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Abstract

A model-data inversion is applied to an extensive observational dataset collected in the Southern Ocean north of the Ross Sea

during late autumn to early winter, producing estimates of the frequency-dependent rate of dissipation by sea ice. The modeling

platform is WAVEWATCH III® which accounts for non-stationarity, advection, wave generation, and other relevant processes.

The resulting 9477 dissipation profiles are co-located with other variables such as ice thickness to quantify correlations which

might be exploited in later studies to improve predictions. An average of dissipation profiles from cases of thinner ice near

the ice edge is fitted to a simple binomial. The binomial shows remarkable qualitative similarity to prior observation-based

estimates of dissipation, and the power dependence is consistent with at least three theoretical models, one of which assumes

that dissipation is dominated by turbulence generated by shear at the ice-water interface. Estimated dissipation is lower closer

to the ice edge, where ice is thinner, and waveheight is larger. The quantified correlation with ice thickness may be exploited

to develop new parametric predictions of dissipation.
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Highlights 

- Frequency dependence of dissipation by sea ice is estimated for an extensive dataset. 

- Power dependence on frequency is found to be power two to four. 

- A negative correlation is found between waveheight and dissipation rate. 

- A positive correlation is found between ice thickness and dissipation rate. 

- Correlation of dissipation with ice thickness can be exploited in predictive models. 

Long-form highlights 

- Frequency dependence of dissipation by sea ice is estimated for an extensive dataset (9477 records) near 

Antarctica using model/data inversion. 

- Power dependence of dissipation rate on frequency in thinner ice near the ice edge is found to be well 

represented by a power two and four binomial, or power 3.5 monomial. 

- Estimated dissipation is lower closer to the ice edge, where ice is thinner, and waveheight is larger. 

- The positive correlation between ice thickness and dissipation rate can potentially be exploited for 

predictive models. 
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Abstract 

A model-data inversion is applied to an extensive observational dataset collected in the Southern 

Ocean north of the Ross Sea during late autumn to early winter, producing estimates of the 

frequency-dependent rate of dissipation by sea ice. The modeling platform is WAVEWATCH 

III® which accounts for non-stationarity, advection, wave generation, and other relevant 

processes. The resulting 9477 dissipation profiles are co-located with other variables such as ice 

thickness to quantify correlations which might be exploited in later studies to improve 

predictions. An average of dissipation profiles from cases of thinner ice near the ice edge is fitted 

to a simple binomial. The binomial shows remarkable qualitative similarity to prior observation-

based estimates of dissipation, and the power dependence is consistent with at least three 

theoretical models, one of which assumes that dissipation is dominated by turbulence generated 

by shear at the ice-water interface. Estimated dissipation is lower closer to the ice edge, where 

ice is thinner, and waveheight is larger. The quantified correlation with ice thickness may be 

exploited to develop new parametric predictions of dissipation. 

1. Introduction 

During the past 20 years, open-ocean spectral wave modeling has achieved high levels of 

accuracy, e.g. Bidlot (2018), primarily driven by improvements to accuracy in wind forcing and 

physics parameterizations (e.g. Ardhuin et al. 2010, Liu et al. 2019). However, areas near 

coastlines and the sea ice margins remain a challenge, with relatively large errors and therefore 

substantial improvements possible (e.g. Cavaleri et al. 2018 and Sutherland et al. 2018, 

respectively). Predictions near the ice edge fall into two broad categories: the off-ice wind 

scenario, and the on-ice wave scenario. In the former case, errors are caused by uncertainty in the 

ice edge location, and challenges with describing the rarely-studied conditions of growth in 

partial ice cover and the ubiquitous atmospheric instability (i.e. cold air blowing from the ice 

onto warmer water; see Gemmrich et al. (2018)). Modeling the on-ice wave scenario also suffers 

from the uncertainty of the ice edge position. In addition, wave conditions within the ice are 

dominantly determined by the model’s representation of dissipation by sea ice. Fundamentally, 

this dissipation is strongly dependent on frequency (e.g. Wadhams et al. 1988). The objective of 

this paper is to use observational data to estimate this frequency-dependent dissipation rate and 

study possible dependencies, to guide future improvements to parameterizations of dissipation 

used by spectral wave models, and thence improvements to the accuracy of these models in on-

ice wave conditions. 

More recently, there has been a surge in research activity on the topic of wave-ice interaction. 

This includes theoretical studies, numerical modeling studies, laboratory studies, and studies 

using field observations, either in situ observations or those from remote sensing. To 

demonstrate this quantitatively, we surveyed peer-reviewed articles published from 2015 to 

2019. We found 32 articles for which the dissipation of wave energy by sea ice is a primary 

feature (e.g. Toffoli et al. 2015, Ardhuin et al. 2016, Asplin et al. 2018, Boutin et al. 2018, 

Herman et al. 2019, Marchenko et al. 2019, Voermans et al. 2019, Yue et al. 2019). In addition, 

we find nine other articles which are primarily concerned with both dissipation and changes to 

wavelength caused by the ice (e.g. Li et al. 2015a, Zhao et al. 2017), and four that are primarily 

concerned with the changes to wavelength (e.g. Sree et al. 2018). We find nine other articles 

primarily about the scattering and reflection of wave energy by sea ice (e.g. Montiel et al. 2016, 

Orzech et al. 2016, Bennetts and Williams 2015). We find 15 articles which treat the impact of 
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waves on ice, either by fracturing the ice (e.g. Bennetts et al. 2017) or by determining the ice 

type during growth (Roach et al. 2018, Shi et al. 2019). We find six review articles during this 

period (e.g. Shen 2019). A detailed review of all these topics is beyond the scope of this paper, 

but the latter review article and Squire (2020) are a good starting point for interested readers. 

Among wave-ice interaction studies, observational campaigns in the southern hemisphere are in 

the minority. To the authors' knowledge, the earliest study was that of Robin (1963) describing 

measurements using a ship-borne wave recorder in the Weddell Sea during 1959-1960. These 

measurements used early technology, and since wave observations were local to the ship, results 

were described not in terms of dissipation rate (the critical parameter required by a modern 

numerical wave model), but instead in terms of the distance of penetration of swells into the ice 

field. Robin found that this value depends on three rather intuitive parameters: wave period (or 

length), ice thickness, and floe size, with the first being important in all cases, the second being 

important for long waves, and the third being important for shorter waves. Doble and Wadhams 

(2006) and Doble (2009) describe a buoy deployment in the Weddell Sea in 2000, with particular 

attention to autumn ice growth and interaction with pancake and frazil ice. Doble and Bidlot 

(2013) study data from a buoy from the same deployment, but five months later (late winter/early 

spring), when the buoy was in pack ice during an energetic breakup event. Kohout et al. (2014) 

and Meylan et al. (2014) analyzed data from a buoy deployment during the SIPEX II voyage in 

2012 north of Wilkes Land, Antarctica; these data have since been used also by Li et al. (2015b) 

and Liu et al. (2020). In July 2017, C. Eayrs (New York Univ.) and others deployed wave-buoys 

north of Queen Maud Land, Antarctica (Vichi et al. 2019); Alberello et al. (2019) study pancake 

and frazil ice formation during the same experiment. 

The present study uses another buoy dataset collected only a month earlier (June 2017), part of a 

larger dataset obtained north of the Ross Sea. This builds on a previous analysis by Kohout et al. 

(2020), who looked at the decay rate of total energy (i.e. significant waveheight) within the sea 

ice for the full wave buoy dataset (April to July 2017). That study found that the decay is 

generally linear exponential, and concluded that dissipation increases with ice concentration. The 

present study uses model-data inversion to estimate the frequency distribution of the dissipation 

rate. A notable advantage of the model-data inversion method is that it does not require that 

wave energy travels primarily along an axis between two buoys. 

A remarkable feature of the Kohout et al. (2020) dataset is its size: we are not aware of any prior 

study of spectral dissipation by sea ice using a larger dataset. The full dataset includes over 

14,000 spectra (21 April to 26 July), and the present study uses 9477 of those records for co-

locations during 6 to 30 June. This large population enables a robust evaluation of the correlation 

between the dissipation rate and several additional variables (“tertiary variables”), such as 

satellite-based ice thickness estimates. 

The paper is structured as follows. Section 2 reviews the literature on the topic of the frequency 

dependence of dissipation. Section 3 gives a brief overview of the field experiment. Section 4 

describes the wave model, Section 5 describes the model-data inversion, and Section 6 presents 

the results of the analysis. Section 7 presents possible simple fits to the mean dissipation profiles. 

Summary and conclusions are given in Section 8. 
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2. Brief review of frequency dependence in the literature 

Modern numerical wave models, e.g. WAVEWATCH III®, introduced in Section 4.1, compute 

the dissipation by sea ice as 𝑆𝑖𝑐𝑒 = −2𝐶𝑔𝑘𝑖𝐸, where 𝐶𝑔 is the group velocity, 𝐸 is spectral 

energy density, and 𝑘𝑖 is the exponential rate of spatial decay of wave amplitude or waveheight, 

e.g. 𝑎(𝑥) = 𝑎0𝑒
−𝑘𝑖𝑥, where 𝑎 is the amplitude, 𝑎0 is the initial amplitude and 𝑥 is the distance.  

Observations suggest that the 𝑆𝑖𝑐𝑒 source term is a low-pass filter. Contrary observations of a 

“roll-over” effect, i.e. lower dissipation rate at high frequencies relative to mid-frequencies, are 

suspected as an artifact of disregarding local windsea growth (Wadhams et al. 1988; Rogers et al. 

2016; Li et al. 2017) or of failing to account for instrument noise (Thomson et al. 2020). 

Parametric representation of the low-pass filter is determined by the shape of 𝑘𝑖(𝑓), where 𝑓 

denotes frequency. If the 𝑘𝑖(𝑓) profile increases continuously 𝑘𝑖(𝑓) ∝ 𝑓𝑛 may be suitable, and 

is in fact widespread in the literature. Here, we summarize values of power dependence 𝑛 which 

we have found in the literature. 

 Fit to data derived from sonar observations in Greenland Sea, Wadhams (1978), 

according to Squire 1998, n=2. 

 A viscoelastic model, the first of two new models proposed by Meylan et al. (2018), n=2. 

 A viscoelastic model, the second of two new models proposed by Meylan et al. (2018), 

n=3. 

 Derived from buoy observations near Antarctica, Meylan et al. (2014), binomial with n=2 

and 4. Meylan et al. (2018) report a best fit of n=1.9 for the same dataset. 

 Derived from buoy observations in pancake ice near Antarctica, Doble et al. (2015): 

n=2.1. Meylan et al. (2018) report a best fit of n=2.9 for the same dataset. Sutherland et 

al. (2019) report a best fit of n=3.8 for this dataset, using a subset of the total frequency 

range. 

 Derived from observations in the Greenland and Bering Seas, reported in the seminal 

work of Wadhams et al. (1988). This dataset is highly scattered, either due to highly 

varied conditions, or less precise methods. In Meylan et al. (2018), a best fit of n=3.6 is 

reported for this dataset. 

 Derived from buoy observations in and near the Beaufort Sea, Rogers et al. (2016, 

2018a), binomial with n=2 for the first term and n=4 to 5 for the second. 

 For the same experiment in the Beaufort Sea, Cheng et al. (2017) estimated dissipation 

rates, and Meylan et al. (2018) report a best fit of n=3.6. 

 Viscoelastic model of Robinson and Palmer (1990) as reduced by Meylan et al. (2018), 

n=3. See also Liu et al. (2020). 

 Boundary layer model, by F. Ardhuin (newer variant of ‘IC2’ in WAVEWATCH III): 

turbulent regime: n=3 and laminar regime: n=3.5. This is described in Appendix B of 

Stopa et al. (2016). 

 Inextensible surface cover, Weber (1987) (from Lamb 1932): n=3.5. Weber (1987) 

invokes the concept of eddy viscosity to represent turbulence in the lower/water layer, 

such as might occur due to shear at the ice/water interface.  

 Empirical fit to airborne data by Sutherland et al. (2018): n=3.5. 

 Friction model, Kohout et al. (2011): n=4. 

 Viscous water model, Lamb (1932), Weber (1987): n=5. 

 Empirical fit to laboratory data by Rabault et al. (2019): n=6 to 6.5. 
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 Viscous ice model, Keller (1998) (this can be recovered in WAVEWATCH III using the 

‘IC3’ viscoelastic model with zero elasticity): n=7. 

 A viscoelastic model introduced in Mosig et al. (2015) and implemented in 

WAVEWATCH III by Liu et al. (2020). It is referred to as the “extended Fox and 

Squire” (EFS) model in the latter paper. Meylan et al. (2018) call it the “viscous 

Greenhill” model, and find: n=11. 

More detailed descriptions of some of these can be found in Meylan et al. (2018) and Rogers et 

al. (2018a,b). 

3. Field experiment (overview) 

The wave observations used in this study are described in Kohout and Williams (2019) and 

Kohout et al. (2020). Here, we provide a brief overview. 

During the Polynyas, Ice Production, and seasonal Evolution in the Ross Sea (PIPERS) 

expedition in 2017, 14 waves-in-ice observation systems (WIIOS, Kohout et al. 2015) were 

deployed on Antarctic sea ice, in the Southern Ocean north of the Ross Sea. Four buoys were 

deployed during the transit south toward the Ross Sea on 21-22 April 2017, and ten more were 

deployed during the outbound transit, 30 May to 3 June, with the first data recorded on 2 June.  

The inbound deployment was near 172˚E, and the outbound deployment was approximately 470 

km east of that, near 184˚E. Buoy survival durations varied significantly, with the last record of 

the western (inbound) group coming on 6 July (10.8-week duration) and the last record of the 

eastern (outbound) group on 26 July (7.7-week duration).  Figure 1 shows the geographic 

location of the PIPERS deployment relative to three other notable wave-ice field experiments 

near Antarctica: an experiment in 2000 in the Weddell sea reported by Doble and Wadhams 

(2006); an experiment in 2012 north of Wilkes Land reported in Kohout et al. (2014) and Meylan 

et al. (2014); and an experiment in July 2017 with data collected by C. Eayrs, north of Queen 

Maud Land, reported in Vichi et al. (2019).  

One buoy in the eastern group had a GPS failure, so effectively there are four and nine buoys in 

the west and east group, respectively. The spectral energy, 𝐸(𝑓), data are provided with a 

precision of 1 × 10−6 m2/Hz. The full dataset includes 23,206 spectra with valid GPS 

coordinates. Of these, records with significant waveheight 𝐻𝑚0<0.1 m are omitted here to 

improve the overall signal-to-noise ratio, leaving 14,602 spectra. In this study, we analyze data 

from the eastern (outbound) grouping during 24 days of the transition from late autumn to early 

winter: 6 to 30 June. This subset includes 9511 spectra and all of the large wave events (observed 

𝐻𝑚0>3 m) of the full dataset. As will be described in Section 5, the model-data inversion 

requires us to omit cases of low ice concentration, leaving 9477 spectra. The final number 

represents 41% of the full dataset and is at least 35 times larger than the dataset collected in 

SIPEX II (with 268 records), as previously noted by Kohout and Williams (2019). 

Six of the buoys in the eastern group have more than 500 records each; information about these 

buoys are described in Table 1, and time series of the distance to the ice edge1 for each of these 

six buoys are shown in Figure 2. Each wave buoy is deployed directly on the ice, either on an 

                                                 

1 see Section 6.1 for definition 
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existing floe or on continuous ice. The buoys are designed never to be retrieved, so all processing 

is performed onboard and data is sent by satellite telemetry. The primary component of the buoy 

is an Inertial Measurement Unit (IMU). Two of the nine buoys in the eastern grouping deployed 

deepest in the ice used high precision IMUs, with the expectation that they would experience the 

lowest wave energy; these included buoy 14, listed in Table 1. The buoys were thoroughly tested 

prior to PIPERS (Kohout and Williams 2019). 

The WIIOS buoys record the motion of the floe upon which they rest. They can be expected to 

measure the motion of the underlying sea surface if either the floe is small relative to the 

wavelength being measured, or if the floe is large but bending freely such that it follows the sea 

surface. In either case, the response function is 1:1. However, if the floe is large and rigid, there 

will be an unknown deviation, particularly for higher frequencies. 

In this region and season, southerly katabatic winds push new ice northward from the Ross Sea 

(Kohout and Williams 2019) while wave conditions are dominated by extratropical storms in the 

Southern Ocean which generate swells arriving primarily from the northwest. The waves may 

transfer momentum to the mean flow and ice as they decay (Liu and Mollo-Christensen 1988; 

Stopa et al. 2018), which would result in a southward stress countering the northward wind 

stress. The eastern buoys were deployed along a south to north (meridional) transect, but they 

drifted to a roughly west-southwest to east-northeast orientation by mid-June. (Diagrams and an 

animation of the buoy tracks are provided with the Supplemental Information.)  Ship-based ice 

observations were made using the Antarctic Sea Ice Processes and Climate (ASPeCt) protocol 

(Worby 1999). Ice consisted primarily of floes from new sheet ice (15-30 cm thick) and first-

year ice (30 to 70 cm thick). This is summarized in Table 1, and more details can be found in 

Kohout et al. (2020). 

Figure 3 shows an example of wave spectra for the six buoys, using the same color scheme as 

used in Figure 2. By comparing the two figures, one can see the correspondence between the 

damping of the spectrum and distance from the ice edge, with damping occurring first at higher 

frequencies, and then more noticeably at the dominant frequencies for the buoys farther in the 

ice. At the lowest energy levels, the high-frequency tail slope is flatter than what might be 

expected in a spectrum in ice, recalling that ice acts as a low-pass filter, which should result in a 

steep slope. The tail may be “propped up” by an unknown physical process, or by instrument 

noise. The energy levels below which the spectral tails are noticeably elevated—either by noise 

or the unknown physical process—are indicated in Figure 3. This is discussed further in Section 

6.3 and the Appendix.  
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Table 1. WIIOS deployments for PIPERS-17: Only buoys in eastern grouping with 500 or more 

data records are included. Notation: ℎ𝑖𝑐𝑒, 𝑑𝑖𝑐𝑒, 𝑎𝑖𝑐𝑒 are ice thickness, floe size, and concentration 

respectively. Buoys are given here in order of deployment, from south to north. Note that the 

sizes of the floes on which the buoys are deployed are not known generally. Floes may have 

broken after deployment, and some buoys far from the ice edge were actually deployed on the 

continuous ice and became “buoys on floes” later. 

 floe upon which 

the buoy is 

deployed 

most prevalent ice near the 

buoy, from nearest ASPeCt 

record 

# of 

spectra 

init. 

dist. 

from 

ice 

edge 

(km) 
Buoy 

# 

Buoy 

ID 

hice 

(cm) 

dice (m) aice hice 

(cm) 

dice (m) 

14 A-34* 54 N/A (cont. 
ice) 

100% 50 100-500 509 244 

5 B-25 60 100 100% 60, 75 20-100 1349 175 

6 B-26 70 20 100% 30 20-100 1746 153 

7 B-27 36 40  50% 30 20-100 1830 151 

9 B-29 50 40 100% 20 <20 
(cake) 

1668 133 

10 B-30 75 20 100% 30 20-100 2052 118 

* equipped with high-precision “Kistler” accelerometer  
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Figure 1. The geographic location of the observational campaign used in this paper (PIPERS-17) 

is marked in blue. Other observational studies are indicated as historical context and potential 

further work with comparable inversion exercises. Dashed colored lines are model grids and 

solid colored lines approximately denote the bounds of observational data for each case. Dashed 

blue box (for PIPERS-17) is the model domain of this study. Dashed green box (for SIPEX-12) 

is from Li et al. (2015b) (1/4˚ resolution). Dashed purple box (for Eayrs-17) pertains to a 

hindcast that will be reported on separately. 
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Figure 2. Positions of the six buoys, relative to the ice edge. The vertical line here indicates the 

time used in Figures 3, 4, and 5.  
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Figure 3. Energy spectra from the six buoys during the period of 0900 to 1000 UTC 19 June 

2017. This uses the same color scheme as Figure 2. The thick horizontal lines indicate energy 

levels below which the tail is visibly “propped up”, presumably by instrument noise. 

4. Wave model  

4.1. General description 

The wave model used in this study WAVEWATCH III® (WW3, Tolman 1991, WW3DG 2016). 

This is a phase-averaged spectral model for which the prognostic variable is wave action spectral 

density, which is the wave energy spectral density divided by the angular wave frequency: 𝑁 =
𝐸/𝜎, where 𝜎 = 2𝜋𝑓 = 2𝜋/𝑇 (𝑇 denoting wave period). The spectrum is a function of 

wavenumber or angular frequency (𝑘 or 𝜎), direction (𝜃), space (𝑥, 𝑦 or longitude, latitude), and 

time (𝑡). The left-hand side of the radiative transfer equation includes terms for the time rate of 

change and propagation in the four dimensions (kinematics), while the right-hand side provides 

source functions (dynamics): 

 𝜕𝑁

𝜕𝑡
+ ∇ ∙ 𝑐𝑁 =

𝑆

𝜎 
(1) 
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where 𝑐 is a four-component vector describing the propagation velocities in x, y, k, and θ. For 

example, in the absence of currents, cx is the x-component of group velocity Cg. The sum of all 

source functions is denoted as 𝑆, and individual source functions are indicated with an 

appropriate subscript: 𝑆𝑖𝑛, 𝑆𝑤𝑐, 𝑆𝑛𝑙4, and 𝑆𝑖𝑐𝑒 being energy input from wind, dissipation by 

whitecapping, four-wave nonlinear interactions, and dissipation by sea ice, respectively. We use 

the “source term package” of Ardhuin et al. (2010) known as ‘ST4’, for 𝑆𝑖𝑛 and 𝑆𝑤𝑐. In this 

package, swell dissipation (weak losses of energy not associated with breaking) is formally part 

of 𝑆𝑖𝑛. For 𝑆𝑛𝑙4, we use the Discrete Interaction Approximation (DIA) of Hasselmann et al. 

(1985). 

𝑆𝑖𝑐𝑒 is scaled by areal ice fraction 𝑎𝑖𝑐𝑒, following Doble and Bidlot (2013), and the default 

behavior of WW3 (WW3DG 2016) is to scale open water source terms by the open water 

fraction, 1 − 𝑎𝑖𝑐𝑒: 

 𝑆 = (1 − 𝑎𝑖𝑐𝑒)(𝑆𝑖𝑛 + 𝑆𝑤𝑐 + 𝑆𝑛𝑙4) + 𝑎𝑖𝑐𝑒𝑆𝑖𝑐𝑒
 

(2) 

The scaling of open water source terms is an essential concept in our analysis. In case of full 

omission of the scaling for all three terms, we have: 

 𝑆 = 𝑆𝑖𝑛 + 𝑆𝑤𝑐 + 𝑆𝑛𝑙4 + 𝑎𝑖𝑐𝑒𝑆𝑖𝑐𝑒
 

(3) 

The scaling of 𝑆𝑖𝑛 is particularly debatable, since the transfer of energy from wind to waves 

occurs through normal stresses, and one can easily imagine that normal stresses remain effective 

(or partially effective) in cases where the ice is composed of frazil, brash, or pancakes, or when 

floe size is small relative to wavelength. The optimal representation is somewhere between (2) 

and (3) and is probably frequency-dependent. The scaling of 𝑆𝑛𝑙4 is similarly in doubt: see 

discussion of relevant literature in Rogers et al. (2016). Scaling of 𝑆𝑤𝑐, on the other hand, is 

unlikely to be as consequential, since in ice, 𝑆𝑤𝑐 will tend to be small or zero. 

Where 𝑘𝑖 gives the exponential decay rate of amplitude in the space domain, the exponential 

decay rate of energy in the time domain, prior to scaling by 𝑎𝑖𝑐𝑒, is computed as 𝐷𝑖𝑐𝑒 ≡ 𝑆𝑖𝑐𝑒/𝐸 =
−2𝐶𝑔𝑘𝑖. The group velocity 𝐶𝑔 can, in principle, be affected by ice cover, particularly in 

frequencies above 0.3 Hz (Cheng et al. 2017; Collins et al. 2018), but here we simply assume 

that the group velocity is the open water group velocity. 

In the analysis of observational studies, where a positive correlation between dissipation rate and 

ice concentration is reported, it is crucial to note whether the authors are referring to 𝑆𝑖𝑐𝑒 or 

𝑎𝑖𝑐𝑒𝑆𝑖𝑐𝑒. In the case of Kohout et al. (2020), the positive correlation is referring to the latter, 

scaled term. In Section 6.3, we look at the correlation between ice concentration and the former, 

unscaled term (or, more precisely, 𝑘𝑖). 

4.2. Implementation for this study 

The specific implementation of WW3 used in this study is described in this section. 

Wind forcing in the form of 10-m wind vectors comes from archives of the U.S. Navy’s global 

atmospheric model, NAVGEM (Hogan et al. 2014), at 3-hourly intervals and 1/4˚ geographic 

resolution. Ice concentration forcing for the nested grid come from AMSR2 analyses using the 
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“ARTIST” algorithm, Spreen et al. (2008) and Beitsch et al. (2013, 2014). This ice concentration 

product is at relatively high geographic resolution (median spacing is 3.05 km) but relatively low 

temporal resolution (one field every 24 hours). 

The wave model grid receives boundary forcing from a global model hindcast. The global model 

was run from 0000 UTC 23 May 2017 to 0000 UTC 30 June 2017. The global grid design 

known as “Irregular-Regular-Irregular” (Rogers and Linzell 2018) is used. Resolution is 1/4˚ at 

low latitudes and 18 km south of 50˚S.  

The ‘ST4’ package for open water source terms is used with the ‘DIA’ method of computing 

nonlinear interactions. The spectral grid includes 36 directional bins and 31 frequency bins 

(0.0418 to 0.73 Hz, logarithmically spaced). The wind input source term of Ardhuin et al. (2010) 

requires specification of a wind input calibration parameter, 𝛽𝑚𝑎𝑥; a value of 1.2 is used for 

these hindcasts. 

The nested grid bounds are indicated in Figure 1 and Figure 4. The PIPERS grid is bounded by 

140˚E, 195˚E, 70.1˚S, and 60˚S and contains 292× 103 sea points. The computational grids are 

polar stereographic and match the grids of the ice concentration input (3.05 km median 

resolution). 

The northern limit of the nest, 60˚S, is selected so that all relevant ice is entirely inside the nest 

during the simulation period. This implies that the 𝑆𝑖𝑐𝑒 settings of the global model are 

inconsequential to the inversion. 

The WW3 nest and example output are shown in Figure 4. The time period, 0900 UTC 19 June 

2017, corresponds to the time period used in Figure 3. Buoy positions are marked with filled 

circles, using the color scheme of Figure 3. Buoy 9 (red circle) and 10 (blue circle) are used later, 

in Figure 5. Note that for this case, the mean wave direction approximately matches the axis 

between these two buoys. An animation of images similar to Figure 4 are provided with the 

Supplemental Information.  
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Figure 4. Wave conditions predicted by WW3 for the period of 0900 UTC 19 June 2017. Red 

lines indicate the northern and southern boundary of the WW3 nest. Colors indicate the 

significant waveheight in meters. Arrows indicate the mean wave direction. Contours indicate ice 

concentration at 20%, 40%, 60%, and 80%. This is the same time period used in Figure 3. Buoys 

are marked with dots, using the color scheme of the prior two figures. The yellow dot is the last 

surviving buoy in the western/inbound buoy group, not used in this paper.  

5. Inversion process: introduction 

Here we use the inversion method introduced in Rogers et al. (2016). In briefest terms, the 

objective is to determine the value of attenuation rate 𝑘𝑖(𝑓) which provides a match between the 

modeled energy density spectrum 𝐸(𝑓) and the corresponding observed 𝐸(𝑓). Thus, for each 

observational 𝐸(𝑓), a dissipation profile 𝑘𝑖(𝑓) is determined. 

The discrete frequencies on which the modeled and observed 𝐸(𝑓) are natively described have 

dissimilar minimum, maximum, and spacing. For the purpose of the inversion, these are 

remapped to new distributions over the region in which they overlap, 0.042 to 0.472 Hz. These 

new frequency bins are coarser than either of the native frequency distributions, to increase 

degrees of freedom and improve stability (e.g. Elgar 1987). 

There are 16 coarse frequency bins, with spacing at or near 0.020 Hz at lower frequencies, and 

spacing at or near 0.039 Hz at higher frequencies. The left (i.e. low frequency) side of the first 

bin is 0.042 Hz, and the right side of the last bin is 0.472 Hz.  

The primary computational component of the inversion consists of repeated simulations with a 

fixed value of 𝑘𝑖. Linear interpolation is performed between these values to find the “optimal” 
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𝑘𝑖, where observed 𝐸(𝑓) should match the modeled 𝐸(𝑓). The process is described and 

illustrated in Rogers et al. (2016). The inversion here includes 20 𝑘𝑖 values (so 20 hindcasts). 

The spacing is finer for the smaller values. In units of 1/m, 𝑘𝑖 values are: [0, 1e-6, 2e-6 ,..., 

2000e-6 , 4000e-6 , 9000e-6]. Note that since negative values of 𝑘𝑖 are not included in this set, 

solutions of negative 𝑘𝑖 are effectively disallowed. This is discussed further below. 

Since the inversion seeks to match the buoy observations by selecting the optimal 𝑘𝑖 value, and 

the source term 𝑆𝑖𝑐𝑒 is scaled by ice concentration 𝑎𝑖𝑐𝑒, it does not return a valid solution in cases 

of 𝑎𝑖𝑐𝑒=0, and for cases of small 𝑎𝑖𝑐𝑒, the solution 𝑘𝑖 is less stable. Therefore, these cases are 

omitted. We use the semi-arbitrary cut-off of 𝑎𝑖𝑐𝑒=0.22. As noted in Section 3, we use data from 

the eastern buoy group collected during the period starting 0000 UTC 6 June and ending 0000 

UTC 30 June 2017. 

Attenuation rates are traditionally estimated by computing differences in wave energy measured 

by two buoys, preferably two buoys along the primary axis of wave propagation, e.g. Meylan et 

al. (2014). We refer to this herein as the “geometric” method. The model/data inversion method 

is particularly appropriate here because it does not require that buoy configuration is aligned with 

the mean wave direction: in this field study, buoys became misaligned over time due to drift 

(Section 3). Other advantages and disadvantages of the inverse method used here, relative to the 

geometric method, are summarized in Rogers et al. (2020). 

Figure 5 compares the inverse method with the geometric method for a single time period. 

Colored lines are from the same PIPERS example used in prior figures (0600 to 1200 UTC 19 

June 2017). Thin green lines are 𝑘𝑖(𝑓) profiles estimated by the inverse method at the inner 

buoy, which is #10 in this case. Thin red lines are 𝑘𝑖(𝑓) profiles estimated by the inversion 

method at the outer (near the ice edge) buoy, which is #9 in this case.  There are multiple lines 

for each because the entire period from 0600 to 1200 UTC 19 June 2017 is used. The inversion 

estimates 𝑘𝑖(𝑓) at each buoy, independent of other buoys. The thick blue line is the estimate of 

𝑘𝑖(𝑓) using the traditional geometric approach and corresponds to an average for the six-hour 

period. Three reference profiles are also shown in this figure. “SIPEX-12” is the fitted profile 

from Meylan et al. (2014). “SWIFT WA3” is the profile fitted to an inversion (Rogers et al. 

2018b) using SWIFT buoys (Thomson 2012) in “Wave Array 3” of the Sea State field 

experiment (Thomson et al. 2018). The PIPERS reference profile is an average profile from the 

present study, denoted “mean 2” (M2), presented in Section 7 and Figure 8. 

In the inversion, there is no guarantee that the dissipation of wave energy by sea ice will be much 

larger than the errors in the wave model. In our case, this was most evident at the two lowest 

frequency bins (0.042 to 0.08 Hz, i.e. wave periods larger than 12.5 seconds). At low 

frequencies, 𝑘𝑖 is small, and its impact may be lower than model errors, such as the error in the 

boundary forcing. For example, if our global model is providing boundary spectra that is too 

weak (low energy), the inversion will seek to compensate by reducing 𝑘𝑖. In our evaluation of 

profiles, we treat these first two bins with enhanced suspicion. 

At high frequencies, another challenge exists. The lower the energy density 𝐸(𝑓), the more 

likely it is to be substantially affected by noise (Figure 3 and Thomson et al. (2020)). We flag 

𝑘𝑖(𝑓) solutions as unusable when 𝐸(𝑓) < 𝐽𝐸𝑛, where 𝐸𝑛 is the estimated noise level and 𝐽 is a 

subjective setting, with 𝐽 = 10 being a more aggressive noise-removal setting, and 𝐽 = 1 being a 
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setting which retains more data. Since noise increases with total energy, a threshold based on 

observed significant waveheight, 𝐸𝑛(𝐻𝑚0) is used rather than a fixed 𝐸𝑛. This anti-noise 

algorithm is described in the Appendix.  

 

Figure 5. Estimated dissipation rates, as a function of frequency (“dissipation profiles”, 𝑘𝑖(𝑓)), 
comparing the inversion results (thin green and red lines) against the results from the simple 

geometric method (thick blue line). Grey and black lines are reference profiles. See text for 

explanation. 

6. Inversion results (dissipation profiles) 

This section discusses the 𝑘𝑖(𝑓) profiles resulting from the application of the inverse method to 

the PIPERS dataset. The overall goal is to identify the correlation between the 𝑘𝑖(𝑓) profiles and 

other variables. Since 𝑘𝑖 and frequency are the primary and secondary variables presented, and 

these other variables are referred to here as “tertiary variables”. 

6.1. Methods: co-located variables (tertiary parameters) 

In this section, we list the tertiary variables which we will inspect for correlation with 𝑘𝑖(𝑓) 
profiles from the inversions. 

Ice concentration, 𝑎𝑖𝑐𝑒 estimates are taken from AMSR2 and are the same fields as used in the 

model forcing (Section 4.2). 
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Ice thickness, ℎ𝑖𝑐𝑒 estimates are derived from the MIRAS radiometer onboard the European 

Space Agency’s SMOS satellite. Processed files are provided by the Univ. Bremen 

(https://seaice.uni-bremen.de/thin-ice-thickness/), Huntemann et al. (2014) and Paţilea et al. 

(2019). These files are on a 12 km polar stereographic grid, with one analysis per day. Ice 

thickness (ℎ𝑖𝑐𝑒) values are available at ice thicknesses up to 50 cm, where the instrument 

saturates. Therefore, cases of ℎ𝑖𝑐𝑒=50 cm presented here should be interpreted as ℎ𝑖𝑐𝑒>=50 cm. 

In cases where the daily field is missing, the ℎ𝑖𝑐𝑒 value is flagged as unusable. 

Ice distance, 𝑥𝑖𝑐𝑒 is computed as the distance from the buoy to the ice edge. Since the buoys are 

in ice, the algorithm searches for the nearest open water point (𝑎𝑖𝑐𝑒 = 0). Isolated open water 

points are disregarded.  

Significant waveheight, 𝐻𝑚0. This parameter is taken from buoy observations. 𝐻𝑚0 is computed 

as 𝐻𝑚0 = 4√𝑚0,  where 𝑚𝑛 = ∫𝐸(𝑓)𝑓𝑛𝑑𝑓, and 𝐸(𝑓) is the one dimensional (non-directional) 

energy spectrum, and the bounds of integration are defined by the overlap with model spectral 

range, i.e. 0.042 to 0.476 Hz. 

Seven other tertiary variables are described in the Supplemental Information and included in the 

associated Mendeley Data archive2: mean period, 𝑇𝑚; fourth spectral moment, 𝑚4; significant 

steepness, 𝑆𝑠𝑖𝑔; representative orbital velocity, 𝑉; wind speed, 𝑈10; air temperature; and date.  

Our purpose here is to identify correlations. These correlations may or may not indicate causal 

relations. A number of these variables are computed from the wave spectrum itself (𝐻𝑚0, 𝑇𝑚, 

𝑚4, 𝑆𝑠𝑖𝑔, and 𝑉). If the relationship is causal, this implies nonlinearity of the dissipation. Such 

behavior would not be extraordinary, e.g. whitecapping dissipation 𝑆𝑤𝑐 is extremely nonlinear, 

and in fact, we already use a few nonlinear forms of 𝑆𝑖𝑐𝑒 in WW3, e.g. the dissipation by ice-

water friction under orbital motion as implemented by F. Ardhuin in Stopa et al. (2016, 

Appendix B) and some of the empirical forms implemented by Collins and Rogers (2017). 

Extensive discussion of potential nonlinearity of 𝑆𝑖𝑐𝑒 can be found in Squire (2018). 

6.2. Methods: Quantifying role of tertiary parameters 

We use inversion results from the nine buoys in the eastern group (see Section 3) during the 

period of 6 to 30 June, and only consider cases with 𝑎𝑖𝑐𝑒>0.22. This results in 9477 valid 𝑘𝑖 
profiles. In the cases where ℎ𝑖𝑐𝑒 is the tertiary parameter, the population is reduced further, to 

only include the 8957 𝑘𝑖 profiles with contemporaneous ℎ𝑖𝑐𝑒 estimates, see Section 6.1. 

Given our objective to reveal dependency on the tertiary variables, the intuitive approach would 

be to sort and bin the 𝑘𝑖(𝑓) profiles according to the associated values of the tertiary parameters. 

However, this approach results in spurious flattening of the profiles, as will be discussed in 

Section 6.3. Instead, the 𝑘𝑖(𝑓) profiles are sorted and binned according to the length of the 𝑘𝑖(𝑓) 
profiles in frequency space. Naively, we should not expect this to reveal trends associated with 

the tertiary variables. However, since our anti-noise algorithm terminates the profiles in a way 

                                                 

2 The 9477 dissipation profiles, energy-to-noise estimates 𝐸/𝐸𝑛, and co-located tertiary variables can be 

downloaded from Mendeley Data, http://dx.doi.org/10.17632/5b742jv7t5.1 . 

https://seaice.uni-bremen.de/thin-ice-thickness/
http://dx.doi.org/10.17632/5b742jv7t5.1
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that is strongly correlated with the tertiary variables, this approach does in fact yield indirect 

sorting on these variables, and so we can identify a clear correlation of 𝑘𝑖(𝑓) with the tertiary 

variables, without the spurious flattening. 

6.3. Results 

Figure 6 shows the results, with each bin-averaged 𝑘𝑖(𝑓) profile colored according to the mean 

of the tertiary parameter within that bin population. This is given in four panels, one for each of 

the four tertiary variables (ℎ𝑖𝑐𝑒, 𝑎𝑖𝑐𝑒,  𝑥𝑖𝑐𝑒, 𝐻𝑚0). The gray rectangle in each panel indicates the 

first two frequency bins of the inversion. As noted in Section 5, the inversion results for this 

frequency range are potentially most affected by errors in boundary forcing. The number of 

𝑘𝑖(𝑓) profiles used in each mean 𝑘𝑖(𝑓) profile (colored lines in Figure 6) varies, e.g. with 785, 

2334, and 118 profiles being used for mean profiles terminating at 0.07, 0.11, and 0.23 Hz, 

respectively. Four reference profiles are shown in Figure 6: the “SIPEX” and “SWIFT” reference 

profiles (solid gray and black lines) were introduced in Section 5. The two PIPERS reference 

profiles are based on a simple mean of all profiles, which will be denoted as “mean 1” and a 

mean of profiles in thinner ice nearer the ice edge, described in Section 7, “mean 2”. 

 

Figure 6. Dissipation profiles estimated using the model-data inversion with a conservative anti-

noise algorithm (J=10). Four variables are evaluated here: ice thickness, ice concentration, 

distance from ice edge, and significant waveheight. Reference profiles (gray and black lines) and 

the gray-shaded rectangle are explained in the text. 
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Some noteworthy features of Figure 6 are: 

1) With ice concentration, 𝑎𝑖𝑐𝑒, there is a weak trend for lower dissipation with lower ice 

concentration. Plotted mean values of 𝑎𝑖𝑐𝑒 vary from 0.67 to 0.98. The 𝑘𝑖 plotted here is 

the dissipation of only the ice-covered fraction of the sea. We scale 𝑆𝑖𝑐𝑒 by ice 

concentration in the model, 𝑆𝑖𝑐𝑒 = −2𝑎𝑖𝑐𝑒𝐶𝑔𝑘𝑖𝐸. 

2) Across all frequencies (𝑓 ≤0.23 Hz), there is a clear increase in 𝑘𝑖(𝑓) with ℎ𝑖𝑐𝑒. This is 

an intuitively causal relation and is consistent with a primary conclusion of Robin (1963), 

who observed that ice thickness is the most useful parameter to predict the penetration of 

waves into sea ice for lower frequencies (𝑓<0.10 Hz). 

3) Unsurprisingly, the dependence on 𝑥𝑖𝑐𝑒 is broadly similar to the dependence on ℎ𝑖𝑐𝑒. 

(There is thicker ice farther from the ice edge.) 

4) There is a clear trend of smaller 𝑘𝑖(𝑓) for larger waveheight, 𝐻𝑚0. This may be 

coincidental since larger waves occur closer to the ice edge, or it may be causal. A 

possible causal relation would be the breakup of floes during large events, making the ice 

cover more pliable and less dissipative. This is a nonlinear type of dissipation. 

Considering the ice cover as quasi-viscous in aggregate, this is a thixotropic behavior 

(shear thinning) and is reversed from the more typical nonlinearity for wave model 

dissipation terms, e.g. higher dissipation for larger orbital velocity, or larger steepness, 

etc. This correlation is consistent with the results of Montiel et al. (2018), who find that 

for larger waveheights (𝐻𝑚0> 3 m), 𝑘𝑖 is inversely proportional to 𝐻𝑚0 (i.e. linear, non-

exponential decay). 

Discussion: Flattening of dissipation profiles 

The approach used here—bin-averaging based on termination frequency—was not the first that 

we applied. Rogers et al. (2020) used the more intuitive approach: to sort and bin the 𝑘𝑖(𝑓) 
profiles according to the associated values of the tertiary parameters. However, that study found 

spurious results associated with flattening of the 𝑘𝑖(𝑓) profiles. This flattening can be thought of 

as a nascent or more subtle variation on the “roll-over” effect noticed in observational data by 

Wadhams et al. (1988) and others. In fact, Wadhams et al. (1988) themselves offer the possibility 

that this non-monotonic behavior is an artifact of non-representation of wind input. This, and 

other, possible causes of flattening are reviewed by Rogers et al. (2020). Here, we focus on two 

causes that we believe are most important to our analysis.  

Flattening can be caused by averaging of 𝑘𝑖(𝑓) profiles which terminate at different frequencies. 

The “mean 1” profile (dashed black line in Figure 6), which is just a simple mean of all 𝑘𝑖(𝑓) 
values, is an example of this. In lower frequencies, say up to 0.14 Hz, the mean is dominated by 

high-dissipation profiles which terminate at these frequencies, while in mid-frequencies, say 

from 0.14 to 0.23, the mean is dominated by smaller-dissipation profiles which extend into these 

frequencies. This artifact affects the “mean 1” profile but does not affect the colored (binned) 

profiles presented in Figure 6, or “mean 2” profile, since all 𝑘𝑖(𝑓) profiles used in each 

averaging terminate at the same frequency. 

Anything that tends to “prop up” the high-frequency portion of the spectrum will contribute to 

flattening or even roll-over of 𝑘𝑖(𝑓). As discussed in Section 3 and Thomson et al. (2020), 

instrument noise has this tendency. Given our aggressive removal of 𝑘𝑖 values with possible 
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noise contamination using J=10, (Section 5), this problem is unlikely to affect results shown in 

Figure 6. However, it is useful to evaluate this aggressive strategy. After all, with a less 

aggressive anti-noise algorithm, the binned profiles extend farther in frequency space, a desired 

feature. Results using the less conservative value of J=1 are shown in Figure 7. This indicates 

that though the flattening is slight with J=1, it does unmistakably occur. In other words, the use 

of J=10 appears to be justified. 

The above suggests an interesting paradox: exclusion of noise-contaminated data prevents 

artificial flattening of individual 𝑘𝑖(𝑓) profiles; but this “fix” —i.e. early termination of 

profiles—itself results in artificial flattening of mean profiles, if those means are calculated using 

dissimilar termination frequencies. 

 

Figure 7. Like Figure 6, but using a less aggressive setting for the anti-noise algorithm: J=1. 

7. Fitting to parametric model 

Empirically-derived mean 𝑘𝑖 profiles can be fitted to a parametric form. Several possible forms 

exist, but here, we look at monomial and binomial subsets of the general polynomial 𝑘𝑖 =
∑𝐶𝑛𝑓

𝑛. This follows the approach of Meylan et al. (2014), who used 𝐶2𝑓
2 + 𝐶4𝑓

4, i.e. 𝑛 = 2 

and 4. The value of 𝑛 can be interpreted as an indicator of a dominant physical process (or two 

processes in the case of a binomial) if they match the 𝑛 predicted by a theoretical model. For 
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example, if an empirical 𝑘𝑖 profile fits well to 𝑛 =7; this would support the argument that 

dissipation is caused by something like viscosity in the ice layer (Keller model, see Section 2). 

Herein, we use two methods of creating mean profiles. Neither extends beyond 0.23 Hz, since 

the number of valid 𝑘𝑖(𝑓) values at higher frequencies is relatively small, due to the omission of 

𝑘𝑖(𝑓) estimates that may be affected by noise (Section 5). Both are created using the more 

aggressive anti-noise algorithm, J=10. The two methods are: 

1) A “simple mean” profile, denoted “mean 1” in this text. As long as a 𝑘𝑖(𝑓) value is 

considered valid; it is included in the average. As with the binned profiles in Figure 6, the 

mean profile excludes frequencies for which the population of the frequency bin is less 

than 5% of the maximum, and so the profile terminates at 0.19 Hz. As an example, this 

averaging includes 8739, 2715, and 664 𝑘𝑖 values at bins centered at 0.09, 0.15, and 0.19 

Hz respectively. 

2) A mean using only the profiles which span the full frequency space of the mean profile 

(0.051 to 0.23 Hz in terms of bin centers) and only cases with thinner ice (ℎ𝑖𝑐𝑒 <14 cm) 

and those nearer the ice edge (𝑥𝑖𝑐𝑒 <63 km). This averaging thus includes only 116 

profiles but provides greater consistency within the averaging and uniformity of 

population. This averaging is denoted “M2” (mean 2). 

The top left panel of Figure 8 shows the mean 𝑘𝑖 profile M2 on log-log scale, so that the slopes 

of the line segments correspond to values of 𝑛. Integer values of 𝑛 are indicated as straight lines 

on these panels. The mean profile has mean slope slightly less than 𝑛 = 4 for the range 0.09 to 

0.23 Hz. Various tested binomials and monomials were tested, summarized in Table 2, and we 

find the best outcome using a binomial fit of 𝑛 = 2 and 4, but nearly the same accuracy using a 

monomial fit to 𝑛 = 3.5 to 4.  

The top right panel of Figure 8 illustrates the error minimization process used to find the best fit 

values of 𝐶𝑛 for the 𝑛 = 2 and 4 binomial. The diagonal error distribution suggests that the 

dependence is distributed between the two terms of the binomial. Best fit coefficients are given 

in Table 2. The first two bins are excluded during the fitting process, since inversion results are 

more sensitive to errors in boundary forcing for these bins. Goodness-of-fit is quantified by root-

mean-square error (RSME), where the error is log10(𝑘𝑖,𝑓𝑖𝑡) − log10(𝑘𝑖,𝑀2) and M2 denotes mean 2. 

Dependence on 𝑛 = 2 to 4 can be found in several theoretical models reviewed in Section 2, 

namely: two new theoretical models of Meylan et al. (2018) (𝑛 = 2 and 𝑛 = 3), the turbulent 

boundary layer model (𝑛 = 3), the Robinson and Palmer (1990) model (𝑛 = 3), the inextensible 

surface cover model (𝑛 = 3.5), and the Kohout et al. (2011) friction model (𝑛 = 4). Though 

notably, most of these models do not predict the dependence of dissipation on ice thickness, ℎ𝑖𝑐𝑒. 

The mean profile and fitted polynomial of M2 is shown in the lower panel of Figure 8, along 

with the mean profile “mean 1”, and 𝑘𝑖 estimates from prior studies. The quality of fit is 

excellent. The power dependence (i.e. slope) is consistent with previous analyses using different 

datasets: the M2 binomial is compared to earlier binomial fits, from Meylan et al. (2014) and 

Rogers et al. (2018b). The M2 binomial fit is lower than that from Meylan et al. (2014) (for 

broken floes near Antarctica) by factors from 0.45 to 0.93 in the 0.08 to 0.16 Hz range, and is 

higher than that from Rogers et al. (2016) (for pancake and frazil ice near the Beaufort Sea) by 
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factors from 1.07 to 1.44 in the 0.09 to 0.23 Hz range. We also plot the 𝑘𝑖 estimates for low 

frequency waves from Ardhuin et al. (2016) for an energetic swell case near Svalbard in ice of 

thickness 2 to 4 m. At these frequencies, (𝑓 <0.08 Hz) the simple mean of PIPERS suggests a 

weaker dissipation than the Ardhuin estimates, which is unsurprising given the much thinner ice 

during the PIPERS experiment. 

Limitations 

Because in the underlying dataset there is variance about the mean profiles, any simple 

parametric model that is only a function of frequency will have limited skill, even when directly 

applied to the same case. Inclusion of tertiary variables, such as ℎ𝑖𝑐𝑒, in the parametric formula is 

a logical next step.  

 

 

Figure 8. Top: Power fit for “mean 2” from this study. Top left: Evaluation of power dependence 

of 𝑘𝑖 on frequency. Power dependence corresponds to fixed slope on this log-log scale. Integers 

within axes indicate power dependence. Top right: Error surface for determining best-fit 

coefficients. Bottom: Comparison to other estimates of 𝑘𝑖(𝑓). See text for further explanation. 
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Table 2. Best fit coefficients for binomials and monomials of the form 𝑘𝑖(𝑓) = 𝐶𝐴𝑓
𝑛𝐴 + 𝐶𝐵𝑓

𝑛𝐵. The 

first row corresponds to the binomial fitting shown in Figure 8. Calculation of RMSE is explained in 

the text. 

𝑛𝐴 𝐶𝐴 𝑛𝐵 𝐶𝐵 RMSE 

2 2.08e-4 4 5.18e-2 0.048 

3 2.83e-3 4 4.31e-2 0.052 

3 9.52e-3 0 0 0.107 

3.25 1.52e-2 0 0 0.081 

3.5 2.43e-2 0 0 0.061 

3.75 3.89e-2 0 0 0.055 

4 6.22e-2 0 0 0.067 

8. Summary and Conclusions 

In this section, we summarize the study, list the conclusions based on the analysis presented, and 

lastly, we offer thoughts and speculations about the results. 

Summary 

 A new dataset is presented: 𝑘𝑖(𝑓) profiles (dissipation rate as a function of frequency) 

from model/data inversion. These are computed using observations of waves in ice in the 

Southern Ocean: the “PIPERS” dataset presented by Kohout et al. (2020). Here, 24 days 

(6 to 30 June 2017) are used. This is a subset of the larger dataset and includes 9477 

𝑘𝑖(𝑓) profiles. 

 The model/data inversion method is a relatively new method for estimating dissipation 

rate, and is particularly appropriate to this field study because it does not require that the 

buoy configuration is aligned with the mean wave direction: in the PIPERS field study, 

buoys became misaligned over time due to drift. 

 The 𝑘𝑖(𝑓) profiles are evaluated by studying their correlation with four environmental 

variables (denoted “tertiary variables”): ice concentration 𝑎𝑖𝑐𝑒, distance from ice edge 

𝑥𝑖𝑐𝑒, ice thickness ℎ𝑖𝑐𝑒 and significant waveheight 𝐻𝑚0. This multi-dimensional analysis 

is made possible by the large population of the dataset (9477). 

 The 𝑘𝑖(𝑓) profiles are presented using a novel method of binning which quantifies 

correlation with the tertiary parameters.  

 Two mean 𝑘𝑖(𝑓) profiles are computed, and a parametric model of dissipation are created 

by fitting to the mean that is based on profiles of thinner ice found nearer the ice edge. 

Conclusions 

 Results indicate a positive correlation between dissipation rate 𝑘𝑖(𝑓) and ice thickness 

ℎ𝑖𝑐𝑒. 

 Results indicate a negative correlation between dissipation rate 𝑘𝑖(𝑓) and waveheight, 

𝐻𝑚0.  
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 The simple mean of all 𝑘𝑖(𝑓) values, denoted “mean 1”, exhibits a flattening in higher 

frequencies (0.13 to 0.19 Hz) that is spurious, resulting from averaging profiles with 

dissimilar termination frequencies. This type of averaging is therefore not recommended. 

 The second mean of 𝑘𝑖(𝑓) profiles, denoted “M2” and representing cases of thinner ice 

closer to the ice edge. This profile is well described by a binomial using 𝑛 = 2 and 4, or 

by a monomial using 𝑛 between 3.5 and 4. 

 The binomial for M2 is qualitatively similar to the binomials from Meylan et al. (2014) 

and Rogers et al. (2018). The former was computed for a case of broken floes in 

Antarctica using simple geometric calculations, and is higher than M2 by a ratio of 1.07 

to 2.24. The latter was computed using an inversion with wind input scaling, for an 

example of pancake and frazil ice in the western Arctic, and these values are generally 

lower than those of M2, by factors 0.69 to 0.93. 

 We tested two possible settings for an algorithm to eliminate data contaminated by 

instrument noise and find that when the less conservative setting is used, there is a slight, 

spurious flattening of some 𝑘𝑖(𝑓) profiles near their terminal frequencies, an outcome 

predicted by Thomson et al. (2020). 

Further discussion 

 Power dependence found here (𝑛 =2 to 4) can be compared with our review of power 

dependence in the literature (Section 2). For example, 𝑛 = 3.5 dependence is consistent 

with an existing model for dissipation caused by friction with laminar flow at the ice-

water interface, and 𝑛 = 4 is consistent with another friction model, Kohout et al. (2011). 

 The negative correlation between dissipation rate and energy may be coincidental rather 

than causal. If causal, it follows the analog to a thixotropic (shear-thinning) ice cover. 

 Further, this negative correlation apparently contradicts formulae which assume that 

dissipation increases with orbital velocity. However, the correlation does not isolate for 

coincident variables and so is inconclusive. 

 Variability of the 9477 𝑘𝑖(𝑓) profiles estimated here is significant. Any parametric 

dissipation rate that is only a function of frequency, 𝑘𝑖(𝑓), applied in a forward model—

even for the same case shown here—can be expected to be accurate only in the mean 

sense. Correlations with tertiary variables such as ℎ𝑖𝑐𝑒 found here may be exploited in the 

development of new parametric dissipation formulae and applied in predictive models. 
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Appendix: Noise threshold 

An algorithm was developed for this study, to remove 𝐸(𝑓) records for which noise contributes 

significantly to 𝐸(𝑓), specifically 𝐸(𝑓) < 𝐽𝐸𝑛, where 𝐸𝑛 is the estimated noise level and 𝐽 is a 

subjective setting (Section 5). 

Traditionally, instrument noise most severely affects the measurement of long, low-amplitude 

waves. For example, if the acceleration spectrum measured by a buoy is contaminated by noise 

that is uniform in frequency (white noise), then the contamination of 𝐸(𝑓) will fall off at a slope 

of 𝑓−4, and tend to be extremely small at higher frequencies, relative to an open water spectrum. 

However, in sea ice, the high-frequency 𝐸(𝑓) is much lower than an open water spectrum, such 

that noise may be a significant portion of 𝐸(𝑓). As noted in our discussion of Figure 3, the high-

frequency tail appears to be “propped up”, and this may be caused by noise. We conservatively 

assume that this feature is caused by noise, and seek to exclude contaminated data. This requires 

an automated estimate of 𝐸𝑛. 

Instrument noise is expected to increase with total energy, so our approach is designed to include 

this dependency. The development was initiated by sorting spectra by significant waveheight 

𝐻𝑚0 and organizing in groups of 50, so the first group has 50 spectra with the lowest 𝐻𝑚0, and 

so on. The groups were then manually evaluated to estimate the 𝐸(𝑓) below which the spectra 

are visibly contaminated, similar to Figure 3. In a second phase, an objective method was 

created, following these steps: 

1) For each group of 50 spectra, a mean spectrum was computed. The averaging was 

performed in log-space. 

2) The slope of the mean spectrum was computed, in log-log space. 

3) The point in frequency space where the negative slope in the tail was steepest was 

identified. This is assumed to be the point where dissipation by sea ice is very strongly 

suppressing the tail while noise is negligible. 

4) The point in frequency space where the magnitude of slope reaches less than 55% of the 

maximum is identified. This is treated as the noise level 𝐸𝑛. The criterion of 55% was 

determined as the setting which most closely matches the subjective (manual) evaluation. 

5) Since the spectra were sorted by 𝐻𝑚0 prior to grouping, the computed thresholds were 

then available as 𝐸𝑛 = 𝐸𝑛(〈𝐻𝑚0〉), where 〈𝐻𝑚0〉 is the mean 𝐻𝑚0 of each group. We then 

performed a least-squares fit linear regression to 𝐸𝑛(〈𝐻𝑚0〉) in log-log space, resulting in 

a power fit, 𝐸𝑛 = 3.99 × 10−4𝐻𝑚0
0.85. 

Since a different accelerometer was used for buoys 13 and 14, we perform a separate analysis for 

these buoys, giving 𝐸𝑛 = 3.89 × 10−3𝐻𝑚0
1.86. These represent only 550 out of the 9477 spectra, 

so a smaller group size (20) was used for these buoys. The two fits are illustrated in Figure A1. 
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The overall outcome of applying the algorithm is that for cases further from the ice edge, the 

𝑘𝑖(𝑓) profiles terminate at lower frequency (i.e. more data is discarded). This is because 𝐸(𝑓) is 

more strongly damped (pushed down toward 𝐸𝑛) further from the ice edge. At the same time, the 

dependence of our noise floor on waveheight implies a lower 𝐸𝑛 further from the ice edge. This 

empirically-determined dependence works against the overall outcome above but is not strong 

enough to reverse it. 

 

Figure A1. Noise level 𝐸𝑛 as a function of waveheight. Dots indicate results using the algorithm 

based on spectral slope. Lines indicate power fits. “MPU” and “Kistler” denote two types of 

accelerometers used. “MPU” accounts for 94.2% of the measured spectra, and “Kistler” 

represents the other 5.8% (buoys 13 and 14). 

Data Availability 

The PIPERS wave spectra can be downloaded from 

ftp://ftp.niwa.co.nz/incoming/Kohout/WII_2017 or obtained by contacting 

Alison.Kohout@niwa.co.nz. Dissipation profiles presented here are available from Mendeley 

Data, http://dx.doi.org/10.17632/5b742jv7t5.1. Other data files used to create figures herein are 

available from the corresponding author by request. 
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Figure 1. Buoy tracks for the entire PIPERS buoy deployment, showing the positions with 
respect to time. Colors indicate year-day during 2017. 
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Figure 2. Buoy tracks for the time period used in the paper, 2017 June 6 to 30, indicating the 
buoy numbers of the six buoys used in Table 1 and Figures 2, 3, and 4 of the main text, using the 
same color scheme as is used in those figures. 
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Figure 3. Waveheight (𝐻@A) and 𝑚C time series for the six buoys used in Table 1 and Figures 2, 
3, and 4 of the main text, using the same color scheme as is used in those figures. 
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Figure 4. Peak period and mean period 𝑇@,EF,A for buoy 9. This buoy is near the ice edge, thus 
this figure is an indication of the dominant wave period of incident waves during the experiment. 
Since this buoy is in the ice, where some low-pass filtering is occurring, the unmeasured wave 
periods outside the ice (north of the buoy) may be slightly shorter. 
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1.1. Methods: co-located variables (tertiary parameters) 

In this section, we list the tertiary variables which we will inspect for correlation with 𝑘<(𝑓) 
profiles from the inversions. These variables are also included in the Mendeley Data archive, 
http://dx.doi.org/10.17632/5b742jv7t5.1. 
 
Ice concentration, 𝑎<=>  estimates are taken from AMSR2 and are the same fields as used in the 
model forcing (see main article). 
 
Ice thickness, ℎ<=> estimates are derived from the MIRAS radiometer onboard the European 
Space Agency's SMOS satellite. Processed files are provided by the Univ. Bremen and 
downloaded from https://seaice.uni-bremen.de/thin-ice-thickness/ . These files are on a 12 km 
polar stereographic grid, with one analysis per day. Ice thickness (ℎ<=>) values are available at ice 
thicknesses up to 50 cm, where the instrument saturates. Therefore, cases of ℎ<=>=50 cm 
presented here should be interpreted as ℎ<=>>=50 cm. In cases where the daily field is missing, 
the ℎ<=> value is flagged as unusable. The reader is referred to Huntemann et al. (2014) and 
Paţilea et al. (2019) for more information about the SMOS “thin sea ice” thickness retrieval.  
 
Ice distance, 𝑥<=> is computed as the distance from the buoy to the ice edge. Since the buoys are 
in ice, the algorithm searches for the nearest open water point (𝑎<=> = 0). Isolated open water 
points are disregarded. This estimate is approximate insofar as it is not necessarily the distance 
along the main axis of wave propagation. 
 
Significant waveheight, 𝐻@A. This parameter is taken from buoy observations. 𝐻@A is computed 
as 𝐻@A = 4O𝑚A,  where 𝑚P = ∫𝐸(𝑓)𝑓P𝑑𝑓, and 𝐸(𝑓) is the one dimensional (non-directional) 
energy spectrum, and the bounds of integration are defined by the overlap with model spectral 
range, i.e. 0.042 to 0.476 Hz. 
 
Mean period, 𝑇@. This parameter is taken from buoy observations. This is more precisely 
denoted as 𝑇@,EF,A, computed as 𝑇@,EF,A = 𝑚EF 𝑚A⁄ . The parameter is preferred over peak period 
because of its superior stability, but is typically close to, or slightly below, the peak period. 
 
Spectral fourth moment, 𝑚C. This is 𝑚C = ∫𝐸(𝑓)𝑓C𝑑𝑓, also taken from buoy observations. The 
parameter is proportional to the “low pass mean square slope”, 𝑠VWX = 𝑚C(2𝜋)C 𝑔X⁄ ~16.2𝑚C 
(S.I. units), where 𝑔 is the gravitational acceleration. This parameter is included because, being a 
higher order moment, it is sensitive to energy level at higher frequencies, and thus is strongly 
affected by sea ice. 
 
Significant steepness, 𝑆]<^ . This is also taken from buoy observations and is defined here as 
𝑆]<^ = 𝐻@A/𝐿@, where 𝐿@ is the mean wavelength, computed from 𝑇@,EF,A. Given deep water, 
𝐿@ = 1.56𝑇@,EF,AX  (S.I. units). This parameter is included based on the hypothesis that wave 
steepness may correlate with the condition of the sea ice, e.g. existence of relatively steep waves 
may be an indication that the ice has been broken into relatively small floes. 
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Representative orbital velocity, 𝑉. This is also taken from buoy observations, defined as 𝑉 =
(𝐻@A/𝑇@,EF,A)(𝜋/√2). This follows from the open water definition of orbital velocity excursion 
at the surface: 𝑉 = 𝑎d@]𝜎, where 𝑎d@] = O2𝑚A and 𝜎 = 2𝜋/𝑇. This parameter is included 
based on the hypothesis that, if 𝑆<=>  is associated with turbulence caused by friction at the ice-
water interface, then it may correlate with the velocity of orbital motion at the water surface. The 
open water definition is used for the sake of simplicity. 
 
Wind speed, 𝑈FA. This is the magnitude of the NAVGEM 10-m wind vectors used in the model 
forcing (see main article). 
 
Air temperature, 𝑇g<d. This is taken from the NAVGEM surface air temperature fields 
corresponding to the 10-m wind vectors used in the model forcing (see main article). This 
parameter is included based on the hypothesis that, insofar as new ice growth is affected by air 
temperature, the ice conditions may correlate with air temperature. This is more specifically 
targeting the formation of frazil ice in the open water fraction of the region considered. 
 
Date. Though this parameter cannot have a direct causal link to 𝑘<(𝑓), it is included as a tertiary 
parameter in the Mendeley data archive, since there are many possibilities for indirect effects, as 
the ice/ocean/atmosphere climate changes during this late autumn to early winter period.  
 
Our purpose here is to identify correlations. These correlations may or may not indicate causal 
relations, i.e. direct dependence of 𝑘<(𝑓) on the tertiary variable.  

1.2. Correlation with tertiary parameters (Figures) 

Figure for the four tertiary variables, 𝑎<=> , ℎ<=>, 𝑥<=> and , 𝐻@A are given in the main text. Six 
other variables are plotted here: 𝑇@, 𝑚C, 𝑆]<^ , 𝑉, 𝑈FA, and 𝑇g<d. Date is not plotted, since shifts in 
“mean date” would be primarily associated with the time sequence of buoy failures, i.e. not 
physically meaningful. 
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Figure 5. Like Figure 6 of the main text, except showing 𝑇@. 
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Figure 6. Like Figure 6 of the main text, except showing 𝑚C. 
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Figure 7. Like Figure 6 of the main text, except showing 𝑆]<^ . 
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Figure 8. Like Figure 6 of the main text, except showing 𝑉. 
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Figure 9. Like Figure 6 of the main text, except showing 𝑈FA. In this figure and other correlation 
figures, the mean 𝑘<(𝑓) profile terminating at 0.23 Hz represents cases for which 𝐸(0.23	Hz) >
10𝐸P. The mean wind speed for this case is 16.1 m/s. Other mean 𝑘<(𝑓) profiles have mean wind 
speeds from 10.8 to 13.0 m/s. 
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Figure 10. Like Figure 6 of the main text, except showing 𝑇g<d. 

 


