What Type of Technosignatures Can We Detect?

Amedeo Balbi¹

¹Physics Dept, University of Rome "Tor Vergata", Italy

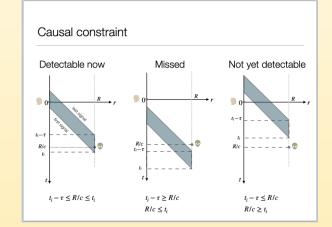
November 21, 2022

Abstract

The existence of causal constraints introduces a temporal selection effect in the type of technosignatures that we can detect. I discuss the implications of this fact on the characteristic of detectable technosignatures, and in particular their longevity.

What Type of Technosignatures Can We Detect?

Amedeo Balbi Physics Dept, University of Rome «Tor Vergata», Italy



Causal constraint

Obvious fact: Any technosignature we can detect must be in our **past light cone**, i.e.:

Appearance of technosignature $t_i - au \leq R/c \leq t_i$

Balbi (2018); see also Grimaldi (2017), Lares, Funes & Gramajo (2020)

Implications

- R/c is a small quantity!
- Not-so-obvious fact: The causal constraint acts as a filter, imposing a fine-tuning of two otherwise uncorrelated timescales:
- t_i can in principle be anything **between 0 and 10**¹⁰ **years**
- · τ is unknown but, a priori, unrelated to t_i
- however, for any detectable technosignature, t_i — τ must be < 10^3 - 10^4 years (for galactic locations)

What type of technosignatures can we detect?

- A technosignature is only detectable if its lifespan matches almost exactly its appearance epoch (this is true regardless of their abundance, their probability distribution, etc.)
- If exo-civilizations appear uniformly over the history of the galaxy, we should expect that the vast majority of technosignatures have t_i ~ 109 years
- Therefore, there are essentially two types of <u>technosignatures</u> that we can detect:
 - 1. long-duration technosignatures, with $t_i \sim \tau \sim 10^9$ years
 - 2. late-appearing technosignatures, with t_i ~10³ years

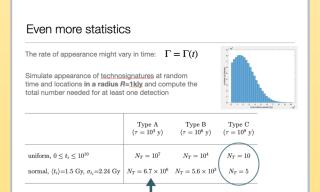
A possible duration-based classification scheme

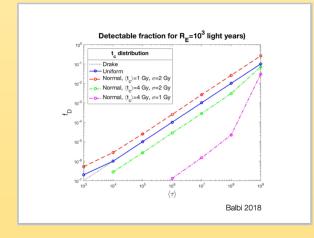
- Type A: τ~103 years
- Type B: τ~10⁶ years
- Type C: τ~10⁹ years

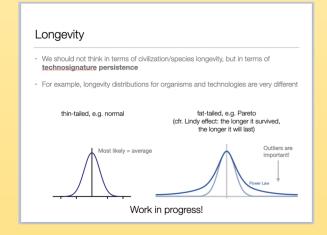
If we make a detection, it will most likely be a Type C technosignature — but this does not mean that Type C are the most likely to exist!

Type A might seem more common, but are only detectable if they are coeval to us!

Either way, we are probably looking for outliers


Enter statistics




If there were a total of N_T technosignatures in a volume around Earth, and they appeared uniformly over $T\sim 10^{10}$ years, then:

$$N = N_T \frac{\bar{\tau}}{T} \Rightarrow \frac{N}{N_T} = \frac{\bar{\tau}}{T} \ll 1$$

Only a small fraction of technosignatures is detectable, so apparently we would need a large total number to succeed. But is this really so?

The case for optimism

- Uniformity is probably a wrong assumption: the epoch of appearance can have a distribution peaked around some epoch, or increasing/decreasing in time, etc.
- We don't really need a large average duration: it is enough to have a
 few very long-lived technosignatures to succeed: things are
 radically different if the duration of technosignatures is fat-tailed (cfr.
 Lindy effect, etc)
- The best strategy is to look for Type C technosignatures (also: go extragalactic)
- Monte Carlo simulations (as opposed to standard estimates of N that rely on stationary processes) are the way to get an insight on this

References

- Balbi, A. 2018. "The Impact of the Temporal Distribution of Communicating Civilizations on Their Detectability." Astrobiology 18 (1): 54–58. https://doi.org/10.1089/ast.2017.1652.
- Grimaldi, C. 2017. "Signal Coverage Approach to the Detection Probability of Hypothetical Extraterrestrial Emitters in the Milky Way." Scientific Reports 7. https://doi.org/10.1038/srep46273.
- Lares, M., <u>Funes</u>, J., and <u>Gramajo</u>, L. 2020. "Monte Carlo Estimation of the Probability of Causal Contacts between Communicating <u>Civilisations</u>," http://arxiv.org/abs/2007.03597

