available for determining global aerosol 524 

forcing where other spatially-complete lines of evidence do not exist, such as prior to the satellite 525 

era (approximately 1980). However, model-derived aerosol forcing depends on a chain of 526 

processes, and ultimately on spatially-resolved aerosol emissions time series that are themselves 527 

uncertain (Hoesly et al., 2018). It is not possible to determine here whether the tendency for 528 

some models to project strong aerosol forcing in the second half of the 20th Century and/or too 529 

much of a recent aerosol recovery, at least compared to what would be implied by the 530 

observational constraints, is due to model processes or uncertainties in the emissions.  531 

 532 

It is likely that regional effects are significant and aerosols emitted from different source 533 

regions affect the global energy balance in different ways which is not captured in a global 534 

emissions to forcing relationship (Kretzschmar et al., 2017). Including how global forcing 535 

changes to regional aerosol emissions could be an improvement to the forcing emulator, although 536 

may be difficult to implement for aerosol-cloud interactions in marine stratocumulus cloud decks 537 

which may be thousands of kilometres from the emissions source (Regayre et al., 2014). 538 

However, we show for the 11 GCMs that our relationship is trained on, the forcing emulator 539 

works well (Fig. 2) and is useful as a first-order global relationship that incorporates sufficient 540 

flexibility in its forcing response to emissions. 541 
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 542 

Our results are consistent with the conclusions of previous studies that have attempted to 543 

constrain present-day aerosol forcing based on energy balance arguments. We find that very 544 

large negative values of pre-industrial to present-day aerosol ERF are inconsistent with observed 545 

warming and total Earth system energy gain (Andrews & Forster, 2020; Forest, 2018; Forest et 546 

al., 2002, 2006; Skeie et al., 2018; Smith, Forster, et al., 2018). Our best estimate 1750-2019 547 

aerosol forcing of -0.90 W m-2 is similar to recent observationally-constrained studies that put 548 

aerosol forcing in the -0.8 to -0.9 W m-2 range (Andrews & Forster, 2020; Skeie et al., 2018; 549 

Smith, Forster, et al., 2018), and the review of 19 inverse estimates in Forest (2018) of -0.77 W 550 

m-2. We also find that the most likely shape of recent (1980-2014) aerosol forcing is 551 

approximately constant or with a slightly positive trend, which is in line with reanalysis-derived 552 

estimates of aerosol RFari and RFaci (Bellouin, Davies, et al., 2020), and a rapid recovery in 553 

aerosol forcing is not likely. 554 

 555 

The shape of historical aerosol forcing time series - whether from our simple emulator or 556 

provided by a particular CMIP6 model - does not provide a constraint on the overall 1750-2019 557 

aerosol forcing. However, the choice of aerosol forcing dataset used matters less for constraining 558 

ECS and TCR than it does for the shape or magnitude of present-day forcing (Fig. 8). It is 559 

difficult to constrain the upper bound of ECS due to the heavy tail of the prior distribution, and 560 

95th percentile values of ECS range from 4.3 to 6.0°C depending on the aerosol forcing time 561 

series used (Table S4). Other studies also show that these constrained climate sensitivity 562 

distributions are sensitive to the priors used (Sherwood et al., 2020). For example, our prior 563 

sample space informed by CMIP6 models has very few ensemble members with ECS < 1.5°C 564 

and TCR < 1.0°C, both lower bounds of the respective “likely” range in AR5, and it is possible 565 

that this area of the distribution is undersampled. Note that we do not perform a full Bayesian 566 

analysis in this paper. However, our ECS estimate of 3.1°C (1.8 to 5.1°C) is in line with, 567 

although with wider uncertainty, than the Bayesian estimate of 3.2 (2.3 to 4.7°C) in Sherwood et 568 

al. (2020), which takes into account several lines of evidence in their assessment.  569 

 570 

The two-layer model used in this study includes the efficacy of deep ocean heat uptake, 571 

which can partially account for the “pattern effect” (Andrews et al., 2018; Sherwood et al., 2020) 572 

in which evolving patterns of sea surface temperature change can influence estimates of climate 573 

feedback as warming approaches equilibrium. In the notation of Sherwood et al. (2020) the total 574 

effective climate feedback can be written 5 − Δ5 with Δ5 the contribution from the pattern 575 

effect. Across the sample of CMIP6 two-layer model calibrations in this study, the pattern effect 576 Δ5 varies from -0.1 to +0.6 W m-2 K-1 (mean +0.2 W m-2 K-1) between 1980 and 2050 (assuming 577 

SSP2-4.5 forcing), similar to previous studies (e.g. Armour (2017)). This forced contribution to 578 

the pattern effect arises through the efficacy of deep ocean heat uptake in the two-layer model, 579 

and occurs where 7 > 1 (Geoffroy, Saint-Martin, Bellon, et al., 2013) as it is in the majority of 580 

CMIP6 model calibrations. The pattern effect means that historically, the effective climate 581 

feedback tends to be slightly weaker than the equilibrium feedback, 5. However, this historical 582 

pattern effect is not as large as that determined from observed sea-surface temperatures from 583 

AMIP models (Andrews et al., 2018) of about +0.5 W m-2 K-1, as the historical pattern effect also 584 

includes an unforced component that is related to internal variability (Zhou et al., 2021). If we 585 

included the unforced component of the pattern effect through a further adjustment to Δ5, it is 586 

likely our derived historical aerosol forcing would be weaker. However, applying this historical 587 
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pattern effect approach to our projections is not straightforward. Calculating Δ5 this way requires 588 

a 30-year moving window regression (Andrews et al., 2018), and historical simulations in 589 

CMIP6 are provided only to 2014 meaning Δ5 can only be estimated until around 2000. Δ5 is 590 

sensitive to volcanic eruptions and aerosol forcing (Gregory et al., 2020), and the historical SST 591 

record is only one realisation. We therefore do not take the historical approach, but account for 592 

the pattern effect through the samping of deep ocean heat uptake efficacy, and for internal 593 

variability through the temporal autocorrelation of piControl runs. 594 

 595 

Our results suggest that the limited number of CMIP6 models considered here have a 596 

stronger aerosol forcing than may have actually occurred during the 20th Century and this effect 597 

may be responsible for the modest warming in the CMIP6 ensemble mean over this time period 598 

(0.24 ± 0.22°C for 1961-90 relative to 1850-1900 in CMIP6 models compared to reconstructed 599 

GSAT observations of 0.39 ± 0.06°C over the same period; Fig. S7). The diagnosis of historical 600 

aerosol forcing in more CMIP6 models to confirm or disprove this would be welcomed. 601 

Inclusion of uncertainties in historical emissions would be useful to determine whether this is a 602 

factor in suppression of warming. Re-running of GCMs with updated emissions inventories 603 

could determine how sensitive models are to emissions uncertainties, and the importance of 604 

regional effects. The time history of aerosol forcing and its present-day magnitude both constrain 605 

key climate system uncertainties such as climate sensitivity and the rate of recent warming 606 

(Tanaka & Raddatz, 2011). Reducing uncertainty in both will reduce uncertainty in climate 607 

projections. 608 
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Text S1. Non-aerosol radiative forcing timeseries 

This supplementary text describes the non-aerosol forcing time series used in the 
simulations. Most forcing categories are similar to those used in version 1.3 of the Finite-
amplitude Impulse Response model (FaIR; Smith, Forster, et al., 2018) with updates 
where appropriate. Where uncertainty ranges are given, they are taken to be 90% 
confidence intervals on the 1750-2019 forcing. 
 
Greenhouse gases 
Greenhouse gas (GHG) forcings are calculated from concentration to radiative forcing 
(RF) relationships (Etminan et al., 2016; Hodnebrog, Aamaas, et al., 2020). The re-fitting 
of the original Oslo line-by-line radiative transfer model results for RF from CO2, CH4 
and N2O (Etminan et al., 2016) as implemented by Meinshausen et al. (2020) are used, 
which reduces the relative error in the fits. GHG concentrations are taken from the 
observationally-based CMIP6 historical time series for 1750-2014 (Meinshausen et al., 
2017) extended forwards to 2020 using the SSP2-4.5 pathway (Gidden et al., 2019). To 
move from RF to ERF, 5% is added to the RF for CO2 and 14% subtracted from CH4 to 
account for land-surface warming and tropospheric adjustments respectively (Smith, 
Kramer, et al., 2018). Tropospheric adjustments also account for an additional 7% for 
N2O, 13% for CFC-11 and 12% for CFC-12 (Hodnebrog, Myhre, et al., 2020). For all 
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other GHGs, ERF is assumed to be the same as RF. We apply a ±20% relative 
uncertainty (5-95% range) on the present-day ERF from CO2, N2O and other GHGs 
except CH4 for which we apply ±28%; this follows AR5 (Myhre et al., 2013b) with an 
increase in the uncertainty for CH4 following Etminan et al. (2016). CMIP6 model results 
suggest these ranges are conservative and the ERF spread is possibly lower (Smith et al., 
2020). We do not modify the shape of the historical greenhouse gas forcing as historical 
concentrations are known with low uncertainty.  
 
Ozone 
Historical tropospheric and stratospheric ozone forcing is used from the subset of CMIP6 
models in Skeie et al. (2020) that (i) include full tropospheric chemistry; (ii) are not too 
structurally similar to other models and (iii) produce sensible pre-industrial to present-
day ozone forcing estimates (hence UKESM1-0-LL is excluded due to its implausible 
negative present-day forcing). The full list of retained models from Skeie et al. (2020) is 
BCC-ESM1-0, CESM2(WACCM6), GFDL-ESM4, GISS-E2-1-H, MRI-ESM2-0 and 
Oslo-CTM3. For extrapolating tropospheric ozone ERF back before 1850 and forward 
after 2014, we use CMIP6 historical and SSP2-4.5 precursor emissions to forcing 
relationships for CO, NOx, non-methane volatile organic compounds and concentrations 
of CH4 from Smith, Forster, et al. (2018), based on Stevenson et al. (2013), and re-fit 
these coefficients to correspond to the CMIP6 emissions and Skeie et al. (2020) forcing. 
We use a ±50% uncertainty on the best estimate of tropospheric ozone ERF of +0.41 W 
m-2 for 1750-2019. Stratospheric ozone forcing follows the same method, for which the 
Skeie et al. (2020) model results show that stratospheric ozone depletion from 
halogenated gases is outweighed by ozone formation from short-lived climate forcers. 
Stratospheric ozone has a best estimate 1750-2019 ERF of +0.07 W m-2 to which we 
apply a ±200% relative uncertainty.  
 
Other anthropogenic forcings 
Land use forcing of -0.20 W m-2 from 1750-2019 is used as our best estimate, using land-
use-derived albedo change from Ghimire et al. (2014) of -0.15 W m-2 with irrigation 
effects on formation of low-level clouds assumed to contribute an additional -0.05 W m-2 
(Sherwood et al., 2018). To this total land-use forcing we apply a ±75% relative 
uncertainty. For aviation contrail and contrail-induced cirrus forcing, we use the recent 
comprehensive assessment of Lee et al. (2020) of 0.0574 (0.019 to 0.098) W m-2 for 
1750-2018, and extrapolated this forward one year using aviation NOx projections from 
SSP2-4.5. Black carbon on snow forcing follows BC emissions in the SSP-historical and 
SSP2-4.5 time series and is scaled to 0.08 W m-2 in 2019 relative to 1750, which is the 
AR5 best estimate doubled to take into account the forcing efficacy of black carbon on 
snow assessed as being greater than unity (Bond et al., 2013). The lognormal distribution 
for the uncertainty range of 0.04 to 0.18 W m-2 is applied following AR5 (Myhre et al., 
2013a). Stratospheric water vapor from methane oxidation is assumed to have a 1750-
2019 best estimate forcing of 0.05 W m-2 with a ±100% relative uncertainty. 
 
Volcanic forcing 
Volcanic ERF is calculated using -20τ from CMIP5 models (Larson & Portmann, 2016) 
and an analysis of seven CMIP6 models that provided the piClim-histnat (natural forcings 
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only) experiment (Fig. S8), where τ is the stratospheric aerosol optical depth (SAOD) at 
550 nm. From the CMIP6 models, an estimate of the solar forcing (see below) was 
subtracted from the total natural forcing to estimate the volcanic forcing. We combine 3 
overlapping datasets for SAOD: the eVolv database for the period 500 BCE to 1900 CE 
(Toohey & Sigl, 2017), the CMIP6 historical volcanic SAOD for 1850-2014, and the 
GloSSAC dataset for 1979-2018 (Kovilakam et al., 2020). The GloSSAC dataset is 
converted from SAOD at 525 nm to the target 550 nm using an Ångstrom exponent of -
2.33 (Kovilakam et al., 2020). For 2019 we repeat 2018 noting no significant eruptions 
occurred (Global Volcanism Program, 2013). A linear transition between eVolv and 
CMIP6 is performed for 1850-1900 and for CMIP6 to GloSSAC for 1979-1989. The 
time-mean SAOD over the 2519 years of available data is defined to be the zero forcing, 
such that quiescent years have a small positive forcing. The rationale for this is that the 
long-term mean temperature anomaly should be zero when only volcanic forcing is 
present. Following AR5 analysis of recent eruptions, volcanic ERF is given an 
uncertainty range of ±50%. 
 
Solar forcing 
The solar forcing is taken from the derived SATIRE-M 14C solar irradiance database for 
the 9000 years up to 2014 (Vieira et al., 2011) and the concurrent CMIP6 total solar 
irradiance from 2015 onwards (Matthes et al., 2017). The solar irradiance timeseries is 
referenced to the two solar cycles spanning 1745-1765, as a proxy for 1750 conditions. 
Effective radiative forcing from solar variability is then calculated from the annual total 
solar irradiance anomaly, multiplied by ¼ (geometric effect) × 0.71 (planetary co-albedo) 
× 0.72 (tropospheric and stratospheric adjustments (Gray et al., 2009; Smith, Kramer, et 
al., 2018)). To project uncertainty in the solar forcing time series, we vary both the 
amplitude of the solar magnitude fluctuations (±50%) and the overall solar forcing trend 
from 1750 to 2019 (0.0 ± 0.1 W m-2 as a linear trend). 
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Figure S1: Residual from shortwave APRP decomposition of aerosol ERF in RFMIP and 
AerChemMIP models and E3SM (showing ERFSW - ERFariSW - ERFaciSW) 
 
 

 
Figure S2: Comparison of the CMIP6 emissions dataset (dashed lines), used in running 
the CMIP6 models, with the updated CEDS emissions (O’Rourke et al., 2020) plus 
biomass burning emissions which are unchanged (solid lines) used for generating the 
CMIP6-constrained forcing time series. 
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Figure S3: Two-layer model fits to CMIP6 abrupt 4xCO2 global surface air temperature 
(GSAT). 
 
 

 
Figure S4: Histograms of Geoffroy model parameter emulations from CMIP6 model and 
kernel density estimate fit to distributions 
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Figure S5: De-trended CMIP6 pre-industrial control global mean temperature anomalies 
used for characterisation of internal variability. 
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Figure S6: log-log histogram of ensemble member density using ocean heat uptake only 
(blue), surface temperature only (red) and both constraints (grey). Most ensemble 
members have a low weight and near-zero contribution to the total ensemble. 
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Figure S7: Historical warming simulated by 56 CMIP6 models compared with 
reconstructed GSAT observations. Anomalies expressed relative to 1850-1900. Models 
with multiple ensemble members are averaged, and each model contributed equal weight. 
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Figure S8: Regression plot of estimate of volcanic forcing from CMIP6 models (RFMIP 
histnat experiment minus time-varying best estimate of solar forcing, calculated as 
described in Text S1) against stratospheric aerosol optical depth. 
 
 
Table S1: Two-layer model parameter fits for CMIP6 models. 

Model F4x � Cmix  Cdeep �  � ECS 

ACCESS-CM2 7.66 -0.69 8.82 97.46 0.53 1.49 5.57 
ACCESS-ESM1-5 6.97 -0.72 9.02 96.79 0.61 1.71 4.83 
AWI-CM-1-1-MR 8.41 -1.30 8.17 54.70 0.49 1.30 3.24 
BCC-CSM2-MR 6.89 -1.06 8.51 73.69 0.64 1.32 3.25 
BCC-ESM1 6.68 -0.94 8.47 91.72 0.58 1.33 3.57 
CAMS-CSM1-0 8.88 -1.88 10.01 62.41 0.53 1.34 2.37 
CAS-ESM2-0 7.13 -0.93 7.57 72.83 0.45 1.43 3.84 
CESM2 8.84 -0.72 8.33 70.64 0.64 1.73 6.15 
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Model F4x � Cmix  Cdeep �  � ECS 

CESM2-FV2 7.94 -0.56 7.96 91.10 0.70 1.91 7.10 
CESM2-WACCM 8.28 -0.73 8.72 84.86 0.72 1.63 5.64 
CESM2-WACCM-FV2 7.13 -0.59 7.60 111.71 0.71 1.54 6.00 
CIESM 8.94 -0.72 8.59 73.23 0.67 1.38 6.25 
CNRM-CM6-1 7.51 -0.77 7.05 121.14 0.56 1.03 4.88 
CNRM-CM6-1-HR 7.53 -0.94 8.07 90.43 0.58 0.75 3.99 
CNRM-ESM2-1 5.70 -0.63 7.48 94.94 0.61 0.87 4.51 
CanESM5 7.61 -0.66 7.86 78.83 0.54 1.09 5.78 
E3SM-1-0 7.42 -0.64 8.43 43.77 0.36 1.41 5.81 
EC-Earth3 7.37 -0.82 8.46 38.41 0.48 1.43 4.48 
EC-Earth3-Veg 7.81 -0.85 8.12 38.54 0.45 1.42 4.57 
FGOALS-f3-L 9.54 -1.43 9.29 87.98 0.53 1.63 3.33 
FGOALS-g3 7.87 -1.28 8.21 112.65 0.67 1.30 3.07 
GFDL-CM4 8.45 -0.89 7.36 96.54 0.58 1.85 4.75 
GFDL-ESM4 7.34 -1.27 8.44 129.94 0.60 1.23 2.88 
GISS-E2-1-G 8.11 -1.46 6.52 145.03 0.85 1.09 2.78 
GISS-E2-1-H 7.58 -1.17 8.76 83.36 0.63 1.21 3.25 
GISS-E2-2-G 7.25 -1.63 8.63 293.05 0.57 0.72 2.23 
HadGEM3-GC31-LL 7.46 -0.62 8.07 78.11 0.51 1.23 5.98 
HadGEM3-GC31-MM 7.37 -0.67 7.85 70.75 0.61 1.07 5.53 
IITM-ESM 9.25 -1.93 9.38 159.19 0.73 1.07 2.39 
INM-CM4-8 6.25 -1.69 7.84 29.20 0.64 1.21 1.85 
INM-CM5-0 6.35 -1.59 9.20 51.95 0.55 1.38 2.00 
IPSL-CM6A-LR 7.52 -0.76 8.21 60.03 0.44 1.35 4.93 
MCM-UA-1-0 7.12 -1.04 8.48 129.93 0.74 0.80 3.41 
MIROC-ES2L 7.98 -1.54 10.82 199.60 0.66 0.89 2.59 
MIROC6 7.73 -1.36 9.00 182.38 0.64 1.31 2.84 
MPI-ESM1-2-HR 8.63 -1.34 8.89 84.13 0.66 1.49 3.23 
MPI-ESM1-2-LR 9.28 -1.46 9.25 104.63 0.63 1.29 3.18 
MRI-ESM2-0 8.03 -1.20 7.89 92.84 0.94 1.34 3.34 
NESM3 7.72 -0.83 5.50 103.69 0.47 0.97 4.62 
NorESM2-LM 10.21 -1.77 6.01 115.66 0.90 1.92 2.89 
NorESM2-MM 9.39 -1.69 6.13 116.97 0.79 1.66 2.77 
SAM0-UNICON 8.69 -1.14 7.67 106.86 0.82 1.21 3.83 
TaiESM1 8.51 -0.92 8.72 97.26 0.63 1.27 4.64 
UKESM1-0-LL 7.61 -0.68 7.77 77.15 0.54 1.14 5.57 
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Table S2: Correlation coefficients used for six-dimensional joint kernel density estimate 
for obtaining random “meta-models” derived from CMIP6 model fits. 

 F4x � C C0 � � 

F4x 1.0000 -0.4649 0.0134 0.0533 0.3159 0.4487 

�  1.0000 -0.3400 -0.3828 -0.1569 0.1990 

C   1.0000 0.1686 -0.4411 -0.4355 

C0    1.0000 0.1046 -0.2542 

�     1.0000 0.2857 

�      1.0000 

 
 
Table S3: 5th, 50th and 95th percentile aerosol forcing trend from 1980-2014 in CMIP6-
constrained and 12 CMIP6/chemistry-transport models, in W m-2 decade-1. Values plotted 
in Fig. 7. 

Time series 5% mean 95% 

CMIP6-constrained -0.074 0.025 0.111 
Unconstrained -0.086 0.088 0.282 
CanESM5 0.042 0.065 0.089 
E3SM-1-0 0.020 0.069 0.118 
GFDL-CM4 0.040 0.078 0.115 
GFDL-ESM4 -0.023 0.037 0.097 
GISS-E2-1-G -0.070 -0.026 0.018 
HadGEM3-GC31-LL 0.037 0.066 0.094 
IPSL-CM6A-LR -0.078 -0.03 0.019 
MIROC6 -0.040 -0.011 0.017 
MRI-ESM2-0 -0.103 -0.024 0.056 
NorESM2-LM 0.014 0.064 0.113 
UKESM1-0-LL 0.081 0.152 0.222 

 
 

Table S4: Mean, median, 68% and 90% ranges for aerosol forcing, ECS and TCR from 
each scaled historical aerosol time series based on weighted percentiles of the distribution 
after applying constraints. Aerosol ERFs are for 2019 relative to 1750. For CMIP6-
constrained, aerosol forcing estimates are from the updated CEDS emissions (O’Rourke 
et al., 2020), whereas for CMIP6 model estimates they are from SSP2-4.5. 

Time series Variable 5% 16% median mean 84% 95% 

CMIP6-

constrained 

 

ECS (°C) 1.76 2.15 2.89 3.10 3.94 5.11 

TCR (°C) 1.24 1.43 1.80 1.83 2.22 2.57 
ERFaer (W m-2) -1.55 -1.26 -0.87 -0.90 -0.54 -0.35 
ERFari (W m-2) -0.62 -0.47 -0.29 -0.31 -0.15 -0.08 
ERFaci (W m-2) -1.18 -0.93 -0.56 -0.59 -0.26 -0.10 

CanESM5 

 

ECS (°C) 1.66 1.98 2.65 2.78 3.44 4.29 
TCR (°C) 1.17 1.34 1.67 1.69 2.03 2.32 
ERFaer (W m-2) -0.97 -0.72 -0.36 -0.39 -0.08 0.08 
ERFari (W m-2) 0.04 0.07 0.12 0.12 0.18 0.22 
ERFaci (W m-2) -1.05 -0.83 -0.48 -0.51 -0.22 -0.09 

E3SM1-0 ECS (°C) 1.81 2.21 2.95 3.18 4.07 5.32 
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Time series Variable 5% 16% median mean 84% 95% 

TCR (°C) 1.26 1.47 1.81 1.86 2.24 2.59 
ERFaer (W m-2) -1.28 -1.10 -0.83 -0.83 -0.56 -0.40 
ERFari (W m-2) -0.60 -0.49 -0.33 -0.34 -0.20 -0.13 
ERFaci (W m-2) -0.91 -0.74 -0.48 -0.49 -0.24 -0.10 

GFDL-CM4 ECS (°C) 1.75 2.13 2.85 3.03 3.80 4.88 
TCR (°C) 1.23 1.42 1.76 1.79 2.15 2.46 
ERFaer (W m-2) -1.08 -0.88 -0.58 -0.60 -0.33 -0.20 
ERFari (W m-2) -0.21 -0.17 -0.12 -0.12 -0.07 -0.04 
ERFaci (W m-2) -0.98 -0.77 -0.45 -0.48 -0.20 -0.06 

GFDL-ESM4 ECS (°C) 1.78 2.17 2.88 3.10 3.91 5.15 
TCR (°C) 1.25 1.44 1.77 1.80 2.16 2.49 
ERFaer (W m-2) -1.23 -1.04 -0.73 -0.74 -0.45 -0.30 
ERFari (W m-2) -0.33 -0.27 -0.18 -0.19 -0.11 -0.07 
ERFaci (W m-2) -1.06 -0.86 -0.54 -0.56 -0.26 -0.11 

GISS-E2-1-G ECS (°C) 1.85 2.29 3.09 3.40 4.41 5.95 
TCR (°C) 1.29 1.50 1.87 1.93 2.35 2.75 
ERFaer (W m-2) -1.70 -1.43 -0.99 -1.00 -0.58 -0.35 
ERFari (W m-2) -0.26 -0.21 -0.15 -0.15 -0.09 -0.06 
ERFaci (W m-2) -1.57 -1.29 -0.84 -0.85 -0.43 -0.20 

HadGEM3-

GC31-LL  

ECS (°C) 1.75 2.13 2.87 3.05 3.86 4.89 
TCR (°C) 1.23 1.42 1.77 1.81 2.18 2.50 
ERFaer (W m-2) -1.36 -1.14 -0.80 -0.81 -0.49 -0.31 
ERFari (W m-2) -0.37 -0.30 -0.20 -0.21 -0.12 -0.08 
ERFaci (W m-2) -1.17 -0.94 -0.58 -0.60 -0.27 -0.10 

IPSL-CM6A-

LR 

ECS (°C) 1.80 2.22 2.98 3.21 4.14 5.42 
TCR (°C) 1.26 1.46 1.83 1.87 2.26 2.63 
ERFaer (W m-2) -1.25 -1.08 -0.82 -0.82 -0.55 -0.40 
ERFari (W m-2) -0.63 -0.51 -0.35 -0.36 -0.21 -0.13 
ERFaci (W m-2) -0.85 -0.70 -0.45 -0.46 -0.23 -0.10 

MIROC6 ECS (°C) 1.88 2.32 3.11 3.44 4.46 6.03 
TCR (°C) 1.30 1.52 1.88 1.94 2.36 2.76 
ERFaer (W m-2) -1.62 -1.38 -0.99 -1.00 -0.61 -0.40 
ERFari (W m-2) -0.43 -0.35 -0.24 -0.25 -0.14 -0.09 
ERFaci (W m-2) -1.40 -1.14 -0.73 -0.75 -0.36 -0.16 

MRI-ESM2-0 ECS (°C) 1.77 2.16 2.93 3.14 4.00 5.18 
TCR (°C) 1.24 1.44 1.80 1.84 2.23 2.58 
ERFaer (W m-2) -1.27 -1.09 -0.79 -0.80 -0.52 -0.36 
ERFari (W m-2) -0.52 -0.42 -0.29 -0.30 -0.17 -0.11 
ERFaci (W m-2) -0.97 -0.78 -0.49 -0.50 -0.23 -0.10 

NorESM2-

LM 

ECS (°C) 1.76 2.15 2.89 3.09 3.92 5.07 
TCR (°C) 1.24 1.43 1.78 1.82 2.20 2.52 
ERFaer (W m-2) -0.87 -0.67 -0.37 -0.39 -0.12 0.02 
ERFari (W m-2) 0.03 0.04 0.07 0.07 0.10 0.13 
ERFaci (W m-2) -0.92 -0.74 -0.44 -0.46 -0.20 -0.07 
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Time series Variable 5% 16% median mean 84% 95% 

Oslo-CTM3 

 

ECS (°C) 1.80 2.22 3.00 3.26 4.17 5.59 
TCR (°C) 1.26 1.47 1.83 1.88 2.28 2.65 
ERFaer (W m-2) -1.42 -1.19 -0.83 -0.86 -0.52 -0.35 
ERFari (W m-2) -0.43 -0.35 -0.24 -0.25 -0.15 -0.09 
ERFaci (W m-2) -1.20 -0.95 -0.58 -0.61 -0.27 -0.10 

UKESM1-0-

LL 

ECS (°C) 1.71 2.07 2.76 2.89 3.62 4.49 
TCR (°C) 1.21 1.39 1.73 1.75 2.10 2.39 
ERFaer (W m-2) -1.13 -0.96 -0.70 -0.71 -0.45 -0.31 
ERFari (W m-2) -0.47 -0.38 -0.26 -0.26 -0.15 -0.10 
ERFaci (W m-2) -0.86 -0.69 -0.42 -0.44 -0.20 -0.07 

 

Table S5: As Table S4, using only global-mean surface air temperature as the constraint. 
Time series Variable 5% 16% median mean 84% 95% 

CMIP6-

constrained 

 

ECS (°C) 1.93 2.34 3.08 3.39 4.36 5.84 
TCR (°C) 1.33 1.53 1.84 1.89 2.25 2.60 
ERFaer (W m-2) -1.43 -1.14 -0.77 -0.80 -0.45 -0.28 
ERFari (W m-2) -0.59 -0.44 -0.27 -0.29 -0.13 -0.06 
ERFaci (W m-2) -1.08 -0.82 -0.48 -0.51 -0.21 -0.05 

CanESM5 

 

ECS (°C) 1.89 2.29 2.96 3.22 4.06 5.35 
TCR (°C) 1.31 1.50 1.79 1.82 2.15 2.44 
ERFaer (W m-2) -0.83 -0.59 -0.25 -0.29 0.00 0.14 
ERFari (W m-2) 0.05 0.07 0.13 0.13 0.18 0.22 
ERFaci (W m-2) -0.93 -0.70 -0.38 -0.42 -0.15 -0.02 

E3SM1-0 ECS (°C) 1.92 2.33 3.06 3.38 4.33 5.84 
TCR (°C) 1.33 1.53 1.84 1.89 2.25 2.60 
ERFaer (W m-2) -1.22 -1.04 -0.76 -0.77 -0.49 -0.34 
ERFari (W m-2) -0.57 -0.46 -0.31 -0.33 -0.19 -0.12 
ERFaci (W m-2) -0.87 -0.69 -0.43 -0.44 -0.19 -0.07 

GFDL-CM4 ECS (°C) 1.92 2.33 3.04 3.33 4.26 5.65 
TCR (°C) 1.33 1.53 1.82 1.87 2.21 2.52 
ERFaer (W m-2) -1.01 -0.80 -0.52 -0.54 -0.28 -0.15 
ERFari (W m-2) -0.20 -0.16 -0.11 -0.12 -0.07 -0.04 
ERFaci (W m-2) -0.91 -0.69 -0.40 -0.42 -0.15 -0.02 

GFDL-ESM4 ECS (°C) 1.89 2.28 2.96 3.22 4.07 5.41 
TCR (°C) 1.31 1.50 1.79 1.83 2.16 2.47 
ERFaer (W m-2) -1.17 -0.96 -0.64 -0.66 -0.38 -0.23 
ERFari (W m-2) -0.32 -0.26 -0.18 -0.18 -0.10 -0.07 
ERFaci (W m-2) -1.00 -0.78 -0.45 -0.48 -0.19 -0.06 

GISS-E2-1-G ECS (°C) 1.95 2.37 3.15 3.51 4.56 6.24 
TCR (°C) 1.34 1.55 1.88 1.94 2.33 2.72 
ERFaer (W m-2) -1.62 -1.32 -0.87 -0.89 -0.47 -0.26 
ERFari (W m-2) -0.26 -0.21 -0.14 -0.15 -0.08 -0.05 
ERFaci (W m-2) -1.49 -1.18 -0.72 -0.75 -0.32 -0.12 

HadGEM3- ECS (°C) 1.93 2.34 3.07 3.37 4.32 5.78 
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Time series Variable 5% 16% median mean 84% 95% 

GC31-LL  TCR (°C) 1.33 1.53 1.84 1.88 2.24 2.57 
ERFaer (W m-2) -1.29 -1.07 -0.73 -0.75 -0.43 -0.27 
ERFari (W m-2) -0.36 -0.29 -0.20 -0.20 -0.12 -0.07 
ERFaci (W m-2) -1.10 -0.87 -0.52 -0.55 -0.23 -0.06 

IPSL-CM6A-

LR 

ECS (°C) 1.94 2.35 3.12 3.45 4.46 6.04 
TCR (°C) 1.34 1.54 1.86 1.92 2.30 2.67 
ERFaer (W m-2) -1.20 -1.03 -0.76 -0.76 -0.50 -0.35 
ERFari (W m-2) -0.60 -0.48 -0.32 -0.34 -0.19 -0.12 
ERFaci (W m-2) -0.81 -0.66 -0.41 -0.42 -0.20 -0.08 

MIROC6 ECS (°C) 1.95 2.38 3.17 3.53 4.58 6.27 
TCR (°C) 1.35 1.56 1.88 1.94 2.34 2.72 
ERFaer (W m-2) -1.56 -1.29 -0.88 -0.90 -0.52 -0.32 
ERFari (W m-2) -0.42 -0.34 -0.23 -0.24 -0.14 -0.09 
ERFaci (W m-2) -1.34 -1.05 -0.63 -0.66 -0.28 -0.09 

MRI-ESM2-0 ECS (°C) 1.93 2.34 3.08 3.39 4.35 5.82 
TCR (°C) 1.33 1.54 1.85 1.89 2.25 2.60 
ERFaer (W m-2) -1.20 -1.01 -0.71 -0.73 -0.45 -0.31 
ERFari (W m-2) -0.51 -0.41 -0.28 -0.29 -0.17 -0.11 
ERFaci (W m-2) -0.90 -0.70 -0.42 -0.44 -0.18 -0.06 

NorESM2-

LM 

ECS (°C) 1.93 2.34 3.07 3.38 4.33 5.79 
TCR (°C) 1.33 1.53 1.84 1.88 2.24 2.57 
ERFaer (W m-2) -0.79 -0.59 -0.31 -0.33 -0.08 0.05 
ERFari (W m-2) 0.03 0.04 0.07 0.07 0.10 0.13 
ERFaci (W m-2) -0.85 -0.66 -0.38 -0.40 -0.16 -0.03 

Oslo-CTM3 

 

ECS (°C) 1.95 2.37 3.15 3.49 4.51 6.13 
TCR (°C) 1.34 1.55 1.87 1.92 2.30 2.66 
ERFaer (W m-2) -1.34 -1.09 -0.74 -0.77 -0.45 -0.29 
ERFari (W m-2) -0.43 -0.35 -0.24 -0.25 -0.14 -0.09 
ERFaci (W m-2) -1.11 -0.86 -0.49 -0.52 -0.20 -0.05 

UKESM1-0-

LL 

ECS (°C) 1.90 2.31 3.00 3.27 4.15 5.47 
TCR (°C) 1.32 1.52 1.81 1.85 2.18 2.49 
ERFaer (W m-2) -1.07 -0.91 -0.65 -0.66 -0.41 -0.28 
ERFari (W m-2) -0.44 -0.36 -0.24 -0.25 -0.14 -0.09 
ERFaci (W m-2) -0.82 -0.65 -0.39 -0.41 -0.17 -0.05 

 
 
Table S6: As Table S4, using only Earth energy uptake as the constraint. 

Time series Variable 5% 16% median mean 84% 95% 

CMIP6-

constrained 

 

ECS (°C) 1.95 2.38 3.26 3.75 4.98 7.12 

TCR (°C) 1.33 1.54 1.94 2.05 2.55 3.13 
ERFaer (W m-2) -1.83 -1.53 -1.09 -1.10 -0.66 -0.39 
ERFari (W m-2) -0.64 -0.47 -0.29 -0.30 -0.14 -0.02 
ERFaci (W m-2) -1.48 -1.20 -0.78 -0.80 -0.39 -0.18 

CanESM5 ECS (°C) 1.90 2.33 3.20 3.68 4.89 7.00 
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Time series Variable 5% 16% median mean 84% 95% 

 TCR (°C) 1.31 1.52 1.91 2.02 2.51 3.09 
ERFaer (W m-2) -1.22 -0.96 -0.56 -0.57 -0.18 0.04 
ERFari (W m-2) 0.08 0.13 0.21 0.21 0.30 0.36 
ERFaci (W m-2) -1.40 -1.15 -0.77 -0.78 -0.40 -0.20 

E3SM1-0 ECS (°C) 1.96 2.38 3.25 3.73 4.95 7.03 
TCR (°C) 1.33 1.54 1.94 2.04 2.54 3.11 
ERFaer (W m-2) -1.52 -1.32 -0.99 -0.99 -0.65 -0.46 
ERFari (W m-2) -0.63 -0.52 -0.36 -0.37 -0.22 -0.14 
ERFaci (W m-2) -1.15 -0.94 -0.62 -0.62 -0.30 -0.14 

GFDL-CM4 ECS (°C) 1.99 2.41 3.30 3.80 5.10 7.23 
TCR (°C) 1.35 1.56 1.95 2.07 2.57 3.16 
ERFaer (W m-2) -1.40 -1.18 -0.83 -0.84 -0.49 -0.30 
ERFari (W m-2) -0.25 -0.21 -0.14 -0.15 -0.09 -0.06 
ERFaci (W m-2) -1.27 -1.04 -0.67 -0.69 -0.33 -0.15 

GFDL-ESM4 ECS (°C) 1.96 2.39 3.27 3.76 5.01 7.13 
TCR (°C) 1.33 1.54 1.94 2.05 2.55 3.14 
ERFaer (W m-2) -1.46 -1.26 -0.93 -0.92 -0.58 -0.39 
ERFari (W m-2) -0.41 -0.33 -0.23 -0.24 -0.14 -0.09 
ERFaci (W m-2) -1.23 -1.02 -0.68 -0.69 -0.35 -0.17 

GISS-E2-1-G ECS (°C) 1.97 2.39 3.26 3.75 4.98 7.09 
TCR (°C) 1.33 1.54 1.94 2.05 2.55 3.13 
ERFaer (W m-2) -1.93 -1.62 -1.14 -1.14 -0.65 -0.39 
ERFari (W m-2) -0.27 -0.22 -0.15 -0.16 -0.09 -0.06 
ERFaci (W m-2) -1.78 -1.47 -0.98 -0.98 -0.49 -0.24 

HadGEM3-

GC31-LL  

ECS (°C) 1.96 2.38 3.27 3.75 4.98 7.07 
TCR (°C) 1.33 1.54 1.94 2.05 2.55 3.12 
ERFaer (W m-2) -1.85 -1.57 -1.13 -1.13 -0.68 -0.43 
ERFari (W m-2) -0.41 -0.33 -0.23 -0.24 -0.14 -0.09 
ERFaci (W m-2) -1.63 -1.34 -0.89 -0.89 -0.44 -0.20 

IPSL-CM6A-

LR 

ECS (°C) 1.97 2.39 3.27 3.75 4.99 7.07 
TCR (°C) 1.34 1.54 1.94 2.05 2.55 3.13 
ERFaer (W m-2) -1.54 -1.34 -1.01 -1.00 -0.66 -0.46 
ERFari (W m-2) -0.62 -0.51 -0.35 -0.36 -0.21 -0.14 
ERFaci (W m-2) -1.16 -0.96 -0.64 -0.64 -0.32 -0.15 

MIROC6 ECS (°C) 1.98 2.41 3.29 3.78 5.03 7.13 
TCR (°C) 1.34 1.55 1.95 2.06 2.56 3.14 
ERFaer (W m-2) -1.81 -1.54 -1.11 -1.11 -0.68 -0.44 
ERFari (W m-2) -0.45 -0.37 -0.25 -0.26 -0.15 -0.10 
ERFaci (W m-2) -1.56 -1.28 -0.84 -0.85 -0.41 -0.19 

MRI-ESM2-0 ECS (°C) 1.93 2.35 3.19 3.66 4.86 6.93 
TCR (°C) 1.32 1.52 1.92 2.03 2.53 3.10 
ERFaer (W m-2) -1.56 -1.36 -1.00 -1.00 -0.63 -0.42 
ERFari (W m-2) -0.54 -0.45 -0.31 -0.32 -0.19 -0.12 
ERFaci (W m-2) -1.24 -1.02 -0.67 -0.68 -0.32 -0.15 
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Time series Variable 5% 16% median mean 84% 95% 

NorESM2-

LM 

ECS (°C) 1.97 2.39 3.28 3.76 5.01 7.11 
TCR (°C) 1.34 1.55 1.94 2.05 2.56 3.13 
ERFaer (W m-2) -1.10 -0.89 -0.55 -0.56 -0.22 -0.05 
ERFari (W m-2) 0.03 0.05 0.08 0.09 0.12 0.15 
ERFaci (W m-2) -1.18 -0.97 -0.63 -0.64 -0.31 -0.14 

Oslo-CTM3 

 

ECS (°C) 1.97 2.39 3.28 3.77 5.02 7.14 
TCR (°C) 1.34 1.55 1.94 2.05 2.56 3.13 
ERFaer (W m-2) -1.68 -1.43 -1.04 -1.04 -0.65 -0.43 
ERFari (W m-2) -0.50 -0.41 -0.28 -0.29 -0.17 -0.11 
ERFaci (W m-2) -1.40 -1.14 -0.74 -0.75 -0.36 -0.16 

UKESM1-0-

LL 

ECS (°C) 1.93 2.35 3.23 3.70 4.90 6.97 
TCR (°C) 1.32 1.53 1.93 2.03 2.53 3.10 
ERFaer (W m-2) -1.63 -1.40 -1.03 -1.03 -0.65 -0.43 
ERFari (W m-2) -0.50 -0.41 -0.29 -0.29 -0.18 -0.11 
ERFaci (W m-2) -1.35 -1.11 -0.73 -0.73 -0.35 -0.16 
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