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Abstract

Sub-kilometer processes are critical to the physics of aerosol-cloud interaction but have been dependent on parameterizations

in global model simulations. We thus report the strength of aerosol-cloud interaction in the Ultra-Parameterized Community

Atmosphere Model (UPCAM), a multiscale climate model that uses coarse exterior resolution to embed explicit cloud resolving

models with enough resolution (250-m horizontal, 20-m vertical) to quasi-resolve sub-kilometer eddies. To investigate the impact

on aerosol-cloud interactions, UPCAMâ\euros simulations are compared to a coarser multi-scale model with 3 km horizontal

resolution. UPCAM produces cloud droplet number concentrations ($N \mathrm{d}$) and cloud liquid water path (LWP)

values that are higher than the coarser model but equally plausible compared to observations. Our analysis focuses on the

Northern Hemisphere midlatitude oceans, where historical aerosol increases have been largest. We find similarities in the

overall radiative forcing from aerosol-cloud interactions in the two models, but this belies fundamental underlying differences.

The radiative forcing from increases in LWP is weaker in UPCAM, whereas the forcing from increases in $N \mathrm{d}$ is

larger. Surprisingly, the weaker LWP increase is not due to a weaker increase in LWP in raining clouds, but a combination of

weaker increase in LWP in non-raining clouds and a smaller fraction of raining clouds in UPCAM. The implication is that as

global modeling moves towards finer than storm-resolving grids, nuanced model validation of ACI statistics conditioned on the

existence of precipitation and good observational constraints on the baseline probability of precipitation will become key for

tighter constraints and better conceptual understanding.
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Key Points:7

• Aerosol-cloud interactions in a global model that resolves sub-kilometer processes8

are compared to those in a coarser 3km model.9

• Resolving sub-kilometer scales leads to a weaker increase in liquid water path with10

aerosols.11

• Weaker LWP increase is due to fewer precipitating clouds and weaker LWP in-12

crease in non-raining clouds.13
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Abstract14

Sub-kilometer processes are critical to the physics of aerosol-cloud interaction but have15

been dependent on parameterizations in global model simulations. We thus report the16

strength of aerosol-cloud interaction in the Ultra-Parameterized Community Atmosphere17

Model (UPCAM), a multiscale climate model that uses coarse exterior resolution to em-18

bed explicit cloud resolving models with enough resolution (250-m horizontal, 20-m ver-19

tical) to quasi-resolve sub-kilometer eddies. To investigate the impact on aerosol-cloud20

interactions, UPCAMs simulations are compared to a coarser multi-scale model with 321

km horizontal resolution. UPCAM produces cloud droplet number concentrations (Nd)22

and cloud liquid water path (LWP) values that are higher than the coarser model but23

equally plausible compared to observations. Our analysis focuses on the Northern Hemi-24

sphere midlatitude oceans, where historical aerosol increases have been largest. We find25

similarities in the overall radiative forcing from aerosol-cloud interactions in the two mod-26

els, but this belies fundamental underlying differences. The radiative forcing from increases27

in LWP is weaker in UPCAM, whereas the forcing from increases in Nd is larger. Sur-28

prisingly, the weaker LWP increase is not due to a weaker increase in LWP in raining29

clouds, but a combination of weaker increase in LWP in non-raining clouds and a smaller30

fraction of raining clouds in UPCAM. The implication is that as global modeling moves31

towards finer than storm-resolving grids, nuanced model validation of ACI statistics con-32

ditioned on the existence of precipitation and good observational constraints on the base-33

line probability of precipitation will become key for tighter constraints and better con-34

ceptual understanding.35

Plain Language Summary36

How aerosol particles impact the climate through their interactions with clouds is37

a significant source of uncertainty in quantifying the drivers of climate change over the38

past hundred years. Global climate models have so far been heavily reliant on approx-39

imations of the physical processes that occur at sub-kilometer scales, even though pro-40

cesses at those scales are important for representing the physics behind aerosol-cloud in-41

teractions. To address this gap, we develop and run a multi-scale global model that em-42

beds a finer-scale model (250-m in the horizontal and 20-m in the vertical) within the43

columns of a coarser resolution global model. A pair of simulations with pre-industrial44

and present-day aerosol emissions are used to quantify the impact of human aerosol emis-45

sions. They show that the climate impact of resolving sub-kilometer resolutions is rel-46

atively small. However, this masks some key differences. The increase in cloud water with47

increasing aerosols is substantially weaker when sub-kilometer motions are resolved. Most48

of this weakening is due a weaker response in non-raining clouds and there being fewer49

clouds that rain in the high resolution model. The simulation results point to observa-50

tions of specific processes that can help further constrain the impact of aerosols on clouds51

and climate.52

1 Introduction53

The cloud radiative response to anthropogenic aerosol emissions, commonly called54

aerosol-cloud interaction (ACI), is a key contributor to historical and future climate change55

and the largest uncertainty of all present-day anthropogenic-driven radiative forcings (IPCC,56

2014)). Numerous cloud regimes and mechanisms contribute to this uncertainty. Pro-57

cess studies have shown various pathways by which aerosols can impact cloud radiative58

properties, especially those of low-level liquid cloud, which respond through direct per-59

turbations to cloud droplet number (Twomey, 1977), through changes in cloud thick-60

ness, cloud cover, and cloud lifetime due to the suppression of precipitation (Albrecht,61

1989; Pincus & Baker, 1994), and through entrainment feedbacks (Ackerman et al., 2004;62

Bretherton et al., 2007; Hill et al., 2009).63
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Representing many of the key ACI mechanisms highlighted above requires account-64

ing for effects of the cloud-forming eddies (O 100 m) in the planetary boundary layer.65

Therefore, one of the biggest challenges in studying ACI in global model simulations has66

been the range of scales that need to be considered to provide global estimates of aerosol67

radiative forcing. Present-day state-of-the-art global climate models (GCMs) have hor-68

izontal resolutions of order 100 km, and that has necessitated the reliance on parame-69

terizations to represent subgrid variability and processes, such as convection and turbu-70

lence. Advances in supercomputing now mean that global storm-resolving models can71

be run on uniform meshes with horizontal spatial resolutions of 0.8-3 km (Sato et al.,72

2018; Stevens et al., 2019). However, it will still be decades until we arrive at global sim-73

ulations that resolve sub-kilometer resolutions (Schneider et al., 2017) that are neces-74

sary to begin resolving planetary boundary-layer eddies.75

To fill this gap, global models built using a multi-scale modeling framework (MMF)76

allow strategic undersampling of horizontal space in order to better resolve subgrid scales77

by replacing parameterizations of subgrid motion and variability with explicit cloud re-78

solving models (CRMs) embedded within GCM columns with typical spatial resolutions79

of >100 km (Grabowski, 2001; D. Randall et al., 2003; Khairoutdinov et al., 2005). In80

the past decade, despite their current limitations (e.g. idealized 2D turbulence that is81

locally periodic), MMFs have proved important for understanding some important ef-82

fects of explicit deep convection on planetary scales (D. A. Randall, 2013). Today, MMFs83

likewise allow an advance look at the role of boundary-layer turbulence on global ACI.84

In the context of aerosol-cloud interactions, past studies using MMF with 4 km grid res-85

olution that resolv deep cumulus updrafts but not boundary-layer eddies report that aerosol-86

cloud interactions are weaker in these multi-scale models than in conventionally-parameterized87

GCMs (Wang, Ghan, Ovchinnikov, et al., 2011; Kooperman et al., 2012).88

In this study, we employ the Ultra-Parameterized Community Atmosphere Model,89

a version of MMF that has a drastically increased resolution of the embedded CRM. This90

allows the worlds first global climate model that also begins to resolve the outer scales91

of the boundary layer turbulent eddies that form low clouds. Early studies with UPCAM92

have shown that it has more realistic turbulence in cloud topped boundary layers than93

lower resolution MMFs and has high enough resolution at the top of boundary layer clouds94

to begin resolving the cloud-top entrainment processes (Parishani et al., 2017), which95

are important for key ACI processes like the sedimentation-entrainment feedback.96

A secondary goal of the paper is to evolve best practices for diagnosing ACI physics97

underlying sensitivities in the era of increasingly explicit global simulations. Facilitat-98

ing the comparison of global ACI simulations with high-resolution model simulations or99

with observations requires analyses beyond just examining the aggregated cloud radia-100

tive changes due to aerosol perturbations. On the one hand, analyses using process-oriented101

diagnostics highlight the importance of precipitation forming microphysical processes in102

the models (Wang et al., 2012; Suzuki et al., 2013; Michibata et al., 2016; Jing & Suzuki,103

2018; Mlmenstdt et al., 2020). Progress has also been made in finding meteorological regimes104

in which GCMs respond similarly to aerosol perturbations (e.g., S. Zhang et al., 2016),105

but we still struggle to identify which processes cause the response of GCMs to diverge106

in other meteorological regimes. Because models differ in their parameterizations and107

in the way subgrid-scale cloud processes are represented, the difficulty of identifying the108

drivers of aerosol-cloud interactions in GCMs and observations is as much a conceptual109

problem as a technical one. Recent analyses (Chen et al., 2014; Toll et al., 2017) point110

to the distinction of raining and non-raining clouds in helping us better conceptually un-111

derstand how clouds respond to aerosol perturbations and where areas of agreement and112

disagreement between models and observations lie. This study builds on such a frame-113

work to distinguish between the raining-cloud and non-raining cloud response in two sep-114

arate models.115
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In Section 2, we first describe the prognostic aerosol version of UPCAM and the116

unique simulation strategy used to run ACI simulations given the considerable compu-117

tational costs of the model. Then we show that — despite lack of model tuning — UP-118

CAM is competitive with previous models in capturing cloud properties relevant for ACI119

(Section 3). We also demonstrate how a new analysis that utilizes the nudged-wind frame-120

work of previous studies allows us to test whether the mechanisms underlying our un-121

derstanding of ACI are similarly simulated across different configurations of the same122

host model. And finally, we summarize our findings and highlight processes that need123

more observational constraints and further limited-area high-resolution simulations to124

hone in on key uncertainties in order to further constrain the strength of aerosol-cloud125

interactions (Section 4).126

2 Methods127

2.1 Ultra-Parameterized Community Atmosphere Model with prognos-128

tic aerosols129

The goal of this study is to investigate the impact of resolving sub-kilometer ed-130

dies in a global simulation of aerosol-cloud interactions. For our modeling simulations131

we have expanded the capabilities of the Ultra-Parametrized Community Atmosphere132

Model (UPCAM) beyond what was introduced in Parishani et al. (2017) and Parishani133

et al. (2018) to incorporate prognostic aerosols and double moment microphysics in the134

cloud scheme.135

UPCAM uses Version 5 of the Community Atmosphere Model (CAM5 – Neale et136

al., 2012) as its host GCM with a finite-volume dynamical core. For its physical param-137

eterizations, CAM5 uses the microphysics scheme of Morrison and Gettelman (2008),138

the shallow cumulus scheme of Park and Bretherton (2009), the turbulence scheme of139

Bretherton and Park (2009), the deep convection scheme of G. J. Zhang and McFarlane140

(1995), and the RRTMG radiation scheme (Mlawer et al., 1997; Iacono et al., 2008). The141

model uses the 3-mode prognostic Modal Aerosol Model (MAM3 – Liu et al., 2012). In142

UPCAM, as in the Super-Parameterized Community Atmosphere Model (SPCAM – Khairout-143

dinov et al., 2005) from which UPCAM was developed, a smaller cloud-resolving model144

(CRM) is embedded in each column of CAM5 to represent the cloud-scale motions and145

processes that are typically represented by cloud and turbulence parameterizations in146

typical GCMs. UPCAM makes three notable changes to the SPCAM configurations that147

have previously been used to study aerosol-cloud interaction (Wang, Ghan, Easter, et148

al., 2011; Kooperman et al., 2012; K. Zhang et al., 2014). First, the horizontal grid spac-149

ing of the cloud resolving model (CRM) grid has been shrunk from approximately 4 km150

down to 250 m. Second, the vertical resolution has been increased from 30 levels to 120151

levels, with most of the resolution increases concentrated in the lowest 3 km of the model,152

where the atmospheric boundary layer resides. Third, to offset the computational costs153

incurred by increasing the resolution of the cloud resolving model, the domain extent of154

the embedded cloud resolving model has been shrunk from typical extents of 128-256km155

down to 8 km. More details on UPCAM can be found in Parishani et al. (2017).156

To enable the study of aerosol-cloud interactions, we have combined the existing157

UPCAM framework (Parishani et al., 2017) with the explicit-cloud parameterized pol-158

lutant scheme (ECPP), which uses statistics from the cloud resolving model to param-159

eterize aerosol transport and wet scavenging (Gustafson et al., 2008; Wang, Ghan, Easter,160

et al., 2011). After reducing the internal timesteps within ECPP and the frequency with161

which we call ECPP, we have produced a model that produces large eddies in the bound-162

ary layer and prognoses the impact of those cloud updrafts on the activation of inter-163

active aerosols. We compare the aerosol-cloud interaction in UPCAM with SPCAM and164

CAM5.165
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2.2 Simulation boundary conditions166

All simulations use year 2000 climatological SST forcing, insolation, CO2 concen-167

tration, and stratospheric ozone concentrations. The pre-industrial simulation and the168

present-day simulation differ based on the aerosol and aerosol-precursor emissions, namely169

anthropogenic SO2, black carbon, and primary organic matter, created for the IPCC AR5170

experiments and described by Liu et al. (2012) and (Wang, Ghan, Ovchinnikov, et al.,171

2011). The land model in all simulations is initialized by a January 1st land condition172

produced from a 25 year simulation with the baseline CAM5 model.173

2.3 Computational constraints and simulation strategy174

Despite the limited horizontal extent of the embedded CRMs, the addition of the175

prognostic aerosols and double moment microphysics increases the already high compu-176

tational cost of these simulations. Even when run with a coarse 4◦ × 5◦ (latitude × lon-177

gitude) GCM, UPCAM completes 0.05 simulated years per day of computation when178

run on 828 cores.179

To quantify aerosol-cloud interaction, we compare a simulation with present-day180

emissions and another simulation with the same boundary conditions, but with pre-industrial181

aerosol emissions. Due to meteorological differences that will arise between these two sim-182

ulations, retrieving the aerosol signal from the internal variability typically requires multi-183

year simulations (Wang, Ghan, Ovchinnikov, et al., 2011; Kooperman et al., 2012), which184

are beyond our computational constraints. Previous studies by Kooperman et al. (2012)185

and K. Zhang et al. (2014) have shown the signal of the aerosol-cloud interactions can186

be retrieved from much shorter simulations, on the order of one year, if the meteorolog-187

ical variability is controlled by nudging the wind fields in the models to a common me-188

teorological field using Newtonian relaxation. In this study, only the horizontal winds189

of the model are nudged to those of year 2008 in the European Centre for Medium-range190

Weather Forecasting Interim Reanalysis product (Dee et al., 2011). They are nudged ev-191

ery GCM timestep (5 min for UPCAM) to 6 hourly reanalysis fields with a relaxation192

timescale of also 6 hours.193

Because a continuous 52-week simulation covering the whole year would still take194

a better part of a year to complete, we further reduce the amount of time it takes for195

us to arrive at the answer by running twelve separate six-week simulations starting at196

the beginning of each calendar month. As it takes roughly two weeks for the aerosol op-197

tical depth to reach roughly 80% of the global AOD values (liquid water paths equili-198

brate within a week), we remove the first two weeks of simulation and use the remain-199

ing four weeks of simulation for analysis. For consistency, we apply the same simulation200

strategy for both the CAM5 and SPCAM model simulations. We acknowledge that this201

simulation strategy may lead to slight underestimation of the aerosol concentrations in202

each simulation. We therefore choose a region of analysis that experiences the largest203

changes in directly emitted aerosol concentrations.204

2.4 Observations205

For observational comparisons with the present-day simulations, we use two satellite-206

based cloud retrieval: the liquid water path retrieval of Elsaesser et al. (2017) and the207

cloud top droplet number concentration retrieval of Grosvenor et al. (2018).208
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3 Results209

3.1 Difference in present-day cloud properties across models210

The droplet number concentration (Nd) at cloud top is a key indicator of aerosol-211

cloud interaction, and estimates of cloud-top Nd have been retrieved from satellite ob-212

servations (e.g., Bennartz, 2007; Grosvenor et al., 2018). Limiting our analysis to low-213

level clouds (top < 4 km) and grid-box cloud-fractions greater than 20% for a more con-214

sistent comparison with observations, we find higher concentrations of cloud droplets in215

UPCAM compared to SPCAM (Fig. 1). Whereas UPCAM mitigates SPCAMs too clean216

conditions over much of the open ocean, particularly over the Southern Pacific Ocean,217

it tends to overestimate Nd over anthropogenic sources and over the Atlantic Ocean. SP-218

CAM shows a slightly better RMSE with respect to satellite retrievals (219 cm−3) com-219

pared to UPCAM (230 cm−3). The similarity in skill is surprising, because UPCAM was220

not tuned to match observations. In terms of model differences, the higher Nd in UP-221

CAM can be attributed to two aspects: a higher ratio of cloud condensation nuclei (CCN)222

activating into cloud droplets and a higher background CCN in the present-day (not shown).223

The latter is likely connected to the precipitation rate and frequency, which is a strong224

control of the wet scavenging of aerosols (Wood et al., 2012).225

In addition to the activation of cloud condensation nuclei (CCN) into cloud droplets,226

the strength of the aerosol-cloud interaction also depends on the amount of baseline cloud227

water, for without clouds, there will be no ACI. If we plot the modeled cloud liquid wa-228

ter path in UPCAM and SPCAM alongside observational estimates (Elsaesser et al., 2017),229

we find that UPCAM shows better agreement with satellite microwave estimates, par-230

ticularly in the subtropical/midlatitude regions (20◦ - 50◦), where UPCAMs LWP bias231

of −25 g m−2 is two-thirds of SPCAMs −38 g m−2 bias. While the maps in Fig. 1 are232

based on only one year of simulation, they indicate that — even without retuning the233

model physics parameters to achieve a more realistic climate in the simulation (e.g., Hour-234

din et al., 2017) — this meteorologically nudged configuration of UPCAM that includes235

2-moment microphysics produces a credible representation of clouds and aerosol-cloud236

processes, comparable to that in the well-documented SPCAM (Wang, Ghan, Ovchin-237

nikov, et al., 2011; Wang et al., 2012). This gives us confidence to perform experiments238

simulating the cloud response to present-day anthropogenic emissions of aerosols. These239

UPCAM results represent an improvement from those in Parishani et al. (2017). We sus-240

pect that the use of interactive aerosols and two-moment microphysics have led to the241

improvement in cloud water through their tighter coupling of cloud-scale turbulence and242

convection with cloud microphysical processes, though nudging the meteorology might243

have also played a role (see Appendix A for more details.)244

Now that we have established that UPCAM produces clouds realistic enough to245

warrant study, especially in the midlatitudes, we investigate how the cloud properties246

differ between simulations with present-day and pre-industrial aerosol emissions. The247

only difference between the present-day and pre-industrial simulations are the emissions248

of aerosols and aerosol precursors, namely SO2, black carbon, semi-volatile organic gas-249

phase species, oxidants, SO4, and organic carbon. Sea salt and dust emissions remain250

a function of the environmental conditions.251

3.2 Quantifying the impact of anthropogenic aerosols on cloud proper-252

ties253

Because the winds in all UPCAM and SPCAM simulations are nudged to the same254

ECMWF reanalysis winds, the cloud changes due to aerosol perturbations do not feed255

back onto the large-scale circulation. As a result, the cloud responses in these simula-256

tions do not include any responses arising from aerosol-induced changes in the circula-257

tion, and we can study cloud responses to aerosol that — because they are independent258

of changes in large-scale meteorology — are as close to a pure aerosol-induced cloud re-259
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sponse as can be achieved in a GCM. To quantify the impact of aerosols on cloud radia-260

tive properties, we use the approximate partial radiative perturbation (APRP) method261

employed by Zelinka et al. (2014) to calculate Effective Radiative Forcing from aerosol-262

cloud interactions (ERFaci) between the present-day (PD) and pre-industrial (PI) emis-263

sion simulations across model configurations (Figure 2, left panels).264

We begin with a cross-check on our simulation design by comparing with past work265

that investigated the effect of classical superparameterization on ERFaci. For this com-266

parison, we perform the same type of nudged hindcasts using version 5.1 of the conven-267

tionally parameterized Community Atmosphere Model (CAM5) to demonstrate whether268

the idealizations of our simulation strategy nonetheless produce consistent results with269

previous studies that were not as throughput-limited. Figure 2 supports this expecta-270

tion, showing differences between SPCAM and CAM5 that previous studies have noted271

with longer simulations (Wang, Ghan, Ovchinnikov, et al., 2011; Kooperman et al., 2012):272

a larger increase in aerosol concentrations between present-day and pre-industrial sim-273

ulations, a weaker relative increase in cloud liquid water path (LWP), and a subsequently274

weaker cloud radiative response (less negative) in SPCAM compared to CAM5. That275

we are able to reproduce previously reported results with a year of overlapped six-week276

nudged simulations gives us confidence that this simulation strategy captures the key277

differences in aerosol-cloud interactions seen across model configurations run for longer278

periods.279

We now turn to our main interest comparing UPCAM, as the first global climate280

model to avoid parameterization of the boundary layer in such tests, with SPCAM and281

CAM5 simulations. Our focus is on the cloud response over the Northern Hemisphere282

(NH) midlatitude oceans north of 20◦N, for three reasons. First, ERFaci in this region283

is already known to be sensitive to how convection is parameterized (Wang, Ghan, Ovchin-284

nikov, et al., 2011, and our Fig. 2 d,g). Second, this is where the largest increases in oceanic285

CCN occur relative to pre-industrial emissions scenarios (Fig. 2). Third, UPCAMs base-286

line marine cloud properties are least biased in this region; that is, by excluding the Trop-287

ics, we intentionally avoid most of the deep convective regions where we expect UPCAM288

to be less realistic (Parishani et al., 2017).289

Qualitatively, compared to its precursor models, UPCAM leads to a weaker and290

more geographically diffuse ERFaci over NH midlatitude oceans. In SPCAM and CAM5,291

the strongest ERFaci over the NH ocean occurs over the northern stretch of the North292

Pacific (Fig. 2 d,g), where the LWP increase is notably high in both models (Fig. 2 f,i)293

with comparably little Atlantic signal. In UPCAM, the ERFaci in the Pacific region is294

weaker (Fig. 2a), consistent with the much smaller increase in LWP in the area (Fig. 2c).295

Unlike the other two models, UPCAM exhibits a weak ERFaci over a broader area en-296

compassing both the North Pacific and North Atlantic.297

Quantitatively, while the overall time-mean NH midlatitude ERFaci of UPCAM298

is remarkably similar in magnitude to that of SPCAM, fundamental differences in the299

underlying seasonality point to distinct physics when boundary layer eddies are quasi-300

resolved. When we take the spatial average of ERFaci over the NH ocean (Fig. 3), the301

annual mean shortwave ERFaci in UPCAM (−2.0 W m−2) is only slightly lower than302

in SPCAM (−2.3 W m−2) (−4.0 W m−2 in CAM5). To see whether the ERFaci differ-303

ences are similar across seasons, we take the monthly mean cloud response over the NH304

oceans and plot the ERFaci as a function of calendar month in Fig. 3. A distinct sum-305

mer peak in the shortwave response occurs in SPCAM and CAM5, which mainly follows306

the change in insolation over the Northern Hemisphere. The UPCAM simulation, on the307

other hand, has its peak in ERFaci in the months surrounding February. We investigate308

the reasons for the difference between the UPCAM and SPCAM simulations in the next309

section.310
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3.3 The ERFaci differences between UPCAM and SPCAM311

Almost all of the difference in shortwave ERFaci is due to changes in the shortwave312

scattering and absorption of clouds, rather than changes in cloud cover (Fig. 3). Both313

an increase in Nd and an increase in cloud LWP can contribute to a brightening of the314

cloud and a negative ERFaci. To estimate their relative importance in explaining the model315

differences between SPCAM and UPCAM, we predict the change in SW radiation ∆Rsw316

as the sum of the contribution from relative Nd changes ∆Nd/Nd and relative liquid wa-317

ter path (L) changes ∆L/L building on the relationship from (Ackerman et al., 2000)318

(see also Bellouin et al., 2020),319

∆Rsw = Rsw,srf,cs,PDαcld,PI(1− αcld,PI)flow,PI(
∆Nd

3Nd,PI
+

5∆L

6LPI
), (1)320

where Rsw,srf,cs,PD is the surface shortwave radiation in clear-sky conditions, αcld,PI321

is the pre-industrial cloud albedo, and flow,PI is the pre-industrial low-cloud fraction.322

We readily admit that the prediction based on Eq. 1 is imperfect, given that it assumes323

that the clouds are adiabatic, only accounts for radiative changes in low clouds, and tends324

to underestimate the actual change in ERFaci (Fig. 4). Nonetheless, its physical under-325

pinnings and the fact that it explains up to 80% of the actual ERFaci, including the sea-326

sonality differences between SPCAM and UPCAM, justifies its use in understanding them.327

The solid vertical bars in Fig. 4 are the Eq. 1-predicted shortwave cloud radiative328

response from changes in LWP, whereas the hatched bars are those predicted from changes329

in Nd. Figure 4 first shows that the stronger summertime (JJA) shortwave ERFaci in330

SPCAM, compared to UPCAM, can be mostly traced to a much weaker LWP response331

in UPCAM (Fig. 4). The ERFaci difference between SPCAM and UPCAM is largest in332

the summer months when the North Pacific regions of large LWP changes in SPCAM333

are illuminated. The relative change of LWP in SPCAM varies little with the month of334

the season, but because most of the LWP response is confined to the North Pacific (Fig. 2d),335

its radiative impact is strongest during the boreal summer.336

On the other hand, most of the stronger ERFaci in UPCAM during the winter and337

fall months come from the contributions related to Nd changes. One might first suspect338

that this is due to a difference in the activation of cloud droplets, but actually, this dif-339

ference is mainly due to UPCAM having more low clouds (Fig. 5). Because UPCAM sim-340

ulates more low clouds during the winter months, particularly over the better illuminated341

low latitudes, the radiative impact of cloud brightening from increased cloud droplets342

is larger in UPCAM than in SPCAM. The differences in cloud cover, however, do not343

explain why SPCAM has a larger LWP contribution in Fig. 4. In the following section,344

we dig deeper into why the LWP response is stronger in SPCAM.345

3.4 The mechanisms behind the Nd and LWP response in UPCAM and346

SPCAM347

To better understand the conditions that lead to a larger increase in LWP in SP-348

CAM than in UPCAM, we can match cloud conditions at a particular time and loca-349

tion from the present-day simulation with those from the same time and location in the350

pre-industrial simulation. Because the winds in pre-industrial and present-day simula-351

tions are nudged to the same ECMWF reanalysis winds, we can assume that the large-352

scale conditions are largely identical between the simulations. This allows us to ask the353

question whether a cloud that is raining in the pre-industrial simulation will respond dif-354

ferently to increases in aerosols compared to a cloud that is not raining (with other me-355

teorological factors kept constant).356

By distinguishing the responses of raining clouds from non-raining ones, the causes357

for a stronger or weaker cloud lifetime effect can be disentangled. The cloud lifetime ef-358
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fect, as originally described by Albrecht (1989), proposes that the LWP of an otherwise359

raining cloud will increase due to aerosol-induced suppression of precipitation. This pre-360

sumes that the cloud would otherwise rain in the unperturbed (clean) case. In other words,361

we do not expect the cloud lifetime effect to impact non-raining clouds, and at least ex-362

pect a smaller increase in LWP in non-raining clouds.363

We separate the cloud scenes in UPCAM and SPCAM based on whether the clouds364

are raining in the pre-industrial simulation and examine how the liquid water path changes365

between the pre-industrial and present-day simulations. The difference in LWP between366

the present-day simulation and pre-industrial simulation (∆Lall) is estimated using the367

response of raining cloud (∆Lrain), response of non-raining clouds (∆Lnon−rain), and368

the fraction of raining clouds (f):369

∆Lall = f∆Lrain + (1− f)∆Lnon−rain. (2)370

Even in simulations where winds are nudged to the same large-scale meteorology,371

the noisy nature of the clouds makes estimating ∆Lrain and ∆Lnon−rain difficult, and372

some approximations and adjustments are required and are described in Appendix B.373

As a result, slight differences exist between estimates of ∆Lall (solid circles in Fig. 6)374

and the actual spatially averaged change in LWP (open circles in Fig. 6), but the decom-375

position is adequate for us to understand the differences between SPCAM and UPCAM.376

Reassuringly, we find that in both UPCAM and SPCAM, the LWP response to aerosol377

loading is smaller in magnitude for non-raining clouds than in raining clouds, as we would378

expect. Comparing the UPCAM and SPCAM LWP response, we first find the LWP re-379

sponse in UPCAM is less than in SPCAM for most of the year. In the following, we at-380

tempt to more fully understand why UPCAM has a muted LWP response to aerosol com-381

pared to SPCAM (blue vs. orange circles) for a large part of the year. Our first finding382

is that although the average cloud response is lower in UPCAM, the raining cloud re-383

sponse in UPCAM is actually dramatically larger than in SPCAM. In other words, hid-384

ing behind the first-order impression of a muted LWP response to aerosol loading is a385

stronger sensitivity of LWP to increasing aerosol in raining cloud in UPCAM than in SP-386

CAM. Thus the reason the overall LWP response is weaker in UPCAM must be linked387

to the other two factors: the response of non-raining clouds and the baseline fraction of388

raining clouds (or the probability of precipitation). Large-eddy simulations (Ackerman389

et al., 2004; Bretherton et al., 2007; Chen et al., 2011) and some observations (Chen et390

al., 2014; Toll et al., 2017) report the existence of both positive and negative responses391

of LWP to aerosols, where LWP tends to decrease with increasing aerosols in thin, non-392

raining clouds. These findings lend support for the overall weak and slightly negative LWP393

response of non-raining clouds in UPCAM.394

If we shift our focus to the baseline fraction of raining clouds in low-lying clouds,395

we can see from Fig. 7 that the fraction of precipitating clouds as a function of LWP is396

indeed lower in UPCAM than in SPCAM. Climate models, in general, show a tendency397

to overpredict the probability of precipitation (POP – Stephens et al., 2010), and even398

in SPCAM (Kooperman et al., 2016). Furthermore, Mlmenstdt et al. (2020) point out399

the importance of establishing the baseline precipitation frequency to better constrain400

the aerosol-cloud interactions. L’Ecuyer et al. (2009) provide such an estimate of POP401

based on CloudSat, and a comparison of Fig. 6 of this study with Fig. 1 of L’Ecuyer et402

al. (2009) suggests that the precipitation fraction in UPCAM is more consistent with the403

POP from L’Ecuyer et al. (2009). However, differences in averaging length and area of404

study between L’Ecuyer et al. (2009) and this study make it difficult to conclude strongly405

which is more realistic.406

In summary, the analysis presented in this section and further elaborated in Ap-407

pendix B provides evidence that the lower increase in LWP with aerosols in UPCAM is408
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due to a weaker LWP increase in non-raining clouds and a small fraction of raining clouds409

in the baseline climate.410

4 Discussion and conclusions411

We now discuss three implications of our findings. First, the results support the412

idea that a targeted analysis of aerosol-cloud interactions that differentiates the response413

of raining and non-raining clouds can help us gain a better conceptual understanding414

of why two different models produce different aerosol-cloud interactions. The simulation415

strategy of nudging large-scale winds inhibits feedbacks of aerosols on circulation but al-416

lows a unique test-bed for studying aerosol-cloud interaction. Based on previous global417

studies (e.g., Wang et al., 2012), we approached the analysis expecting the response of418

raining clouds to aerosol perturbations to be the largest differentiator of aerosol-cloud419

interaction between the models. However, when we separate our analysis into clouds that420

rain and do not rain, we find that other factors, namely the baseline fraction of clouds421

that rain and the response of non-raining clouds, better explain the overall difference in422

LWP response to aerosols in UPCAM compared to SPCAM. This distinction of ACI in423

raining and non-raining clouds has been done in previous observational analyses (e.g.,424

Possner et al., 2020; Toll et al., 2017), but here we show how an analogous distinction425

of ACI in raining versus non-raining clouds can be done even in global models, and proves426

helpful in understanding emergent ACI effects, provided we nudge the large-scale con-427

ditions.428

One might then ask, whether SPCAM or UPCAM more realistically capture those429

factors that we identify as major contributors differentiating the UPCAM from the SP-430

CAM cloud response. LES simulations support a weakly positive or negative response431

of LWP to increases in aeorsols in non-precipitating clouds, and CloudSat retrievals of432

the baseline fraction of raining clouds (or probability of precipitation; L’Ecuyer et al.,433

2009) appear to better match UPCAM’s baseline fraction. However, there are many caveats434

to the comparison with observations, including the difference in horizontal averaging length,435

which is important to make a consistent assessment of probability of precipitation. The436

study of L’Ecuyer et al. (2009) also encompasses a larger region over the oceans, com-437

pared to the focus of northern hemisphere midlatitude clouds in this study. Mlmenstdt438

et al. (2020) further report the potential importance of differentiating between drizzle439

and rain to better constrain model behavior. Exploring these are beyond the scope of440

this study, but highlight observational estimates that will be important for better assess-441

ing aerosol cloud interactions in models.442

We also find that the LWP response of non-raining clouds in UPCAM is negative,443

while it is positive in SPCAM. Large-eddy simulations of idealized low-level clouds ex-444

hibit a decrease in LWP for non-raining clouds (Ackerman et al., 2004; Chen et al., 2011),445

supporting the UPCAM response, but going forward, what will be important is to ob-446

servationally quantify the extent to which the LWP decreases with aerosol and to iden-447

tify how and whether the response differs as a function of meteorology and season.448

Other metrics, such as precipitation susceptibility, also have been identified to bet-449

ter connect individual processes with the overall LWP response to aerosols, where the450

advantages of the susceptibility metric is that it can be estimated using observations (Sorooshian451

et al., 2009; Terai et al., 2012; Wang et al., 2012; Mann et al., 2014). Here, we view the452

simulation strategy and analysis in this study as a complementary approach that helps453

us better confront our cartoon model of the aerosol-cloud interactions.454

A second implication of our study is that the seasonal cycle in the aerosol cloud455

interactions can differ between different model configurations (SPCAM and UPCAM).456

This result highlights the importance of covering a wide range of meteorological contexts457

and seasons when comparing aerosol-cloud interactions particularly in high resolution458
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Figure 1. (top row) The cloud top cloud droplet number concentration (Nd, cm−3) in UP-

CAM (a) and SPCAM (b) and a passive satellite retrieval based estimate of cloud droplet num-

ber concentration from Grosvenor et al., (2018) (c). (bottom row) The cloud liquid water path

(LWP; g m−2) in UPCAM (d), in SPCAM (e), and from microwave retrievals of Elsaesser et al.

(2017) (f).

models where computational costs of running simulations constrains decisions about the459

variety and duration of simulations.460

Third and perhaps most importantly, this study reinforces the need for compar-461

ison of aerosol-cloud interactions in limited-area high resolution simulations (LES) with462

global simulations. This study reveals that by resolving the scales of boundary layer ed-463

dies, we arrive at a conceptually different picture of the aerosol-cloud interaction than464

one might get from looking at a model that resolves up to the km-scale motions. Even465

as we move towards storm- or cloud-resolving global simulations (e.g., Sato et al., 2018;466

Stevens et al., 2019), we are still some years off from resolving the boundary layer ed-467

dies in global models (Bellouin et al., 2020). There are subgrid turbulence parameter-468

izations that can bridge those sub-kilometer unresolved scales (Larson et al., 2012; Bo-469

genschutz & Krueger, 2013; Xu & Cheng, 2016; K. Zhang et al., 2017), but their impact470

on ACI remains to be seen. Therefore, as increased computational capacities allow for471

larger domains and longer simulations using large-eddy models, this study stresses the472

importance of consistently comparing aerosol-cloud interaction between global and local-473

scale simulations to gain perspective on areas that need improvement in global models474

and which will ultimately yield a more reliable global estimate of the radiative impact475

of aerosol-cloud interaction.476

Appendix A Difference in one-moment versus two-moment UPCAM477

This study differs from the UPCAM simulations in Parishani et al. (2018) in a num-478

ber of ways. Whereas the simulations in Parishani et al. (2018) were free-running, used479

single moment microphysics, prescribed aerosol concentrations, and were run at 2◦ × 2◦480

horizontal resolution in the GCM, the simulations in this study had winds nudged ev-481

ery 6-hours, used two-moment microphysics, used the MAM3 prognostic aerosol scheme482

coupled to cloud-resolving eddy statistics with the Explicit Convection Parameterized483

Pollution scheme, and were run at 4◦ × 5◦ horizontal resolution in the GCM. In addi-484
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Figure 2. The effective radiative forcing from aerosol-cloud interactions (ERFaci; left column),

percent change in CCN concentration (middle column), and percent change in cloud liquid water

path (right column) in UPCAM (top row), SPCAM (middle row), and CAM5 (bottom row).

J F M A M J J A S O N D
Month

10

8

6

4

2

0

S
W

ch
an

ge
(W

m
2 )

ERFaci SW change (20N-50N ocean-only)

UPCAM
SPCAM
CAM5

scat+abs
scat+abs+amt

Figure 3. The ERFaci from scattering and absorption averaged over the Northern Hemi-

sphere ocean (20◦N−50◦N) in UPCAM (blue), SPCAM (orange), and CAM5 (green). Vertical

lines indicate the 95% confidence interval of the mean taken from daily variations over the four-

week averaging period. Despite agreeing on the time-mean, UPCAM and SPCAM have distinct

seasonal cycles of ERFaci.
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total ∆Rsw is separated into contributions from LWP changes (solid color) and from Nd changes

(hatching). Open circles in the background indicate the change in SW cloud radiation estimated

using the APRP method of Zelinka et al. (2014) in which analogous inter-model seasonality

differences justify the parameterization.
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Figure 6. Northern Hemisphere (20◦N−50◦N) LWP difference over oceans (filled circles)

between pre-industrial and present-day simulations as a function of calendar month in UPCAM

(blue) and SPCAM (orange). Predictions are based on a decomposition after raining (down-

pointed triangles) and non-raining cloud LWP responses (up-pointed triangles) are separated and

their responses are scaled by the fraction of raining and non-raining clouds as in Eq. 2. Open

circles indicate actual differences in the LWP between present-day and pre-industrial simulations

over the same area.
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Figure 7. Probability of precipitation (using a threshold of 0.6 mm/d) as a function of

cloudy-scene liquid water path over Northern Hemisphere (20◦N−50◦N) oceans in the month

of July. Blue indicates UPCAM and orange indicates SPCAM.
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Table A1. Global mean top-of-atmosphere radiative fluxes and cloud properties in UP-AER

(of this study), UPCAM of Parishani et al. (2018), and from observational estimates (CERES

EBAF v4.1 for radiative fluxes and Elsaesser et al. (2017) for LWP.)

Model TOA SW TOA LW LWP Low cloud fraction (%)
(W m−2) (W m−2) (g m−2) (%)

UP-AER 227 218 59.0 [67.3*] 37
(this study)
UPCAM 245 240 54.3 48
(P18+)
Satellite obs 241 240 82.1* N/A

+ Parishani et al. (2018). ∗ Mean LWP averaged only over ocean.

tion, because of its large computational cost and especially slow throughput, this model485

was not tuned in any fashion so that the top-of-atmosphere model matched observations.486

Despite this difference, it is still instructive to examine the large-scale climate di-487

agnostics of the model. Table A1 below notes the top of atmosphere net shortwave flux488

(TOA SW) and net longwave flux (TOA LW), the global mean liquid water path (LWP),489

and the global mean low-cloud fraction. Despite having a smaller coverage of low clouds,490

the prognostic aerosol version of UPCAM (UP-AER) in this study has more cloud re-491

flection and a larger LWP. For reference, the TOA SW radiation is compared with CERES492

EBAF v4.1 climatological mean in Fig. A1. We find that UP-AER, despite not being493

tuned and still showing too much absorbed shortwave, improves on the larger solar ab-494

sorption bias over the stratocumulus region reported in Parishani et al. (2018) and also495

has fairly small biases over most of the midlatitude oceans. However, the deep convec-496

tive clouds over the tropical west Pacific are too reflective, leading to a large negative497

bias in top-of-atmosphere shortwave radiation in UP-AER. The same deep convective498

regions are also the main source for the negative bias in outgoing TOA LW radiation.499

Appendix B Separating out the aerosol-mediated cloud response in500

raining and non-raining clouds501

In this section we explain how we calculate the aerosol-cloud adjustment in rain-502

ing and non-raining clouds. We first separate snapshots of cloudy GCM grid columns503

in the pre-industrial simulation based on whether or not they are raining using a rain504

threshold of 0.6 mm d−1. Since meteorology is nudged identically, each snapshot in the505

pre-industrial simulation has a corresponding snapshot in the present-day simulation,506

where the geographic location, time of day, and large-scale meteorology match with those507

of the pre-industrial simulation.508

We might naively then take the cloud response to aerosol perturbations to be equal509

to the difference in the liquid water path between the present-day and pre-industrial snap-510

shot. However, that difference does not take into account a level of stochasticity (ran-511

domness) inherent in all clouds, including superparameterized clouds (Jones et al., 2019).512

Because of this stochasticity, even if were to examine two simulations with the same513

aerosol emission scenarios and meteorological nudging, there will be some LWP cloud514

difference in each snapshot comparison. For example, if the LWP is anomalously higher515

in the first simulation it will tend towards the mean in the second simulation and pro-516

duce a negative change in LWP. Now when we separate the clouds into those that are517

raining and those that are not, we end up selecting clouds with higher anomalous cloud518

LWP. Therefore, if we were then to look at the LWP change in two simulations with the519
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Figure A1. Difference in top-of-atmosphere absorbed shortwave radiation between UP-AER

and CERES-EBAF v4.1. Units in W m−2.

same LWP distribution, we would find that the change in LWP of raining clouds is neg-520

ative, while the change of non-raining clouds is positive. Note that this negative response521

of raining clouds is purely due to the stochasticity of clouds and does not have any phys-522

ical mechanism behind it.523

The extent to with which we will see this effect is a function of both the difference524

in mean LWP of raining and non-raining clouds but also a function of the correlation525

between the LWP in the first and second simulation. If the LWP in the first simulation526

perfectly matches the LWP in the second simulation, then we would not see this effect.527

On the other hand, if it happened that the geographic location, time of day, and large-528

scale meteorology has no impact on LWP, we would see zero correlation in the LWP of529

the first and second simulation and this regression to the mean effect will be strongest.530

To take into account the impact of stochasticity on our analysis, we therefore ap-531

ply a correction term that is a function of both the LWP anomaly for a snapshot x (L(x,PI)−532

Lx,PI) and the correlation between the snapshots from the present-day and pre-industrial533

simulations (r(LPI , LPD)). Therefore, the corrected LWP change (∆Lx ) is formulated534

as535

∆Lx = Lx,PD − (Lx,PI − Lall,PI)[1− r(LPI , LPD)] (B1)536

In this way, the correction factor (L(x,PI) − Lx,PI)[1 − r(LPI , LPD)] will go to537

zero as the stochasticity goes to zero and (r(LPI , LPD)) goes to one. An advantage of538

this correction is that when all instances are aggregated, they sum to zero. Using this539

corrected LWP response for each snapshot, we aggregate all the raining and non-raining540

cloud instances from the pre-industrial simulation to produce a total monthly-mean ∆Lall541

as a function of the mean raining cloud response ∆Lrain and mean non-raining cloud542

response ∆Lnon−rain as in Eq. 2.543
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Figure B1. The difference in liquid water path (solid lines) between present-day and pre-

industrial simulations as a function of pre-industrial LWP in UPCAM (blue) and SPCAM (or-

ange). Dashed lines indicate the LWP differences in pre-industrial raining scenes, while dotted

lines indicate LWP differences in non-raining scenes. All twelve calendar months are shown.

Figure B1 shows how ∆Lall, ∆Lrain, and ∆Lnon−rain vary as a function of LWP544

in UPCAM and SPCAM. Matching expectation from our conceptual understanding, we545

find that the LWP response in raining clouds is more positive than the response in non-546

raining clouds in both SPCAM and UPCAM across all months and they peak in inter-547

mediate values of LWP. Matching the monthly-means in Fig. 6, we also find that ∆Lrain548

in UPCAM tends to lie above ∆Lrain in SPCAM, which indicates that the raining cloud549

response is not the reason for the lower overall LWP response in UPCAM. Instead, it550

is UPCAM’s lower ∆Lnon−rain and smaller f .551
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Figure 4.
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Figure B1.
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