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Abstract

Tracer methods are widespread in computational geodynamics for modeling the advection of chemical data. However, they

present certain numerical challenges, especially when used over long periods of simulation time. We address two of these in

this work: the necessity for mass conservation of chemical composition fields and the need for the velocity field to be pointwise

divergence free to avoid gaps in tracer coverage. We do this by implementing the hybrid discontinuous Galerkin (HDG) finite

element method combined with a mass-conserving constrained projection of the tracer data. To demonstrate the efficacy of

this system we compare it to other common finite element formulations of the Stokes system and projections of the chemical

composition. We provide a reference of the numerical properties and error convergence rates which should be observed by using

these various discretization schemes. This serves as a tool for verification of existing or new implementations. We summarize

these data in a reproduction of a published Rayleigh–Taylor instability benchmark, demonstrating the importance of careful

choices of appropriate and compatible discretization methods for all aspects of geodynamics simulations.
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Abstract14

Tracer methods are widespread in computational geodynamics for modeling the advection15

of chemical data. However, they present certain numerical challenges, especially when used16

over long periods of simulation time. We address two of these in this work: the necessity17

for mass conservation of chemical composition fields and the need for the velocity field to18

be pointwise divergence free to avoid gaps in tracer coverage. We do this by implementing19

the hybrid discontinuous Galerkin (HDG) finite element method combined with a mass-20

conserving constrained projection of the tracer data. To demonstrate the efficacy of this21

system we compare it to other common finite element formulations of the Stokes system22

and projections of the chemical composition.23

We provide a reference of the numerical properties and error convergence rates which24

should be observed by using these various discretization schemes. This serves as a tool for25

verification of existing or new implementations. We summarize these data in a reproduc-26

tion of a published Rayleigh–Taylor instability benchmark, demonstrating the importance27

of careful choices of appropriate and compatible discretization methods for all aspects of28

geodynamics simulations.29

Keywords: Finite element analysis, tracer methods, mantle convection, buoyancy driven30

convection31

1 Introduction32

Melting at mid-oceanic ridges causes differentiation of the Earth’s mantle with the for-33

mation of a distinct basaltic crust on top of a depleted peridotite layer. The recycling of this34

oceanic crust in subduction zones, where additional differentiation may occur, causes the35

continuous formation of chemical heterogeneity in the Earth’s mantle which adds to com-36

positional heterogeneity that may have been formed during Earth’s formation and magma37

ocean solidification (e.g., Labrosse et al., 2007).38

Mantle convection models that incorporate these differentiation processes can predict39

how any formed heterogeneity is mixed back in or retained in the mantle (Kellogg, 1992;40

Tackley, 2015; van Keken et al., 2002, 2014) and help decipher the processes that lead to the41

long term chemical evolution of the Earth as seen in geochemistry (Christensen & Hofmann,42

1994; R. E. Jones et al., 2019; Samuel & Farnetani, 2003; Tucker et al., 2020; Xie & Tackley,43

2004), the formation of the structure of the Earth’s mantle as imaged by seismological44

methods (Ballmer et al., 2016; Bull et al., 2009; Haugland et al., 2018; T. D. Jones et45

al., 2020), and the Earth’s thermal state and evolution (Nakagawa & Tackley, 2005; Li &46

McNamara, 2018; Zhong, 2006).47

Implementing the chemical buoyancy term into the Stokes equations that follow from48

the conservation of momentum tends to be more challenging than that of thermal buoyancy49

because chemical diffusion is sufficiently small compared to thermal diffusion that it can be50

ignored. In geodynamical applications several distinct methods have been traditionally used51

to represent the chemical buoyancy. These include i) marker chain methods to delineate52

the boundary between two volumes of distinct chemical composition (Christensen & Yuen,53

1984; Lin & van Keken, 2006; Schmeling, 1987); ii) tracer methods where individual tracers54

carry a relative proportion of the chemical buoyancy (Brandenburg et al., 2008; Christensen55

& Hofmann, 1994; Gerya & Yuen, 2003; O’Neill et al., 2006; Tackley & King, 2003); and56

iii) representing the chemical density as a composition field and solving the advection-57

diffusion equation with low chemical diffusivity (e.g., Hansen & Yuen, 2000; Kellogg &58

King, 1993), which in the presence of thermal buoyancy leads to double-diffusive convection59

(Turner, 1974). A comprehensive, if now slightly dated, comparison of these three methods60

is provided in van Keken et al. (1997).61
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Further complications occur if the compositionally distinct materials have different62

rheological behavior. In this case the continuity in stress across the interface causes a dis-63

continuity in strainrate which is not a trivial problem to solve. See Suckale et al. (2010) for64

an elegant solution using a combination of ghost fluids and the level-set method.65

In the past decade or so there has been significant progress improving methods for66

the accurate solution of thermochemical convection which are based on on, among others,67

application of discontinuous Galerkin (DG) finite element methods (He et al., 2017), further68

use of level set methods (Hillebrand et al., 2014; Samuel & Evonuk, 2010), and adaptive69

remeshing (Davies et al., 2007; Leng & Zhong, 2011). Modeling of thermochemical convection70

has also become more readily available to a larger group of researchers through community71

codes such as ASPECT (Gassmöller et al., 2018) and the reliability of new methods has72

been demonstrated by careful benchmarking and error testing (e.g., Thielmann et al., 2014;73

Vynnytska et al., 2013).74

In this paper we will focus on tracer methods. Their popularity arises primarily from75

their robustness when advecting sharp jumps in material properties in the absence of dif-76

fusion. In contrast, field-based methods under these circumstances are prone to instability77

arising as numerical oscillations or suffer from significant over-diffusion. The tracer meth-78

ods are also more practical than the marker chain method for tracing chemical buoyancy79

over long time scales as typical mantle mixing leads to exponential growth of length of the80

marker chain (van Keken et al., 1997). Additionally the implementation of tracer methods is81

straightforward in both 2D and 3D. Each position and chemical datum pair in a population82

of tracers is simply advected through a velocity field using discrete time integration.83

Tracer methods are not without their issues however. Pointwise chemical data associated84

with the tracers must be transferred, or projected, onto a mesh-based composition field85

before they can be used to set material properties such as buoyancy or viscosity. Various86

methods have been proposed for this projection, many of which depend on treating the87

tracers as delta-function sources within the domain. In the Dirac delta source, or ‘Stokeslet’88

method (e.g., Christensen & Hofmann, 1994), direct integration of these delta functions89

with an associated mass per particle is used to derive the buoyancy source on the right-90

hand side of the Stokes system. The so-called tracer ratio and absolute methods (Tackley91

& King, 2003) use integrals of the delta functions to count the number of particles of a92

particular type per cell. Weighting these counts by either a volume fraction per particle for93

the absolute method or by the total number of particles per cell for the ratio method results94

in a mesh-based composition field.95

The properties of the projected composition field vary widely depending on the algo-96

rithm. Ideally the field should be conserved both globally across the domain and locally97

within each cell of the mesh. Additionally the error in the field representation should con-98

verge at an optimal rate as the number of cells in the mesh increases, provided some minimum99

number of particles per cell is maintained. The absolute and Dirac delta methods achieve100

global but not local conservation. The tracer ratio method is neither locally nor globally101

conservative (Trim et al., 2020) but it does have the advantage that the composition field102

remains bounded between set limits (Tackley & King, 2003). In general however the inte-103

gration of Dirac delta functions does not satisfy the smoothness, or regularity, requirements104

for finite elements. This causes algorithms that depend on it to typically experience reduced105

error convergence rates even when using nonconforming methods (e.g., Scott, 1973; Houston106

& Wihler, 2012). When the composition field is used to drive the flow, for example through107

the buoyancy or viscosity terms, this may in turn lead to suboptimal convergence of the108

velocity solution.109

During advection tracers may drift apart (e.g., Wang et al., 2015; Trim et al., 2020),110

leaving gaps in coverage that may cause projection algorithms to break down when cells111

lack particles. This often requires the introduction (and removal) of tracers (e.g., Moresi et112

al., 2003), adding to the complexity of the algorithm. In incompressible flows however the113

–3–
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(a) (b) (c)

Figure 1: Example of tracers advected using a fourth order Runge–Kutta method in a forced
cavity model. The geometry is a unit square and flow is forced by uniform horizontal velocity
along the top boundary with free-slip boundaries elsewhere. (a) Initial configuration of the
tracers. (b) Tracer distribution after 20 overturn times using a traditional Taylor–Hood
finite element method. (c) as (b) but now with the new hybrid discontinuous Galerkin finite
element method that guarantees the velocity field representation is pointwise divergence
free.

root cause of this problem is that the discrete velocity solution is generally only divergence114

free in some discrete sense and not at every point in the domain. Thus over long simulations115

two particles may diverge even if they are initially in close proximity to each other.116

Various velocity field reconstruction techniques have been proposed that maintain uni-117

form particle distributions in the incompressible limit (Jenny et al., 2001; Wang et al., 2015;118

McDermott & Pope, 2008). Importantly, Maljaars et al. (2018) demonstrated that parti-119

cle drift is mitigated when the incompressibility constraint is accurately satisfied. This is120

demonstrated in Figure 1 where initially evenly distributed particles (Figure 1a) develop121

significant gaps as the driven lid cavity simulation progresses when the Stokes equations are122

discretized using the commonly used Taylor–Hood (TH) finite element pair (Figure 1b). The123

use of a new hybrid discontinuous Galerkin (HDG) discretization that we will discuss fur-124

ther below guarantees that the incompressibility constraint is satisfied at every point in the125

domain. This maintains a consistent, even distribution of particles throughout the domain126

without the formation of gaps like those that occur with the TH discretization (Figure 1c).127

The simple comparison in Figure 1 shows that, while stand-alone tracer advection al-128

gorithms are straightforward to implement, coupling them to a velocity solution may lead129

to significant artifacts. Here we demonstrate a holistic approach to chemical advection by130

tracers in geodynamic models using finite elements on 2D triangular meshes. This approach131

is straightforward to extend to 3D tetrahedral meshes. Our new approach requires us to re-132

consider the discretization of the entire system of equations. In the remainder of this paper133

we will demonstrate each stage individually: the advection of the tracers; the projection of134

their data to a chemical composition field in a conservative manner; and the appropriate spa-135

tial approximation of the velocity field such that it inherently satisfies the incompressibility136

constraint of the Stokes system of equations, overcoming spurious particle drift.137

Advection of the composition field using tracers requires the solution of an ordinary138

differential equation (ODE) for each tracer in the domain. These ODEs may be discretized139

and numerically integrated using any appropriate method. In this work we will use (but140

are not limited to) flexible arbitrary order Runge–Kutta (RK) methods. We provide a brief141

overview of these methods in section 3.142
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Before solving the Stokes system we must project the tracer data to a mesh-based143

composition field. In section 4 we focus on the least squares projection, which preserves144

optimal error convergence during mesh refinement (Maljaars et al., 2018; Thielmann et al.,145

2014). However, it does not satisfy mass conservation so we exploit the partial differential146

equation (PDE) constrained least squares projection (Maljaars et al., 2019, 2020), which147

allows us to enforce both global and local conservation properties on the composition field148

(section 4.2). We provide a brief summary of tracer projection methods in Table 1.149

A key benefit of this tracer projection approach is its treatment of tracer data as a point-150

wise approximation of a continuous field. Contrary to the ‘Stokeslet’ method composed of151

Dirac delta sources, this approach allows us to both add and remove tracers mid-simulation152

without breaking local or global mass conservation when performing the PDE constrained153

projection. This is not demonstrated here as the carefully selected velocity discretization,154

resulting lack of particle drift and near uniform mesh resolution mean that all simulations155

are robust without the addition or removal of particles.156

Numerous methods exist for the discretization of the Stokes system but we focus in this157

work on the finite element (FE) method due to its ability to manage complex geometries,158

viscosity models, and tools for error analysis (Brenner & Scott, 2010). We summarize some159

of the more frequently used FE methods used in geodynamics in Table 2 but focus here160

on methods that produce pointwise divergence free velocity fields. For tracer advection in161

incompressible flows this has the essential property of preventing tracer ‘drift’ as demon-162

strated in Figure 1c. Several methods exist with this property (e.g., Cockburn et al., 2007;163

Evans & Hughes, 2013; Guzmán & Neilan, 2014). In this work we exploit the new HDG164

method (Cockburn et al., 2010; Labeur & Wells, 2012; Rhebergen & Wells, 2018a) and165

compare its properties to the commonly used TH scheme.166

After introducing the methods we test them in section 7 using a series of computa-167

tional geophysics benchmarks from the literature. We examine the impact of each specific168

discretization method on the accuracy of the results with the goal of demonstrating how169

a holistic approach is necessary to maintain accuracy and consistency in a fully coupled170

tracer-based model.171

2 Problem definition and geometry172

Let Ω be the computational domain of spatial dimension d=2 which accurately repre-
sents the problem geometry, for example a mantle convection cell. Furthermore let ∂Ω be
the boundary of this domain with outward pointing unit normal vector n. A depiction of this
discretization is shown in Figure 2. Given an initial time t=0 and final time tF , we define
the time interval t ∈ It := (0, tF ]. Subject to appropriate boundary and initial conditions
we seek the velocity, pressure, and chemical compositions fields, u, p and φ, of the coupled
problem in Ω× It

−∇ ·
(

2ηε̇(u)
)

+∇p = f , (1)

∇ · u = 0, (2)

∂φ

∂t
+∇ · (uφ) = 0. (3)

Here η is the viscosity, ε̇(u) = 1
2 (∇u + ∇u>) is the rate of strain tensor and f is the173

momentum source.174

To discretize the domain, we subdivide Ω into non-overlapping triangles which tessellate175

the geometry generating a conforming mesh. We write κ to denote a triangle in the mesh176

T such that T := {κ}. We refer to each κ ∈ T as an element or cell in the mesh which177

has measured diameter hκ, the maximum distance between two points in the cell. We also178

employ the notation h to indicate that a quantity has been discretized conforming to the179

–5–
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Table 1: Summary of tracer data projection methods. See also sections 1 and 4.

This work

l2 projection Minimizes square distance between tracer data (X(t), Φ(t)) and the

composition field φh(x, t). Does not guarantee conservation. For smooth

functions error converges at the optimal rate O(hk+1). When projecting

into a DG FE space requires only local solves on each element.

PDE-constrained

l2 projection

l2 projection augmented by the PDE constraint of the advection equa-

tion. HDG discretization of the variational problem exactly conserves

the composition function. Requires a global solve over the domain.

Not implemented here

Dirac delta

‘Stokeslet’ source

Direct application of point source data to the right hand side of the

Stokes system. Does not satisfy regularity requirements of the FE

scheme. Will reduce convergence rate of the error of the velocity FE ap-

proximation to O(h) (Scott, 1973; Houston & Wihler, 2012). Does not

provide a field representation φh(x, t) required by the viscosity model.

Dirac delta projec-

tion

L2 projection of tracer data to an FE space. Same issue applies in the

projection of Dirac delta functions to a composition field whose FE

approximation error measured in the L2 norm will be suboptimal at a

rate O(h). Requires a global solve over the domain if projecting into a

continuous FE space.

underlying mesh. Furthermore, each cell κ has a boundary ∂κ with corresponding outward180

pointing unit normal vector nκ (see Figure 2(b)).181

3 Discretization of a field by tracer data182

Consider the advection equation stated in equation (3). Instead of a field, φ(x, t), we
use a tracer method to make discrete pointwise approximations. In this setting, we generate
Np tracers in the domain Ω such that each tracer has position xp(t) ∈ Ω, p = 1, . . . , Np. We
may therefore define the set of tracer positions X inside the domain

X(t) :=
{
xp(t)

}Np
p=1

. (4)

Each tracer may carry arbitrary numerical data. For example, we assign the pth tracer’s
datum regarding the composition field value φp(t), p = 1, . . . , Np. So we now define the
composition data associated with the tracers

Φ(t) :=
{
φp(t)

}Np
p=1

. (5)

An example of the discretization of the field φ(x, t) by the point coordinates X(t) and the183

interpolated data Φ(t) = {φp(t) = φ(xp(t), t)}Npp=1 is shown in Figure 3.184

It is important to note that in our field discretization implementation the tracer data185

have no associated physical mass or volume. It is the composition field itself that carries186

these physical data. Therefore by this method we may add or remove tracers as necessary187

with no concern for breaking mass or volume conservation. However, conservation of the188

field itself requires consideration which we address later in section 4.189

–6–
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(a) Analytical domain
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(b) Discretized mesh

Figure 2: (a): An abstract domain Ω with boundary ∂Ω and outward pointing unit normal
vector n. (b): The discretization of Ω into a mesh comprised of tessellating triangles T = {κ}.
The first 10 triangles are labeled.
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Figure 3: Pointwise discretization of a composition field by tracer data. (a): Example ana-
lytical composition field φ(x, t). (b): Discretization of φ(x, t) by interpolation to tracer data

Φ(t) = {φ(xp, t)}Npp=1 at positions X(t).
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Table 2: Summary of FE discretization schemes of the Stokes system used in this work.
See also section 5 and supplementary section S3. We refer to Boffi et al. (2013) and the
references cited therein for more information on FE pairs.

Demonstrated in main text

TH Velocity and pressure FE approximations converge at the optimal rates O(hp+1) and

O(hp) as measured in the L2 norm. Globally satisfies the integral divergence free

constraint
∫

Ω
∇·uh dx=0, however uh is not pointwise divergence free.

HDG Scheme coupling FE functions defined on both the cells and the facets. Velocity and

pressure L2 error converges at optimal rates. Yields a pointwise divergence free veloc-

ity approximation ∇·u(x)=0 ∀x∈Ω. Can be formulated such that local components

of the problem are eliminated before a global solve by static condensation.

Demonstrated in supplemental material

DG Nonconforming FE scheme permitting discontinuities in the solution. Velocity and

pressure L2 error converges at optimal rates. Enforces the divergence free constraint

such that
∫

Ω
∇·uh dx=0 and

∫
κ
∇·uh dx=0, κ ∈ T . The resulting discontinuous ve-

locity field uh is incompatible with the PDE-constrained l2 projection method. The

degree of freedom count is typically much larger than conforming methods.

MINI Velocity FE space enriched by the cubic vector bubble element. Allows equal order

approximation of velocity and pressure (p≥1). Enforces the divergence free constraint

in the global sense
∫

Ω
∇·uh dx=0.

P2BDG1 In some settings it is beneficial to have a discontinuous pressure approximation. This

stable element pair combines the enriched velocity FE space of degree p≥2 of the

MINI element with the p−1 degree FE DG space for the pressure. This element pair

satisfies the divergence free constraint only in the global sense
∫

Ω
∇·uh dx=0.

P2DG0 Also permits a discontinuous pressure approximation by combining the standard p≥2

vector FE space for the velocity and p−2 DG FE space for the pressure. Although

this yields a decrease in the number of degrees of freedom, the convergence rate of

the velocity solution as measured in the L2 norm is suboptimal O(hp).

3.1 Time integration190

The total derivatives of the tracer data subject to the advection equation read

dφp
dt

= 0, (6)

dxp
dt

= u(xp, t), p = 1, . . . , Np. (7)

Clearly, once the initial composition data Φ(t=0) have been prescribed, equation (6) de-191

mands their values never change for t>0. However, the approximation of the evolution of192

the tracers’ positions should be computed from equation (7) by numerically integrating193

the Np independent ODEs. See Figure 4 for a depiction of numerical advection of a tracer194

through a velocity field.195

–8–
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xp(t)

xp(t + ∆t)

Figure 4: Example tracer advection through a velocity field. The blue arrows show a velocity
field uh(x) defined on an FE mesh. A tracer with position datum xp(t) is advected to its
new position at time step xp(t+ ∆t).

The time derivative equation (7) must be integrated in order to compute the evolution of196

the tracer distribution. Precise time integration of the tracers is important to ensure a good197

approximation of the evolution of the composition field. In this work we will consider our198

implementation of the RK time integration method. We write RK`, with ` ∈ N indicating199

the order of the method we use. For detailed analysis of RK methods we refer to Butcher200

(1987).201

Given an initial time t=0 and final time tF , we discretize the simulation time interval
It into the points

I∆t =
{
tn+1 : tn+1 = min (tn + ∆tn, tF )

}
. (8)

The way in which ∆tn is chosen is a key factor in stability and accuracy of the RK method.
Here we make our choice based on a form of the Courant–Friedrichs–Lewy (CFL) criterion

∆tn = CCFL
hmin

maxx∈Ω uh(x, tn)
, (9)

where CCFL is the constant CFL parameter and hmin is the smallest diameter measure of the202

mesh’s cells. We refer to LeVeque (2007) for a comprehensive analysis of time integration203

methods.204

3.2 Runge–Kutta method summary205

The general form of the RK` method is as follows: Find xp,n+1, p = 1, . . . , Np such that

xp,n+1 = xp,n + ∆tn
∑̀
i=1

bikp,i (10)

where ` ≥ 1 and

kp,i = u(xp,n + ∆tn
∑̀
j=1

aijkp,j , tn + ∆tnci). (11)

The quantities aij , bi and ci are drawn from the so-called Butcher tableau (Butcher, 1987)

c1 a11

...
...

. . .

c` a`1 · · · a``

b1 · · · b`

(12)

–9–
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Note that the RK` method requires ` − 1 computations of the Stokes FE solution. This206

expense should be considered when choosing the appropriate numerical method for the task207

at hand. The RK` methods implemented for this work are shown in Table 3.208

Table 3: The RK` methods used in this work.

Method Butcher tableau Iteration

RK1
0 0

1

kp,1 = u(xp,n, tn)

xp,n+1 = xp,n + ∆tnkp,1

RK2

0 0
1 1 0

1
2

1
2

kp,1 = u(xp,n, tn)

kp,2 = u(xp,n + ∆tnkp,1, tn + ∆tn)

xp,n+1 = xp,n +
∆tn

2

(
kp,1 + kp,2

)

RK3

0 0
1
2

1
2 0

3
4 0 3

4 0

2
9

1
3

4
9

kp,1 = u(xp,n, tn)

kp,2 = u(xp,n +
1

2
∆tnkp,1, tn +

1

2
∆tn)

kp,3 = u(xp,n +
3

4
∆tnkp,2, tn +

3

4
∆tn)

xp,n+1 = xp,n + ∆tn

(
2

9
kp,1 +

1

3
kp,2 +

4

9
kp,3

)

RK4

0 0
1
2

1
2 0

1
2 0 1

2 0
1 0 0 1 0

1
6

1
3

1
3

1
6

kp,1 = u(xp,n, tn)

kp,2 = u(xp,n +
1

2
∆tnkp,1, tn +

1

2
∆tn)

kp,3 = u(xp,n +
1

2
∆tnkp,2, tn +

1

2
∆tn)

kp,4 = u(xp,n + ∆tnkp,3, tn + ∆tn)

xp,n+1 = xp,n + ∆tn

(
1

6

(
kp,1 + kp,4

)
+

1

3

(
kp,2 + kp,3

))

4 Projection of tracer data to a field209

Let φh(x, t) be the approximation of the true composition field φ(x, t). With the tracer210

positions X(t) and composition data Φ(t), we must define methods by which these data may211

be represented by φh(x, t). We propose two methods here: the straightforward least squares212

(l2) projection and the PDE-constrained l2 projection. We summarize properties of these213

and other commonly used methods in Table 1.214

4.1 Least squares projection215

First we choose a finite dimensional space of functions Wh,k which is composed of
piecewise polynomials of degree k into which the tracer data will be projected. We will specify
choices for this space after we have constructed the least squares projection operation. This
l2 projection minimizes the difference between the tracer data and its field projection in a
least–squares sense. Given tracer positions X(t) and composition data Φ(t), the l2 projection
operator corresponds to the following minimization problem: find φh(x, t) ∈ Wh,k which
satisfies

min
φh∈Wh,k

J (φh) :=

Np∑
p

1

2

(
φh(xp(t), t)− φp(t)

)2
. (13)
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This corresponds to solving the following linear system: find φh(x, t) ∈Wh,k such that

Np∑
p=1

(
φh(xp(t), t)− φp(t)

)
wh(xp(t)) = 0 (14)

for all wh ∈Wh,k.216

We choose Wh,k to be the nonconforming FE space of discontinuous piecewise polyno-
mials, that is the standard DG FE space. We therefore write Wh,k

DG to emphasize the space’s
characteristic and define it as follows

Wh,k
DG := {v : v is square integrable in Ω and is composed

of piecewise polynomials of degree k ≥ 0 defined on each κ ∈ T }. (15)

This choice offers a number of benefits. We may better approximate the discontinuity be-
tween composition phases compared with standard continuous spaces. Furthermore the lin-
ear system (14) may be written as a summation of local (i.e. cellwise) equations, that can
be solved independently for each cell κ ∈ T , i.e.: find φh(x, t) ∈Wh,k

DG such that

∑
κ∈T

Npκ∑
pκ=1

(
φh(xpκ(t), t)− φpκ(t)

)
wh(xpκ(t)) = 0 (16)

for all wh ∈ Wh,k
DG. Here Npκ is the number of tracers inside cell κ and pκ = 1, . . . , Npκ are217

the indices of the tracers which reside in the cell κ exclusively. This local solution method218

is typically more computationally efficient than solving the global system that would be219

generated by a standard continuous FE space.220

In some geodynamical models we must constrain the composition function to reside221

within bounded limits. For example, φmin≤φh(x, t)≤φmax ∀x ∈ Ω where φmin and φmax222

are minimum and maximum values permitted for φh, respectively. This is pertinent in the223

case k≥1 considering numerical oscillations will yield overshoots and undershoots in the224

projected composition field. See Goldfarb and Idnani (1983) for a background on quadratic225

programming for such problems. In our implementation we make use of QuadProg++ to226

perform the box-constrained numerical optimization (Gaspero, 2020).227

The l2 projection scheme is not conservative. Hence, the composition field will incur a228

mass conservation error over time. To solve this issue we next exploit a PDE constrained l2229

projection, recently introduced in Maljaars et al. (2019).230

4.2 PDE-constrained projection231

Consider again the minimization problem equation (13). We augment this problem with
the constraint of the advection equation (3), so that the full problem reads: find φh(x, t) ∈
Wh,k

DG which satisfies

min
φh∈Wh,k

DG

J (φh) :=

Np∑
p

1

2

(
φh(xp(t), t)− φp(t)

)2
(17a)

subject to:

∂φh
∂t

+∇ · (uhφh) = 0 in Ω,

φh = φin on ∂Ωin,
(17b)

where ∂Ωin = {x ∈ ∂Ω : uh(x) · n(x) < 0} is the region of the exterior boundary where the232

velocity field flows into the domain Ω and φin is the prescribed incoming composition data233

on the inflow boundary. We also write ∂Ωout = ∂Ω \ ∂Ωin which is the outflow portion of234

the exterior boundary.235
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The implication is that the minimization problem now carries information regarding236

conservation of φh(x, t) as the simulation evolves. In fact it can be shown that the HDG237

FE discretization of the system equation (17) exactly conserves φh globally and locally (to238

machine precision). We exploit this exact mass conservation property in this work and refer239

to Maljaars et al. (2019) for the details of this analysis.240

For now, we will state the FE problem which solves the system equation (17). To
formulate the HDG problem we require three FE spaces Wh,k

DG, Th and W̄h,k
DG. Here Wh,k

DG is
the standard DG space of degree k, Th is also a standard DG space of degree 0 (i.e. piecewise
constants per cell1) and W̄h,k

DG is composed of piecewise polynomials of degree k defined on
the facets of the mesh and discontinuous between facets. By multiplying equation (17b)
with a Lagrange multiplier λh ∈ Th and applying integration by parts, which introduces an
unknown flux φ̄h ∈ W̄h,k

DG on interior facets, the optimization problem amounts to finding
the stationary points of the Lagrangian functional:

L(φh, φ̄h, λh) =

Np∑
p

1

2

(
φh(xp(t), t)− φp(t)

)2
+

∫
Ω

∂φh
∂t

λh dx−
∑
κ∈T

∫
κ

uhφh · ∇λh dx

+
∑
κ∈T

∫
∂κ\∂Ω

uh · nκφ̄hλh ds +

∫
∂Ωout

uh · nφhλh ds +

∫
∂Ωin

uh · nφinλh ds

+
∑
κ∈T

∫
∂κ

1

2
β
(
φ̄h − φh

)2
ds +

∑
κ∈T

∫
κ

1

2
ζ(∇φh)2 dx. (18)

Let us take a moment to examine the lines in equation (18). The first should be familiar from241

equation (17) arising from our desire to minimize the squared distance between the tracer242

values and the field approximation. The second and third lines are the HDG discretization243

of the weak formulation of the advection equation, i.e. the constraint PDE in equation (17).244

The first term in the final line arises from the HDG discretization where β > 0 is a parameter245

which prevents the problem from becoming singular when uh · nκ = 0 by penalizing jumps246

between the field approximation defined on the cells φh and the facets φ̄h. In all computations247

in this work we choose β=10−6. The final term introduces a gradient penalty parameter ζ≥0.248

For ζ>0, this term penalizes the overshoot and undershoot oscillations which occur when249

approximating a discontinuous function of degree p≥1 where a discontinuity is not aligned250

with the mesh.251

The FE approximation (φh, φ̄h, λh) ∈ Wh,k
DG × W̄h,k

DG × Th at the stationary points of
equation (18) is computed by taking the Fréchet derivative and solving the resulting linear

1 This choice is made as no discernible advantage is observed when employing higher order spaces (Maljaars

et al., 2019).
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system (Maljaars et al., 2019), that is, find (φh, φ̄h, λh) ∈Wh,k
DG × W̄h,k

DG × Th such that

Np∑
p=1

(
φh(xp(t), t)− φp(t)

)
δφh(xp(t))−

∑
κ∈T

∫
∂κ

β
(
φ̄h − φh

)
δφh ds

+

∫
Ω

∂δφh
∂t

λh dx−
∑
κ∈T

∫
κ

uh · ∇λhδφh dx +

∫
∂Ωout

uh · nλhδφh ds

+
∑
κ∈T

∫
κ

ζ∇φh · ∇δφh dx = 0, (19)∫
Ω

∂φh
∂t

δλh dx−
∑
κ∈T

∫
κ

uhφh · ∇δλh dx

+
∑
κ∈T

∫
∂κ\∂Ω

uh · nκφ̄hδλh ds +

∫
∂Ωout

uh · nφhδλh ds +

∫
∂Ωin

uh · nφinδλh ds = 0, (20)

∑
κ∈T

∫
∂κ\∂Ω

uh · nκλhδφ̄h ds +
∑
κ∈T

∫
∂κ

β
(
φ̄h − φh

)
δφ̄h ds = 0, (21)

for all (δφh, δφ̄h, δλh) ∈Wh,k
DG×W̄h,k

DG×Th. For numerical analysis details we refer to Maljaars252

et al. (2019), and for implementation and practical demonstration we refer to Maljaars et253

al. (in press). Although the algebra deriving this system appears daunting, the Unified254

Form Language (UFL) component of the FEniCS project facilitates automatic symbolic255

differentiation of forms like equation (18) (Alnæs et al., 2014). Furthermore we exploit the256

concept of static condensation by locally eliminating the unknowns φh and λh in favor of257

φ̄h on each element during matrix assembly. Therefore we only need solve for φ̄h in a global258

sense, thereby vastly reducing size of the underlying linear system.259

A key result of this formulation is that we achieve local and global conservation of φh (Maljaars
et al., 2019). Consider the component of the Fréchet derivative in all directions δλh equa-
tion (20). To show global conservation we assign δλh = 1 to yield∫

Ω

∂φh
∂t

dx +
∑
κ∈T

∫
∂κ\∂Ω

uh · nκφ̄h ds +

∫
∂Ωout

uh · nφh ds +

∫
∂Ωin

uh · nφin ds = 0. (22)

Since φ̄ is single valued across a facet, the flux at interior facets vanishes if uh has continuous
normal components across the facets, thus leaving us with the global conservation statement∫

Ω

∂φh
∂t

dx = −
∫
∂Ωout

uh · nφh ds−
∫
∂Ωin

uh · nφin ds. (23)

This equation shows that the net change in φ over the domain Ω equals the total ingoing flux260

over the exterior boundary of the domain, thereby proving global mass conservation. Note261

that using nonconforming finite element methods such as standard DG FE to compute uh262

will not inherently provide a uh field with the necessary continuity requirements to obtain263

conservation of φh.264

To show local conservation we assign δλh = 1 on κ and δλh = 0 on Ω \ κ∫
κ

∂φh
∂t

dx +

∫
∂κ\∂Ω

uh · nκφ̄h ds +

∫
∂κ∩∂Ωout

uh · nφh ds +

∫
∂κ∩∂Ωin

uh · nφin ds = 0. (24)

The change in the composition field φh in a cell κ is determined by the incoming and265

outgoing fluxes over the cell boundary ∂κ, thus demonstrating local conservation in terms266

of the numerical flux uh · nφ̄h.267

4.3 A θ-scheme (which may be independent of θ)268

Consider the semi-discrete formulation of the PDE-constrained l2-projection equa-
tions (19) to (21). We discretize the time derivative using a θ scheme such that

φm+θ
h = θφm+1

h + (1− θ)φmh (25)
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where 0 ≤ θ ≤ 1 such that the time derivative is approximated by

∂φh
∂t
≈ φm+1

h − φmh
∆tm

(26)

Furthermore we note that

∂δφh
∂t
≈ δφm+1

h − δφmh
∆tm

=
δφm+1

h

∆tm
, (27)

δφm+θ
h = θδφm+1

h + (1− θ)δφmh = θδφm+1
h , (28)

since the Fréchet derivative of the known quantity δφmh has no variation.269

The discrete system may therefore be written

Np∑
p=1

(
φm+1
h (xm+1

p )− φp
)
δφm+1

h (xm+1
p )−

∑
κ∈T

∫
∂κ

β
(
φ̄m+1
h − φm+1

h

)
δφm+1

h ds

+

∫
Ω

δφm+1
h

∆tm
λh dx− θ

∑
κ∈T

∫
κ

um+1
h · ∇λhδφm+1

h dx + θ

∫
∂Ωout

um+1
h · nλhδφm+1

h ds

+
∑
κ∈T

∫
κ

ζ∇φm+1
h · ∇δφm+1

h dx = 0,

(29)∫
Ω

φm+1
h − φmh

∆tm
δλh dx−

∑
κ∈T

∫
κ

(uhφh)m+θ · ∇δλh dx

+
∑
κ∈T

∫
∂κ\∂Ω

um+1
h · nκφ̄m+1

h δλh ds +

∫
∂Ωout

(uhφh)m+θ · nδλh ds

+

∫
∂Ωin

(uhφin)m+θ · nδλh ds = 0,

(30)∑
κ∈T

∫
∂κ\∂Ωin

um+1
h · nκλhδφ̄m+1

h ds +
∑
κ∈T

∫
∂κ

β
(
φ̄m+1
h − φm+1

h

)
δφ̄m+1

h ds = 0.

(31)

Recall that we have made the choice that Th is composed of piecewise constant values on270

the facets of the mesh. Therefore all terms including ∇λh and ∇δλh vanish. Furthermore,271

if uh · n = 0 on ∂Ω (as is common in geodynamical simulations), this leaves us with a272

formulation independent of θ.273

4.4 Number of tracers per cell274

We must carefully consider the number of tracers per cell required to obtain an accurate
reconstruction of φh(x, t) from the particle data. The minimum data per cell to construct
φh(x, t) is one tracer per FE degree of freedom defined on the element. This is clear when
examining equation (16) since the linear system will be underdetermined should Npκ be

smaller than the local dimension of the approximating function space on κ, dim Wh,k
DG(κ).

In essence we have the requirement that

Npκ ≥ dim Wh,k
DG(κ), κ ∈ T . (32)

Although this provides a minimum bound, in practice the authors find that Npκ ≥ 15(k+1)275

is robust over long simulation times.276

5 Finite elements for the Stokes system277

In the previous sections we established the methods by which the composition field will278

be approximated by tracer data. Specifically in section 3 we established time integration279
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methods for tracer positions and in section 4 how we project the tracer data onto the280

composition field φh(x, t). In this section we show how the velocity approximation will be281

computed in the ODE equation (7) by means of solving a Stokes system.282

We discretize the momentum and continuity equations equations (1) and (2) with the283

FE method, seeking approximations of the velocity and pressure, uh and ph in the domain284

Ω, respectively. This is subject to the boundary conditions uh = uD on ∂ΩD and (2ηε̇(u)−285

pI) ·n = gN on ∂ΩN where I is the identity tensor. Here, ∂ΩD and ∂ΩN , are the subdivision286

of ∂Ω into non-overlapping Dirichlet and Neumann components, respectively, where ∂ΩD is287

not empty (∂Ω = ∂ΩD ∪ ∂ΩN , ∂ΩD ∩ ∂ΩN = ∅ and ∂ΩD 6= ∅).288

There are numerous FE methods for approximating equations (1) and (2). We will289

present the TH and HDG methods. A small subset of other popular methods are discussed290

in supplementary section S3. Furthermore for each method we summarize and state salient291

properties in Table 2. For extended detail see the cited monographs and references therein.292

5.1 Taylor–Hood293

The TH method (Taylor & Hood, 1973) is a commonly used FE method for discretizing
the incompressible Stokes system. In this setting we seek the velocity approximation uh in
the vector space V h,p which comprises functions of dimension d composed of piecewise
polynomials of degree p ≥ 2 defined on each element κ ∈ T and continuous in Ω. This is the
‘typical’ conforming and continuous FE vector space of functions. We further define V h,pBC :=

{v ∈ V h,p : v|∂ΩD = uD} and V h,pBC0
:= {v ∈ V h,p : v|∂ΩD = 0} which are the continuous FE

function spaces satisfying arbitrary Dirichlet boundary data uD and homogenized boundary
data, respectively. We also seek the pressure approximation ph in the analogous scalar space
of order p− 1, Qh,p−1. The TH FE problem reads: find (uh, ph) ∈ V h,p ×Qh,p−1 such that∫

Ω

2ηε̇(uh) : ε̇(vh) dx−
∫

Ω

ph∇ · vh dx =

∫
Ω

f · vh dx−
∫
∂ΩN

gN · vh ds (33)

−
∫

Ω

qh∇ · uh dx = 0 (34)

for all test functions (vh, qh) ∈ V h,pBC0
×Qh,p−1.294

5.2 Hybrid discontinuous Galerkin295

Introduced in Labeur and Wells (2007); Cockburn and Gopalakrishnan (2009) and
developed further in Cockburn et al. (2011); Cockburn and Sayas (2014); Nguyen et al.
(2010), HDG methods have recently gained popularity (Labeur & Wells, 2012; Rhebergen
& Wells, 2018a; Maljaars et al., 2018, 2019; Cockburn et al., 2010; Rhebergen & Wells,
2020). One of the most attractive characteristics of the HDG method for the Stokes system
is that it lends itself to a pointwise divergence free velocity field approximation. By this we
mean that

∇ · uh(x, t) = 0 ∀x ∈ Ω. (35)

This is particularly important when using tracer methods in geodynamics where advection296

is dependent on pointwise evaluation of an incompressible velocity field.297

The term ‘hybrid’ is used to imply that the HDG method is composed of FE functions298

drawn from FE spaces defined on the mesh cells and the mesh facets. We refer to Rhebergen299

and Wells (2020) for specific choices of these spaces, their analysis and properties. In this300

work we use the embedded discontinuous Galerkin (EDG) HDG formulation drawing on the301

advantage of a pressure-robust2, H(div)-conforming3 and pointwise divergence free approx-302

2 The velocity error estimates do not depend on the pressure error (Rhebergen & Wells, 2020).
3 The divergence of the velocity is piecewise continuous (square integrable).
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imation with reduced degree of freedom count in the velocity component of the global linear303

system compared to other HDG methods (see Rhebergen & Wells, 2020).304

The velocity and pressure approximations are comprised of two components:305

1. uh and ph are drawn from the vector FE space V h,pDG and scalar FE space Qh,p−1
DG ,306

respectively, which are continuous on each element κ ∈ T and discontinuous in Ω, i.e.307

the standard DG spaces of degree p and p−1, respectively.308

2. ūh and p̄h are drawn from V̄ h,p and Q̄h,pDG, respectively. Here V̄ h,p is the vector space309

of piecewise polynomials of degree p defined on the facets of the mesh and continuous310

between facets, and Q̄h,pDG is the scalar space composed of piecewise polynomials of311

degree p defined on the facets of the mesh and discontinuous between facets.312

To enforce Dirichlet boundary conditions we modify the vector space defined on the facets313

such that it satisfies the boundary data ūh|∂ΩD=uD, i.e., V̄ h,pBC := {v̄ ∈ V̄ h,p : v̄|∂ΩD = uD}.314

Futhermore we define V̄ h,pBC0
:= {v̄ ∈ V̄ h,p : v̄|∂ΩD = 0}.315

The HDG FE formulation is as follows: find (uh, ūh, ph, p̄h) ∈ V h,pDG×V̄ h,pBC ×Qh,p−1
DG ×Q̄h,pDG

such that

−
∑
κ∈T

∫
κ

σ : ∇vh dx +
∑
κ∈T

∫
∂κ

σ̂nκ · vh ds

+
∑
κ∈T

∫
∂κ

2η (ūh − uh) · ε̇(vh)nκ ds =

∫
Ω

f · vh dx, (36)

∑
κ∈T

∫
∂κ

σ̂nκ · v̄h ds =

∫
∂ΩN

gN · v̄h ds, (37)

∑
κ∈T

∫
κ

uh · ∇qh dx−
∑
κ∈T

∫
∂κ

uh · nκqh ds = 0, (38)

∑
κ∈T

∫
∂κ

uh · nκq̄h ds−
∫
∂Ω

ūh · nq̄h ds = 0, (39)

for all (vh, v̄h, qh, q̄h) ∈ V h,pDG × V̄ h,pBC0
×Qh,p−1

DG × Q̄h,pDG. Here

σ = −2ηε̇(uh) + phI, (40)

σ̂ = −2ηε̇(uh) + p̄hI −
α

hκ
2η (ūh − uh)⊗ nκ, (41)

are the stress tensor and stress tensor numerical flux, respectively, where hκ is the measure316

of the cell diameter and α is a penalty parameter similar to those found in interior penalty317

methods (e.g. Lew et al., 2004) chosen in this work to be α=6p2.318

At first glance, the four equations appear to demand a large increase in computational319

expense when compared with the TH method. However the local components, uh and ph of320

equations (36) and (38), may be eliminated in favor of the global components ūh and p̄h by321

the process of static condensation. Regarding preconditioning of this global system we refer322

to Rhebergen and Wells (2018b).323

5.3 Pointwise divergence free fields324

In this section we define a measure of the error in the incompressibility of our discretized325

velocity field uh. Moreover we will briefly show why the HDG formulation yields a pointwise326

divergence free velocity approximation unlike the TH scheme.327

We define the following error norm

‖uh‖div := ‖∇ · uh‖L2(Ω) =

(∫
Ω

(∇ · uh)
2

dx

) 1
2

(42)
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which measures the square distance of the divergence of uh from the desired divergence free328

value.329

By the TH formulation equation (34) we have that
∫

Ω
qh∇·uh dx = 0 for all qh ∈ Qh,p−1.330

In order to fulfill ‖uh‖div = 0 we need to choose qh = ∇ · uh. However this choice does not331

satisfy the regularity constraint qh ∈ Qh,p−1 given that ∇ · uh ∈ Qh,p−1
DG . In essence qh and332

∇ · uh are continuous and discontinuous across the elements κ ∈ T , respectively, so that333

condition equation (42) cannot be satisfied.334

Now consider the HDG formulation of the continuity equation equation (38). Integrating335

by parts we have
∑
κ∈T

∫
κ
qh∇ · uh dx = 0 for all qh ∈ Qh,p−1

DG . In this setting it is valid to336

make the choice qh = ∇ · uh and the measure ‖uh‖div = 0 is satisfied. One may further use337

this argument to show that ūh is also pointwise divergence free (see Rhebergen & Wells,338

2018a).339

6 Implementation and data availability340

The code developed to run all the numerical experiments in this work is available in341

the public repository Sime (2020). The dependencies of the code are briefly discussed in this342

section. For portable deployment in a Docker container we refer to Hale et al. (2017) and343

Hale (2020).344

The core finite element computations are performed using the components of the345

FEniCS project (Alnæs et al., 2015). The Lagrangian–Eulerian on Particles (LEoPart) li-346

brary (Maljaars et al., in press) is used in conjunction with FEniCS for managing tracer347

data, Runge-Kutta numerical integration, l2 projection, PDE-constrained l2 projection, and348

static condensation HDG system assembly. We further exploit the techniques described in349

Houston and Sime (2018) for the automatic generation of DG and HDG formulations. The350

PETSc (Balay et al., 2019b, 2019a) library is used for its data structures for sparse numer-351

ical linear algebra in addition to the multifrontal parallel solver MUMPS (Amestoy et al.,352

2000) for the direct factorization of matrices.353

7 Numerical experiments354

We have now established the fundamentals to be used in our tracer advection numerical355

experiments. We will examine our implementation of each aspect of the discretization of the356

incompressible Stokes system Equations (1) to (3).357

As a preliminary step we verify our FE implementation of the Stokes system and ad-358

vection of tracers by the RK` method. In supplementary section S4.1 we choose velocity359

and pressure solutions of the Stokes system a priori such that we may compute the error360

of their respective FE approximations. On a hierarchy of successively finer grids we observe361

this error to converge at optimal rates as predicted by FE analysis, verifying our implemen-362

tation. In a similar fashion in supplementary section S4.2 we verify our implementation of363

tracer advection by the RK` method.364

With this foundation the projection of tracer data to a field by the l2 and the PDE-365

constrained l2 projection is verified in section 7.1. Incorporation of these projection schemes366

into a coupled system where a solution is known a priori is examined in section 7.2. With367

all of these methods verified, we proceed to solve the Rayleigh–Taylor problem benchmark368

showcased in van Keken et al. (1997) in section 7.3. We provide more extensive experimental369

results in the supplementary material in section S4.4, particularly applied to other frequently370

used FE schemes for the Stokes system as summarized in table 2.371

Throughout this section we write ‘bounded/penalized’ projection to mean that we em-372

ploy box-constrained optimization and the penalized gradient (ζ>0) methods in the case of373
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Figure 5: The domain Ω and manufactured velocity u(x, t=0) used in (a) equation (43)
and section 7.1 and (b) equation (47) and section 7.2. The blue line emphasizes linear and
quadratic growth in flow speed with radius.

l2 and PDE-constrained l2 projection, respectively. See section 4.2 for details. Additionally374

for each experiment we select CCFL=1.375

7.1 Tracer advection and projection to a field376

With the Stokes system FE scheme and tracer advection verified (see supplementary377

sections S4.1 and S4.2), we examine the projection of tracer data X(t) and Φ(t) to a compo-378

sition field representation. The manufactured examples in this section are inspired by those379

shown in Maljaars et al. (2019). Here, two different sources of error are to be considered:380

1. The temporal approximation of the tracers’ positions.381

2. The spatial approximation of the composition field representation.382

Let Ω be the unit disc of radius r=0.5 centered at r0=(0, 0). We define the rotational
and time varying velocity field

u =

(
−y
x

)(
cos2 t+

1

2

)
. (43)

This velocity field is shown in Figure 5 at t=0. It can be shown that the period of one
rotation of any tracer in this velocity field occurs at t=2π. We examine two cases of a
smooth and non-smooth composition field

Smooth: φ(x, t) = sin(2πxθ) sin(2πyθ), (44)

Non-smooth: φ(x, t) =

{
1 if θrot > 0,

0 if θrot ≤ 0,
(45)

where

θ(x, t) = −
(
t+

1

4
sin (2t)

)
,(

xθ
yθ

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
,

θrot = arctan2(yθ, xθ), (46)

and arctan2(·, ·) is the standard two argument arctangent function (defined in supplemen-383

tary section S1). The initial conditions φ(x, t = 0) in both cases are shown in Figure 6.384
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The smooth case is designed to test the error convergence rate of the projected tracer data385

through time. The non-smooth case gives an indication of the performance of the projection386

methods when modeling chemical phase interfaces by a discontinuity in the composition387

function. For example those which may require bounded/penalized projection to yield phys-388

ically relevant composition field approximations to mitigate the impact of overshoots and389

undershoots (see sections 4.1 and 4.2).390

We measure two components of the error in this experiment:391

1. ‖φ− φh‖L2(Ω): The spatial error of the composition field approximation,392

2. ε∆φ =
∫

Ω

(
φh(x, t)− φh(x, 0)

)
dx: The mass conservation error.393

We compute the projected composition over a period of one rotation for the smooth, non-394

smooth, and non-smooth and bounded/penalized functions (see Figure 6 for examples using395

the PDE-constrained projection). In the bounded/penalized case we use box-constrained396

optimization in the l2 projection and we select ζ=25 in our PDE-constrained l2 projection397

operator. Per mesh cell we generate 25 tracers by drawing their initial positions from a398

random uniform distribution defined in the cell’s geometry.399

The error through time for each of the smooth and non-smooth cases is shown in400

Figure 7. Here we see in the smooth case that a comparison between the error using the l2401

and PDE-constrained l2 projection methods is indistinguishable at this scale. In the case of402

l2 projection method ε∆φ is converging. However, the difference in the mass conservation403

properties between the two methods is obvious as the PDE-constrained l2 method conserves404

φh to machine precision.405

In the non-smooth case the composition field approximation error from the l2 and406

PDE-constrained l2 projection methods is very similar. However, the k=1 and k=2 high407

order approximations show no great benefit over the low order k=0 approximation. This is408

expected as the interface discontinuity is not aligned with the mesh, yielding suboptimal409

convergence rates. See for example the four ‘dips’ in error corresponding to the interface410

discontinuity approximately lining up with the mesh constructed in our experiment. Despite411

this suboptimal convergence φh is conserved in the case of PDE-constrained l2 projection by412

measurement of ε∆φ. The l2 projection shows no evidence of ε∆φ converging with increased413

approximation order.414

In the non-smooth and bounded/penalized case we see similar results to the non-smooth415

and unbounded/unpenalized case. However, we have that the errors in the approximation416

of the composition field are slightly larger when using both projection methods.417

The convergence properties in the smooth initial condition case after one rotation at418

time t=2π are shown in supplementary Figure S5. Evidently we recover optimal rates and419

recover exact mass conservation ε∆φ when using the PDE-constrained projection. Not shown420

are the convergence properties of the non-smooth cases since the exact field is recovered at421

t=2π in even the lowest order FE approximation.422

7.2 Coupled manufactured solution423

We have demonstrated and verified: the spatial approximation of the Stokes subsystem424

FE solution in supplementary section S4.1, the temporal approximation of the advected425

tracers’ positions in supplementary section S4.2 and the spatiotemporal approximation of426

the projection of the tracer values to a FE function representation in section 7.1.427

Now we examine the fully coupled case where the tracers representing the composition428

data are advected based on the FE approximation of the Stokes subsystem, which in turn429

also depends on the projection of the tracer data onto an FE function space. Analytical430
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(a) Smooth initial condition (b) Smooth t= 3
2π

(c) Non-smooth initial condition (d) Non-smooth t= 3
2π (e) Non-smooth penalized t= 3

2π

Figure 6: The smooth and non-smooth functions used in the manufactured field advec-
tion example in section 7.1. Shown are the initial φh(x, t=0) and evolved φh(x, t= 3

2π) fields
as computed by the PDE-constrained projection method where k=2. Note in (d) the non-
smooth case projection yields large overshoots and undershoots. (e) Using a penalized gra-
dient method (ζ=25) reduces the severity of these overshoots and undershoots. The conver-
gence of the error of these functions is quantified in Figure 7.
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Figure 7: Computed error from the field advection manufactured solution experiment de-
scribed in section 7.1. The left column shows composition field approximation error measured
in the L2 norm with time. The right column shows and mass conservation error with time.
The disc geometry is discretized with a mesh such that maxκ∈T hκ≈ 1.42

32 and minκ∈T hκ= 1
32 .

In (a1) and (b1) the L2 error difference between l2 and PDE-constrained l2 projection is
indistinguishable at this scale. This is also true in (c1) for the k=0 case. We show evidence
for optimal convergence of the smooth function approximation in supplementary Figure S5.
Projection of the non-smooth composition function is achieved with suboptimal convergence
rates, to be expected from the inability to resolve the intraelement discontinuity. In (a2), (b2)
and (c2) we achieve exact mass conservation by PDE-constrained projection (to machine
precision), even when error convergence of the non-smooth composition field is suboptimal.
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solutions for such problems are extremely difficult to derive in the context of geodynamics431

simulations. Therefore we manufacture the following problem.432

Let Ω := {(x, y) :
√
x2 + y2 < 2} be the disc of radius 2. We compute the FE approx-

imation of the Stokes system (equations (1) and (2)) in Ω where we prescribe the velocity
and pressure fields

u(x, t) =
√
x2 + y2

(
−y
x

)(
cos2 t+

1

2

)
,

p(x, t) = 0. (47)

Furthermore two composition functions are defined to be advected through the velocity field:

Smooth: φ(x, t) = exp

(
− (xθ − x0)2 + (yθ − y0)2

2ξ

)
, (48)

Non-smooth: φ(x, t) =

{
1 θrot > 0,

0 θrot ≤ 0.
(49)

Here, ξ=0.1, (x0, y0)=(0.25, 0) is the initial center point of the Gaussian function and

θ(x, t) = −
√
x2 + y2

(
t+

1

4
sin (2t)

)
,(

xθ
yθ

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
,

θrot = arctan2(yθ, xθ). (50)

The velocity field is shown in Figure 5(b) and the smooth and non-smooth composition433

functions are shown in Figure 8.434

In the Stokes system we set the viscosity and momentum source to

η = 1, f = r + φĝ, (51)

where ĝ=(0,−1)> is the unit vector acting in the direction of gravity and

r =
3√

x2 + y2

(
y
−x

)(
cos2 t+

1

2

)
− φĝ (52)

is the conservation of momentum equation residual of the true solution4.435

We measure the following errors:436

1. ‖u(x, t)− uh(x, t)‖L2(Ω): velocity field approximation error,437

2. ‖uh(x, t)‖div: divergence free constraint error,438

3. ‖φ(x, t)− φh(x, t)‖L2(Ω): composition field approximation error,439

4. ε∆φ =
∫

Ω

(
φh(x, t)− φh(x, 0)

)
dx: mass conservation error.440

Example solutions using the PDE-constrained projection at t=π
2 , the error functionals441

computed in the simulation time domain t ∈ It = (0, π2 ] and their convergence rates at final442

time t=π
2 are shown in Figures 8 to 10, respectively. Here we demonstrate the second order443

HDG (p=1, k=1, `=2) and third order HDG and TH (p=2, k=2, `=3) methods. In each444

case the initial tracer configuration is generated with 25 tracers per mesh cell where X(t=0)445

is drawn from a random distribution defined on the cells’ geometries.446

In the case of the smooth composition field we observe optimal convergence rates of the447

numerical methods. However, in the non-smooth case the inability to represent the intraele-448

ment discontinuity in the composition function yields suboptimal convergence rates. These449

suboptimal results are expected and follow from our findings in section 7.1 and Figure 7.450

4 We use the true value of φ in the construction of the residual, r, prescribed by equations (48) and (49).
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(a) Smooth t = 0 (b) Smooth t = π
2

(c) Smooth t = 0 (d) Smooth t = π
2

(e) Non-smooth t = 0 (f) Non-smooth t = π
2

(g) Non-smooth t = 0 (h) Non-smooth t = π
2 (i) Non-smooth penalized t = π

2

Figure 8: The smooth and non-smooth functions used in the manufactured solution example
equations (48) and (49) described in section 7.2. Shown are the initial t=0 and evolved
t=π

2 particle distributions X(t), Φ(t), and fields φh(x, t) computed by PDE-constrained
projection. Note in (h) the non-smooth case with no penalization of the gradient in the
projection (ζ=0) yields large undershoots and overshoots. The convergence of the error of
these functions is quantified in Figure 9.
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Figure 9: Coupled manufactured solution computed error. The disc geometry is discretized
with a mesh such that maxκ∈T hκ≈ 1.42

32 and minκ∈T hκ= 1
32 . The velocity and composition

field approximation errors using the third order HDG (p=2) and TH methods are indis-
tinguishable at this scale. From the data in columns (b) and (c) we observe no benefit
using higher order methods to approximate a discontinuous composition field. In all cases
the PDE-constrained l2 projection method preserves exact mass conservation and the HDG
method provides pointwise divergence free velocity fields (to machine precision).
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Figure 10: Coupled manufactured solution error functionals convergence rates measured
at t=π

2 . The cell measure here is selected such that h=minκ∈T hκ. The difference between
the p=2 HDG and TH methods, in addition to the l2 and PDE-constrained l2 projection,
are indistinguishable at this scale. (a) Optimal convergence rates are observed in the ap-
proximation of the smooth composition field. (b) Inadequate representation of intraelement
discontinuities causes convergence rates to be suboptimal in the non-smooth case. (c) Use
of bounded/penalized projection to alleviate impact of undershoots in the composition field
projection has a small detrimental impact on convergence rates with the benefit of a more
robust solver for the Stokes system.
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7.3 Rayleigh–Taylor instability451

In the previous section we demonstrated and validated: the exact conservation of the452

composition function; the pointwise divergence free velocity approximation; and the optimal453

convergence rates of the numerical approximation for smooth problems. We now turn to the454

Rayleigh–Taylor instability benchmark from van Keken et al. (1997) which is an example455

relevant to geodynamics simulations.456

The Rayleigh–Taylor instability problem models the buoyancy driven evolution of a457

compositionally light material which initially resides below a compositionally denser layer.458

The chemical composition field is constructed such that φ=0 and φ=1 correspond to the459

immiscible light and dense materials, respectively. A key challenge lies in simulating the460

moving discontinuity at the interface between these immiscible materials.461

In all of the numerical experiments in this section we employ bounded/penalized projec-462

tion methods of the tracer data. As in the previous section, the initial tracers’ positions are463

drawn from a random distribution defined on the mesh cells’ geometries where we generate464

25 tracers per mesh cell.465

7.3.1 Problem definition466

The domain Ω is the rectangle with bottom left and top right corners positioned at
(0, 0) and (H=1, L=0.9142), respectively. The chemical composition function is constructed
such that

φ(x, t) =

{
0 ∀x ∈ light material,

1 ∀x ∈ dense material.
(53)

The viscosity of the light and dense materials are the constant values ηlight and ηdense,
respectively. We construct the global viscosity function from the composition function such
that

η = ηlight + φ
(
ηdense − ηlight

)
. (54)

The initial state of the composition field introduces a perturbation of the system from
equilibrium

φ(x, t = 0) =

{
0 y < db + 1

50 cos
(
πx
L

)
,

1 otherwise.
(55)

Here db=0.2 is the thickness of the initial compositionally light (buoyant) material layer.467

The velocity boundary conditions are set as follows:468

1. No flow condition u=(0, 0)> on the top and bottom boundaries y=0 and y=H.469

2. Free-slip condition u · n=0 and
(

(2ηε̇(u)− pI) · n
)
· τ=0 on the left (x=0) and right470

(x=L) boundaries, respectively, where τ is a unit vector tangential to the boundary.471

The momentum source is prescribed such that f=φĝ, where ĝ=(0,−1)> is the unit vector472

acting in the direction of gravity.473

7.3.2 Computed snapshots474

The mesh of triangles is constructed from 160×160 equally spaced and bisected quadri-475

laterals. This mesh is then displaced to approximately align the facets with the discontinuity476

required by the initial condition equation (55). Each triangle is initially seeded with 25 trac-477

ers giving rise to a total of Np = 1 280 000 tracers in the domain. The initial tracer data is as-478

signed by pointwise interpolation of equation (55), i.e. Φ(t = 0) = {φ(xp(t = 0), t = 0)}Npp=1.479

In Figure 11 the Stokes system is discretized by the p=1 HDG scheme. The composition480

field is constructed by exploiting PDE-constrained l2 projection of the tracer data onto the481
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k ∈ {0, 1} DG FE space. The time integration of the particle advection is computed using482

the RK3 method, although this order of accuracy is superfluous given the second order483

Stokes and composition field approximation.484

In this first experiment we examine the cases where ηdense=1 and ηlight ∈ {1, 0.1, 0.01}.485

We show the tracer distribution and projected composition field snapshots at time t=1500486

in Figure 11 (Cf. van Keken et al., 1997).487

7.3.3 The impact of a pointwise divergence free field488

A key message of this work is the benefit of pointwise divergence free velocity field489

approximations yielded from HDG FE solutions. The initial tracer configuration which in-490

terpolates the initial condition equation (55) is shown in Figure 12. Also shown is the tracer491

distribution of the composition data computed from PDE-constrained l2 projection method492

where the velocity field is approximated using either the TH or the HDG FE scheme at time493

t ≈ 634 where ηdense = 1 and ηlight = 0.01. This is the final time step after which the TH494

scheme fails due to the lack of sufficient tracer data in the mesh cells. This is evident from495

the large empty spaces in the tracer distribution using TH. We also see ‘bunching’ of the496

tracers close to the interface discontinuity. Compare this with the pointwise divergence free497

velocity approximation of the HDG FE scheme, in which the tracers remain well distributed498

owing to this numerical property.499

7.3.4 Relative error convergence of functionals500

We examine three viscosity contrast scenarios where ηdense = 1 and ηlight ∈ {1, 0.1, 0.01}.501

Based on our findings in sections 7.1 and 7.2 we expect that sharp discontinuities in the com-502

position field will have a negative impact on error convergence rates. The composition field503

appears in both the viscosity and momentum source terms in the Stokes system. Therefore504

we pay close attention to the difference in convergence rates in the smooth and non-smooth505

viscosity cases, ηlight=1 and ηlight∈{0.1, 0.01}, respectively.506

The functional of interest is the root-mean-square velocity

urms =

√∫
Ω

u · u dx∫
Ω

dx
. (56)

We measure urms at final time tF where

tF =


100 ηlight = 1.0,

50 ηlight = 0.1,

10 ηlight = 0.01.

(57)

Using the computed numerical data we evaluate the relative error changes between mesh
refinement levels where T is a mesh consisting of m ∈ {202, 402, 802, 1602} bisected quadri-
laterals, evenly dividing the domain into 2m triangles. Inside each triangle 25 tracers per
cell are generated to form the initial condition equation (55) such that there are 20 000,
80 000, 320 000 and 1 280 000 tracers in the mesh, respectively. In each case we use the PDE-
constrained l2 projection to generate the composition field representation of the tracer data.
The relative error in our computation of urms is measured as follows

εrel(uh,rms) =

∣∣∣∣∣uh,rms − u2h,rms

uh,rms

∣∣∣∣∣ , (58)

where uh,rms and u2h,rms correspond to fine and coarse approximations of urms on meshes507

with cell diameter h and 2h, respectively, and h=minκ∈T hκ.508

The computed root-mean-square velocity functional values with mesh (and implicitly509

time step by the CFL criterion) refinement are shown in supplementary Figure S6. The510

relative error is shown in Figure 13.511
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Figure 11: Snapshots of the Rayleigh–Taylor instability benchmark at t=1500 (Cf. van
Keken et al., 1997). Shown are the tracer distributions, tracer data and their PDE-

constrained l2 projection onto the composition field space Wh,k
DG of degree k∈{0, 1}. Dark and

light colors correspond to dense (φ, φp=1) and light (φ, φp=0) material, respectively. In all
cases the Stokes system is solved using the p=1 HDG scheme on a mesh of 160×160 bisected
quadrilaterals with 1 280 000 tracers and ηdense=1. For more details see section 7.3.2.
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(a) Initial condition (b) TH (c) HDG

Figure 12: Tracer distribution in the Rayleigh–Taylor instability problem where ηdense=1
and ηlight=0.01. Dark and light colors correspond to compositionally dense φp=1 and light
φp=0, p=1, . . . , Np, material, respectively. The mesh comprises 40×40 equally sized bisected
quadrilaterals. Each triangle hosts 25 uniform randomly distributed tracers at its initial state
giving rise to Np=80 000. (a) The initial condition equation (55), (b) the TH solution at
time t≈634 where there are large empty spaces between tracers and ‘bunching’ close to the
interface discontinuity, (c) the HDG solution at time t≈634 where the tracers have remained
evenly distributed.

The convergence rates of the relative changes in error are suboptimal as expected from512

the inability to resolve intraelement discontinuities. The choice of `≥2 in the RK` method513

plays only a small role in the approximation error. Although the RK4 method may appear514

to yield high order rates of convergence, in each case this is only featured in the m=80 and515

m=40 comparison. Examining the rates at m=160 the approximation error benefit of RK4516

over its lower order counterparts is small considering its computational cost (three solutions517

of the Stokes equations).518

Although the TH and HDG methods compare favorably at equivalent approximation or-519

der (p=2), one must bear in mind that over long time periods the TH results will be severely520

affected by the lack of a pointwise divergence free field approximation (see section 7.3.3 and521

Figure 12 for example). Evidently the higher order approximation of the composition field,522

k=1, offers no obvious advantage over the k=0 field representation. Although this is to be523

expected for the field representation of a discontinuity as examined in sections 7.1 and 7.2.524

7.3.5 Comparison of Stokes finite element formulations525

Here we provide a reference of the various FE methods for the Stokes system when used526

in the Rayleigh–Taylor instability benchmark. The mesh is generated as described in the527

previous section. With each FE discretization scheme we are interested in the error incurred528

by the divergence free velocity approximation ‖uh‖div as well as the mass conservation error529

through time ε∆φ. We employ the RK3 method for time integration in all experiments in530

this section.531

The functional of interest is again the root-mean-square velocity urms computed from
the Stokes FE approximation equation (56). We set ηdense=1 and prescribe final time tF
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Figure 13: Measured relative error in urms computed from the Rayleigh–Taylor instability
benchmark. Here we see we can best achieve approximately second order error convergence
rates. The expense of higher order RK methods (`≥3) and composition field function spaces
k≥1 is not warranted unless intraelement discontinuities may be precisely resolved. PDE-
constrained l2 projection is used to generate the composition field representation of the
tracer data. The left and right columns show cases where the composition field function
belongs to the k = 0 and k = 1 DG FE spaces, respectively.
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and ηlight according to

tF =


500 ηlight = 1,

200 ηlight = 0.1,

60 ηlight = 0.01.

(59)

These time intervals capture the period over which the bulk of the light material rises to532

the top of the domain showing large changes in urms. To see measured computations of urms533

over larger time intervals we refer to van Keken et al. (1997) and Maljaars et al. (in press).534

We show results computed using p=2 TH and p∈{1, 2} HDG FE schemes for the Stokes535

system. The cases where k=0 and k=1 are shown in Figures 14 and 15, respectively. Further536

results using other common FE schemes for the Stokes system (particularly those in table 2)537

are shown in supplementary section S4.4.538

Some key observations are as follows:539

1. Of the methods demonstrated, solely the HDG scheme offers pointwise divergence540

free velocity field approximations. One should expect that using a non-pointwise di-541

vergence free discretization would lead to failure over long time simulations as exhib-542

ited in section 7.3.3. In fact, we find that even over short time simulations the TH543

scheme for the Stokes system is insufficient as a robust solver for the Rayleigh–Taylor544

benchmark with tracers. Our implementation fails to complete the TH simulations545

successfully due to insufficient tracer data in mesh cells, even in the isoviscous ηlight=1546

case.547

2. In the TH scheme, larger viscosity contrasts incur larger ‖u‖div error. This should548

be expected as rapid changes in viscosity will be difficult to resolve for a high order549

conforming FE method.550

3. A comparison of the l2 and PDE-constrained l2 projection methods appear to yield551

only subtle differences in the evaluation of urms. However, using the non-conserving552

l2 projection method breaks the physical law demanded by the conservation model.553

4. Projection of the tracer data into the k=1 space appears to offer little to no benefit over554

the k=0 space. This is expected as discussed in section 7.1 for non-smooth composition555

fields.556

8 Conclusion557

Using the HDG Stokes and PDE-constrained l2 tracer projection numerical scheme we558

have the following attractive properties:559

1. Exact mass conservation of the composition field.560

2. A pointwise divergence free velocity field which mitigates tracer dispersion.561

3. Optimal convergence rates of the approximation error as measured in the L2 norm562

provided regularity is satisfied.563

4. The ability to add and remove tracers without worrying about conservation (not564

demonstrated here).565

Acronyms566

CFL Courant–Friedrichs–Lewy567

DG discontinuous Galerkin568

EDG embedded discontinuous Galerkin569

FE finite element570

HDG hybrid discontinuous Galerkin571

ODE ordinary differential equation572
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Figure 14: Rayleigh–Taylor instability benchmark data where k=0. Using the TH and HDG
methods combined with l2 and PDE-constrained l2 projection we compare the evolution of:
(a) the root mean square velocity, (b) the mass conservation error and (c) the error in
the divergence free velocity constraint. In all cases we see that in (b) PDE-constrained
projection provides exact mass conservation (to machine precision). Furthermore in (c) the
HDG FE method provides pointwise divergence free velocity field approximations. The TH
method does not provide a robust solution framework prematurely ending our simulations
(Cf. Figure 12). See section 7.3.5 for details.
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Figure 15: Rayleigh–Taylor instability benchmark data where k = 1. As in Figure 14 we
compare the evolution of: (a) the root mean square velocity, (b) the mass conservation error
and (c) the error in the divergence free velocity constraint in the TH and HDG methods.
Again we see that in (b) and (c) that PDE-constrained projection provides exact mass
conservation and the HDG FE method provides pointwise divergence free velocity field
approximations to machine precision, respectively. See section 7.3.5 for details.
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PDE partial differential equation573

RK Runge–Kutta574

TH Taylor–Hood575
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Maljaars, J. M., Labeur, R. J., & Möller, M. (2018). A hybridized discontinuous Galerkin716

framework for high-order particle–mesh operator splitting of the incompressible717

Navier–Stokes equations. Journal of Computional Physics, 358 , 150 - 172.718

Maljaars, J. M., Labeur, R. J., Trask, N., & Sulsky, D. (2019). Conservative, high-order719

particle–mesh scheme with applications to advection-dominated flows. Computer720

Methods in Applied Mechanics and Engineering , 348 , 443 - 465.721

Maljaars, J. M., Labeur, R. J., Trask, N., & Sulsky, D. (2020). Optimization based722

particle-mesh algorithm for high-order and conservative scalar transport. In E. van723

Brummelen, A. Corsini, S. Perotto, & G. Rozza (Eds.), Lecture notes in computional724

science and engineering (Vol. 132, pp. 265–275). Springer.725

Maljaars, J. M., Richardson, C. N., & Sime, N. (in press). LEoPart: a particle library for726

FEniCS. Computers & Mathematics with Applications.727

McDermott, R., & Pope, S. (2008). The parabolic edge reconstruction method (PERM)728

for Lagrangian particle advection. Journal of Computional Physics, 227 (11),729

5447–5491.730
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Supplementary Material803

S1 Two argument tangent function804

The two argument arctangent function is defined as follows

arctan2(y, x) :=



arctan
(
y
x

)
if x > 0,

arctan
(
y
x

)
if x < 0 and y ≥ 0,

arctan
(
y
x

)
if x < 0 and y < 0,

π
2 if x = 0 and y > 0,

−π2 if x = 0 and y < 0,

undefined if x = 0 and y = 0.

(S1)

S2 Comparison of Taylor–Hood (TH) and hybrid discontinuous Galerkin805

(HDG) elements806

A summary of the global degrees of freedom arising from the finite elements used by807

the TH and HDG schemes is depicted in Table S1.808

S3 Other Stokes finite element schemes809

In this section we provide a summary of the formulations for a small subset of other810

popular FE methods used to approximate the solution of the Stokes system. These for-811

mulations and corresponding finite element pairs are implemented and available in Sime812

(2020).813

S3.1 MINI814

Given two linear function spaces U and W, we may define the new linear space V as815

the set of all functions which are derived from the linear sum of the two contributing spaces816

U and W. I.e. V = {v = u+ w for all u ∈ U and w ∈W} = U ⊕ V.817

The MINI element is constructed by defining Vh,p = V h,p ⊕ Bh,3 where Bh,3 is the818

cubic vector bubble element. This yields the advantage of stable equal order polynomial819

approximation of both the (enriched) velocity and the pressure FE spaces. For example this820

allows us to choose V h,p and Qh,p. We refer to Alnæs et al. (2015); Arnold et al. (1984) for821

details and implementation examples.822

The FE problem reads: (uh, ph) ∈ Vh,p × Qh,p such that equations (33) and (34) are823

satisfied for all (vh, qh) ∈ Vh,p ×Qh,p.824

S3.2 P2BDG1825

In some geodynamical processes, a discontinuous or singular solution of the pressure826

field may be permissible. The P2BDG1 FE element comprises an enriched velocity and non827

conforming discontinuous pressure FE solutions. We seek uh in the standard conforming828

vector FE space of functions enriched by cubic bubble functions, Vh,2 as defined in sec-829

tion S3.1 where p = 2. Qh,1DG is the discontinuous space of scalar FE functions defined and830

linear in κ ∈ T with no requirement for continuity in Ω.831

As in the previous sections, the FE problem reads: (uh, ph) ∈ Vh,2 × Qh,1DG such that832

equations (33) and (34) are satisfied for all (vh, qh) ∈ Vh,2 × Qh,1DG. For details see Boffi et833

al. (2013).834
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TH HDG

embedded
discontinu-

ous Galerkin
(EDG)-HDG

EDG

V̄ h,1DG V̄ h,1 V̄ h,1

Q̄h,1DG Q̄h,1DG Q̄h,1

V h,2 V̄ h,2DG V̄ h,2 V̄ h,2

Qh,1 Q̄h,2DG Q̄h,2DG Q̄h,2

V h,3 V̄ h,3DG V̄ h,3 V̄ h,3

Qh,2 Q̄h,3DG Q̄h,3DG Q̄h,3

Table S1: The degrees of freedom arising in the global Stokes finite element (FE) problem on
triangle elements. Here we assume the local degrees of freedom in the EDG/HDG problems
have been eliminated by static condensation. Each dot corresponds to a global degree of
freedom. Note that degrees of freedom defined on the triangles’ facets and vertices are
shared between neighboring elements and facets.

–40–



manuscript submitted to Geochemistry, Geophysics, Geosystems

S3.3 Suboptimal P2DG0835

One may formulate using a discontinuous pressure space without enriching the velocity836

space with bubble functions using the P2DG0 FE pair. The price paid however is suboptimal837

convergence of the FE approximation. The FE approximation of a standard TH element838

converges to the true solution at a rate of O(hp+1) when measured in the L2 norm. In the839

case that we choose Qh,p−2
DG to be discontinuous and V h,p to be continuous with p = 2 we840

observe suboptimal convergence rates of O(hp).841

Despite these suboptimal convergence rates, the method may be attractive due to the842

reduced number of degrees of freedom arising in the underlying linear system, compared843

with the P2BDG1 method, for example. The FE problem reads: find (uh, ph) ∈ V h,2×Qh,0DG844

such that equations (33) and (34) are satisfied for all (vh, qh) ∈ V h,2×Qh,0DG. For details see845

Auricchio et al. (2004); Boffi et al. (2013).846

S3.4 Discontinuous Galerkin847

The discontinuous Galerkin (DG) method further removes the requirement that the848

velocity finite element space be composed of functions which are continuous in Ω. This849

provides some key benefits:850

1. A richer space of functions in which the approximations uh and ph are sought.851

2. Upwind stabilization as a component of the formulation leading to reduced suscepti-852

bility to numerical oscillations incurred by boundary layers.853

3. Piecewise discontinuous approximation of functions.854

However, these benefits come at a cost. The number of degrees of freedom in discontinuous855

Galerkin (DG) FE spaces is larger than conforming continuous FE spaces of the same856

polynomial order. Furthermore the variational formulation is complicated to implement since857

it contains interfacet flux terms. In this work we get around the implementation difficulty858

by using automatic generation of DG formulations using the dolfin dg library (Houston &859

Sime, 2018).860

Prior to stating the variational formulation we introduce some notation. We write EI
to be the set of cell edges which reside on the interior of the mesh, i.e. EI = ∪κ∈T ∂κ \ ∂Ω.
On an interior edge, we arbitrarily label the neighboring cells κ+ and κ−. Given a function,
w, which is continuous in both κ+ and κ−, and discontinuous on κ+ ∩ κ−, we write w± to
denote the evaluation of the trace of w from κ±, respectively. We therefore define the jump
and average operators

{{σ}} =
1

2

(
σ+ + σ−

)
, JuK = u+ ⊗ n+

κ + u− ⊗ n−κ . (S2)

In the DG setting, Qh,p−1
DG is the scalar space of piecewise polynomials of degree p− 1,

p ≥ 1 defined on each element κ ∈ T with no requirement for their continuity in the global
domain Ω. The vector space V h,pDG is similarly defined by piecewise polynomials defined
on κ ∈ T of degree p. There are many flavors of DG methods which are defined by their
prescribed interelement flux functions. We will exploit the interior penalty Galerkin method:
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x

y

(a)

x

y

(b)

Figure S1: The domain Ω and manufactured velocity u used in (a) section S4.1 equation (S5),
(b) sections S4.2 and 7.1 equation (S6) at time t = 0.

we seek (uh, ph) ∈ V h,pDG ×Qh,p−1
DG such that

∑
κ∈T

∫
κ

σ
h

: ε̇(vh) dx−
∑
e∈EI

∫
e

JuhK : {{2ηε̇(vh)}}ds

+
∑
e∈EI

∫
e

{{σ
h
}} : JvhK ds +

∑
e∈EI

∫
e

CIPp
2

he
{{2η}}JuhK : JvhK ds

+A∂Ω(uh,vh) =

∫
Ω

f · vh dx, (S3)∑
κ∈T

∫
κ

uh · ∇qh dx−
∑
κ∈T

∫
∂κ

uh · nqh ds = 0, (S4)

for all (vh, qh) ∈ V h,pDG × Qh,p−1
DG . Here σ

h
= 2ηε̇(uh) − phI is the stress tensor where I is861

the identity tensor, he is the length of the edge e, CIP > 0 is the interior penalty param-862

eter (chosen in this work to be CIP = 20) and A∂Ω(·, ·) encapsulates the FE formulation863

associated with the weak imposition of boundary conditions on ∂Ω (see Houston and Sime864

(2018) for details). A summary of analysis of DG methods for elliptic FE problems is given865

in Arnold et al. (2001) and its application to the linear Stokes system in Cockburn et al.866

(2002).867

Consider the partial differential equation (PDE)-constrained l2 projection method of868

tracers shown in section 4.2. The lack of (normal) continuity of the DG FE function uh869

on EI is not consistent with the HDG numerical scheme for the projection. Therefore we870

should not expect to see optimal results in the case that k > 0. Indeed we observe this in871

our numerical experiments in section S4.4.872

S4 Numerical methods verification873

S4.1 Stokes system874

Our first numerical experiment serves to demonstrate the spatial error convergence
properties of the FE methods for the velocity approximation of the Stokes system listed in
section 5. Let Ω be the square with bottom left and top right corners at positions (−1,−1)
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Figure S2: Convergence of the Stokes system discretized by second order FE methods (p=1)
with h-refinement. (a) velocity FE solution error measured in L2 norm, (b) FE velocity
incompressibility error.

and (1, 1), respectively. We manufacture the following solution

u =

(
2y(1− x2)
−2x(1− y2)

)
, p = 0, (S5)

which retains the properties u ·n = 0 on ∂Ω and ∇·u = 0. Using this solution we construct875

the corresponding value of f = 4(y,−x)>.876

For each of the methods discussed in sections S3 and 5 we compute the FE approxi-877

mation of the Stokes system equations (1) and (2) on a sequence of meshes of increasing878

resolution. We may then compare the FE approximation to the true solution to measure the879

error incurred by each method and its rate of convergence. These rates of convergence are880

then compared with theoretical results for validation.881

The key functionals we measure are as follows:882

1. ‖u−uh‖L2(Ω) =
√∫

Ω
(u− uh)2 dx: a measure of the distance of the FE approximation883

from the true solution.884

2. ‖uh‖div =
√∫

Ω
(∇ · uh)2 dx: a global measure of the local deviation of the divergence885

free constraint of the continuity equation equation (2).886

These functionals measured from the experiment data are shown for second order methods887

in Figure S2 and third order methods in Figure S3. Examining these results we see that888

each method converges at the rate expected according to theory. However we see one clear889

distinction from the HDG method. The measure of the HDG error ‖uh‖div is zero within890

numerical tolerance of the functional’s floating point evaluations.891

S4.2 Tracer advection892

In this numerical experiment we test the time integration of equation (7) using the RK`893

method. Taking inspiration from van Keken et al. (1997) a single tracer is advected through894

a time varying velocity field known a priori. We compose a rotational velocity field which895
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Figure S3: Convergence of the Stokes system discretized by third order FE methods (p=2)
with h-refinement. (a) velocity FE solution error measured in L2 norm, (b) FE velocity
incompressibility error.

is exactly represented in a vector FE function space of degree p ≥ 1. We may measure the896

error in the position of tracers advected in this field to ensure that the rates of convergence897

of the error match with the theory validating our implementation.898

Let Ω be the unit disc of radius r = 0.5 centered at r0 = (0, 0). We define the rotational
and time varying velocity field

u =

(
−y
x

)(
cos2 t+

1

2

)
. (S6)

This velocity field is shown in Figure S1 at t=0. It can be shown that the period of one899

rotation of any tracer in this velocity field occurs at t=2π.900

We place a single tracer at position xp(t = 0) = (0.5, 0.0). We then advect this tracer
through the velocity field for a period of one rotation. Its final position xp(t = 2π) is
measured for comparison with the true solution using the following measure∥∥∥xp(t = 2π)− (0.5, 0.0)T

∥∥∥
2

=
√

(xp(t = 2π)− (0.5, 0.0)T )2. (S7)

We expect the rate at which xp(t = 2π) converges to the true solution in the 2-norm measure901

to be the same as the order of the Runge–Kutta (RK) scheme we employ. We choose the902

time step size based on the Courant–Friedrichs–Lewy (CFL) criterion equation (9) which903

directly relates the time step size to the smallest measure of the mesh cells’ diameters, hmin.904

We can therefore present convergence rate results in terms of hmin.905

We construct a hierarchy of meshes based on refinements of an initial coarse mesh. On906

each of these meshes we solve the proposed experiment and choose CCFL = 1. The results of907

our numerical experiment are shown in Figure S4. Indeed we find that our implementation908

exhibits expected error convergence rates.909

S4.3 Tracer data projection910

Error convergence data of the smooth composition field equation (44) approximation911

at simulation time time t = 2π is shown in Figure S5. See section 7.1 for details.912
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Figure S4: Convergence of the temporal integration of a tracer’s path in a prescribed velocity
field with h-refinement (and implicitly ∆t refinement). (a) Convergence of tracer position
error after one rotation measured in the 2-norm. (b) Measured 2-norm error of the tracer
position through time where h = 2.221× 10−2.
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Figure S5: Error convergence data at time t = 2π of the manufactured advection of the
smooth initial data case. (a) The composition field error measured in the L2 norm where
the l2 and PDE-constrained l2 projection results are indistinguishable at this scale, (b) mass
conservation error.

S4.4 Rayleigh–Taylor instability benchmark913

Computed values of the urms functional at given times are shown in Figure S6. Addi-914

tional results computed with various FE methods are provided for reference in Figures S7915

to S12. These data serve as an extension of those shown in Figures 14 and 15.916
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Figure S6: Measured root-mean-square velocities computed from the Rayleigh–Taylor in-
stability benchmark. PDE-constrained l2 projection is used to generate the composition
field representation of the tracer data. The left and right columns show cases where the
composition field function belongs to the Wh,k=0

DG and Wh,k=1
DG spaces, respectively.
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Figure S7: Example 4: ηlight = 1, second order approximation of the Stokes system.
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Figure S8: Example 4: ηlight = 0.1, second order approximation of the Stokes system.
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(c) Least squares projection, m = 160
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Figure S9: Example 4: ηlight = 0.01, second order approximation of the Stokes system.
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(c) Least squares projection, m = 80
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(d) PDE-constrained least squares projection, m = 80
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(c) Least squares projection, m = 160
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(d) PDE-constrained least squares projection, m = 160
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Figure S10: Example 4: ηlight = 1, third order approximation of the Stokes system.
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(c) Least squares projection, m = 80
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(d) PDE-constrained least squares projection, m = 80

0 25 50 75 100 125 150 175 200
t

0.000

0.002

0.004

0.006

0.008

0.010

0.012

u
rm

s

70 72 74 76
0.0085

0.0090

0.0095

70 72 74 76
0.0085

0.0090

0.0095

70 72 74 76
0.0085

0.0090

0.0095

70 72 74 76
0.0085

0.0090

0.0095

0 25 50 75 100 125 150 175 200
t

10−15

10−13

10−11

10−9

10−7

10−5

10−3

ε ∆
φ

Ω

0 25 50 75 100 125 150 175 200
t

10−14

10−11

10−8

10−5

10−2

101

‖u
‖ d

iv

(c) Least squares projection, m = 160
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(d) PDE-constrained least squares projection, m = 160
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Figure S11: Example 4: ηlight = 0.1, third order approximation of the Stokes system.
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(c) Least squares projection, m = 80
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(d) PDE-constrained least squares projection, m = 80
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(c) Least squares projection, m = 160
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(d) PDE-constrained least squares projection, m = 160
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Figure S12: Example 4: ηlight = 0.01, third order approximation of the Stokes system.
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