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Abstract

Global sensitivity analysis of model parameters is an important step in the development of a hydrological model. If available,

time series of different variables are used to increase the number of sensitive model parameters and better constrain the model

output. However, this is often not possible. To overcome this problem, we coupled the active subspace method with the discrete

wavelet transform. The Haar mother wavelet is the most appropriate for this purpose in case of homoschedastic measurement

error, since it avoids any loss of information through the discrete wavelet transform of the signal. With this methodology, we

study how the temporal scale dependency of hydrological processes affects the structure and dimension of the active subspaces.

We apply the methodology to the LuKARS model of the Kerschbaum spring discharge in Waidhofen a.d. Ybbs (Austria). Our

results reveal that the dimensionality of an active subspace increases with increasing hydrologic processes which are affecting

a temporal scale. As a consequence, different parameters are sensitive on different temporal scales. Finally, we show that the

total number of sensitive parameters identified at different temporal scales is larger than the number of sensitive parameters

obtained using the complete spring discharge signal. Hence, instead of using multiple data time series to identify more sensitive

parameters, we can also obtain more information about parameter sensitivities from one single, decomposed time series.
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sitivities17

Abstract18

Global sensitivity analysis of model parameters is an important step in the devel-19

opment of a hydrological model. If available, time series of different variables are used20

to increase the number of sensitive model parameters and better constrain the model out-21

put. However, this is often not possible. To overcome this problem, we coupled the ac-22

tive subspace method with the discrete wavelet transform. The Haar mother wavelet is23

the most appropriate for this purpose in case of homoschedastic measurement error, since24

it avoids any loss of information through the discrete wavelet transform of the signal.25

With this methodology, we study how the temporal scale dependency of hydrological pro-26

cesses affects the structure and dimension of the active subspaces. We apply the method-27

ology to the LuKARS model of the Kerschbaum spring discharge in Waidhofen a.d. Ybbs28

(Austria). Our results reveal that the dimensionality of an active subspace increases with29

increasing hydrologic processes which are affecting a temporal scale. As a consequence,30
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different parameters are sensitive on different temporal scales. Finally, we show that the31

total number of sensitive parameters identified at different temporal scales is larger than32

the number of sensitive parameters obtained using the complete spring discharge signal.33

Hence, instead of using multiple data time series to identify more sensitive parameters,34

we can also obtain more information about parameter sensitivities from one single, de-35

composed time series.36

1 Introduction37

Uncertainty quantification constitutes an important part of hydrological modeling38

(Hartmann et al., 2017; Wagener & Pianosi, 2019). In particular, quantifying paramet-39

ric uncertainty is important since the reliability of simulation results strongly depends40

on its parametrization (Beven, 1995; Reinecke et al., 2019). Within the context of para-41

metric uncertainty, the determination of an appropriate parameter set is usually accom-42

panied by sensitivity analyses (Borgonovo et al., 2017; Vrugt et al., 2002). Sensitivity43

analysis measures how much the output of a model changes by varying its inputs, e.g.44

spring discharge (van Werkhoven et al., 2008; Wagener & Montanari, 2011). Sensitiv-45

ity analysis methods can be divided into two groups: local and global methods (Pianosi46

et al., 2016; Saltelli et al., 2008). In a local sensitivity analysis, parameter modifications47

are only performed at single locations of the parameter space (Tang et al., 2007; Saltelli48

et al., 2019). In contrast, parameter sensitivity is measured over the full parameter space49

in a global analysis (Razavi & Gupta, 2015; Song et al., 2015). Global methods are usu-50

ally prefered in hydrology as they provide information on the sensitivity of one param-51

eter in relation to others (Cloke et al., 2008; Wagener & Pianosi, 2019).52

Constantine et al. (2014) and Constantine and Diaz (2017) proposed the active sub-53

space method as a tool to perform global sensitivity analysis. Besides computing a global54

sensitivity metric, this method has the advantage that it further provides information55

on relevant linear combinations of model parameters. These relevant parameter combi-56

–2–



manuscript submitted to Water Resources Research

nations can be used to efficiently construct surrogate models and perform Bayesian in-57

version at low computational cost (Erdal & Cirpka, 2019; Teixeira Parente et al., 2019).58

The active subspace method was successfully applied in several hydrological studies rang-59

ing from lumped parameter models (Bittner, Teixeira Parente, et al., 2020; Teixeira Par-60

ente et al., 2019) to distributed modeling approaches (Erdal & Cirpka, 2019, 2020; Gilbert61

et al., 2016). (Bittner, Teixeira Parente, et al., 2020) also showed that the features and62

dimension of an active subspace can find a reasonable hydrological explanation, in case63

of a lumped karst hydrological model. So far, the active subspace method was applied64

to hydrological variables that integrate processes occurring at multiple temporal scales,65

such as discharge and heat fluxes (Erdal & Cirpka, 2020; Jefferson et al., 2015). How-66

ever, it is well known that hydrological time series can be decomposed into different tem-67

poral scales, for example using wavelet transform analysis (Grinsted et al., 2004; Labat68

et al., 2000b; Torrence & Compo, 1998).69

Wavelet transforms determine the crucial scales of variability and localizes varia-70

tions in the modes of variability within a time series (Labat, 2005). In hydrology, both71

continuous and discrete wavelet transform (Daubechies, 1990; Grinsted et al., 2004; Sang72

et al., 2013; Torrence & Compo, 1998) have been traditionally used to analyze the main73

scales of variability of time series (Carey et al., 2013; Coulibaly & Burn, 2004; Labat et74

al., 2000b; Labat, 2005; Marcolini et al., 2017; Nalley et al., 2012), their coherence with75

climatic and meteorological drivers (Jennings & Jones, 2015; Massei et al., 2010; Nal-76

ley et al., 2016; Schaefli et al., 2007), the impact of anthropogenic activities on the hy-77

drological cycle (Pérez Ciria et al., 2019; Zolezzi et al., 2009), catchment classification78

(Agarwal et al., 2016; Pérez Ciria & Chiogna, 2020) and change point analysis (Adamowski79

& Prokoph, 2014). Less common is their application for the assessment of model per-80

formance (Chiogna et al., 2018; Rathinasamy et al., 2014) and model calibration (Duran81

et al., 2020; Schaefli & Zehe, 2009). Although several choices of the generating function,82

i.e. mother wavelet, are popular, it influences the resulting wavelet spectrum (Pérez Ciria83

et al., 2019; Schaefli et al., 2007). In particular, we focus on the decomposed signal us-84
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ing the discrete wavelet transform (DWT), since it is not possible to reconstruct the orig-85

inal signal from the coefficients derived from the continuous wavelet transform (CWT)86

analysis.87

In this work, we study how temporal scale dependency of hydrological processes88

affects the structure of the active subspaces and the computed parameter sensitvities.89

Our hypothesis is that the active subspace dimension reflects how different linear com-90

binations of model parameters control the simulated hydrological processes on multiple91

temporal scales. Moreover, we hypothesize that the sensitive parameters differ for dif-92

ferent temporal scales of the signal, and that they can be directly related to the dom-93

inant hydrological processes of the respective temporal scales. To test these hypotheses,94

we couple the active subspace method with the DWT. We apply our developed method-95

ology to a lumped karst aquifer model, i.e. LuKARS (Land use change modeling in KARSt96

systems), using data from the Kerschbaum springshed in Austria (Bittner et al., 2018;97

Bittner, Rychlik, et al., 2020). We use the same data set as used in Teixeira Parente et98

al. (2019), who performed sensitivity analysis using the active subspace of the Kerschbaum99

spring discharge signal. This allows us to compare the results obtained from the tem-100

poral scale-dependent sensitivity analysis with those obtained using the entire discharge101

signal. In Section 2, we provide details about the mathematical framework for coupling102

the active subspace method with DWT as well as a short description of the model and103

used data. In Section 3, we explain and discuss the results of the methodology as ap-104

plied to the illustrative example of the Kerschbaum spring LuKARS model. Finally, we105

summarize our findings in Section 4.106

2 Methodology107

The methodology that we present in this work, aims at decomposing both, the mod-108

eled and the measured discharge signal at different scales using DWT and, hence, to per-109

form an independent sensitivity analysis for each temporal scale. Then, we test if the110
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dimension and structure of the active subspaces identified, i.e. the sensitive physical pa-111

rameters, are different among different scales. This means that we try to identify if dif-112

ferent temporal scales of the modeled discharge signal are sensitive to changes in differ-113

ent model parameters. If so, we want to investigate if these scales can be approximated114

by an active subspace with different dimension and eigenvectors. We apply the proposed115

methodology to a real case study, where we use a lumped karst hydrological model, i.e.116

LuKARS, to model the discharge of the Kerschbaum spring in Waidhofen a.d. Ybbs (Aus-117

tria). This entire process is summarized in Fig. 1. For reproducibility, the codes and data118

of the methodology can be downloaded from Bittner, Engel, et al. (2020).119

2.1 Coupling DWT with Active Subspaces120

In the following, we provide a detailed explanation of how we couple the DWT with121

the active subspace method. For convenience, matrices are underlined twice and vectors122

once. Scalars and sets are not indicated with an underline. If the output of a function123

G of a quantity • is a matrix, it is notated as G(•). We do this analogously for vectors,124

scalars and sets. A quantity, e.g. spring discharge time series, is considered as transformed125

if it was decomposed from the original to the wavelet basis. To distinguish between orig-126

inal and transformed quantities, •̃ is introduced as the transformed quantity and •̂ as127

the approximated version of •̃ within the transformed wavelet basis.128

2.1.1 Discrete Wavelet Transform129

The starting point of this work is to define a hydrological model G(X) and to col-130

lect time series data d that should be simulated by the model, here the discharge of the131

Kerschbaum spring (Step 1 in Fig. 1). Then, the next step is to choose a DWT (Step132

2 in Fig. 1), i.e. a mother wavelet, and decompose the measured and simulated discharge133

time series into several temporal scales using the DWT. Our measured discharge time134

series d consists of n data points. The natural frequency of discrete wavelet transforma-135

tions is two (Walnut, 2013). Hence, n is chosen as136
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Figure 1. Flowchart of the methodology for coupling the active subspace method with the

discrete wavelet transform.

n = 2m, (1)

where m ∈ N. A scale j is defined as the details coefficients d̃j corresponding to137

the (m−j)-th iteration in a filter bank (Mallat, 1989). The filter bank recursively splits138

the given time series in the details and approximation coefficients ãj as defined in Walnut139

(2013). This means that the details coefficients of scale j are obtained by decomposing140

the approximation coefficients of scale (j + 1). In total, we have (m + 1) scales. Ac-141

cordingly, we define T (•) as the discrete wavelet transformation of the measured and mod-142

eled discharge time series:143

d̃j = Tj(d) ∀j = 0...m. (2)

The transformation T gives a set of details coefficients with m members and one144

approximation coefficient ã0 which is referred to as the details coefficient of Scale 0 d̃0.145

Hence, the subscript j chooses a member of the set given by T : the scale j of the trans-146

formed discharge. Thus, the decomposition of the simulated output from the hydrolog-147

ical model G into its temporal scales can be written as148
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G̃j = Tj (G) . (3)

2.1.2 Definition of the Data Misfit Function for different scales149

The decomposition of the measured and modeled discharge time series is the most150

important part in our methodology since the sensitivity has to be quantified with respect151

to the gradient of a data misfit between measured and simulated discharge for each scale.152

Thus, to perform a sensitivity analysis of each scale with respect to the data misfit we153

need an evaluation function for each scale. Similar to Teixeira Parente et al. (2019), we154

define the Data Misfit Function (DMF) between the measurements d and the simulated155

discharge G(X) with a set of model parameters X as156

f(X) =
1

2
‖Γ− 1

2 ((d− µt)− (G(X)− µt))‖22, (4)

where ‖•‖22 is the square of the Euclidean norm. Note that the shift µt is the av-157

erage of d with respect to time.158

The DMF in Eq. 4 corresponds to a Gaussian measurement noise. It can be mod-159

eled as a discrete Gaussian Process GP (d). Such a process is completely defined by its160

covariance matrix Γ and its mean vector which should be equal to the measured data161

d. Here, Γ is a diagonal matrix describing an homoscedastic error. In this work, we con-162

sider an error on the measured discharge of 2 ls−1. The advantage and the limitations163

of this assumption will be discussed later on. So far, we only defined the DMF within164

the original basis. Thus, to stay with a Gaussian model, the construction of the DMFs165

within the wavelet basis requires the definition of the mean vector dj and covariance ma-166

trix Γj for each scale j. It is important to recall that the DMF aims at quantifying the167
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error between model and measured values, considering that the measured values and their168

wavelet transform are uncertain.169

For that reason, we need to ensure that the DWT of the original signal properly170

distributes the uncertainty among each scale. As a consequence, coupling the active sub-171

space method with DWT requires to transform the random process as a whole in order172

to properly define a DMF f̃j(X) for each scale j (Step 3 in Fig. 1). The idea is to find173

a mother wavelet (Step 2 in Fig. 1) such that the scales are statistically independent from174

each other. By that, we ensure obtaining independent information about the sensitiv-175

ity of the parameters from each scale without any loss of information about the uncer-176

cainty in the measurements.177

The term information is used in a Shannon Entropy sense (Shannon, 1948), refer-178

ring to the loss of information as the dependence between the scales. As a measure for179

this information loss, we introduce the Kullback-Leibler-Divergence of the whole trans-180

formed process in the wavelet domain P̃ and the lumped process P̂ , in which the scales181

are assumed to be independent. We refer to this as the Wavelet Mutual Information (WMI),182

since the idea is based on the approaches for obtaining the Mutual Information (MI)183

of random variables as described in Cover and Thomas (2012):184

WMI(P̃ ) := DKL(P̃‖P̂ ). (5)

As P̃ and P̂ are discrete processes, it is feasible to model them as multivariate Prob-185

ability Density Functions. Hence, the WMI for a discrete Gaussian scale process G̃P186

can be obtained by inserting the definition of a multivariate Gaussian into Eq. 5:187
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WMI
(
G̃P (d)

)
=

1

2

(
ln

(
det Γ̂

det Γ̃

)
+ tr

(
Γ̃Γ̂−1 − (I)

))
, (6)

where I is the identity. If the WMI is equal to 0, we do not loose any information188

by assuming independent scales. Accordingly, we look for a transformation T of the Gaus-189

sian measurement data d with a constant error, such that190

WMI (T (GP (d))) = 0 (7)

or that the dependence error is as small as possible. Having this transformation191

T , we define the new DMF’s for each scale f̃j with respect to the corresponding random192

process P̃j . Note that f̃j can only be obtained if we did not loose any information. If that193

is the case, we obtain statistically independet scales. Otherwise only an approximative194

version - assuming independent scales - f̂j could be used. Since the resulting process of195

the transformation of a discrete Gaussian Process is not necessarily Gaussian anymore,196

the calculation of the process in the coefficient domain P̃ or the WMI can be compu-197

tationally demanding. It is an iterative approach obtaining a suitable wavelet transfor-198

mation which maintains all information given by the data. It is possible to demonstrate199

(see Appendix A) that the Haar-Wavelet yields that the WMI computes to 0 for homoscedas-200

tic Gaussian errors. Nevertheless, it is important to note that for an heteroscedastic er-201

ror, e.g. a non-constant diagonal covariance matrix Γ, the WMI might be small but does202

not compute to 0. For that reason, we choose a homoscedastic measurement error of 2 ls−1203

for the proposed methodology.204
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For the Haar-Wavelet, the set of the new DMFs f̂ can be looked at as f̃ , since all205

computations are exact and no information is lost. Hence, they can be defined for each206

scale j (Step 3 in Fig. 1) as follows:207

f̃j(X) =
1

2
‖Γ̃−

1
2

j ((d̃j − µ̃tj)− (G̃j(X)− µ̃tj))‖22, (8)

where Γ̃j is the covariance matrix and µ̃tj = 0 the mean vector within scale j, whereas208

µ̃t0 = µt.209

For the Haar-Wavelet the transformed shift µ̃t is equal to 0 for all scales except Scale 0.210

For Scale 0, this shift is equal to the quantity of the discharge signal. This follows from211

the splitting Lemma as stated in Walnut (2013). Nevertheless, it is not necessary to trans-212

form the shift µt separately. It was intrinsicly transformed by transforming the already213

shifted original domain measurement time series and the shifted simulated one:214

(d̃j − µ̃tj) := Tj ((d− µt)) . (9)

For the Haar-System and our measurement data of length 2m the shifting was not215

necessary but for sake of completeness it shall be done here as the approach shown in216

this paper could be adapted onto other basis functions or time series that require such217

a shifting due to wavelet boundary effects padding issues. In fact, the approach shown218

in this paper can be done for every basis function that supports a decomposition as given219

in Eq. 2.220
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2.1.3 Active Subspaces for Sensitivity Analysis within Different Scales221

Having f̃ and G̃ we conduct the sensitivity analysis using the Active Subspace method222

exactly as in Teixeira Parente et al. (2019). The only difference is that this is done for223

the m corresponding decomposed DMFs and model outputs as input (Step 4 in Fig. 1).224

Accordingly, the Active Subspace method gives the eigenvectors vj,k of a gradient ma-225

trix Cj for each scale j defined as follows:226

Cj = E[∇X f̃j(X)∇X f̃j(X)T ] = W jΛjW
T
j , (10)

where W j = [vj,1 ... vj,n] and Λj = diag(λj,1 ... λj,n) having λj,k ≥ λj,k+1. The227

first index j is the scale and the second denotes the eigenvector k.228

Thus, the eigenvalues λj,k are a measure for the sensitivity of the scale DMF f̃j with229

respect to the corresponding eigenvectors vj,k. Note that the eigenvectors form an or-230

thonormal basis. They contain those linear combinations of input parameters which are231

most informed by the measured discharge data within scale j. Informed means that the232

objective function f̃j(X), measuring the deviation from observed data within scale j, is233

sensitive to this linear combination of parameters.234

The scale sensitivity score sj,i of parameter xi within scale j is calculated by235

sj,i =

K∑
k=1

λj,kvj,k,i, (11)

where K is the number of parameters and i denotes the parameter. Note that sj,i236

is not the global total sensitivity, where global means that the sensitivity is measured237

when varying all parameters simultaneously. It is solely global within scale j. For ac-238
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cessing the global total measure, a weighting of the gradient of the scale DMF with re-239

spect to its contribution to the gradient of the total DMF would be necessary. However,240

no weighting is considered in this work since our intention is to use the entire signal of241

the discharge for the wavelet decomposition to obtain an independent information for242

each time scale.243

2.2 Kerschbaum spring LuKARS model244

The Kerschbaum springshed is located close to the city of Waidhofen a.d. Ybbs in245

Austria Fig. 2. The recharge area of the mainly dolomitic karst system covers about 2.5 km2
246

and can, thus, be considered as a small scale, pre-alpine catchment. Despite the small247

spatial scale of the recharge area, the Kerschbaum spring represents the major source248

of freshwater supply for the region. Fig. 3 classifies the behavior of the Kerschbaum spring249

by means of statistical and spectral indices. The cross-correlation between precipitation250

and spring discharge, shown in Fig. 3a, highlights a quick response to precipitation events251

after 1 day with the highest correlation coefficient rxy of 0.37. Moreover, we can iden-252

tify a quick decrease of rxy, pointing towards a rapid propagation of the input signal (pre-253

cipitation) through the aquifer (Labat et al., 2000a; Mangin, 1984). In the cross-correlation254

as well as in the spectral density (Fig. 3b), we can identify a sudden change in slope from255

2.35 to 1.32 after 8 days. This change points towards an activation of drainage from the256

aquifer storage, i.e. baseflow (Larocque et al., 1998). More information about the study257

site are given in Bittner et al. (2018) and Narany et al. (2019).258
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Hyd 1
Hyd 2
Hyd 3
Hyd Q

Figure 2. Recharge area of the Kerschbaum spring close to waidhofen a.d. Ybbs (Austria)

including the distribution of hydrotopes, i.e. Hyd 1 (13 % of recharge area), Hyd 2 (56 % of

recharge area), Hyd 3 (27 % of recharge area) and Hyd Q (4 % of recharge area). The orthophoto

was kindly provided by the waterworks owner in Waidhofen a.d. Ybbs.

The LuKARS model was developed by (Bittner et al., 2018) to investigate how min-259

ing activities in the recharge area affect the quantity of discharge in the Kerschbaum spring.260

A GUI for the model is available as open source plugin for FREEWAT (Rossetto et al.,261

2018) in QGIS (Bittner, Rychlik, et al., 2020). The model is based on the implementa-262

tion of hydrotopes, i.e. areas with homogeneous soil and land use characteristics (Arnold263

et al., 1998), shown in Fig. 2. Determined by its individual physical characteristics, each264

hydrotope shows a distinct repsonse to an input event, e.g. precipitation or snow melt.265

All hydrotopes simulate three types of flow, i.e. quickflow through conduits, groundwa-266

ter recharge and secondary spring discharge. They all share one common baseflow stor-267
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age, i.e. the saturated zone, to which the recharge is transferred. The sum of all hydro-268

tope quickflow responses at a given time step represents the conduit flow in the recharge269

area. Then, the sum of the integrated hydrotope quickflows and the baseflow simulate270

the spring discharge. The equations of the LuKARS model are provided in Appendix271

B. The model parameter ranges used in this study are shown in Table 1. Further, we272

use daily data for precipitation, temperature, snow depth and spring discharge in the pe-273

riod from January 2006 to December 2008 to run the model. It is important to note that,274

in order to apply the active subspace method, all model parameters need to be indepen-275

dent from a statistical point of view. However, in LuKARS the parameters of one hy-276

drotope are dependent on the parameters of other hydrotopes, as shown in Eq. C1 of Ap-277

pendix C. Therefore, we follow the framework proposed for the Kerschbaum LuKARS278

model in Teixeira Parente et al. (2019). For the seek of completeness, we include this method-279

ology in Appendix C. Since this transformation does not have an impact on the inter-280

pretation of the results shown in the following section, it will not be further discussed.281

Table 1. Overview of the model parameter ranges defined for all hydrotopes. The respective

numbers indicate the lower bound and the upper bound of the parameter ranges used as prior

intervals. For the meaning of the parameters, we refer to the explanation given in Appendix B.

Hydrotope khyd Emin Emax α kis ksec Esec

[m2d−1] [mm] [mm] [-] [m mm−1d−1] [m mm−1d−1] [mm]

Description discharge coef. min. storage max. storage quickflow discharge coef. discharge coef. activation level
quickflow capacity capacity exponent recharge sec. springs sec. springs

Hyd 1 9 - 900 10 - 50 15 - 75 0.7 - 1.6 0.002 - 0.2 0.0095 - 0.95 25 - 70
Hyd 2 8.5 - 850 40 - 80 80 - 160 0.5 - 1.3 0.00055 - 0.055 0.0023 - 0.23 130 - 220
Hyd 3 7.7 - 770 75 - 120 155 - 255 0.2 - 0.7 0.00025 - 0.025 0.0015 - 0.15 320 - 450
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Figure 3. Time series analysis of the Kerschbaum spring discharge. a) The cross-correlation

between precipitation and the spring discharge, highlighting a quick response of 1 day lag time

and storage effects after 8 days. b) The spectral density of the discharge signal, also highlighting

an abrupt change in spectral density of variance after 8 days, indicated by a change in slope from

m = 2.35 to m = 1.32.

3 Results and discussion282

In the following section, we describe and discuss the results related to the appli-283

cation of our methodology to the Kerschbaum LuKARS model. In detail, we discuss the284

dimensions of active subspaces on different scales, the scale features of the different eigen-285

vectors as well as the hydrological meaning of identified scale dependencies. In the fol-286

lowing, the order of scales is from the lowest to the highest frequency. To be precise, Scale 1287

represents the lowest frequency, i.e. 1024 days, and Scale 10 the highest frequency, i.e.288

2 days. Finally, Scale 0 represents the mean of the discharge signal.289
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Figure 4. Data time series used in the LukARS model for the period of interest from 2006 to

2008 and the discrete wavelet scales of the measured discharge time series. a) Precipitation, b)

measured snow depths, c) the discrete wavelet scales (Sc.) of the Kerschbaum spring discharge

signal and d) the Kerschbaum spring discharge time series. The grey bars higlight specific peak

flow events during the period of interest. Note that Scale 10 represents the highest frequency, i.e.

2 days, whereas Scale 1 represents the lowest frequency, i.e. 1024 days.
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Fig. 4 shows how precipitation (Fig. 4a) and snow melt (Fig. 4b) affect the discrete290

wavelet scales of the Kerschbaum spring discharge (Fig. 4c) as well as the complete dis-291

charge signal (Fig. 4d). Notice that Fig. 4c does not display the values on the y-axis be-292

cause they are not relevant for the following qualitative interpretation. As an example,293

we highlight three significant peak discharges with grey colored frames in the background.294

These fast spring discharges happened in response to major snow melt, e.g. April 26th,295

2006, or precipitations events, e.g. June 2nd, 2006. In the DWT scales (Fig. 4c), we can296

observe that major input events have an effect on the spring discharge from 2 days up297

to a period of 8 days, which is similar to what we identified in the cross-correlation and298

spectral analysis (Fig. 3). Very intense input events, such as the precipitation event on299

September 6th, 2007, can affect even more temporal scales, up to 64 days. This is con-300

sistent for example with the observations of Schaefli et al. (2007) and other works in the301

literature (Charlier et al., 2015; Yang et al., 2012) and shows that when we decompose302

the hydrologic signal among multiple temporal scales, high flow conditions have an im-303

pact on scales larger than the event duration.304

3.1 Scale dependence of active subspaces305

Fig. 5a shows the decay of the eigenvalues of each wavelet scale over the first 9 eigen-306

values and the truncation level. Based on our findings from the cross-correlation, spec-307

tral analysis and the DWT, we can distinguish between two groups of scales highlighted308

in Fig. 5a and b. Group 1 represents the sub-monthly to superannual scales, i.e. Scale 1309

to Scale 7. Group 2 represents the sub-weekly to weekly, i.e. Scale 8 to Scale 10. The310

lower frequencies (Group 1) have active subspace dimensions between 2 and 3. In com-311

parison, the sub-weekly to weekly scales (Group 2), representing faster spring discharge312

responses (Fig. 4c), only have active subspace dimensions between 1 and 2. We decided313

to truncate an active subspace after an eigenvalue decay over one order of magnitude.314

This choice, although arbitrary, does not affect the main outcomes of the analysis as dis-315

cussed by Teixeira Parente et al. (2019). The eigenvalues are normalized to the maxi-316

–17–



manuscript submitted to Water Resources Research

mum eigenvalue of each scale to allow for a comparability of the decays between each317

scale. When looking at the eigenvalue decay of each scale (Fig. 5a), we can identify that318

Scale 0 shows the weakest decay of all scales. Moreover, we find that with an increas-319

ing wavelet scale, the eigenvalues decay faster. The dimension of the active subspaces320

identified for both Group 1 and Group 2 are lower as compared to the original active sub-321

space of the Kerschbaum LuKARS model computed without the DWT, i.e. 4 (also shown322

in Fig. 5b). The fact that each wavelet scale has a low dimensional active subspace in-323

dicates that fewer eigenvectors are sensitive and informed.324
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Figure 5. Active subspace dimensions. a) Eigenvalue decay of both scale groups, i.e. Group 1

representing Scale 1 to 7 and Group 2 representing Scale 8 to 10, Scale 0 and ’LuKARS com-

plete’ normalized to the maximum eigenvalue of each scale. The horizontal red line indicates the

truncation level above which the active subspace is defined. b) Active subspace dimension of each

discrete wavelet scale grouped in both groups of scales. ’LuKARS complete’ shows the active

subspace dimension when applying the active subspace method to the Kerschbaum LuKARS

model without the DWT.

3.2 Eigenvector features on different scales325

In Fig. 6, we show the first three eigenvectors of the complete LuKARS model (Bittner326

et al., 2018) and one representative scale for each group, i.e. Scale 1 for Group 1 and Scale 8327

for Group 2. In the relevant eigenvectors of the complete LuKARS model (Fig. 6a), we328
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can observe a strong contribution of the discharge coefficient of groundwater recharge329

from each hydrotope, i.e. kis. Moreover, we see that Hyd 2 has the highest contribution,330

which is the largest hydrotope in the recharge area (see Fig. 2). The second highest con-331

tribution comes from Hyd 1, representing the most dynamic hydrotope in terms of dis-332

charge variability. Although the area of Hyd 3 is larger than Hyd 1 (Fig. 2), its contri-333

bution to the first eigenvector is weakest. When further taking into account Eigenvec-334

tors 2 and 3, a similar pattern in terms of contributing hydrotopes can be observed, i.e.335

Hyd 1 and Hyd 2 are dominant. It can be seen that khyd of Hyd 1 and 2, which are the336

discharge coefficients of the quickflow, have noticeable scores in Eigenvector 2, .337

Looking at the first eigenvector of Scale 0 (Fig. 6b), we also find that mainly the338

groundwater recharge parameters (kis) of each hydrotope have the highest contribution339

in the first eigenvector. Moreover, we can observe the same ranking of hydrotope con-340

tributions in the first eigenvector compared to the complete LuKARS model, i.e. in de-341

creasing order Hyd 2, Hyd 1 and Hyd 3. When further taking into account Eigenvector 2342

and 3, we further notice high scores of the quickflow parameters khyd of Hyd 1 and Hyd 2.343

Next, we look at the eigenvectors of Scale 1, being representative for the scales of344

Group 1. In all eigenvectors (Fig. 6c), we can observe a dominant contribution of Hyd 1345

and Hyd 2 parameters, similar to Scale 0. In contrast to Scale 0, Hyd 1 parameters show346

a higher contribution as compared to those of Hyd 2. When looking at single parame-347

ter contributions in each eigenvector, we generally observe highest scores of the discharge348

coefficients of kis and khyd of Hyd 1 and Hyd 2. Moreover, the water storage thresholds,349

i.e. Emin and ∆E (in the following referred to as the E parameters), of both dominant350

hydrotopes have noticeable contributions in the eigenvectors. These parameters control351

the onset and offset of the quickflow and, thus, further control the amount of water be-352

coming groundwater recharge.353
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Figure 6. First three eigenvectors of Scale 0, 1 and 8. ’LuKARS complete’ are the eigenvec-

tors computed without scale dependencies.

Although we are showing the first three eigenvectors of Scale 8 (Fig. 6d), only the354

first eigenvector is relevant as highlighted by the active subspace dimensions in Fig. 5b.355

Looking at the parameters contributing to the relevant eigenvector, we notice a clear dom-356

inance of Hyd 1 parameters and negelectable scores of both other hydrotopes. In par-357

ticular, khyd, the E parameters and α have the highest scores. These parameters primar-358

ily control the quickflow of Hyd 1, where α regulates the magnitude of quickflow events.359

In contrast to the previously discussed scales, no significant contribution from ground-360

water recharge controlling parameters can be noticed. These results are in a good agree-361

ment with the identified impacts of snow melt and precipitation events on the tempo-362

ral scales of the spring discharge. As Hyd 1 has the highest quickflow variability, this hy-363
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drotope contributes most to the peakflow during these events, which explains the high364

importance of the quickflow parameters in Group 2 scales.365

3.3 Scale-dependent parameter sensitivities366

Next, we show the parameter sensitivities for each wavelet scale and the complete367

LuKARS model in Fig. 7a. Both, Scale 0 and the complete LuKARS model without scale368

dependencies have a similar pattern in terms of sensitive parameters, comparable to our369

findings in the eigenvectors of the dominant eigenvalues (Fig 6a and b). In particular the370

kis parameters of each hydrotope are the most sensitive parameters with decreasing scores371

from Hyd 2 over Hyd 1 to Hyd 3. Looking at the sensitive parameters on the sub-monthly372

to superannual scales (Group 1), we can observe that Hyd 1 parameters are most sen-373

sitive in all scales. Moreover, kis is the most sensitive parameter of Hyd 2 with notice-374

able scores in all scales of Group 1. For Hyd 3, kis is only sensitive in Scale 1 and 2. In375

general, the most sensitive parameters in the sub-monthly to superannual scales are the376

discharge coefficients of the quickflow, i.e. khyd, and the recharge, i.e. kis. Focussing on377

the parameter sensitivities of the sub-weekly to weekly scales (Group 2), no noticeable378

scores can be found in Hyd 2 and Hyd 3, with the only exception given by khyd and kis379

of Hyd 2 in Scale 7. All sensitive parameters on these scales are related to Hyd 1, which380

are particularly those controlling the quickflow, i.e. khyd, the E parameters and α.381

Fig. 7b shows the total number of sensitive parameters cumulated over all discrete382

wavelet scales. We start cumulating sensitive parameters at Scale 10, since it has the high-383

est frequency and represents the quickest response of the decomposed discharge signal.384

We consider a parameter to be sensitive if its score is larger than 0.01. This value in-385

dicates the 0.75-quantile of all sensitivity scores computed for each scale. Parameters which386

are sensitive on more than one scale are counted only once in the scale of its first appear-387

ance. We observe that a total of 11 parameters are sensitive over all scales. In compar-388

ison, in the complete LuKARS model without scale dependencies, only 7 parameters are389

sensitive. This shows that further information about sensitive parameter can be hidden390
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in the temporal scales of the discharge. From a physical point of view, this can be ex-391

plained by the temporal-scale dependent relevance of different hydrologic processes, for392

which different model parameters can be sensitive.393

3.4 Hydrological interpretation394

In general, we found the weakest eigenvector decay for Scale 0 and decreasing ac-395

tive subspace dimensions with increasing wavelet scales. As introduced in Section 2.1,396

Scale 0 represents the mean of the discharge signal. From a physical point of view, the397

mean of the spring discharge signal represents an interplay of multiple hydrological pro-398

cesses, which are represented in LuKARS as quickflow and baseflow. Thus, to reproduce399

the mean of the discharge signal, the model also needs to consider both processes. This400

relevance of different hydrological processes can explain that a larger dimension of the401

active subspace is needed to sufficiently inform the data misfit function for the mean of402

the discharge signal. For faster spring responses, i.e. the sub-weekly to weekly scale, we403

found lower dimensional active subspaces as compared to the sub-monthly to superan-404

nual scales. This finding is congruent with the results obtained by Bittner, Teixeira Par-405

ente, et al. (2020). In their synthetic test cases, they showed that spring discharge dom-406

inated by a single hydrological process displays a low dimensional active subspace (di-407

mension between 1 and 2). However, here we did not identify such a dependence for hy-408

pothetical scnearios, but for specific temporal scales of a real spring dicharge. Thus, our409

results highlight that the coupling between DWT and active subspaces supports iden-410

tifying those temporal scales of a spring discharge for which only a small number of eigen-411

vectors are sensitive, e.g. 1 as in Scale 8. These high-frequency scales, i.e. the scales of412

Group 2, are mainly controlled by one dominant hydrological process, e.g. the quickflow413

from Hyd 1. Further, the coupled methodology allows to identify those temporal scales414

which are controlled by different hydrological processes, e.g. quickflow and groundwa-415

ter recharge in Scale 8. For these scales, we found higher dimensional active subspaces,416

e.g. 3 dimensions for Scale 1.417
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Figure 7. Scale-dependent sensitivities. a) Global sensitivities shown for each model param-

eter and each scale. The ’Compl’ parameter sensitivities represent the sensitivity scores without

scale dependencies. b) Cumulative number of sensitive parameters.

The dominant parameter contributions in Scale 0, i.e. the recharge coefficient of418

Hyd 2, 1 and 3 (kis, Fig. 6b and Fig. 7a), are similar to those found in the dominant eigen-419

vectors of the complete discharge signal (Teixeira Parente et al., 2019). As the major vol-420

ume of the Kerschbaum spring discharge originates from baseflow (Bittner, Rychlik, et421

al., 2020), we argue that this is the reason why those parameters controlling the mod-422

eled baseflow, i.e. kis of each hydrotope, are most sensitive in Scale 0. Moreover, kis of423

Hyd 2 is most sensitive since Hyd 2 is the largest hydrotope in the area and contributes424

most to the gorundwater recharge. The noticeable scores of the quickflow parameters khyd425

in Scale 0 highlight that the mean of the discharge signal is composed of baseflow and426

quickflow contributions. In general, these findings highlight that the parameters in the427

dominant eigenvectors reflect the hydrological processes involved in producing the sig-428

nal of a respective scale, here Scale 0.429
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In the scales of Group 1, the discharge coefficients of the groundwater recharge and430

quickflow (kis and khyd) of Hyd 1 and Hyd 2 are most sensitive (Fig. 6c and Fig. 7a). As431

Hyd 1 is the smallest hydrotope, this finding suggests that also on the low-frequency scales432

of Group 1, the discharge variability of a hydrotope can play a more siginificant role than433

the size of a hydrotope. Taking further into account that the storage parameters of Hyd 1434

and Hyd 2 (E) play an important role in Scale 1, we argue that on the sub-monthly to435

superannual scales, both hydrological processes, the quickflow and groundwater recharge436

becoming baseflow, are relevant. Similar to the findings of Schaefli et al. (2007), we can437

observe that some discharge peaks, caused by quickflow events in response to intense pre-438

cipitation or snow melt, also affect higher periods, in our case the scales of Group 1 (Fig. 4c).439

For scales of Group 2, we notice a clear dominance of quickflow controlling param-440

eters, in particular the quickflow coefficient (khyd), the storage parameters (E) and the441

quickflow exponent (α), in the relevant eigenvector. This shows that on the sub-weekly442

to weekly scales, groundwater recharge and, thus, the baseflow does not play a signif-443

icant role. This interpretation is further confirmed by the cross-correlation analysis, which444

highlighted a dominant contribution from quickflow up to a period of 8 days (Fig. 3a).445

Hence, our methodology shows that it is possible to identify those hydrological processes446

which are relevant for a respective temporal scale in the parameters of the relevant eigen-447

vectors.448

Finally, we can summarize that for Scale 0 and the sub-monthly to superannual449

scales, higher dimensional active subspaces are needed to reproduce the signals of these450

scales. This is due to the fact that different hydrological processes, e.g. the quickflow and451

the recharge becoming baseflow, from different areas in a catchment, i.e. hydrotopes, are452

relevant on these temporal scales. These relevant hydrological processes are reflected by453

the parameters contributing to each dimension of an active subspace, i.e. the eigenvec-454

tors of the dominant eigenvalues. On the contrary, only small dimensional active sub-455

spaces are needed to reproduce the signals on the sub-weekly to weekly scales. This is456
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related to the fact that only the quickflow from the hydrotope with high discharge vari-457

abilities, i.e. Hyd 1, matters on that temporal scale. These findings lead us to the con-458

clusion that, for our specific case of the LukARS model, the less complex the hydrologic459

process structure is on a considered scale, the lower the dimensionality of the related ac-460

tive subspace. Thus, it is possible to identify dominant hydrological processes for dif-461

ferent temporal scales in the dimensions of an active subspace. Moreover, our findings462

show that the time-scale dependence of hydrological processes, represented by the LuKARS463

model parameters, affects the structure of an active subspace. Furthermore, our find-464

ings in the scale-dependent parameter sensitivities are similar to what we identified in465

the eigenvectors of the dominant eigenvalues shown in Fig. 7a. It is interesting to ob-466

serve that with an increasing scale, i.e. higher frequencies, the sensitivity of the recharge467

coefficients kis decreases. At the same time, the sensitivity of the quickflow exponent α468

increases. This result indicates a clear shift in the dominant hydrological processes oc-469

curing on the respective scales, since α is the parameter that controls the intensity on470

which a quickflow occurs. Generally, our results of the scale-dependent parameter sen-471

sitivities support the hypothesis that parameters identified for each signal can be directly472

related to the hydrological processes occuring on these temporal scales.473

The proposed methodology allows to discover hidden sensitive parameters in the474

spring discharge. To be precise, we found 11 sensitive parameters when decomposing the475

discharge signal, whereas only 7 where found with the complete LuKARS model (Fig. 7b).476

These sensitve parameters are hidden as long as the measured discharge signal is not de-477

composed. We show that multi-objective calibration, aiming at identifying sensitive pa-478

rameters for various hydrological processes and requiring different sets of observations,479

is not the only way to better inform model parameters. Instead, we highlight that it is480

possible to obtain more information about sensitive model parameters by using only one481

single data time series, here spring discharge.482

–25–



manuscript submitted to Water Resources Research

4 Summary483

In the presented work, we coupled the active subspace method with the discrete484

wavelet transform. By that, we investigated the temporal scale dependencies of param-485

eter sensitivities of a lumped karst aquifer model, LuKARS. Here, we did not give weights486

to the different wavelet scales, but use the entire signal of the discharge for the wavelet487

decomposition, such that each decomposed signal provides an independent information488

for the respective time scale. However, a weighting procedure can be useful if we want489

to favor specific hydrological conditions in model calibration. Moreover, providing a weight490

for each scale can help to reduce the risk of model overfitting in the solution of an in-491

verse problem.492

Although we are aware that measurement errors of hydrological time series are mostly493

heteroscedastic, we chose a homoscedastic error of 2 ls−1 for our measurement such that494

the WMI computes to 0. By that, we ensure not having any loss of information when495

decomposing our time series in the wavelet domain. Future works should focus on min-496

imizing the loss of information when using a heteroscedastic error to account for more497

realistic measurement error models. This requires a normalized version of the WMI.498

With the proposed methodology, we showed that the structure of an active sub-499

space depends on the temporal scale for which it was identified. In particular, we iden-500

tified two to three dimensional active subspaces for sub-monthly to superannual tempo-501

ral scales and only one to two dimensional active subspaces for the sub-weekly to weekly502

scales. This shows that the more hydrological processes are relevant for one particular503

scale, the higher the dimensionality of an active subspace. For the sub-monthly to su-504

perannual temporal scales, we found that the parameters controlling the slow flowing ground-505

water recharge and quickflow are most important. For the sub-weekly to weekly scales,506

the most sensitive parameters are solely related to the quickflow of one hydrotope. Thus,507

the relevant linear combinations of parameters of an active supsace translate into the dom-508

inant hydrological processes for each temporal scale. Moreover, the dimensionality of an509
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active subspace provides a measure for the complexity of hydrologic process structure510

on a given temporal scale.511

Finally, we were able to show that within the proposed methodology, it is possi-512

ble to identify parameter sensitivities which are hidden in the temporal scales of a mea-513

sured discharge signal. Hence, we do not necessarily need multiple data time series to514

identify more sensitive parameters in a multi-objective calibration approach. Instead,515

we can also obtain more information about parameter sensitivities from one single, de-516

composed time series.517

Appendix A Haar Wavelet518

In the following, we show how the decomposition using the Haar-Wavelet is done519

maintaining all information from the measured data. The transformation correspond-520

ing to the details d̃j−1 and approximation coefficients ãj−1 of a time series d can be writ-521

ten as a linear transform:522

ãj
d̃j

 =

H(j)

G(j)

 ãj+1, (A1)

H(j) =
1√
2



1 1 0 · · · 0

0 0 1 1 0 · · · 0

...

0 · · · 0 1 1


, j = 1...m, (A2)
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G(j) =
1√
2



1 −1 0 · · · 0

0 0 1 −1 0 · · · 0

...

0 · · · 0 1 −1


, j = 1...m, (A3)

where the approximation matrix H(j) and the details matrix G(j) are real [2j−1 x 2j ]523

matrices. For implementation details of H(j) and G(j), we refer to Ryan et al. (2019).524

Recall that ã1 shall be referred to as the Scale 0 details coefficients d̃0, whereas the ap-525

proximation ã0 and, hence, H(0) is not existing. Accordingly we define:526

G(0) = 1 ∈ R1x1. (A4)

As the approximation coefficients in the Haar-System always give the energy pre-527

serving average within the corresponding interval for a scale j dyadic step function (Walnut,528

2013), Scale 0 can be looked at as the mean of a signal. Since the algorithm starts with529

the original time series, the first approximation is the data itself:530

ãm+1 = d (A5)

As a consequence, the transformation T of a time series d for getting the scale j531

coefficients d̃ji at scale interval i can be written as a nested linear transform532

d̃ji = G(j)iα

(
m−j−1∏
l=0

H(m− l)

)
αβ

dβ , (A6)
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where greek letters subscript the dimensions which are affected by the sum-convention.533

Thus, the resulting scale process is a discrete Gaussian process as well. This allows the534

use of the same type of DMF as in Teixeira Parente et al. (2019) for all wavelet scales.535

Accordingly, G̃P (d) is completely defined by the transformed data d̃ and the covariance536

matrix Γ̃. The relations for these quantities can be obtained by inserting the decompo-537

sition as in Eq. A6 into the common definitions of mean and covariance, respectively:538

µ̃ji = d̃ji = G(j)iα

(
m−j−1∏
l=0

H(m− l)

)
αβ

µβ , (A7)

Γ̃jiuw = G(j)iα

(
m−j−1∏
l=0

H(m− l)

)
αβ

Γβγ G(u)wδ

(
m−u−1∏
l=0

H(m− l)

)
δγ

. (A8)

Here j and u are subscripts for the scale. The indices i and w indicate the num-539

ber of the coefficient within a scale. Hence, the covariance matrix Γ̃ can be looked at as540

a four dimensional matrix describing the m scale-covariance matrices and the covariance541

between them for j 6= u. For the Haar-Wavelet the matrix is sparse with some special542

properties for diagonal matrices Γ which arise from H and G. For further information543

about this, we refer to studies of such covariance matrices as in Vannucci and Corradi544

(1999). It can be shown that for a decomposition as in Eq. A8, Γ̃ is a constant diago-545

nal matrix if Γ is. Hence, Γ̃ is equal to the lumped matrix Γ̂. Since the Haar system pro-546

vides orthogonal basis functions and, hence, the decomposition in Eq. A8 is a nested or-547

thogonal change of basis, our constant diagonal covariance matrix even remains unchanged.548

This obviates the need for decomposing the covariance matrix for independent homoscedas-549

tic errors:550
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Γ̂ = Γ̃ = Γ. (A9)

Inserting Eq. A9 in Eq. 6 the WMI of the homoscedastic Gaussian measurement551

error computes to zero. The scales can be assumed to be independent from each other.552

Recall the assumption of an homoscedastic measurement error within 2.1.2. For heteroscedas-553

tic errors Γ̃ might be sparse but not diagonal and consequently not equal to Γ̂ anymore554

- even for the Haar-Wavelet. There would be m off-diagonal diagonals. As a consequence555

the DMFs could only be defined approximately.556

Appendix B Model equations557

LuKARS is based on the implementation of hydrotopes. Each hydrotope i repre-558

sents a distinct bucket that is balanced for each time step n using the following equa-559

tion:560

Ei,n+1 = max[0, Ei,n + (Si,n −
Qhyd,i,n +Qsec,i,n +Qis,i,n

ai
) ∆t] (B1)

Here, Ei represents the water level [L] in hydrotope i. Si is the mass balance of all561

possibke sinks and sources in a recharge area, in our case the mass balance of precipi-562

tation, snow melt, evapotranspiration and interception. For our case study, we use in-563

terception estimates provided in DVWK (1996). Further, snow melt and retention are564

considered using a temperature index model proposed by Martinec (1960). Finally, evap-565

otranspiration is computed using the method of Thornthwaite (1948). Each hydrotope566

i has three flow components, i.e. the quickflow (Qhyd,i [L3T−1]), secondary spring dis-567

charge (Qsec,i [L3T−1]) and groundwater recharge (Qis,i [L3T−1]). The absolute area cov-568

ered by a hydrotope is given by ai [L2].569
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The groundwater recharge is transferred to the baseflow storage B, for which the570

following balance equation is solved for each time step n:571

Eb,n+1 = max[0, Eb,n + (
Σ(Qis,i,n)−Qb,n

A
) ∆t] (B2)

The water level [L] in the baseflow storage is defined as Eb. The sum of the ground-572

water recharge coming from each hydrotope is indicated by Σ(Qis,i) [L3T−1]. Then, the573

Qb [L3T−1] represents the flow from storage B to the spring, representing the baseflow574

from the phreatic aquifer. The absolute area of the recharge area is given by A [L2].575

In LuKARS, the quickflow Qhyd,i is computed based on a non-linear transfer func-576

tion, which we define as follows:577

Qhyd,i,n = ai
khyd,i
lhyd,i

εn[
max(0, Ei,n − Emin,i)

Emax,i − Emin,i
]αi (B3)

Here, Emax,i [L] and Emin,i [L] are the upper and lower storage thresholds of hy-578

drotope i. The specific discharge parameter for the quickflow is given by khyd,i [L2T−1].579

lhyd,i [L] represents the mean distance of hydrotope i to the spring, thus, accounting for580

the relative location of a specific hydrotope in a recharge area. The ratio between khyd,i581

and lhyd,i indicates the hydrotope discharge coefficient. A hydrotope-specific exponent582

of the quickflow is given by αi. Finally, the dimensionless connectivity/activation indi-583

cator ε defines whether Qhyd,i is active or not. It is defined as584

εn+1 = 0 if


εn = 0 & Ei,n+1 < Emax,i or

εn = 1 & Ei,n+1 ≤ Emin,i

(B4)
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εn+1 = 1 if


εn = 0 & Ei,n+1 ≥ Emax,i or

εn = 1 & Ei,n+1 > Emin,i

(B5)

All other flow components are calculated using linear transfer laws, i.e.585

Qsec,i,n = ai ksec,i max(0, Ei,n − Esec,i) (B6)

Qis,i,n = ai kis,iEi,n (B7)

and586

Qb,n = AkbEb,n (B8)

where Esec,i [L] represents the activation level for a secondary spring discharge. ksec,i587

[LT−1], kis,i [LT−1] and kb [LT−1] indicate the discharge parameters of Qsec,i [L3T−1],588

Qis,i [L3T−1] and Qb [L3T−1], respectively.589

Appendix C Statistical independence of LuKARS model parameters590

Depending on the specific physical characteristics of each LuKARS hydrotope, their591

respective parameters need to be considered dependently. This means, e.g., if a hydro-592

tope has shallow soils with coarse grained soil texture, it should have lower values for593

storage parameters as compared to deep and fine-textured soils. For that reason, we need594

to introduce the following parameter constraints, i.e. the dependencies between each hy-595

drotope:596
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khyd,1 ≥ khyd,2 ≥ khyd,3,

Emin,1 ≤ Emin,2 ≤ Emin,3,

Emax,1 ≤ Emax,2 ≤ Emax,3,

α1 ≥ α2 ≥ α3,

kis,1 ≥ kis,2 ≥ kis,3,

ksec,1 ≥ ksec,2 ≥ ksec,3,

Esec,1 ≤ Esec,2 ≤ Esec,3.

(C1)

These constraints lead to a statistical dependence between the hydrotope model597

parameters. However, to use the active subspace method, statistically independent pa-598

rameters are required. Hence, we need to introduce a set of calibration parameters to599

overcome this limitation. Here, we define three types of non-normalized calibration pa-600

rameters with parameter density ρ, which can be chosen based on prior knowledge about601

the respective parameters. For the ranges of all discharge parameters, i.e. khyd, kis and602

ksec (in the following referred to as k∗ parameters), we assumed a logarithmic distribu-603

tion ρ. In contrast, a uniform prior distribution was assumed for all all other calibration604

parameters.605

To take into account the log distribution of the k∗ parameters, we define606

klog∗ = log(k∗) (C2)

for each k∗ ∈ {khyd,i, kis,i, ksec,i}, i = 1, 2, 3.607

Since Emin,i ≤ Emax,i for in all hydrotopes, Emax,i is always dependent on sam-608

ples taken for Emin,i. Hence, we define Emax,i = Emin,i + ∆Ei and replace Emax,i by609

∆Ei. Then, ∆Ei is independent of Emin,i.610
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To further consider the differences between two successive hydrotopes, we define611

new (non-normalized) calibration parameters. In the following, parameters indicated with612

a ∆ represent new normalized calibration parameters. They take values in [0,1] and re-613

place their corresponding model parameters. It has to be ensured that the calibration614

parameters are selected such that their corresponding model parameters are within their615

predefined ranges.616

kloghyd,i = kloghyd,i,lb + ∆kloghyd,(i−1,i)(min{kloghyd,i,ub, k
log
hyd,i−1} − k

log
hyd,i,lb),

Emin,i = max {Emin,i−1, Emin,i,lb}

+ ∆Emin,(i−1,i) (Emin,i,ub −max {Emin,i−1, Emin,i,lb}) ,

αi = αi,lb + ∆α(i−1,i) (min {αi,ub, αi−1} − αi,lb) ,

klogis,i = klogis,i,lb + ∆klogis,(i−1,i)(min{klogis,i,ub, k
log
is,i−1} − k

log
is,i,lb),

klogsec,i = klogsec,i,lb + ∆klogsec,(i−1,i)(min{klogsec,i,ub, k
log
sec,i−1} − k

log
sec,i,lb),

Esec,i = max {Esec,i−1, Esec,i,lb}

+ ∆Esec,(i−1,i) (Esec,i,ub −max {Esec,i−1, Esec,i,lb}) ,

(C3)

The lower bounds (lb) and upper bounds (ub) of each model parameter interval are617

defined in Table 1. In our case, Hyd 1 acts a as the reference hydrotope. Thus, we need618

to introduce new synthetic parameters only for the other hydrotopes, i.e. Hyd 2 and 3.619

Moreover, all non-normalized calibration parameters are normalized. This means that620

they are mapped to the interval [-1,1]. Given the described normalization methodology,621

we define the final 21-dimensional vector x of calibration parameters as follows:622
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x = (k̄loghyd,1, Ēmin,1,∆Ē1, α1, k̄is,1, k̄sec,1, Ēsec,1,

∆k̄loghyd,(1,2),∆Ēmin,(1,2),∆Ē2,∆ᾱ(1,2),

∆k̄is,(1,2),∆k̄sec,(1,2),∆Ēsec,(1,2),

∆k̄loghyd,(2,3),∆Ēmin,(2,3),∆Ē3,∆ᾱ(2,3),

∆k̄is,(2,3),∆k̄sec,(2,3),∆Ēsec,(2,3))
> ∈ R21.

(C4)
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