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Abstract

In this study, we implement a mobile monitoring methodology in order to determine the spatiotemporal distribution of partic-

ulate matter (PM) and black carbon (BC) in Philadelphia, PA, USA. Over the course of 12 days between June 27, 2019 and

July 29, 2019, we measured air pollution concentrations across two replicated 150-mile long routes. Mean concentrations for

each pollutant were 11.25 ± 5.43 ug/m3 (PM1), 11.08 ± 6.25 ug/m3 (PM2.5), 15.57 ± 8.51 ug/m3 (PM10), and 1.27 ± 0.80

μg/m3 (BC). We find that finer PM size fractions (PM2.5 and smaller) constitute approximately 71% of PM10. Air pollution

hotspots across three size fractions of PM (PM1, PM2.5, and PM10) and BC were present throughout Philadelphia, but were

most prevalent in the North Delaware, River Wards, and North planning districts. A plurality of air pollution hotspots found

throughout the data collection period (30.19%) occurred between the hours of 8:00 AM – 9:00 AM. Despite significant temporal

variation, pollutant concentrations, except for PM10, clustered temporally with a separation before 12 PM. Our approach

and findings identify times and places where pollutant concentrations are highest, which is integral to effective air pollution

reduction in urban environments.
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Abstract

In this study, we implement a mobile monitoring methodology in order to determine

the  spatiotemporal  distribution  of  particulate  matter  (PM)  and  black  carbon  (BC)  in

Philadelphia, PA, USA. Over the course of 12 days between June 27, 2019 and July 29, 2019, we

measured  air  pollution  concentrations  across  two  replicated  150-mile  long  routes.  Mean

concentrations for each pollutant were 11.25 ± 5.43 ug/m3 (PM1), 11.08 ± 6.25 ug/m3 (PM2.5),

15.57 ± 8.51 ug/m3 (PM10), and 1.27 ± 0.80 µg/m3 (BC).  We find that finer PM size fractions

(PM2.5  and smaller) constitute approximately 71% of PM10. Air pollution hotspots across three

size fractions of PM (PM1, PM2.5, and PM10) and BC were present throughout Philadelphia, but

were  most  prevalent  in  the  North  Delaware,  River  Wards,  and  North  planning  districts. A

plurality  of  air  pollution  hotspots  found  throughout  the  data  collection  period  (30.19%)

occurred between the hours of  8:00 AM – 9:00 AM. Despite significant temporal  variation,

pollutant concentrations,  except for PM10,  clustered temporally with a separation before 12

PM.  Our approach and findings identify times and places where pollutant concentrations are

highest, which is integral to effective air pollution reduction in urban environments.
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Introduction

Air pollution is a major environmental threat for urban populations, affecting the health

of 9 out of 10 urban residents1. Within urban environments, locally high concentrations of air

pollutants are common2. As populations continue to migrate to urban areas3, we can expect air

pollution to continue to present  health  risks  for  human populations. In  order  to  attenuate

negative  health  impacts1 of  air  pollution  in  the  future,  it  is  imperative  that  we  are  able

accurately  assess  the  spatiotemporal  distribution  of  air  pollution in  urban  environments.

Comprehensive air pollution monitoring is crucial to understanding where and how to focus

efforts to attenuate air pollution and its associated health risks in the urban environment. 

Particulate matter (PM) consists of heterogeneous mixtures of organic4 and inorganic

components5 that vary in size, shape, composition, and origin within the urban environment6.

Coarse size fractions (PM10 – PM2.5) of PM largely originate from crustal sources, whereas fine

PM (PM2.5  – PM0.1) derive mainly from industrial emissions, non-renewable power generation,

and vehicle exhausts7. Black carbon (BC) is a major component of PM that results from the

incomplete combustion of fossil fuel and other organic matter. As such, the presence of BC is

often  used  as  an  indicator  of  urban  traffic  pollution8.  Quantifying  the  abundance  and

distribution of various PM sizes in urban environments is of particular interest to public health9,

as prolonged exposure to PM is associated with increased rates of mortality10; small particles

easily  deposit  in  the  lungs11,  leading  to  a  number  of  observed  negative  health  outcomes

including  reduced  lung  function12,  asthma13,  cardiovascular  and  respiratory  disease14,  and

pathogen exposure15. 
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Many studies have investigated urban air quality, but these studies tend to rely on a

small number of stationary points of measurement16,17 and interpolation18,19 to characterize air

pollution across an entire city. While these methods are effective at capturing temporal trends

in local pollutant concentrations, they are unable to capture fine-scale spatial variation in air

pollution throughout urban environments. In recent years, mobile monitoring has emerged as a

novel method with which to study the spatial and temporal distribution of air pollutants6,20–22.

As  mobile monitoring methods are capable of  collecting data at  finer spatial  scales than is

feasible  with  stationary  monitoring6,23,  mobile  monitoring  can  provide  more  accurate

information  about  air  quality  within  the  city.  In  this  study,  we  employ  vehicular  mobile

monitoring of PM across 24 different size fractions between 10 – 0.25 μm and BC throughout

the urban landscape of Philadelphia, Pennsylvania and identify statistically significant hotspots

of air pollution in time and space during the summer of 2019.  With mobile monitoring, we can

observe the spatiotemporal distribution of air pollutants and discern patterns in variation at a

fine spatial scale. By doing so, it is possible to identify locations in urban environments where

high concentrations of air pollutants are common24 and provide more holistic assessments of

risks associated with air pollution in urban areas.

 

Methods  

Site Description: 

Philadelphia,  Pennsylvania,  USA  had  an  estimated  population  of  1,584,138  in  2018.

Located  in  the  Mid-Atlantic  region,  Philadelphia  is  dominated  by  a  dense  urban  center

surrounded  by  predominantly  low-rise  residential  and  commercial  districts,  city  parks,  and
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industrial  sectors.  The  city’s  eastern  border  is  defined  by  the  Delaware  River,  which  flows

southward to the Delaware Bay and Atlantic Ocean,  while  the city‘s  other major river,  the

Schuylkill  River,  flows  southward  to  the  Delaware  through  the  western  neighborhoods  of

Philadelphia.  The  southern  and  eastern  parts  of  the  city  house  heavy  industry  along  both

riverbanks (Planning Districts  Lower Southwest,  Lower South,  and River Wards),  while large

park areas are found in the western and northern areas of the city (Planning Districts Lower

Northwest, Upper Northwest, and Central Northeast) (Figure 1). Philadelphia consistently ranks

as one of the most polluted metropolitan areas in the United States14.  

Figure 1. Map of study area, including routes traveled and Philadelphia planning districts.
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Sampling Description:   

A driving route was developed using a stratified random selection of points representing

different combinations of urban structure to provide a representative sample of Philadelphia

for mobile monitoring. Additionally, selected points of interest, such as industrial sites, United

States Environmental Protection Agency (U.S. EPA) Toxics Release Inventory (TRI) sites, and EPA

air  pollution  monitoring  station  sites,  were  included  in  route  development.  The  optimized

driving route, which passed through the selected sample points, was created using ESRI ArcGIS

10.7.1 Network Analyst, and the resulting ~300 mile route was then split into two near-equal

segments of approximately 150 miles each, with each segment being drivable in a single day.

A van, equipped with two global positioning system (GPS) units (Trimble Juno 3B fitted

with Trimble R1 GNSS receivers) and instrumentation measuring PM (GRIMM Portable Laser

Aerosol  Spectrometer,  Model  11-C)  and BC (MicroAeth  MA200),  was  driven  along the two

predetermined routes in Philadelphia. The GRIMM spectrometer was factory calibrated prior to

the monitoring campaign. Air pollution instrumentation was placed inside a box attached to the

roof  of  a  van  (~1.5  meters),  and  the  inlets  of  the  instrumentation  were  connected  to  an

isokinetic sampling probe of diameter 1.5 mm. Measurements were conducted over a period of

12 day between June 27,  2019 and July 29, 2019. Measurement would begin between the

hours of 6:00 AM and 7:00 AM on one of the two routes and continued until the entirety of the

route was travelled.  In  order to maintain continuous measurements in the face of  satellite

reception issues and equipment malfunction,  the two GPS units  were used simultaneously.

Occasional road closures in Philadelphia created slight variability in the routes traveled from

day to day (SI-1). Data was captured at different temporal resolutions; GPS data was recorded
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for every one second interval, while BC data was recorded every five seconds and PM data was

recorded every six seconds.

  Data Processing/Analysis:

 Air pollution and GPS data were joined by time to create a database of geolocated air

pollution  data.  Histograms  and  quantile-quantile  plots  were  used  to  remove  the  top  and

bottom 0.5% of air pollution measurements. Pollution data lacking geolocation information due

to instrument error was not considered for spatial analysis in this paper. One day (July 15, 2019)

is  entirely  excluded from spatial  analysis  as  a  result  of  GPS malfunction that  resulted in  a

significant  amount  of  missing  geolocation  data.   Vector  (point)  datasets  representing  air

pollution along the routes were created and used for representation and spatial analysis. 

Spatial  analysis was conducted in ESRI ArcGIS Pro 2.4. Point datasets were projected

into the Pennsylvania State Plane South projected coordinate system. Air pollution data was

spatially joined to a systematic grid of 120 m2 fishnet cells overlaid on Philadelphia, which has

previously  been  used  to  generalize  and  characterize  urban  landscape  and  ecosystem

function6,25,26.  All  points falling within  a  given cell  were averaged to determine the average

concentration of pollutants in that 120 m2 area.  For each day of data collection, PM1, PM2.5,

PM10,  and BC hotspots with statistical significance at a 95% confidence level were identified

using the Hot Spot Analysis (Getis-Ord Gi*) tool. Hotspot analysis allows for the identification of

statistically significant locations in a study area where features with high or low values cluster

within the context of its neighborhood27.  The neighborhood threshold radius for all  hotspot

analyses was set at the minimum distance to ensure that for each day, observations for all
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pollutants measured had at least one other feature designated as a neighbor (615 m).  The

inverse distance squared conceptualization of spatial relationships was used for this analysis,

which sees the influence of an observation on its spatial neighbors decrease significantly with

increasing distance. False discovery rate correction was applied to correct for false positives. In

order  to  compare  the  locations  of  hotspots  across  the  days  of  data  collection,  significant

hotspots (p < 0.05) for each day were spatially joined with the fishnet grid. Hot spots within a

given cell  were averaged to determine the mean pollution concentration of the hotspots in

each cell for each day. Data for PM and BC concentrations and GPS coordinates for hotspots

can be accessed at https://github.com/Shakya-Kremer-Lab/AirPollution.

Statistical  analysis was conducted in R (3.6.1).  Combination violin and boxplots were

produced to show the range and distribution of air pollutants across all days. Pairwise Mann-

Whitney tests with Bonferroni correction on mass concentrations for the PM1, PM2.5, PM10 size

fractions – chosen as representatives of the fine-to-coarse PM size fraction gradient – and BC

were conducted to test if pollution levels differed between days. The relationship between BC

and PM2.5 was tested at the univariate level with Bonferroni corrected Spearman correlations.

Multivariate relationships between BC and PM2.5 were assessed using permutational (n=999)

Procrustes  rotations.  This  test  compares  a  collection  of  multidimensional  shapes  by

transforming  them  into  a  state  of  maximal  superimposition  and  resulting  in  a  correlation

coefficient, m2.

Temporal variation in mass values for PM across size fractions during core times (where

data overlaps on all days) was visualized using heatmaps on a log10 scale at 4-minute intervals.

Heatmaps were annotated with PM2.5 hotspots that cover times greater than a 2-minute period.
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K-means clustering was employed to identify clusters of air pollution. The number of clusters (2

for all pollutants) were identified through a variance-by-number-of-cluster plots, where a bend

in the plot indicate that a suitable number of clusters are defined to explain the data.
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Results and Discussion

Figure 2. (A) Heatmap showing the log10 concentration of BC across time (x-axis) and different days (y-axis). The black line reflects the

log10 mean concentration of BC averaged across all days. (B) Procrustes rotation ordination of correlation between BC and PM2.5 on

all days with correlation coefficient (m2) and a p-value. (C) Plot of log10 mean BC concentration over time, colored by cluster,

determined by k-means clustering. (D) Plot of log10 mean PM2.5 concentration over time, colored by cluster, determined by k-means

clustering. (E) Plot of log10 mean PM1 concentration over time, colored by cluster, determined by k-means clustering. (F) Plot of log10

mean PM10 concentration over time, colored by cluster, determined by k-means clustering.
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Observed PM and BC concentrations had roughly Poisson distributions, (Figure 3A-D) as

lower concentrations were observed much more frequently than higher concentrations. The

mean concentrations observed throughout the measurement period were 11.25 ± 5.43 ug/m3

for PM1, 11.08 ± 6.25 ug/m3 for PM2.5, 15.57 ± 8.51 ug/m3 for PM10, and 1.27 ± 0.80 µg/m3 for

BC. The mean PM2.5 concentration over the sampling period is slightly greater than, but not

significantly different from, the 2018 annual mean PM2.5 concentrations found at seven EPA

PM2.5 monitoring stations in Philadelphia, which ranged from 8.0 – 9.8  µg/m3  28. Variability in

PM10 concentrations seems to be largely influenced by variation in finer PM concentrations; we

find  that  PM2.5 comprises  approximately  71%  of  the  observed  PM10 in  Philadelphia.  These

results are similar to the findings of a previous study on air pollution in Philadelphia, where

PM2.5 made up 75% of the PM10  in the city29. Overall, BC accounts for 11.4%  of the observed

PM2.5 in Philadelphia. The ratio of BC / PM2.5 in Philadelphia is comparable to the BC / PM2.5

ratios of other large cities, which range from 5% - 20%30. Pairwise comparison of BC and PM2.5

concentrations  revealed  that  the  relationship  between  the  two  pollutants  was  generally

variable from day to day (Table S4). BC was strongly correlated with PM 2.5 concentrations at the

multivariate  level  when  taking  into  account  their  relationships  across  all  days  (Figure  3B,

Procrustes, m2 = 0.9249, p = 0.043), and significant (p < 0.05) positive correlations between BC

and PM2.5 were observed on 10 of the 12 days of data collection (Figure S2). Among days where

we found a significant correlation between PM2.5 and BC, weak to moderate relationships were

observed (Figure SI-2, Spearman’s ρ: 0.215-0.616); variation in this relationship from day to day

is due in part to the heterogeneity of emission sources and the urban landscape23. The high
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PM2.5 / PM10 ratio and abundance of BC in Philadelphia are indicative of the significant impact

that traffic-related emissions have on air pollution concentrations throughout Philadelphia31–33.
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Spatial Variation

Figure 3. Violin plots and maps for (A) PM1, (B) PM2.5, (C) PM10, and (D) BC. Violin plots show the distribution of all observed air
pollutant concentrations on a log10 scale, while maps show the overall average concentration of each pollutant in each 120 m2 cell

sampled over the data collection period.
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We  found  that  PM1,  PM2.5,  and  PM10 have  a  similar  spatial  distribution  throughout

Philadelphia  (Figure  3).  Similarities  between  the  PM10 and  the  PM2.5 and  PM1 distributions

indicate that finer PM constitutes a significant proportion of Philadelphia’s PM and thus drives a

majority of the variation in PM10 concentrations.  The lowest concentrations of PM and BC in

Philadelphia were generally found in Philadelphia’s Lower North (LNO), West Park (WP), and

West (W) planning zones. The highest concentrations of PM across all size fractions were found

in Philadelphia’s North Delaware (NDEL), River Wards (RW), and North (NOR) planning zones.

RW contains a port and large public utility properties, as well as other industries, which may be

significant sources of PM in this area34.  Interestingly,  BC concentrations vary considerably in

these planning zones, which suggests that traffic-related emissions do not contribute as much

to  the  ambient  air  pollution  in  these  particular  areas  relative  to  other  sources.  BC

concentrations are highest in the RW, Lower Far Northeast (LFNR), and Upper Far Northeast

(UFNE) planning zones. It is possible that increased traffic-related emissions resulting from the

proximity of these zones to Interstate 95 may be the cause of high BC concentrations in this

region. The Northeast Philadelphia Airport in RFNE, where BC concentrations are elevated, may

also contribute significantly to BC emissions; landings and takeoffs by aircrafts at airports, have

been shown to increase local BC concentrations in the atmosphere35.

Statistically significant hotspots were found on all days across all measured size fractions

of  PM and  BC  throughout  Philadelphia.  The  average  concentrations  of  hotspots  (Figure  4)

within a given cell ranged from 8.7 ± 4.6 µg/m3 for BC; 18.7 ± 7.1 µg/m3 for PM1; 28.0 ± 8.8 µg/

m3 for PM2.5; and 46.0 ± 17.3 µg/m3 for PM10.   While there is slight variation in the location of

hotspots among the different pollutants, the overall spatial distribution of hotspots throughout
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Philadelphia is similar across all PM size fractions  and BC (Figure 4). Relatively few hotspots

were  found  in  northern  and  western  Philadelphia,  which  are  located  well  outside  of

Philadelphia’s urban core. In these areas, traffic-related emissions are likely not as prominent as

in the urban core, and a greater abundance of vegetation may attenuate air pollution primarily

by  uptake  via  leaf  stomata  and  particle  deposition36,37.  Each  pollutant  had  hotspots  that

exhibited a tendency to recur in the same locations across multiple days;  hotspots for PM1

appeared in the same cell  on as many as  six  separate  days  throughout  the data collection

period, while hotspots for PM2.5, PM10, and BC appeared in the same cell on up to five different

days.  The  recurrence  of  hotspots  in  specific  locations  suggests  that  there  are  areas  in

Philadelphia where pollutant concentrations are constantly elevated relative to the surrounding

area.  A  notable  cluster  of  cells  in  the  NDEL,  RW,  and  NOR  planning  zones  contain  high

concentration PM hotspots across multiple days. Other clusters of recurring hotspots are found

within the University Southwest (USW) and LFNE planning zones.
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Figure 4. Maps displaying the locations and average concentrations of hotspots for (A) PM1, (B)
PM2.5, (C) PM10, and (D) BC in Philadelphia.
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Temporal Variation

Figure 4. Heatmap of log10 PM mass values across 24 fine and coarse size fractions throughout
each day of data collection. Time of day is denoted on the x-axis. Hotspots for PM2.5 fraction
covering > 2 minute periods are identified by vertical red boxes. July 15, 2019 was excluded

from hotspot analysis; as such, no hotspots are identified.

 PM emissions were not uniform across all  size fractions measured. All  observations

indicate the presence of particulate matter of 5 µm in diameter or smaller. PM exceeding 5 µm

in diameter is not as ubiquitous throughout the data collection period, with larger particles not

being  detected  at  times  throughout  each  day.  Mass  values  observed  for  particles  1.6  µm

diameter and larger generally demonstrated the greatest variation throughout each day, with
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particles with a diameter 0.5 µm and smaller also showing less within-day variation (Figure 4).

Trends emerged despite significant temporal variation in the concentration and distribution of

PM1, PM2.5, and PM10 (p < 0.05, Tables SI-1 – SI-3). The PM2.5  size fraction (Figure 2D) clustered

into two distinct time periods separated at approximately 11:08 AM, which complements our

finding of BC clusters at approximately 10:56 AM (Figure 2C). While this relationship is expected

due to BC largely contributing to PM2.5 composition in urban areas from vehicles38, larger (PM10)

and smaller size (PM1) fractions varied in their separation of peaks by time. PM1 displayed less

discrete temporal clustering (Figure 2E), with a break in clustering at approximately 10:08 AM.

A cutoff was not found for PM10. The lack of temporal clustering for PM10, as seen in a previous

mobile monitoring study39, affirms that larger particulate matter emission is stochastic across

the urban landscape, and may be attributed to crustal sources (e.g. dust resuspension). These

results complement findings in other mobile monitoring studies where PM size fractions exhibit

different concentrations in the morning and afternoon40.

The number, duration, and timing of PM2.5  hotspots (Figure 4) varied from day to day;

however, they were most consistently seen from 8:00 – 9:00 AM (30.19% of all hotspots) in

complement with other studies41,42.  These hotspots are likely attributed to primary particles

emitted from morning rush-hour traffic, where the number and density of vehicles on the road

is high relative to the rest of the day. The presence of hotspots outside the morning trend may

be attributed to areas closer to industrial sites, such as those located along the I-676 and I-95

corridors43. While a substantial fraction of the PM2.5 in urban areas originates from combustion

engines, increased solar radiation during the summer months likely enhances the contribution

of secondary particles formed from photooxidation of precursor molecules44. 
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In  this  study,  we  demonstrate  the  potential  for  a  mobile  monitoring  approach  to

examine fine-scale spatiotemporal  distribution of air pollutants in a major city. Our findings

demonstrate the variability of PM and BC concentrations in space and time and indicate that

trends in variation are dependent on the size and type of pollutant. Our analysis is limited by

relatively few repetitions of routes and variability in the accuracy of geolocation data. As our

sampling occurs entirely on Philadelphia roadways, it should be noted that our measurements

may be slightly different relative to ambient air further from roads. While urban air pollution

near roadways tends to be higher due to the influence of traffic-related emissions45–47, a 2017

study  of  air  pollution  along  pedestrian  walkways  in  Philadelphia  observed  higher  average

pollutant concentrations than those observed in this study6.  More extensive sampling would

allow for additional confidence in observed trends and provide opportunities to observe air

pollution patterns at other temporal scales; sampling during late afternoon and evening hours

would provide additional insight into air pollution trends throughout the day, while increased

repetition of measurements both within and across seasons would allow for a seasonal analysis

of air  pollution trends48.  Hot spot analysis reveals regions in Philadelphia that merit further

study, especially in the context of vulnerable and socioeconomically disadvantaged populations

that may be disproportionately impacted by air pollution. 

Though our analysis reveals spatiotemporal variation in PM and BC and possible causes

of this variation, it stops short of estimating the contributions of specific sources to variability;

as our air pollution measurements covary in space and time, it is difficult to quantify the extent

of variation resulting from spatial  influences (locations of point sources, movement of non-

point sources) and temporal influences (temporally-sensitive atmospheric processes, random
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events)  separately.  Future analyses should focus on the influence of urban structure on air

pollution. Cities can be quite different from one another compositionally and structurally, and

the roles of urban structure49 and land use6,50 may be important drivers of variation in urban air

pollution. This  analysis  can be used to help identify general  times and places across urban

environments  where  air  pollution  may  have  the  greatest  adverse  impacts  on  human  and

environmental health, which is paramount to effective air pollution mitigation and reduction of

negative health impacts associated with air pollution. 
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Figure SI-1. Maps showing all PM2.5 observations on each day of data collection. As a result of

intermittent road closures, the routes traveled on each day vary slightly.

25

476

477

478

479

480

481

482

483



Figure SI-2. Spearman correlations of BC and PM2.5 concentrations on each day, with correlation

coefficient (ρ) and p-value at the top left of each subplot.
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Table SI-1: Pairwise Mann-Whitney U tests with Bonferroni correction for concentrations of

PM1.

Date 6/27/1

9

7/1/

19

7/3/1

9

7/5/1

9

7/9/1

9

7/10/

19

7/12/

19

7/15/

19

7/16/

19

7/24/

19

7/26/

19

6/27
/19

0 0 0 0 0 0 0 0 0 0 0

7/1/

19

2.20E-

16

0 0 0 0 0 0 0 0 0 0

7/3/

19

2.20E-

16

2.20

E-16

0 0 0 0 0 0 0 0 0

7/5/

19

2.20E-

16

2.20

E-16

2.20E

-16

0 0 0 0 0 0 0 0

7/9/

19

2.20E-

16

2.20

E-16

2.20E

-16

2.20E

-16

0 0 0 0 0 0 0

7/10

/19

2.20E-

16

2.20

E-16

2.20E

-16

2.20E

-16

2.20E

-16

0 0 0 0 0 0

7/12

/19

2.20E-

16

2.20

E-16

2.20E

-16

2.20E

-16

2.20E

-16

2.20E

-16

0 0 0 0 0

7/15

/19

2.20E-

16

2.20

E-16

2.20E

-16

2.20E

-16

2.20E

-16

2.20E

-16

2.20E

-16

0 0 0 0

7/16

/19

2.20E-

16

2.20

E-16

2.20E

-16

2.20E

-16

2.20E

-16

2.20E

-16

6.00E

-14

2.20E

-16

0 0 0

7/24

/19

2.20E-

16

2.20

E-16

2.20E

-16

2.20E

-16

2.20E

-16

2.20E

-16

2.20E

-16

2.20E

-16

2.20E

-16

0 0

7/26

/19

2.20E-

16

2.20

E-16

2.20E

-16

2.20E

-16

2.20E

-16

2.20E

-16

2.20E

-16

2.20E

-16

2.20E

-16

2.20E

-16

0

7/29

/19

2.20E-

16

2.20

E-16

2.20E

-16

2.20E

-16

2.20E

-16

2.20E

-16

2.20E

-16

2.20E

-16

2.20E

-16

2.20E

-16

2.20E

-16
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495

496

497

498

499

500

501
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Table SI-2: Pairwise Mann-Whitney U tests with Bonferroni correction for concentrations of

PM2.5.

Date 6/27/

19 

7/1/1

9 

7/10/

19 

7/12/

19 

7/15/

19 

7/16/

19 

7/24/

19 

7/26/

19 

7/29/

19 

7/3/1

9 

7/5/1

9 

6/27/
19

0 0 0 0 0 0 0 0 0 0 0

7/1/1

9 

6.60E

-270 

0 0 0 0 0 0 0 0 0 0 

7/10/

19 

2.20E

-16 

2.20E

-16 

0 0 0 0 0 0 0 0 0 

7/12/

19 

2.20E

-16 

2.20E

-16 

2.20E

-16 

0 0 0 0 0 0 0 0 

7/15/

19 

2.20E

-16 

1.98E

-10 

2.20E

-16 

2.20E

-16 

0 0 0 0 0 0 0 

7/16/

19 

2.20E

-16 

2.20E

-16 

2.20E

-16 

1.41E

-10 

2.20E

-16 

0 0 0 0 0 0 

7/24/

19 

1.90E

-120 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

0 0 0 0 0 

7/26/

19 

2.20E

-16 

2.20E

-16 

2.20E

-16 

1.91E

-23 

2.20E

-16 

1.12E

-87 

2.20E

-16 

0 0 0 0 

7/29/

19 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

0 0 0 

7/3/1

9 

2.20E

-16 

2.20E

-16 

2.20E

-16 

1.45E

-71 

2.20E

-16 

6.32E

-157 

2.20E

-16 

3.82E

-20 

2.20E

-16 

0 0 

7/5/1

9 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

1.07E

-72 

2.20E

-16 

0 

7/9/1

9 

2.20E

-16 

2.20E

-16 

6.19E

-14 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

 

 

 

Table SI-3: Pairwise Mann-Whitney U tests with Bonferroni correction for concentrations of

PM10.
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Date 6/27/

19 

7/1/1

9 

7/10/

19 

7/12/

19 

7/15/

19 

7/16/

19 

7/24/

19 

7/26/

19 

7/29/

19 

7/3/1

9 

7/5/1

9 

6/27/
19

0 0 0 0 0 0 0 0 0 0 0

7/1/1

9 

2.20E

-16 

0 0 0 0 0 0 0 0 0 0 

7/10/

19 

2.20E

-16 

2.20E

-16 

0 0 0 0 0 0 0 0 0 

7/12/

19 

2.20E

-16 

2.20E

-16 

2.20E

-16 

0 0 0 0 0 0 0 0 

7/15/

19 

9.43E

-167 

1.54E

-12 

2.20E

-16 

2.20E

-16 

0 0 0 0 0 0 0 

7/16/

19 

2.20E

-16 

2.20E

-16 

6.07E

-211 

3.26E

-18 

2.20E

-16 

0 0 0 0 0 0 

7/24/

19 

2.64E

-62 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

0 0 0 0 0 

7/26/

19 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.13E

-17 

2.20E

-16 

1.43E

-79 

2.20E

-16 

0 0 0 0 

7/29/

19 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

0 0 0 

7/3/1

9 

2.20E

-16 

2.20E

-16 

2.20E

-16 

8.51E

-103 

2.20E

-16 

4.71E

-217 

2.20E

-16 

9.48E

-46 

2.20E

-16 

0 0 

7/5/1

9 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

1.17E

-54 

2.20E

-16 

0 

7/9/1

9 

2.20E

-16 

2.20E

-16 

2.40E

-10 

9.23E

-242 

2.20E

-16 

4.87E

-150 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

2.20E

-16 

 

Table SI-4: Pairwise Mann-Whitney U tests with Bonferroni correction for concentrations of BC. 

Date 6/27/ 7/1/1 7/10/ 7/12/ 7/15/ 7/16/ 7/24/ 7/26/ 7/29/ 7/3/1 7/5/1

29

514

515

516

517

518

519

520

521

522



19 9 19 19 19 19 19 19 19 9 9

6/27/
19

0 0 0 0 0 0 0 0 0 0 0

7/1/1

9

35.32

32

0 0 0 0 0 0 0 0 0 0

7/10/

19

0.042

016

0.148

038

0 0 0 0 0 0 0 0 0

7/12/

19

25.67

4

40.92

66

2.470

38

0 0 0 0 0 0 0 0

7/15/

19

7.840

8

1.436

16

2.09E

-05

0.891 0 0 0 0 0 0 0

7/16/

19

0.274

692

1.382

7

51.58

56

3.749

46

0.001

339

0 0 0 0 0 0

7/24/

19

1.794

54

4.491

3

20.35

44

15.43

08

0.004

103

29.33

04

0 0 0 0 0

7/26/

19

1.45E

-14

1.45E-

14

4.8E-

09

1E-11 1.45E

-14

9.07E

-07

4.27E-

10

0 0 0 0

7/29/

19

7.6E-

05

0.000

101

1.820

28

0.017

714

4.26E

-09

2.889

48

0.280

566

0.002

312

0 0 0

7/3/1

9

8.78E

-06

7.22E-

06

0.678

48

0.010

501

1.15E

-10

0.863

28

0.150

282

0.000

626

60.90

48

0 0

7/5/1

9

24.70

38

4.370

52

1.51E

-05

2.991

78

29.85

84

0.006

712

0.042

88

1.45E

-14

1.67E

-09

2.12E-

12

0

7/9/1

9

0.003

51

0.004

811

20.31

48

0.528

726

1.64E

-07

17.94

54

5.938

68

1.47E

-07

9.57 8.995

8

3.81E

-08

30

523

524

525

526

527

528

529


