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Podladchikov1

1University of Lausanne
2Johannes Gutenberg University of Mainz
3Utrecht University

November 23, 2022

Abstract

Deformation at tectonic plate boundaries involves coupling between rock deformation, fluid flow and metamorphic reactions,

but quantifying this coupling is still elusive. We present a new two-dimensional hydro-mechanical-chemical numerical model and

investigate the coupling between heterogeneous rock deformation and metamorphic (de)hydration reactions. Rock deformation

consists of linear viscous compressible and power-law viscous shear deformation. Fluid flow follows Darcys law with a Kozeny-

Carman type permeability. We consider a closed isothermal system and the reversible (de)hydration reaction: periclase and

water yields brucite. In the models, fluid pressure within a circular or elliptical inclusion is initially below the periclase-

brucite reaction pressure, and above in the surrounding. Inclusions exhibit a shear viscosity thousand times smaller than for

the surrounding, because we assume that periclase-water and brucite regions have different effective viscosities. In models

with circular inclusions, solid deformation has a minor impact on the evolution of fluid pressure, porosity and reaction front.

Models with elliptical inclusions and far-field shortening generate higher rock pressure inside the inclusion compared to circular

inclusions, and show a faster reaction-front propagation. The propagating reaction-front increases the inclusion surface and

causes an effective, reaction-induced weakening of the heterogeneous rock. Weakening evolves strongly nonlinear with progressive

strain. Distributions of fluid and rock pressure as well as magnitudes and directions of fluid and solid velocities are significantly

different. The models mimic basic features of shear zones and plate boundaries and suggest a strong impact of heterogeneous

rock deformation on (de)hydration reactions and associated reaction-induced weakening. The applied MATLAB algorithm is

provided.
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Introduction

The MATLAB algorithm used in the manuscript and the applied data for the solid density, fluid den-
sity and mass fraction of MgO, all function of fluid pressure, is available on the GitHub repository un-
der:https://github.com/schmaste/HMC Brucite. A description of how to run the algorithm is given in the
README file in the GitHub directory.
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Abstract 19 

Deformation at tectonic plate boundaries involves coupling between rock deformation, fluid 20 

flow and metamorphic reactions, but quantifying this coupling is still elusive. We present a 21 

new two-dimensional hydro-mechanical-chemical numerical model and investigate the 22 

coupling between heterogeneous rock deformation and metamorphic (de)hydration reactions. 23 

Rock deformation consists of linear viscous compressible and power-law viscous shear 24 

deformation. Fluid flow follows Darcy’s law with a Kozeny-Carman type permeability. We 25 

consider a closed isothermal system and the reversible (de)hydration reaction: periclase and 26 

water yields brucite. In the models, fluid pressure within a circular or elliptical inclusion is 27 

initially below the periclase-brucite reaction pressure, and above in the surrounding. 28 

Inclusions exhibit a shear viscosity thousand times smaller than for the surrounding, because 29 

we assume that periclase-water and brucite regions have different effective viscosities. In 30 

models with circular inclusions, solid deformation has a minor impact on the evolution of 31 

fluid pressure, porosity and reaction front. Models with elliptical inclusions and far-field 32 

shortening generate higher rock pressure inside the inclusion compared to circular inclusions, 33 

and show a faster reaction-front propagation. The propagating reaction-front increases the 34 

inclusion surface and causes an effective, reaction-induced weakening of the heterogeneous 35 

rock. Weakening evolves strongly nonlinear with progressive strain. Distributions of fluid and 36 

rock pressure as well as magnitudes and directions of fluid and solid velocities are 37 

significantly different. The models mimic basic features of shear zones and plate boundaries 38 

and suggest a strong impact of heterogeneous rock deformation on (de)hydration reactions 39 

and associated reaction-induced weakening. The applied MATLAB algorithm is provided. 40 

Plain Language Summary 41 

Geodynamic processes at tectonic plate boundaries are complicated because rock 42 

deformation, fluid flow and chemical reactions occur simultaneously. Investigating these 43 
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coupled processes by direct observations is usually not possible, and investigating them with 44 

laboratory experiments is often not feasible. Alternatively, these coupled processes can be 45 

investigated with computer simulations. Here, we present a new two-dimensional hydro-46 

mechanical-chemical computer model to investigate the coupling of these processes. We 47 

consider a simple and reversible (de)hydration reaction: periclase (magnesium oxide) and 48 

water yields brucite (magnesium hydroxide). The initial fluid pressure within a circular or 49 

elliptical inclusion is initially below the periclase-brucite reaction pressure, while in the 50 

surrounding it is above. Inclusions in the deforming rock are mechanically weaker than the 51 

surrounding. Models with elliptical inclusions generate higher rock pressure inside the 52 

inclusion compared to circular inclusions, and show a faster reaction-front propagation. The 53 

propagating reaction-front causes an effective, reaction-induced weakening of the 54 

heterogeneous rock. Fluid and rock pressure as well as magnitudes and directions of fluid and 55 

solid velocities are significantly different. The models mimic basic features of shear zones 56 

and suggest a strong impact of heterogeneous rock deformation on (de)hydration reactions 57 

and associated weakening. The applied MATLAB algorithm is provided.  58 
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1. Introduction  59 

The deformation of lithospheric tectonic plates generates major rifts, strike-slip faults 60 

and subduction zones and is, hence, a critical process for the evolution of our dynamic planet. 61 

Lithosphere deformation involves a complex interplay between heat transfer, rock 62 

deformation, fluid flow and metamorphic reactions. Notably, the interplay between 63 

heterogeneous rock deformation and metamorphic (de)hydration reactions, such as related to 64 

eclogitization or serpentinization, may have a significant impact on the evolution of shear 65 

zones, faulting at slow-spreading ridges or plate boundary processes (e.g. Austrheim, 1987; 66 

Escartin et al., 1997; Guillot et al., 2015). Hence, quantifying this interplay is essential for 67 

understanding coupled plate tectonic processes. At present, however, such quantification 68 

remains elusive.  69 

Many metamorphic reactions are intrinsically coupled to fluid flow since they involve 70 

the hydration or dehydration of rocks (e.g. Putnis, 2009; Philpotts and Ague, 2016). Such 71 

metamorphic (de)hydration reactions occur when ambient pressure and temperature 72 

conditions change due to, for example, rock burial and subsequent exhumation (e.g. Putnis, 73 

2009; Philpotts and Ague, 2016). Furthermore, stress and fluid-pressure variations due to 74 

tectonic stresses can affect the region of thermodynamic equilibrium of hydrous/anhydrous 75 

phases (e.g. Wheeler, 2018; Moulas et al., 2019; Jamtveit et al., 2019). Fluid flow and 76 

associated (de)hydration reactions are essential for many first-order phenomena in plate 77 

boundary regions, which include fluid cycling through the lithosphere (e.g. John et al., 2011), 78 

the evolution of shear zones (e.g. Austrheim, 1987), slow-slip phenomena at subduction zones 79 

(e.g. Gomberg et al., 2010), intermediate-depth earthquakes (e.g. Ferrand et al., 2017), 80 

reaction-induced rheological weakening of rocks (e.g. Jolivet et al., 2005) or self-sustained 81 

densification of the lower crust (e.g. Malvoisin et al., 2020). These reactions may also be of 82 
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industrial relevance, for example, for geological carbon sequestration (e.g. Kelemen and 83 

Matter, 2008) or volume changes during geothermal energy extraction.  84 

Metamorphic (de)hydration reactions and rock deformation often occur together. From 85 

the view point of solid volume and mass changes, there are two end-member scenarios that 86 

couple (de)hydration reactions and rock deformation: (1) The volume of the considered solid-87 

fluid system is constant during (de)hydration or (2) the pressure is constrained during 88 

(de)hydration while the volume is unconstrained. The first, constant volume, scenario requires 89 

mobility, input and loss of the involved elements via dissolution and precipitation processes 90 

(e.g. Putnis, 2009). The considered fluid-rock system is open, but its mass exchange evolves 91 

in such a way that the rock volume is constant. For the particular case of an open system with 92 

constant volume, there is virtually no coupling between (de)hydration reactions and rock 93 

deformation, so that (de)hydration reactions can be investigated using pure hydro-chemical 94 

(HC) models assuming that velocities of the solid rock are zero (e.g., Plümper et al., 2017). In 95 

the second scenario, the volume is not constrained. Volume change occurs if the system is 96 

closed, and the elements are redistributing among the stable phases (e.g. Connolly, 1997; 97 

Malvoisin et al., 2015). For the case of a closed system with volume change, deformation of 98 

the porous solid coupled with (de)hydration reactions must be investigated using a hydro-99 

mechanical-chemical (HMC) model. Volume changes can be significant and may cause 100 

considerable deformation and differential stresses in the rock. These stresses can cause 101 

fracturing (e.g. Carmichael, 1987; Kelemen and Hirth, 2012; Plümper et al., 2012; Zheng et 102 

al., 2018; Evans et al., 2020), for example, during serpentinization (e.g. Kelemen and Hirth, 103 

2012) or transition from anorthosite to eclogite (e.g. Jamtveit et al., 2000).  104 

Furthermore, metamorphic reactions frequently occur during lithosphere deformation, 105 

which exhibits shear deformation significantly larger than the volumetric deformation. 106 

Deviatoric stresses drive shear deformation, and the mean stress in a deforming rock is, hence, 107 
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not lithostatic (e.g. Schmalholz et al., 2014). Moreover, most deforming rock units are 108 

mechanically heterogeneous, due to, for example, their layered structure. These 109 

heterogeneities typically cause folding and necking in the deforming lithosphere across all 110 

geological scales (e.g. Schmalholz and Mancktelow, 2016). Furthermore, active shear zones 111 

are usually mechanically weaker than their wall rocks, so that rock units, including active 112 

shear zones, represent mechanically heterogeneous systems. Mechanical heterogeneities in 113 

deforming rocks cause stress and pressure variations within and around the heterogeneities 114 

(e.g. Schmid and Podladchikov, 2003; Moulas et al., 2014). Understanding the impact of 115 

heterogeneous rock deformation on (de)hydration reactions is, hence, essential to unravel the 116 

interplay between lithosphere deformation and (de)hydration reactions.  117 

A method to quantify the interplay between lithosphere deformation, fluid flow and 118 

metamorphic reactions is mathematical modelling. A particular challenge for such models is 119 

the significantly different temporal and spatial scales of fluid flow and viscous flow of the 120 

lithospheric rocks (e.g. Quinquis and Buiter, 2014). Therefore, many numerical models 121 

focussing on lithosphere deformation employ significantly simplified models to quantify fluid 122 

flow and/or reactions (e.g. Quinquis and Buiter, 2014). For example, in some earlier models, 123 

the magnitude and direction of fluid velocity are prescribed to a constant value (e.g. Gerya et 124 

al., 2008). In other models, the fluid velocity is described by a Darcy-type law, but it is 125 

assumed that the fluid pressure is equal to the rock pressure (e.g. Yang and Faccenda, 2020). 126 

In contrast to such lithospheric-scale models, two-phase models can calculate both solid 127 

deformation and fluid flow, based on a self-consistent system of governing equations (e.g. 128 

Biot, 1941; Malvoisin et al., 2015; Yarushina and Podladchikov, 2015; Evans et al., 2020). 129 

However, many of these models are currently still assuming that solid deformation is 130 

negligible and set the solid velocities to zero (e.g. Plümper et al., 2017; Beinlich et al., 2020). 131 
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Other models focus on homogeneous deformation and ignore shear deformation or 132 

mechanical heterogeneities (e.g. Brantut et al., 2011; Malvoisin et al., 2015).  133 

Here, we aim to take a further step toward quantifying the interplay between 134 

heterogeneous rock deformation, fluid flow and metamorphic reactions. We study the impact 135 

of volumetric and shear deformation in a mechanically heterogeneous, poroviscous medium 136 

on fluid flow and (de)hydration reactions. Our two-dimensional (2D) mathematical model for 137 

hydro-mechanical-chemical (HMC) two-phase processes extends the model of Malvoisin et 138 

al. (2015). The mechanical part of our HMC model can calculate stress and pressure 139 

variations around mechanically weak inclusions in a compressible power-law viscous medium 140 

under far-field pure-shear shortening. We study the deformation of a medium with weak 141 

elliptical inclusions because such model captures the first-order stress and deformation 142 

features of weak lithospheric shear zones (Moulas et al., 2014). The hydro-chemical part of 143 

the model can calculate the evolution of fluid pressure, porosity and solid as well as fluid 144 

densities including (de)hydration reactions. Although our HMC model is generally applicable, 145 

for transparency and clarity, we apply the model here to a simple brucite (Mg(OH)2) – 146 

periclase (MgO) – water (H2O) system (Fig. 1). We also chose the brucite – periclase 147 

(de)hydration reaction, because it can involve considerable volume and porosity changes (e.g. 148 

Carmichael, 1987; Zheng et al., 2018) and is, hence, a good test for the numerical robustness 149 

of our HMC model. For simplicity, we assume a constant temperature and a constant system 150 

composition (closed system), and we assume that solid and fluid densities are only a function 151 

of the fluid pressure.  152 

The aims of our study are: (1) to present a self-consistent system of equations to 153 

quantify (de)hydration reactions and fluid flow in mechanically heterogeneous and deforming 154 

poroviscous rock, (2) to present a numerical pseudo-transient finite-difference algorithm to 155 

solve the system of equations, (3) to quantify the impact of volumetric and shear deformation 156 
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on the brucite-periclase (de)hydration reaction and the evolving reaction front, (4) to quantify 157 

differences between fluid and rock pressure, and between fluid and solid velocities, and (5) to 158 

quantify the reaction-induced rheological weakening of the modelled heterogeneous rock. 159 

 160 

2. Mathematical model 161 

2.1. Porous medium densities for the brucite, periclase and water system 162 

We consider a porous medium, with porosity  , which consists of a solid phase with 163 

density s  and a pore fluid with density f  so that the total density of the porous medium is 164 

  1T f s       .  (1) 165 

We assume that the solid phase consists of two components, (1) a non-volatile component that 166 

remains in the solid and (2) a volatile component that is liberated during dehydration. For the 167 

considered brucite-periclase system, the non-volatile component is MgO, and the volatile 168 

component is H2O. To quantify the non-volatile component of MgO in the solid phase, we use 169 

its mass (in kg) fraction, sX . Periclase has a molar mass of 0.0403 kg/mol, water of 0.0180 170 

kg/mol and brucite of 0.0583 kg/mol. Therefore, we set 1sX   for periclase and 0.69sX   171 

for brucite. Furthermore, we define the relative density of the solid component in the solid 172 

phase as 173 

 X s sX    (2) 174 

2.2. Hydro-chemical model 175 

The conservation of total mass is described by 176 

  1 0f sT
f s

t


   


     

v v   (3) 177 
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where t  is time,   is the divergence operator and f
v  and s

v  are vectors of the fluid and 178 

solid (barycentric) velocities, respectively. For vector and tensor quantities, we use indices f  179 

and s  as superscripts, because vector and tensor components will have additional subscripts 180 

indicating the spatial direction, and scalar quantities can be easier distinguished from vector 181 

and tensor quantities. We modify equation (3) by subtracting and adding s
v  to f

v , yielding 182 

    1 0f s s sT
f s

t


   


      
 

v v v v   (4) 183 

and then to re-group the velocity vectors with the total density, T , to yield        184 

     0f s sT
f T

t


  


    
 

v v v .  (5) 185 

Now, the relative velocity of the fluid to the solid, f sv v , can be expressed by Darcy’s law 186 

in the absence of gravity 187 

  
3

f s

f

f

k
p





   v v   (6) 188 

where k  and f  are the permeability coefficient in a Kozeny–Carman-type permeability 189 

expression and the fluid viscosity, respectively. Similar to total mass, the conservation of the 190 

total non-volatile component (MgO) is described by 191 

    1 1 0s

X X
t
   


        

v .  (7) 192 

There is no fluid velocity in this conservation equation because we assume that the dissolution 193 

of MgO in the fluid is negligible.  194 

We assume a constant temperature and a closed system with constant system 195 

composition so that we have equal molar amounts of H2O and MgO. Our system has a 196 
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constant composition as a whole, but its composition can vary locally because of local mass 197 

exchange (e.g. reaction and/or diffusion). We approximate s , f  and sX  as a function of 198 

fp , which can be expressed as 199 

 

 

 

 

f f f

s s f

s s f

p

p

X X p

 

 







.  (8) 200 

The values of s , f  and sX  for a range of values of fp  are calculated by Gibbs free-energy 201 

minimization (e.g. Connolly, 2005; Fig. 1), using the thermodynamic dataset of Holland and 202 

Powell (1998). 203 

2.3. Mechanical model 204 

We consider a 2D viscous material, which represents the solid part of the poroviscous 205 

medium. We employ a power-law viscous flow law, which is typically applied to model 206 

dislocation creep (e.g. Gerya, 2019). The relations between the deviatoric stress tensor 207 

components, ij ij ijp     (where ij  are the components of the total stress tensor, p  is 208 

total pressure and ij  is the Kronecker delta) and solid velocity gradients, or deviatoric strain 209 

rate tensor components ijD , are (e.g. Schmalholz and Schmid, 2012) 210 

 

1

2

n

s II
ij ij

ref

D


 




 
   

 

  (9). 211 

where subscripts i  and j  are either 1 (representing the horizontal x-direction) or 2 212 

(representing the vertical y-direction), 
s  is the solid shear viscosity, II  is the square root of 213 

the second invariant of the deviatoric stress tensor, 2 2

II xx xy    , ref  is a reference stress, 214 

n  is the stress exponent and    / / / 2 / / 3s s s

ij i j j i ij i iD v x v x v x         . For 1n  , the 215 
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material is linear viscous having a constant viscosity 
s . For simplicity, we also consider a 216 

viscous volumetric deformation for which the divergence of the solid velocity field is related 217 

to the difference between total pressure, p , and fluid pressure, fp  (e.g. Yarushina and 218 

Podladchikov, 2015)  219 

 
 1

fs
p p

 


  


v   (10) 220 

where   is the bulk viscosity. The applied force balance equations without inertial forces and 221 

gravity are 222 

 0ij   (11).   223 

2.4. Governing system of equations 224 

 The above equations represent a system of 11 equations for 11 unknowns, which are fp , 225 

 , s , f , sX , p , s

xv , s

yv , xx , yy  and xy , assuming that the deviatoric stress tensor is 226 

symmetric, xy yx  . The three deviatoric stress tensor components are calculated using the 227 

three flow law equations (9). The solid pressure is determined from the bulk-flow law, 228 

equation (10). The solid and fluid densities and the mass fraction are calculated by the three 229 

pre-computed thermodynamic data tables (equation (8) and Fig. 1C and D). Equation (5) is 230 

used to determine the fluid pressure, fp , equation (7) to determine the porosity,  , and the 231 

two force balance equations (11) to determine the two solid velocities, s

xv  and s

yv . To 232 

determine fp ,  , s

xv  and s

yv  we use an iterative numerical method, here referred to as pseudo-233 

transient (PT) method (e.g. Chorin, 1968; Duretz et al., 2019; Räss et al., 2019). Therefore, 234 

we add a pseudo time derivative of the unknown variables fp ,  , s

xv  and s

yv  to the 235 
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corresponding equations, which we use to determine these variables. The pseudo-transient 236 

equations are 237 

 

 

   

3

1 1

PT

f sT
f f TPT

pf f

PT
s

X XPT

PT s

i
ijPT

v

p k
p

t t

t t

v

t



 
 




   



  
     

    

 
         


 



v

v . (12) 238 

When the PT time derivatives of the left-hand sides of the equations (12) are zero, then the 239 

corresponding steady-state equations are solved. The closed system of governing equations is 240 

given by equations (8), (9), (10) and (12). Model variables and parameters are given in table 241 

1. 242 

2.5. Model configuration 243 

We present the model configuration before presenting the numerical method because 244 

some of the numerical parameters, such as the numerical time step, depend on the model 245 

configuration (Fig. 2). It is essential to apply physically consistent initial conditions. Hence, 246 

we first assume ambient conditions for which the unknown parameters are constant in the 2D 247 

model domain. We then apply an initial perturbation for fp  in a circular, or elliptical, region 248 

in the center of the model domain (Fig. 3). This perturbation either increases or decreases the 249 

ambient value of fp . We consider two initial configurations: (1) ambient conditions for 250 

which periclase and water are stable with a positive fluid-pressure perturbation generating 251 

locally higher fluid pressures inside the inclusion for which brucite is stable; (2) ambient 252 

conditions for which brucite is stable and a negative pressure perturbation for which locally 253 

periclase and water are stable. The initial porosity field, 0 , must be consistent with the 254 

applied initial fluid pressure field including a pressure perturbation. The initial porosity is  255 
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 

0

0

1
1

amb amb

X

X

 





    (13) 256 

where amb

X  is the corresponding density for the applied ambient fluid pressure, 
amb  is the 257 

initially ambient porosity and 0

X  is the initial density field for the initial fluid-pressure field 258 

including the perturbation. Equation (13) shows that 0  cannot be constant initially if a fluid 259 

pressure perturbation is applied because 0

X  varies according to the applied fluid pressure 260 

perturbation. Equation (13) is derived from equation (7), assuming zero solid velocities. To 261 

guarantee that 0  is initially everywhere positive requires according to equation (13) that 262 

01 /amb amb

X X    . Boundary conditions for fp  and   are of Dirichlet type, and boundary 263 

values are fixed to the initial ambient values.   264 

We also show simulations for a configuration with inclusions, which have a smaller 265 

shear viscosity than the surrounding (Figs. 5 to 9). Furthermore, we show simulations for far-266 

field pure-shear shortening boundary conditions, with horizontal shortening and vertical 267 

extension, so that the divergence of the applied boundary velocity field is zero (Figs. 5 to 9). 268 

We assume a constant temperature of 800 °C (Fig. 1).  269 

2.6. Numerical algorithm and dimensionless parameters 270 

 All derivatives are approximated with discrete difference ratios following the standard 271 

procedure of staggered finite difference (FD) methods (e.g. Gerya, 2019). The numerical 272 

algorithm consists of a standard time loop with an internal PT iteration loop. During this PT 273 

iteration loop, the PT time derivatives in the discretized equations (12) approach zero. In 274 

practice, we iterate until the PT time derivative becomes smaller than a specified numerical 275 

tolerance error. Approximating the time derivatives with the FD method generally requires 276 

four numerical time steps, which are the physical time step, t , controlling time evolution, 277 
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the PT time step to solve for fp , PT

pft , the PT time step for  , PTt , and the PT time step for 278 

s

xv  and s

yv , PT

vt . The choice of the numerical time steps is crucial for a stable convergence of 279 

the PT iterative solution, but the time steps do not affect the result after convergence. For the 280 

presented simulations, we employed the following numerical time steps: 281 
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  (14). 282 

where 0.01/eff inip  , r  is the inclusion radius (the small radius in case of an elliptical 283 

inclusion), x  and y  are horizontal and vertical grid spacing, respectively, and inip  is the 284 

initial value of the ambient fluid pressure. There are many possibilities to scale and/or non-285 

dimensionalize the model parameters inside the numerical algorithm. We programmed the 286 

numerical algorithm in such a way that the specific magnitudes of individual parameters, such 287 

as shear viscosity, are not significant and the characteristic physical behaviour of the system is 288 

controlled by dimensionless parameters. This scaling provided the most stable convergence 289 

during the PT iterations. The dimensionless parameters and numerical examples applied in the 290 

simulations are: 291 
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  (15) 292 

where w  is the model width and xxD  is the applied far-field horizontal pure-shear shortening 293 

rate. We model purely mechanical, M, (fluid velocity is zero, no reactions), purely hydro-294 

chemical, HC, (solid velocity is zero) and fully coupled hydro-mechanical chemical, HMC, 295 

systems. Parameter 1  applies to all systems, parameter 2  to HC systems and parameters 296 

3 , 4  and 5  to HMC systems, where 4  controls the far-field deformation via xxD  and 5  297 

only applies for power-law viscous deformation, 1n  .  298 

          The shear viscosity of the inclusion can be different from the one of the surrounding 299 

medium. The initial inclusion boundary represents the reaction boundary between brucite and 300 

periclase. This boundary will move during the simulations with progressive fluid pressure 301 

diffusion. Hence, also the boundary between regions of high porosity (periclase and water 302 

region) and low porosity will move. The boundary between brucite and periclase is controlled 303 

by a considerable change in porosity. Therefore, we define the brucite-periclase boundary by 304 

the average porosity between the brucite and periclase-water region. The brucite-periclase 305 

reaction boundary evolves, hence, together with the evolving porosity field. At each time step, 306 

the shear viscosity distribution is adjusted in order to coincide with the evolving reaction 307 

boundary. Therefore, the size and geometry of the mechanically weaker inclusion are 308 

changing as time progresses.  309 
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 We programmed the numerical algorithm in MATLAB. We provide the entire algorithm for 310 

the most complex HMC model configuration, which is online available under: 311 

https://github.com/schmaste/HMC_Brucite. 312 

 313 

3. Results 314 

We present first results of a mechanical (M) model to test the applicability of the 315 

PTFD method to calculate pressure variations around weak inclusions for far-field shortening 316 

(e.g. Schmid and Podladchikov, 2003; Moulas et al., 2014). To test our algorithm further, we 317 

show results of a HC model to reproduce the overall results for nonlinear diffusion of fluid 318 

pressure perturbations (Malvoisin et al., 2015). Finally, we present fully coupled HMC 319 

models to test the impact of far-field deformation and mechanical heterogeneities on fluid 320 

flow and reaction-front evolution. 321 

3.1. Heterogeneous mechanical model 322 

A weak circular inclusion is embedded in a linear viscous medium under horizontal 323 

pure-shear shortening (Figs. 2 and 3A and B). The relevant dimensionless parameters are 324 

1 14  , 3 1   and 4 0.0024  . We also consider an elliptical inclusion (Fig. 3C and D). 325 

The aspect ratio of the ellipse is three, and the long axis is tilted 30° to the vertical direction. 326 

The relevant dimensionless parameters are 1 14   (where the radius corresponds to the short 327 

axis of the ellipse), 3 1   and 4 0.0024  . Inside the circular and elliptical inclusion, 
s  is 328 

a factor 1000 smaller than in the surrounding medium. We calculate the distributions of p  329 

and compare them with the corresponding analytical solutions from Moulas et al. (2014). The 330 

results show that the applied PTFD algorithm with a staggered Eulerian grid can calculate the 331 

characteristic pressure variations around the weak inclusions under far-field shortening (Fig. 332 

https://github.com/schmaste/HMC_Brucite
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3). The numerical and analytical solutions are not fully comparable because (1) the analytical 333 

solution considers incompressible deformation while the numerical algorithm considers 334 

viscous volumetric deformation, and (2) the analytical solution applies to an infinite domain 335 

while in the numerical model the pure-shear boundary conditions are applied at the 336 

boundaries of the finite model domain. However, the numerical and analytical solutions show 337 

similar magnitudes and distribution of p .     338 

3.2. Hydro-Chemical model 339 

We consider a porous medium without solid deformation and set the solid velocities to 340 

zero. Initially, the ambient fluid pressure and porosity are perturbed within a circular domain 341 

(Fig. 4). This domain has the same viscosity as the surrounding and the model is mechanically 342 

homogeneous. We apply the parameters 1 10   and 8

2 10  . 343 

First, we apply an initially higher fluid pressure in the circular region so that initially 344 

brucite is stable inside the inclusion and periclase is stable outside the inclusion. The initial 345 

ambient value of 6.5f inip p   kbar and in the inclusion 8.45fp   kbar. The ambient initial 346 

0.55   and in the inclusion 0.007  . We chose this porosity distribution to test the 347 

algorithm in the limit of low porosity. Figure 4 shows horizontal profiles of fp  and   in the 348 

left model half and the vertical model center. The configuration corresponds to models of 349 

Malvoisin et al. (2015) for reactions with positive Clapeyron slope (their figure 10E and F). 350 

With progressive time, the initially step-like perturbation of fp  is diffusing while the profile 351 

of   maintains a step-like shape representing the motion of a dehydration front, that is a front 352 

indicating the release of water from brucite (Fig. 4A and B). Once values of fp  drop below 353 

7.85 kbar, which is the value that defines the reaction from brucite to periclase, no brucite is 354 

present anymore in the model, which is indicated by constant 0.55  . 355 
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  Second, we apply an initially smaller fluid pressure in the circular region so that 356 

initially periclase is stable inside the inclusion and brucite outside the inclusion. At first, the 357 

ambient value of 8.5fp   kbar and inside the inclusion 6.8fp   kbar. The ambient initial 358 

0.001   and in the inclusion 0.55  , again to test the algorithm in the limit of low 359 

porosity. This configuration corresponds to models shown in figure 10G and H of Malvoisin 360 

et al. (2015). With progressive time, the step-like perturbation of fp  is diffusing, but the 361 

profile of fp  maintains a sharp front above the fluid pressure of 7.85 kbar, which is the 362 

pressure at the reaction from brucite to periclase (Fig. 1C and D). The profile of   also 363 

maintains a step-like shape representing the motion of a dehydration front, which moves 364 

outward toward the brucite region (Fig. 4C and D). 365 

3.3. Hydro-Mechanical-Chemical model 366 

We consider the full HMC model to investigate the impact of solid deformation and 367 

mechanical heterogeneity on the evolution of fp  and  , and on the reaction front evolution. 368 

We consider linear viscous deformation and perform five models with increasing deformation 369 

complexity (Fig. 5). The models include a circular ( 1 10  ) or elliptical inclusion with a 370 

vertical radius two or three times larger than the horizontal radius, for which 1 10  . In the 371 

inclusions, the fluid pressure ( 6.5fp   kbar) is initially smaller than the outside ambient 372 

pressure ( 8.5fp   kbar). For all models, 8

2 10   and 3 1  , except that 
s  inside the 373 

inclusion is a factor 1000 smaller than outside. We assume that the effective shear viscosity of 374 

the high-porosity, poroviscous periclase-water region is much smaller than the effective 375 

viscosity of the low-porosity brucite region and, hence, apply a smaller shear viscosity inside 376 

the inclusion. The first HMC model has a circular inclusion and no far-field deformation (377 

4 0  ; Fig. 5B), the second model has a circular inclusion and far-field deformation (378 
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4 0.0024  ; Fig. 5C), the third model has an elliptical inclusion with aspect ratio of two and 379 

far-field deformation (result only shown in Fig. 6), and the fourth model has an elliptical 380 

inclusion with aspect ratio of three and far-field deformation ( 4 0.0024  ; Fig. 5D). For 381 

comparison, we also show the corresponding HC model, for which solid velocities are zero 382 

(Fig. 5A). 383 

In all models, the stability field of periclase, and the associated high-porosity region, is 384 

growing with time due to diffusion of fp  (e.g. Fig. 5). In the HMC model without far-field 385 

deformation, the solid velocities indicate a radially symmetric contraction of the solid (Fig. 386 

5B). The direction of solid and fluid velocities is essentially identical. In the HMC model with 387 

circular inclusion and far-field deformation, away from the circular inclusion, the solid 388 

velocities indicate the applied horizontal shortening and vertical extension (Fig. 5C). Around 389 

the inclusion, the solid velocities change direction and show a radial contraction. Inside the 390 

inclusion, the directions of solid and fluid velocities are different. In the HMC model with far-391 

field deformation and elliptical inclusion, the solid velocities indicate horizontal shortening 392 

and vertical extension, and around the inclusion contraction (Fig. 5D). Inside the inclusion, 393 

the directions of solid and fluid velocities are different. For all HMC models, the maximal 394 

fluid velocities are approximately seven orders of magnitudes larger than the solid velocities 395 

(see also Fig. 7D and E). The order of magnitude of the fluid velocity can be estimated from 396 

equation (6). Based on the applied parameters (equation (15)), assuming no solid velocity, a 397 

fluid-pressure gradient of 2 kbar/cm and a representative porosity of 0.1 yields 2×10
-8

 m/s. 398 

For the HMC models with far-field deformation, the shortening velocity is the product of 399 

shortening rate and half-model width, which yields according to the values in equation (15) a 400 

solid velocity of 10
-15

 m/s.     401 
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 With progressive time, the horizontal profiles, in the vertical model middle, of fp  and 402 

  differ for the five models (Fig. 6). Profiles of 
fp  and   are similar for the two HMC 403 

models with circular inclusion, indicating that far-field deformation does not significantly 404 

affect the evolution of fp  and  . However, profiles of fp  and   are different for the HMC 405 

models with elliptical inclusions and show a broader region with periclase and, hence, a more 406 

displaced dehydration front. The width of the periclase region in the HC model is similar to 407 

the width in the two HMC models with circular inclusions, whereas fp  has diffused slightly 408 

less for the two HMC models. The similar width of the periclase region for the HC and HMC 409 

models with circular inclusion shows that solid deformation has a minor impact on the 410 

propagation of the dehydration front for the applied configuration. The reason is that circular 411 

inclusions under far-field deformation do not generate a perturbation in p  with respect to the 412 

far-field value of p  (e.g. Moulas et al., 2014). This is different for weak elliptical inclusions 413 

with the long axis orthogonal to the shortening direction, as applied here, which exhibit higher 414 

p  inside the inclusion compared to the far-field value (e.g. Moulas et al., 2014). For circular 415 

and elliptical inclusions, the distribution of p  inside the inclusion is homogeneous (e.g. 416 

Moulas et al., 2014). The higher p  inside elliptical inclusions causes a higher fp , with 417 

respect to circular inclusions, and, hence, a wider diffusion region (Fig. 7). Furthermore, 418 

values of p  inside elliptical inclusions are larger for higher aspect ratios, which explains why 419 

the elliptical inclusion with an aspect ratio of 3 has a broader diffusion region than the 420 

inclusion with an aspect ratio of 2 (Fig. 6).  421 

With progressive time, fp  diffuses fastest for the two HMC models with circular 422 

inclusion and slowest for the HMC model with an elliptical inclusion of aspect ratio three 423 

(Fig. 6C). For all models, diffusion of fp  is fastest during the initial stage of the simulations 424 
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and progressively slows down significantly (Fig. 6C). The diffusion of fp  controls the 425 

displacement of the dehydration front, which shows a similar nonlinear time evolution as 
fp  426 

(Fig. 6D). The dehydration front in the HMC model with elliptical inclusion of aspect ratio 427 

three moves fastest whereas the dehydration front for the HMC models with circular inclusion 428 

moves slowest. For the applied parameters, the dehydration front has moved a distance 429 

between / 2r  (i.e. 0.5 cm) and r  within 220 hours (9.2 days). The results show that 430 

deformation of a mechanically heterogeneous medium has an impact on the evolution of fluid 431 

pressure and of the reaction front, which depends on the geometry of the heterogeneity.  432 

The model domain represents a deforming, heterogeneous rock in which a dehydration 433 

reaction occurs. The effective viscosity of the heterogeneous rock,  , can be calculated by 434 

the ratio of / 2II xxD , where 
II  is the area-averaged value of II  and xxD  represents the 435 

second invariant of the deviatric strain rate tensor corresponding to the applied bulk pure-436 

shear deformation of the model domain, which is constant throughout the simulations. The 437 

progressive dehydration reaction decreases the value of   with progressive deformation 438 

because the surface of the weak inclusion increases and the stress field changes (Fig. 7A and 439 

D). The decrease of   with progressive reaction and deformation represents a reaction-440 

induced weakening of the heterogeneous rock. The weakening is fastest at the beginning of 441 

deformation and subsequently slows down significantly. This overall weakening evolution is 442 

linked to the evolution of the inclusion surface (Fig. 7D) which grows fastest at the beginning 443 

of the simulation and then subsequently slows down. However, the magnitude of the 444 

weakening, here between 30% and 50% effective viscosity reduction (Fig. 7A), depends on 445 

the inclusion shape, and elliptical inclusions with larger aspect ratio exhibit more weakening 446 

(Fig. 7A). For comparison, we also show the evolution of the harmonic average, or mean, and 447 

of the arithmetic average of the viscosity fields (Fig. 7B and C). The simulations employ a 448 
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linear shear viscosity and, therefore, the evolution of the harmonic and arithmetic mean of the 449 

viscosity field depends only on the relative inclusion surface inside the model domain. The 450 

results show a strongly non-linear weakening with time and, hence, with progressive bulk 451 

strain since the applied bulk far-field pure-shear strain rate is constant.          452 

 To illustrate all features of our HMC model, we present results of a simulation with an 453 

oblique elliptical inclusion and a power-law viscous medium (Figs. 8 and 9). The long axis of 454 

the elliptical inclusion forms a 60° angle with the horizontal shortening direction. The applied 455 

dimensionless parameters are 1 10  , 8

2 10  , 3 1  , 4 0.0024  , 5 0.024   and 3n  . 456 

Results are made dimensional with the example values used in equation (15). Magnitudes of 457 

p  and fp  are significantly different both inside and outside the inclusion (Fig. 8A and B). 458 

While p  is homogeneous inside the inclusion and varies outside, fp , in contrast, varies 459 

inside the inclusion but is homogeneous outside. The divergence of the solid velocity,  s v , 460 

shows contraction (negative values) inside the inclusion but mainly expansion (positive 461 

values) outside the inclusion (Fig. 8C). The distribution of the absolute magnitude of the fluid 462 

velocity,    
2 2

f f f

x yv v v , indicates that fluid flow only occurs inside the inclusion, 463 

where   is large and where there is a gradient of fp  (Fig. 8D). The absolute magnitude of the 464 

solid velocity,    
2 2

s s s

x yv v v , shows that solid deformation is significant inside and 465 

outside the inclusion (Fig. 8E). The magnitudes of absolute solid and fluid velocities indicate 466 

that fluid velocities, as estimated above, are approximately seven orders of magnitude larger 467 

than the solid velocities. For illustration, we also calculate approximate fluid velocities by 468 

using p  instead of fp  in the Darcy equation (6). These approximate fluid velocities are zero 469 

inside the inclusion since p  is homogeneous (Fig. 8F). Hence, fluid velocities calculated with 470 

rock pressure gradients can be considerably different from the fluid velocities calculated with 471 
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fluid pressure gradients (Fig. 8D and F). The distribution of the shear stress, xy , is 472 

homogenous inside the inclusion and varies outside (Fig. 8G). For the applied parameters, the 473 

largest magnitudes of xy  are in the order of 40 MPa. Also, II  is homogeneous inside the 474 

inclusion and varies only outside (Fig. 8H), which is the reason why the effective, stress-475 

dependent shear viscosity of the solid, 
s , varies only outside the inclusion (Fig. 8I). An 476 

enlargement of the model domain shows that the current inclusion boundary, representing the 477 

dehydration front, defines the transition from contraction inside the inclusion to expansion 478 

outside (Fig. 9A). The applied far-field pure-shear, with horizontal shortening and vertical 479 

extension, would generate a zero divergence of the solid velocity,  s
v . Values of  s

v  are 480 

mostly positive outside the inclusion, indicating expansion, showing that the contraction 481 

inside the inclusion generates an expansion outside the inclusion to conserve total volume 482 

(Fig. 9A), which is imposed by the volume conserving, pure-shear boundary conditions. For 483 

the presented results, we consider a pure-shear far-field shortening rate, xxD , of 142 10  s
-1

 484 

(equation (15)). Maximal magnitudes of  s
v  are in the order of 121 10   s

-1
 showing that 485 

contraction rates are approximately two orders of magnitudes faster than the applied far-field 486 

shortening rates (Fig. 9A). Fluid and solid velocities parallel to the short axis of the ellipse are 487 

significantly faster than the velocities parallel to the long axis (Fig. 9B and C). Both 488 

magnitudes and directions of solid and fluid velocities are different inside the inclusion (Fig. 489 

9B and C).   490 

 491 

4. Discussion 492 

In the discretized PT mass conservation equation (12), we keep the products of 493 

velocity, density and porosity within the divergence term. We do not “open” the divergence 494 

term to obtain separate advection terms, for example, products of velocity multiplied by 495 
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density gradient. Although we did not compare different numerical discretization schemes, we 496 

suggest that the applied conservative numerical scheme in fully divergent form is useful for 497 

numerical stability during modelling the propagation of sharp porosity and dehydration fronts, 498 

such as shown in figures 4 and 6. To test the numerical convergence of the algorithm, we 499 

performed the simulation for the most complex HMC model (Figs. 8 and 9) for different 500 

numerical resolutions (Fig. 10). We run simulations with resolutions of 31×31, 51×51, 501 

101×101, 151×151, 201×201, 301×301 and 401×401 grid points until a time corresponding to 502 

3.3 hours. The distribution of fp  (Fig. 10A to C) and 
sv  (Fig. 10D to F) does not show 503 

numerical oscillations around the dehydration front; the numerically calculated fields of fp  504 

and 
sv  have not been smoothed during the simulations. The minimal value of fp  at the end 505 

of each simulation varies for the different numerical resolutions but varies less and less with 506 

increasing resolution indicating the numerical convergence (Fig. 10G). Similarly, the maximal 507 

value of 
sv  at the end of each simulation varies less and less with increasing resolution (Fig. 508 

10G). The numerical results and convergence test indicate that the PTFD algorithm is suitable 509 

to numerical simulate the coupling of heterogeneous rock deformation, porous fluid flow and 510 

metamorphic reactions involving the propagation of sharp porosity and reaction fronts.   511 

We consider a simple metamorphic reaction to investigate the fundamental impact of 512 

deformation in a heterogeneous solid on the reaction and fluid flow. It is, in principle, 513 

straightforward to extend the model to more complicated reactions involving more 514 

components, such as presented in Malvoisin et al. (2015). We assumed that the solid density 515 

is a function of the fluid pressure (equation (8)). Although for pure isotropic solids the density 516 

variations are a consequence of mean-stress variations (see Moulas et al., 2019, for 517 

discussion), it has been experimentally demonstrated that dehydration reactions are controlled 518 

by fluid pressure (e.g. Llana-Fúnez et al., 2012). When solid-fluid interactions are considered, 519 
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the mean stress of the solid grains may not be the most appropriate macroscopic 520 

thermodynamic variable to quantify metamorphic phase equilibrium (e.g. Dahlen, 1992; see 521 

also discussion in Schmalholz and Podladchikov, 2014). For solid-fluid interactions, mineral 522 

devolatilization reactions must be investigated at the respective solid-fluid interface (e.g. 523 

Dahlen, 1992). However, our mathematical model constitutes a two-phase, or a superposed 524 

two-field, solid-fluid continuum, in which the solid-fluid interfaces are not resolved. 525 

Therefore, we need to approximate the thermodynamic pressure by some model quantity. For 526 

the (de)hydration reaction, the variation of total density is much larger than the density 527 

variation of the solid minerals. Therefore, the porosity evolution caused by the (de)hydration 528 

reactions controls the overall total density variation, and consequently, the volumetric 529 

deformation of the solid. Hence, we apply the fluid pressure as most appropriate proxy for the 530 

macroscopic thermodynamic pressure.      531 

We model a closed system in equilibrium, and assume that the transport of the hydrous 532 

fluid occurs by porous flow. Therefore, all the hydrous fluid required for the reaction is 533 

already in the system. Consequently, the reaction from periclase and H2O-pure fluid to brucite 534 

decreases the volume of the system, because the fluid in the pore space is bounded after the 535 

reaction in the brucite and porosity is significantly reduced. In an open system, the hydration 536 

of periclase, at pressure and temperature where brucite can form in the presence of water, 537 

generates a total-volume increase because water is added to the system during the reaction. 538 

Such hydration can cause reaction-induced fracturing in the rocks surrounding the hydrating 539 

periclase (e.g. Carmichael, 1987; Kuleci et al., 2017). 540 

Our model configuration and results may be applicable to reactions related to fluid 541 

transfer inside and across shear zones. Moulas et al. (2014) showed that mathematical models 542 

of weak inclusions in viscous medium capture the first-order mechanical response of shear 543 

zones that develop in 2D visco-elasto-plastic thermo-mechanical numerical models during 544 
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lithosphere shortening (e.g. Schmalholz and Podladchikov, 2013; Jaquet and Schmalholz, 545 

2018). Fluid transfer and associated reactions are likely important during shear zone 546 

formation because the fluid enables reactions whose products can be weaker than the protolith 547 

(e.g. Jolivet et al. 2005). Therefore, fluid-driven mineral reactions can cause weakening 548 

during shear zone evolution, as was suggested for the fluid-controlled transformation from 549 

granulite to eclogite  (e.g. Austrheim, 1987; Jamtveit et al., 2000; Jolivet et al. 2005). Due to 550 

the weakening, shear zones exhibit smaller effective viscosities and deviatoric stresses than 551 

the surrounding wall rock and can, hence, exhibit different fluid and solid pressures compared 552 

to the less-deforming wall rock (e.g. Schmalholz and Podladchikov, 2013; Jamtveit et al., 553 

2018). Our model may be, hence, useful to study fluid transfer and reactions in shear zones. 554 

Furthermore, our models show that reaction-induced weakening in a heterogeneous rock is 555 

strongly nonlinear with progressive time and, hence, progressive strain. Weakening is 556 

strongest during the initial stages of the reaction because it is controlled by fluid-pressure 557 

diffusion, which is controlled by the decreasing fluid pressure gradients. Also, significant 558 

reaction-induced weakening may occur within a small amount of strain because the fluid 559 

velocities, controlling reaction-front propagation, may typically be significantly faster than 560 

the solid velocities during tectonic deformation.   561 

 562 

5. Conclusions 563 

The presented 2D hydro-mechanical-chemical model and the applied pseudo-transient 564 

finite difference numerical algorithm are suitable to quantify the interplay between 565 

metamorphic reactions and fluid flow in a deforming, heterogeneous, poroviscous medium. 566 

The medium is mechanically heterogeneous, because the mineral-fluid asemblages involved 567 

in the reaction have different effective viscosities. Our model can simulate the power-law 568 

viscous deformation of a heterogeneous medium coupled to Darcy-type porous fluid flow, 569 
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whereby solid and fluid velocities differ by seven orders of magnitude. Furthermore, the 570 

model can simulate the propagation of a sharp, step-like, (de)hydration, porosity and viscosity 571 

front. 572 

Our results show that rock deformation and mechanical heterogeneities can have a 573 

considerable impact on fluid flow and metamorphic reactions because heterogeneities in 574 

deforming rock can cause rock pressure variations, which in turn cause fluid pressure 575 

variations that impact the reaction. In the simulations, the propagation of the reaction front 576 

during deformation causes a reaction-induced weakening of the heterogeneous rock because 577 

the surface of a weak mineral-fluid assemblage increases due to the reaction. This reaction-578 

induced weakening is controlled by fluid-pressure diffusion and is strongly nonlinear with 579 

progressive strain, whereby weakening is most significant during the initial stages of the 580 

reaction. Also, in deforming heterogeneous rock, magnitudes, gradients and distributions of 581 

fluid pressure and rock pressure can be significantly different so that also directions of fluid 582 

and solid velocities can be different. Therefore, models calculating fluid velocities from 583 

gradients of the rock pressure are likely considerably inaccurate if applied to deforming 584 

heterogeneous rock, such as in and around shear zones or plate boundary regions. 585 

  586 
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 730 

 731 

Figure 1. Solid (A) and fluid (B) density fields in pressure, P, and temperature, T, space. 732 

Corresponding profiles of solid and fluid densities and mass fraction of MgO as a function of 733 

fluid pressure at 800 °C (C and D). These three profiles are used in the numerical algorithm as 734 

pre-calculated data.  735 
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 737 

 738 

Figure 2. Sketch of the modelled scenario and the model configuration (see text for details).  739 
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 741 

 742 

Figure 3. Numerical results of the mechanical model without fluid flow and reaction. A) and 743 

C) Total pressure field from analytical solutions of Moulas et al., 2014 for a weak circular and 744 

weak oblique elliptical inclusion under horizontal shortening. B) and D) corresponding 745 

numerical results. The numerical model reproduces the characteristic pressure distribution and 746 

magnitudes. 747 

 748 
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 750 

 751 

Figure 4. Numerical results of the hydro-chemical model, for which solid velocities are set to 752 

zero. Evolution of fluid pressure for positive (A) and negative (C) initial pressure 753 

perturbations in circular inclusion. Corresponding evolution of porosity (B and D). Numbers 754 

in legend indicate modelled time in hours. 755 

 756 
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 758 

 759 

Figure 5. Colorplot indicating the distribution of fluid pressure, fp  , and arrows indicating 760 

fluid (white arrows) and solid (black arrows) velocities for four simulations at a model time of 761 

39.2 hours. The circular and elliptical inclusion exhibited initially a smaller fluid pressure 762 

than the surrounding and the shear viscosity is a factor 1000 smaller than the one of the 763 

surrounding (see text for details). A) Hydro-Chemical (HC) model (solid velocities are zero) 764 

with circular inclusion and no far-field shortening. B) Hydro-Mechanical-Chemical (HMC) 765 

with circular inclusion and no far-field shortening. C) HMC with circular inclusion and with 766 

far-field shortening. D) HMC with elliptical inclusion of initial aspect ratio of three and with 767 

far-field shortening. The white dashed line indicates the initial size of the perturbation. 768 
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 770 

 771 

Figure 6. Horizontal profiles of fluid pressure and porosity for the models presented in figure 772 

5 and an additional model with elliptical inclusion having an initial aspect ratio of two. The 773 

profiles are at the vertical middle of the model domain corresponding to the bottom of the 774 

color plots displayed in figure 5. Profile of fluid pressure (A) and porosity (B) for a modelled 775 

time of 220 hours. C) Time evolution of fluid pressure in the center of the inclusion 776 

corresponding to horizontal location 0 in A). D) Time evolution of the distance between the 777 

current location of the dehydration front and the initial location. This distance is indicated by 778 

the width of the horizontal red line in B) for the HMC model with circular inclusion and 779 

shortening (red line).    780 
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 782 

 783 

Figure 7. Reaction-induced weakening with progressive time is quantified by the decrease of 784 

the effective viscosity (A to C) of the entire model domain of three simulations presented in 785 

figure 6 (see legends). A) The effective viscosity is calculated by the area-average of the 786 

second invariant of the stress tensor divided by the second invariant of the far-field, pure-787 

shear, strain rate invariant, which is constant throughout the simulation. B) The effective 788 

viscosity is calculated by the harmonic mean of all viscosities at all numerical grid points. C) 789 

Same as B) but for arithmetic average. All effective viscosities are divided, normalized, by the 790 

initial effective viscositiy of the first numerical time step. D) Relative increase of the 791 

inclusion surface, divided by initial inclusion surface, with time.   792 
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 794 

 795 

Figure 8. Colormaps of model quantities (see table 1) for an oblique elliptical inclusion with 796 

far-field horizontal pure shear shortening after a modelled time corresponding to 16.5 hours. 797 

The material is power-law viscous with a stress exponent of 3, and the inclusion has a shear 798 

viscosity thousand times smaller than the surrounding. 799 
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 801 

 802 

 803 

Figure 9. Enlargement of model results displayed in figure 7. A) Colorplot of divergence of 804 

solid velocity field and arrows indicating solid velocity field. The dashed white line indicates 805 

the initial inclusion boundary and a black dotted line indicates the contour for which the 806 

divergence is zero. B) Colorplot of the absolute magnitude of fluid velocity and arrows 807 

indicating fluid velocity field. C) Colorplot of the absolute magnitude of solid velocity and 808 

arrows indicating solid velocity field. Black dashed line indicates current reaction front. 809 
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 812 

Figure 10. Numerical convergence test for the model of figure 7 at a model time 813 

corresponding to 3.3 hours. A) to C) shows color plot of fp  for three different numerical 814 

resolutions (white numbers inside panel). D) to F) shows color plot of 
sv  for three different 815 

numerical resolutions (white numbers inside panel). G) Variation of the minimum value of 816 

fp  and the maximal value of 
sv  with increasing resolution. The horizontal axis shows the 817 

resolution in the horizontal x-direction, and the vertical axis shows the corresponding 818 

quantities for fp  and 
sv  divided by the corresponding value for the maximal resolution of 819 

401 grid points. The plot shows that the respective values vary less and less with increasing 820 

resolution indicating a convergence of the numerical result towards a specific magnitude. 821 
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 822 

Table 1. Model variables and parameters. 823 

Symbol Name Units 

fp  Fluid pressure  Pa  

  Porosity    

s  Solid density 3kg m  

 
f  Fluid density 3kg m  

 
sX  Mass fraction MgO    

p  Total pressure  Pa  

s

xv , s

yv  Solid velocities 1m s    

f

xv , f

yv  Fluid velocities 1m s    

xx , yy , xy  Deviatoric stresses  Pa  

ref  Reference stress  Pa  

k  Permeability 2m    

f  Fluid viscosity  Pa s  

s  Shear viscosity solid  Pa s  

  Bulk viscosity solid  Pa s  

n  Stress exponent    

eff   Eff. compressibility  Pa  

inip   Initial ambient pressure  Pa  

xxD   Far-field shortening rate 

rate 

1s     

r   Inclusion radius  m  

w   Model width  m  

 824 


