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Abstract

Clouds are one of the most critical yet uncertain aspects of weather and climate prediction. The complex nature of sub-grid scale

cloud processes makes traceable simulation of clouds across scales difficult (or impossible). Often models and measurements are

used to develop empirical relationships for large-scale models to be computationally efficient. Machine learning provides another

potential tool to improve our empirical parameterizations of clouds. To explore these opportunities, we replace the warm rain

formation process in a General Circulation Model (GCM) with a detailed treatment from a bin microphysical model that causes

a 400\% slowdown in the GCM. We analyze the changes in climate that result from the use of the bin microphysical calculation

and find improvements in the rain onset and frequency of light rain compared to detailed models and observations. We also

find a resulting change in the cloud feedback response of the model to warming, which will significantly impact the climate

sensitivity. We then emulate this process with an emulator consisting of multiple neural networks that predict whether specific

tendencies will be nonzero and the magnitude of the nonzero tendencies. We describe the risks of over-fitting, extrapolation,

and linearization of a non-linear problem by using perfect model experiments with and without the emulator and show we can

recover the solutions with the emulators in almost all respects, and recover nearly all the speed to get simulations that perform

as the detailed model, but with the computational cost of the control simulation.
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Abstract13

Clouds are one of the most critical yet uncertain aspects of weather and climate predic-14

tion. The complex nature of sub-grid scale cloud processes makes traceable simulation15

of clouds across scales difficult (or impossible). Often models and measurements are used16

to develop empirical relationships for large-scale models to be computationally efficient.17

Machine learning provides another potential tool to improve our empirical parameter-18

izations of clouds. To explore these opportunities, we replace the warm rain formation19

process in a General Circulation Model (GCM) with a detailed treatment from a bin mi-20

crophysical model that causes a 400% slowdown in the GCM. We analyze the changes21

in climate that result from the use of the bin microphysical calculation and find improve-22

ments in the rain onset and frequency of light rain compared to detailed models and ob-23

servations. We also find a resulting change in the cloud feedback response of the model24

to warming, which will significantly impact the climate sensitivity. We then emulate this25

process with an emulator consisting of multiple neural networks that predict whether26

specific tendencies will be nonzero and the magnitude of the nonzero tendencies. We de-27

scribe the risks of over-fitting, extrapolation, and linearization of a non-linear problem28

by using perfect model experiments with and without the emulator and show we can re-29

cover the solutions with the emulators in almost all respects, and recover nearly all the30

speed to get simulations that perform as the detailed model, but with the computational31

cost of the control simulation.32

Plain Language Summary33

Cloud processes are perhaps the most critical and uncertain processes for weather34

and climate prediction. The complex nature of clouds and their variation at small spa-35

cial scales makes simulation of clouds difficult. There exist many observations and de-36

tailed simulations of clouds that are used to develop and evaluate larger-scale models.37

Many times these models and measurements are used to develop empirical relationships38

for large-scale models to be computationally efficient. Machine learning provides another39

potential tool to improve our empirical parameterizations of clouds. We replace the warm40

rain formation process in an earth system model with emulators that use detailed treat-41

ments from small-scale and idealized models. We target specific processes that are com-42

putationally intensive and difficult to approximate at large scales. The emulator consists43

of multiple neural networks that predict whether specific tendencies will be nonzero and44

the magnitude of the nonzero tendencies. We describe the opportunity (massive speed45

up of cloud process calculations) and the risks of over-fitting, extrapolation and lineariza-46

tion of a non-linear problem by using perfect model experiments with and without the47

emulator.48

1 Introduction49

Clouds are one of the most critical yet uncertain aspects of weather and climate50

prediction. The complex nature of sub-grid scale cloud processes makes traceable sim-51

ulation of clouds across scales difficult (or impossible). There exist many observations52

and detailed simulations of clouds that are used to develop and evaluate larger-scale mod-53

els. Many times these models and measurements are used to develop empirical relation-54

ships for large-scale models to be computationally efficient, because using more detailed55

treatments is computationally prohibitive. Machine learning provides another potential56

tool to improve such parameterizations, by using detailed models either off-line or on-57

line and then building emulators for them to reduce simulation time (Krasnopolsky et58

al., 2005). Here we present a comprehensive investigation of replacing the warm rain for-59

mation process in an earth system model with on-line emulators that use detailed treat-60

ments from small-scale and idealized models to represent key cloud microphysical pro-61

cesses.62
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The warm rain formation process is critical for weather and climate prediction and63

governs the location, intensity, and duration of rainfall events, critical for weather and64

the hydrologic cycle. Rain formation also affects cloud lifetime and Cloud Radiative Ef-65

fects (CRE), making it critical for predicting climate (Twomey, 1977; Albrecht, 1989).66

The specific process of rain formation is altered by the microphysical properties of clouds,67

making warm rain formation (with no ice involved) dependent on the size distribution68

of cloud drops, and thus ultimately susceptible to changes in the distribution of aerosol69

particles that act as Cloud Condensation Nuclei (CCN).70

Ice of course will complicate the precipitation process. Supercooled liquid drops71

can exist, and these will either precipitate in a similar manner to warm precipitation or72

subsequently may freeze once they are rain drops. Cloud droplets may also freeze and73

form ice crystals, which precipitate and collect liquid, freezing or riming as they fall. We74

will not concern ourselves in this work with processes involving (or potentially involv-75

ing) ice. This of course is a critical issue for weather (Forbes & Ahlgrimm, 2014) and76

climate (Gettelman et al., 2019; Bodas-Salcedo et al., 2019) prediction, but is beyond77

the scope of this initial proof of concept.78

The representation of rain formation in clouds involves the interaction of a pop-79

ulation of hydrometeors. For warm clouds, the process is one of condensation, and then80

collision and coalescence, the latter usually calculated in models by solving the quasi-81

stochastic collection equation Pruppacher & Klett (1997). This treatment neglects cor-82

relations and fluctuations that impact collision/collection (Grabowski et al., 2019), and83

thus cannot capture stochastic impacts on rain formation like “lucky drops” that might84

be important for warm rain formation (Kostinski & Shaw, 2005; Wilkinson, 2016). We85

prefer the term “quasi-stochastic collection” rather than “stochastic collection” as the86

equation has sometimes been referred to previously). The quasi-stochastic collection pro-87

cess describes how each size particle interacts with other sizes. Quasi-stochastic collec-88

tion can result in bimodal distributions of hydrometeors (or, at least, distributions that89

cannot be well represented by a single mode gamma function); these modes are usually90

termed ‘cloud’ (small) and ‘rain’ (large) drops. Inherently, the processes evolving cloud91

droplets and rain drops are different. For example, cloud droplets grow primarily by con-92

densation whereas raindrops grow primarily by collision-coalescence. Moreover, sedimen-93

tation is in the Stokes’ regime for cloud droplets but not so for rain. Thus, in nearly all94

bulk microphysics schemes the cloud and raindrop populations are modeled using sep-95

arate distributions.96

The quasi-stochastic collection process is computationally expensive to treat di-97

rectly in large-scale global models for weather and climate prediction. It requires the pre-98

computation of a collection kernel for how different sizes of hydrometeors will interact99

due to differential fall speeds, and it requires tracking populations of drops discretized100

by size bins. The tracking and advection of at least order 60 different bin quantities for101

liquid and ice combined makes bin schemes computationally expensive. Moreover, there102

is a conceptual mismatch in using detailed and computationally costly representations103

of microphysics in large-scale models that cannot resolve cloud- or mesoscale motions,104

although this may become less of a concern with increasing resolution of global models105

with even convection-permitting (order km-scale) global simulations now becoming rou-106

tine. Thus, traditionally, large-scale models with bulk microphysics have treated the quasi-107

stochastic collection process of warm rain formation in a heavily parameterized fashion108

(Khairoutdinov & Kogan, 2000; Seifert & Beheng, 2001). For conceptual simplicity, the109

process is often broken up into two processes. Autoconversion is the transition of cloud110

drops into rain as part of a cloud droplet distribution grows to large sizes. Methods for111

determining autoconversion and accretion in bulk schemes vary widely. For instance, the112

earliest approaches were based on heuristics, requiring a threshold cloud water to be ex-113

ceeded for autoconversion to commence, with “continuous collection” assumed for ac-114

cretion (e.g., Kessler, 1969). More recent approaches have fit autoconversion and accre-115
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tion rates to output from bin microphysics in large eddy simulation (LES) models (e.g.,116

Khairoutdinov & Kogan, 2000; Kogan, 2013), or have incorporated theoretical aspects117

(e.g., Y. Liu & Daum, 2004). Because they are the major loss mechanism for cloud wa-118

ter, different descriptions of these processes can result in very different model evolution119

and climates (e.g., Michibata & Takemura, 2015).120

Because many existing formulations for autoconversion and accretion are simply121

empirical fits to data or other models, they are readily applicable to replacement with122

more sophisticated tools. Neural networks are multivariate function approximators that123

allow many more degrees of freedom than traditional polynomial or power-law methods,124

for example. They are usually trained on large data sets from observations or other mod-125

els. Neural networks were first used to emulate radiation parameterizations in weather126

(Chevallier et al., 2000) and climate (Krasnopolsky et al., 2005) models and provided127

significant speedups with limited reductions in predictive accuracy. More recent work128

in this area has focused on emulating the effects of convection based on convection-resolving129

simulations (Brenowitz & Bretherton, 2018) or super-parameterization (Rasp et al., 2018;130

Gentine et al., 2018) with promising emulation results limited by issues with numerical131

model stability when running the emulator for an extended time or when running the132

emulator outside the training climate. Constraints on the neural network loss function,133

architecture, and inputs appear to assist in better performance (Beucler et al., 2020).134

Other machine learning frameworks, such as random forests, feature architectures that135

inherently conserve energy and limit predictions to within the bounds of the training data,136

resulting in more stable simulations (Yuval & O’Gorman, n.d.). Another path to greater137

numerical stability is to focus on emulating a smaller, but important, subset of the sub-138

grid physical processes, which we investigate in this paper.139

In this work we replace the traditional empirically-fit autoconversion and accretion140

rates in a GCM (following the approach of Khairoutdinov & Kogan (2000)) by solving141

the quasi-stochastic collection equation using a detailed bin microphysical model. This142

approach is implemented directly on-line in the GCM microphysics. The resulting code143

is too computationally expensive for practical simulations (as will be shown below), so144

we use a neural network to then emulate the code. We pose two hypotheses:145

1. Hypothesis 1: Simulating warm rain in a GCM by directly solving quasi-stochastic146

collection using a bin approach will greatly increase the computational cost, but147

will result in a qualitatively different warm rain formation processes and timing,148

as well as quantitatively different climate means and even emergent properties (e.g.149

aerosol-cloud interactions and cloud feedbacks).150

2. Hypothesis 2. Machine Learning (ML) Neural Network emulators can speed up151

the process and reproduce the qualitative and quantitative changes seen during152

testing of Hypothesis 1.153

The first hypothesis is independent of the neural network emulator, and tests whether154

there is sensitivity for climate to how the warm rain process is treated. The second ques-155

tion is a general test of the neural network emulator concept: can it work on-line in a156

‘standard’ climate simulation?157

The details of the model and methodology are discussed in section 2. Results for158

emulator performance relative to the bin code are presented in Section 3. Simulation re-159

sults replacing the existing autoconversion and accretion formulations are described in160

section 4, including discussion of process rates, mean climate and emergent properties.161

Discussion and conclusions are in section 5.162
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2 Methods163

Here we describe the model used (Section 2.1), details of the quasi-stochastic col-164

lection treatment (Section 2.2) and details of the subsequent machine learning emula-165

tor methods (Section 3).166

2.1 CAM6167

The Community Atmosphere Model version 6 (CAM6) is the atmospheric GCM168

component of the Community Earth System Model version 2 (Danabasoglu et al., 2020).169

CAM6 features a two-moment stratiform cloud microphysics scheme (Gettelman & Mor-170

rison, 2015; Gettelman et al., 2015, hereafter MG2) with prognostic cloud liquid, cloud171

ice, rain, and snow hydrometeor classes. MG2 permits ice supersaturation. CAM6 in-172

cludes a physically based ice mixed phase dust ice nucleation scheme (Hoose et al., 2010)173

with modifications for a distribution of contact angles Wang et al. (2014), and accounts174

for preexisting ice in the cirrus ice nucleation of X. Liu & Penner (2005) as described by175

Shi et al. (2015).176

MG2 is coupled to a unified moist turbulence scheme, Cloud Layers Unified by Bi-177

normals (CLUBB), developed by Golaz et al. (2002) and Larson et al. (2002) and im-178

plemented in CAM by Bogenschutz et al. (2013). CLUBB handles stratiform clouds, bound-179

ary layer moist turbulence, and shallow convective motions. CAM6 also has an ensem-180

ble plume mass flux deep convection scheme described by Zhang & McFarlane (1995)181

and Neale et al. (2008), which has very simple microphysics. The radiation scheme is The182

Rapid Radiative Transfer Model for GCMs (RRTMG) (Iacono et al., 2000).183

Within the MG2 parameterization, the warm rain formation process is represented184

by expressions for autoconversion and accretion from (Khairoutdinov & Kogan, 2000,185

hereafter KK2000). KK2000 uses empirical power law fits to LES with bin-resolved mi-186

crophysics to define:187 (
∂qr
∂t

)
AUTO

= 13.5q2.47c N−1.1
c (1)

188 (
∂qr
∂t

)
ACCRE

= 67(qcqr)1.15 (2)

where qc and qr are mass mixing ratios for condensate and rain, and Nc is the number189

mixing ratio of condensate. For CAM6, the autoconversion rate exponent on Nc (-1.1)190

and prefactor (13.5) in equation 1 have been adjusted from the original Khairoutdinov191

& Kogan (2000) scheme to better match observations (Gettelman et al., 2019).192

2.2 Quasi-Stochastic Collection193

We replace the KK2000 process rate equations with an estimate of the quasi-stochastic194

collection process from the Tel Aviv University (TAU) bin microphysical model. The TAU195

model uses a “bin” or “sectional” approach, where the drop size distribution is resolved196

into 35 size bins. It differs from most other microphysical codes in that it solves for two197

moments of the drop size distribution in each of these bins. This allows for an accurate198

transfer of mass between bins and alleviates anomalous drop growth (Tzivion et al., 1987).199

The original components were developed by Tzivion et al. (1987, 1989); Feingold et al.200

(1988), with later applications and development documented in Reisin et al. (1996); Stevens201

et al. (1996); Tzivion et al. (1999); Yin et al. (2000); Harrington et al. (2000); Lebo &202

Seinfeld (2011). Note that process rates are one aspect of bin microphysics, another crit-203

ical aspect being that bin schemes prognose multiple microphysical variables and thus204

evolve hydrometeor size distributions with many degrees of freedom. On the other hand,205

MG2 represents the drop size distribution with only 4 degrees of freedom, correspond-206

ing to 2 bulk prognostic variables each for cloud and rain. Here we will employ the bin207
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approach to obtain autoconversion and accertion rates, but will retain the bulk MG2 ap-208

proach with 4 prognostic microphysical variables to evolve cloud and rain.209

The method of application in CAM is as follows. First, we discretize the MG2 bulk210

size distributions for liquid and rain into number concentrations in individual bins. Liq-211

uid and rain are put in the same continuous distribution of 35 mass-doubling bins for212

the TAU code. Then we use this as input to the TAU code for quasi-stochastic collec-213

tion, assigning the mass variables (which is needed since TAU is a two-moment bin scheme214

predicting number and mass in each bin) based on the mean bin mass. The quasi-stochastic215

collection code has 60 substeps in the 1800s GCM time step, effectively a 30s timestep216

to evolve the distributions. This was found to yield similar results to smaller timesteps217

(5s) but with more computational efficiency. The result is a revised set of 35 bins with218

number and concentrations in each bin. We then find a local minimum in the distribu-219

tion of drop number across bins: this is always found in the case where there is rain and220

condensate present after the application of the collection kernel. The minimum is typ-221

ically between 40 and 100 microns diameter. This minimum is used to divide the bins222

into liquid and rain. The total number and mass of liquid and rain is defined, and ten-223

dencies calculated as the final total mass and number resulting from the quasi-stochastic224

collection calculation minus the initial mass and number divided by the 1800s GCM time225

step. A limiter is applied to the tendencies to ensure that the final mass and number are226

non-zero. This estimated quasi-stochastic collection tendency is then directly applied in-227

stead of the KK200 accretion and autoconversion tendencies in the code. Nothing else228

is changed. MG2 couples the KK2000 process rates to the Sub-Grid Scale (SGS) distri-229

bution of cloud water, but this is not done with the TAU bin code. Considering the SGS230

distribution of cloud water in MG2 would be a linear scaling factor in front of the TAU231

process rates, and would not affect the higher order interactions, but might affect the232

overall loss of mass and number. We neglect this adjustment because we’re looking at233

proof of concept for applying machine learning, not final model tuning, but SGS distri-234

butions of cloud and rain should probably be considered in the future.235

The code is also set up to simulate the accretion and autoconversion rates from MG2236

on the same state, and this is saved as a diagnostic. This allows a direct comparison of237

the original MG2 KK2000 tendency (autoconversion + accretion) with the stochastic col-238

lection tendency from the TAU code.239

2.3 Simulations240

CAM6 is run in a standard 0.9 x 1.25 degree (latitude and longitude) configura-241

tion with 32 levels in the vertical. Boundary conditions are climatological averages of242

Sea Surface Temperatures (SSTs), greenhouse gases and emissions of aerosols, and pre-243

cursors appropriate for 1990-2010 (i.e., averaged around 2000). To build a training data244

set for the emulator, we output the instantaneous inputs and outputs from the quasi-245

stochastic collection code, which consists of the input state and tendencies of mass and246

number mixing ratios, along with air pressure and temperature. The advantage of this247

method is we can efficiently generate independent 4D samples (space and time) for train-248

ing the emulator, of whatever size necessary. We provide output every 3 days + 3 hours,249

so that the local time precesses through the diurnal cycle over a month. This method250

is run for two years to generate approximately 250 different timesteps over different sea-251

sons and times of day at 192 lat x 288 lon x 32 levels or 1.8 million samples per time step252

(about 500 million training samples total).253

Simulations for evaluation were run for one year with three hour instantaneous out-254

put frequency. We then ran further simulations for 9 years to estimate long-term climate255

impacts. To estimate anthropogenic Aerosol-Cloud Interactions (ACI), identical simu-256

lations were conducted with aerosol and precursor emissions only set back to 1850 ‘pre-257
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industrial’ conditions. To estimate cloud feedbacks, simulations with the same forcing258

but with SSTs increased uniformly by +4 K were conducted following Cess (1987).259

2.4 Emulation260

The machine learning emulator system consists of three classifier neural networks261

to predict whether each tendency is non-zero and four regression neural networks to pre-262

dict the magnitude of the tendency. The classifier networks for qr and Nc predict either263

zero or nonzero, but the Nr classifier network predicts whether the tendency is negative,264

zero, or positive since self-collection results in a negative Nr tendency and autoconver-265

sion results in a positive Nr tendency. Each neural network consists of 4 fully connected266

hidden layers with 60 neurons in each layer, and Rectified Linear Unit (ReLU) activa-267

tion functions. Each network is trained for 10 epochs (passes through the training data)268

with a batch size of 4096 examples. The Adam optimizer is used with a learning rate269

of 0.001. Binary cross-entropy is used as the loss function for the classifier neural net-270

works, and mean squared error is used for the regression neural networks. Ridge, or L2271

regularization of the hidden layer weights with a penalty weight λ of 10−4 helps constrain272

the magnitude of the neural network weights. The neural networks are trained with Ten-273

sorflow. The weights are saved to an intermediate netCDF file format that is then read274

into CESM using a custom-built Fortran neural network inference module.275

As noted above, training data for the networks are based on simulations of CAM276

with the TAU bin code, using individual timestep samples in space and time as individ-277

ual training events. There are about 250 time samples in 3 dimensions (latitude, longi-278

tude, pressure) for nearly 500 million individual events. With this size of training data,279

there was little sensitivity to the number of time samples.280

3 Results-Emulator Performance281

First we describe some basic metrics of emulator performance before we analyze282

results. The first metric is timing. We have analyzed timing statistics from simulations283

with the CAM6 control code, the TAU quasi-stochastic collection code, and simulations284

where the TAU results have been replaced with the ML emulator (TAU-ML). We use285

standard CESM timing metrics for the total atmosphere model cost of 9 year, 1 degree286

(∼100km) horizontal resolution simulation. All simulations were performed using the same287

number of tasks and layout on the same supercomputer (taking about 1 wall clock hour288

per simulated year). Multiple control simulations estimate a standard deviation on the289

timing numbers between runs of the same code at about ±5%. We find that using the290

TAU approach for autoconversion and accretion running in CAM results in a model run291

time over 4 times (+410%) longer than the control code. The emulator used to replace292

the TAU code in MG2 (TAU-ML) runs 8% slower than the control case. This is just be-293

yond one standard deviation of the speed of individual years from the control and TAU-294

ML simulations, but may not be strictly significant.295

Next we analyze if the emulator reproduces the TAU process rates it is designed296

to reproduce. The emulator produces a qc and Nc tendency, with qr and Nr being the297

negative of the qc and Nc tendency respectively. Figure 1 illustrates a scatter plot of the298

rates between the emulated code and the underlying bin code. Focusing on the neural299

network versus the TAU bin code it is trained on (Figure 1, top row), the emulator does300

an excellent job of reproducing the training data. Most of the density is on the 1:1 line301

and Pearson correlation coefficients are 0.98-1.00. Note that there are some extremes and302

they are asymmetric, indicating that the emulator does not reproduce all the extremes303

exactly.304

The slight asymmetries for extremes can be seen in Figure 2 as a difference in fre-305

quency for large tendency values. The PDF of the bin code is the purple line and the306
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Figure 1. Frequency plots of the logarithm of TAU bin rates (horizontal) versus Neural Net-

work Emulator (Top row) and MG2 Bulk Scheme (Bottom Row). Shown (left to right) are the

rain mass tendency (dqr/dt), condensate number tendency (dNc/dt), negative rain number ten-

dency (dNr/dt < 0) and positive rain number tendency (dNr/dt > 0). Correlation coefficient

shown on the plots.

emulator PDF the blue bars. Here it is clear the emulator slightly narrows the distri-307

bution of process rates, with lower frequency of extreme high values. The distribution308

is narrower on the high end for dNc/dt (Figure 2B), and positive dNr/dt (Figure 2 D).309

There are some anomalies on the high end for number concentrations (Figure 1), indi-310

cating that rarely the emulator produces larger number tendencies. These are on the or-311

der of 1× 104 s−1 for Nc. This represents about 9 cm−3 per half hour time step.312

Next we look at the difference between the emulator (TAU-ML) and the TAU bin313

code. Since we use different simulations, we evaluate it based on monthly means at each314

grid location on the planet. Figure 3 illustrates the ratio of dqc/dt between the emula-315

tor and the bin code. As expected, emulated tendencies on average are within ±20% of316

the bin code. White regions have values < 1×10−9 kg kg−1 s−1 (a few parts per mil-317

lion per minute). Lowest correspondence is in the deep tropics. This may be due to the318

prominence of deep convection there. But in most of the regions with significant tenden-319

cies, the process rate ratios are within ±20% (green region).320

Next we examine individual process rates from the warm cloud microphysics in dif-321

ferent regions and compare the TAU and TAU-ML codes (Figure 4). Here we use instan-322

taneous output from the simulations. TAU (red lines) is the bin or emulator tendency323

for autoconversion and accretion. Over the S. Ocean (65◦S-50◦S, 0–360◦E), in mostly324

supercooled liquid clouds (Gettelman et al 2020: SOCRATES paper), the emulator (TAU-325

ML, Figure 4B), has nearly 50% less loss of condensate to precipitation near 800 hPa326

than the TAU bin code it is representing at the top of shallow cloud layers. Over the Sub-327

tropical Atlantic near Barbados (10◦S-25◦N, 290–320◦E), the TAU-ML emulator (Fig-328

ure 4E) has slightly more loss at the top of the shallow cloud layer, and less below, for329

very little change in the vertical column. Note that none of the other process rates are330

significantly impacted by the shift between the TAU code and the emulator (TAU-ML).331
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A) Rain Mass (Qr) B) Cloud Number (Nc) C) –Rain Number (Nr) D) +Rain Number (Nr)

Figure 2. Probability distributions of the logarithm of process rates. A) Rain mass tendency

(dqr/dt), B) Cloud condensate number tendency (dNc/dt), C) Negative rain number tendency

(dNr/dt < 0) and D) Positive rain number tendency (dNr/dt > 0). The TAU bin distribution is

shown in purple, the emulator (TAU-ML) solid blue and the MG2 bulk autoconversion+accretion

tendencies in orange.
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Figure 3. Ratio of qc tendency (dqc/dt) between the TAU-ML code and TAU bin code it is

designed to reproduce. A) Zonal mean latitude-height, B) horizontal map from 60S-60N at the

859hPa level near the top of the planetary boundary layer. Blank regions have tendencies less

that 1 × 10−9 kg kg−1 s−1.
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Figure 4. Mean process rates in the S. Ocean (65◦S-50◦S, 0–360◦E, Top: A,B,C) and the

ocean region around Barbados (10◦S-25◦N, 290–320◦E, Bottom: D, E, F) regions as defined in

the text. Process rates from the TAU bin code (A,C Left), Emulated code (TAU-ML B,D center)

and the difference (TAU-ML minus TAU C, F right). Total of all rates is the thick black line.

When the emulator is trained on present day climate, it will occasionally produce332

tendencies that would result in a negative mass or number to either cloud or rain when333

applied to the model state. We have built the model to check for this, and correct (‘fix’)334

the mass if necessary. This is done by ensuring that the final masses and number con-335

centrations of both cloud and rain are positive or zero, and reducing the tendencies ac-336

cordingly. The fixer is not necessary in present day simulations (the climate where the337

emulator is trained), but if we attempt to run the emulator with a perturbed simulation338

(e.g., SST+4K), then the model will crash without the fixer. Figure 5 illustrates the fre-339

quency of occurrence of the mass fixer. The highest frequency occurs in the S. Hemisphere340

subtropics close to the surface, with another lower peak frequency in the deep tropics341

at 800 hPa (Figure 5A). Figure 5 shows annual means, but seasonal means are similar:342

the peak remains in the S. in all seasons. Figure 5B indicates that the peak fixer invo-343

cation occurs nearly 1/3 of the time in regions of trade cumulus clouds in the subtrop-344

ics. These are regions with small grid box average liquid water content due to small cloud345

fractions, but potentially high in-cloud water contents. We return to this later when look-346

ing at derived properties of the system. It is hypothesized that we could eliminate the347

need for the fixer by including perturbed climate samples in the training data.348

4 Results-Model Output349

Having established that the emulator works to reproduce the results of the bin code,350

we now discuss the differences between the CAM base code (CAM6) and the code that351

directly solves the quasi-stochastic collection equation (TAU). We analyze first process352

rates and key metrics of warm rain formation, then the mean state climate, and finally353
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Figure 5. A) Zonal mean annual frequency of occurrence of the mass fixer in the TAU-ML

code. B) Horizontal map of annual mean frequency of occurrence of the mass fixer in the TAU-

ML code at 936 hPa.
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emergent properties such as aerosol forcing and cloud feedbacks. We also assess whether354

there are further differences between TAU and TAU-ML simulations.355

4.1 Process Rates356

Figure 4 illustrates the liquid process rates in the TAU (A,D) and TAU ML (em-357

ulator) simulations (B,E) , and their difference (C,F), as discussed above. In each of the358

two simulations, the MG2 control case autoconversion and accretion rates from Khairout-359

dinov & Kogan (2000) are also run on the same state to generate tendencies. These are360

not applied to the model evolution (prognostic tendencies) but are saved diagnostically.361

They represent, however, how the Khairoutdinov & Kogan (2000) autoconversion and362

accretion would have responded to the same model state, so are valuable for compari-363

son. Over the S. Ocean (Figure 4A and B), the TAU code (and its emulator, TAU-ML)364

produces a larger loss of water than the KK2000 scheme (MG2, blue). The vertical struc-365

ture is similar. However, over the subtropics around Barbados (Figure 4 D and E), the366

Bin code and its emulator both produce much lower rates of condensate loss than MG2,367

and only in the upper regions of the clouds, with a peak at ∼850 hPa, rather than closer368

to 900 hPa found in KK2000 (Figure 4 D and E, difference between red and blue lines).369

This has implications for the overall climate simulations, as we will see below.370

Figure 6 is similar to Figure 3, except it compares the TAU bin process rates for371

autoconversion and accretion to those produced by MG2 in the same simulation. As in372

Figure 4, the process rates are calculated in the same simulation on the same state, where373

‘MG2’ is KK2000 and ‘TAU Bin’ replaces this with the direct calculation of quasi-stochastic374

collection. The figure uses monthly means, but instantaneous fields yield the same re-375

sults. Consistent with Figure 4, in the extra-tropics (such as the S. Ocean), the TAU Bin376

process rates are more negative (larger loss) than MG2, while in the sub-tropics, the rates377

are typically less negative (smaller loss), except in regions with high water content over378

the N. E. and S. E. Pacific, and S. E. Atlantic. The results are consistent with Figure 2,379

bottom row, where the MG2 control case has slightly more frequent high process rates380

(1×10−9 kg kg−1 s−1), and fewer moderate rates (1×10−12 kg kg−1 s−1) than the bin381

scheme. Note that the TAU bin code has significantly less change in rain number than382

the MG2 KK2000 autoconversion and accretion for either the negative (Figure 2, bot-383

tom row 2nd from left) or the positive (Figure 2, bottom row, right) cases.384

We have also analyzed the onset of precipitation by looking at the average rain rate385

as a function of drop effective radius and Liquid Water Path (LWP). Rosenfeld et al. (2012),386

Figure 1, illustrate for a LES that significant rain rates are rarely seen for an effective387

radius (Re) <15 microns, a result they note is also found in observations. This is only388

for one set of cases, but Figure 7A illustrates that with the KK2000 scheme in MG2 there389

are significant rain rates for high LWP but small effective radius. The TAU Bin (Fig-390

ure 7B and emulated TAU Bin (Figure 7C) simulations do not show this behavior: they391

have much lower rain rates for high LWP but Re<15 microns, in better agreement with392

observations and LES.393

We have also examined the diurnal cycle of precipitation in the different simula-394

tions. The TAU bin and emulator code show no significant changes from the base code395

in the diurnal cycle of precipitation. There are small changes over ocean, but they are396

not significant. Over land there are no changes, likely because over land the diurnal cy-397

cle is mostly dominated by the deep convection parameterization which is not directly398

affected by the TAU bin code.399

We do see changes in the intensity of precipitation. Figure 8 illustrates the frequency400

of occurrence of different rain rates in the simulations, based on 3-hourly precipitation401

averages. The shaded region represents one standard deviation of precipitation values402

over a month (typically 240 time samples) from each simulation in each intensity bin.403

Shown are the control case with KK2000 (blue), the TAU bin code (orange), the emu-404
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Figure 8. Frequency of occurrence of different rain rates (mm/day) in the simulations, based

on 3 hourly precipitation averages. The shaded region represents one standard deviation of the

monthly frequency (typically 240 time samples) from each simulation. Shown are the control case

with KK2000 (blue), the TAU bin code (orange), the TAU-ML emulated code (green), and the

emulator without the mass fixer (ML-NoFixer, red).

lated code (green), and the emulator without the mass fixer (red). The histogram of counts405

has been normalized into frequency (integral of 1). In general the bin code produces higher406

rain rates at large values (>200 mm/day) than the control case with KK2000. The em-407

ulator code produces a lower frequency of occurrence of these values, but only when the408

mass fixer is applied. Without the fixer there are significant anomalies in the ML code,409

and the emulator produces a small frequency of very high precipitation values.410

Finally, we examine the frequency of occurrence of surface precipitation in Figure 9,411

and compare this to data from CloudSat. CloudSat-retrieved precipitation is averaged412

over 1 degree regions at monthly intervals based on the 2C-Rain (Lebsock & L’Ecuyer,413

2011)and 2C-Snow Profile (Wood et al., 2014) datasets. CloudSat is upscaled by aggre-414

gating profiles along the orbit at a native resolution of 1.75 km to 111 km to match the415

model resolution. If at least one of the profiles has a precipitation rate greater than 0.01416
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Figure 9. Annual mean frequency of occurrence of (A) Total (Large Scale + Deep Con-

vection) and (B) Large-scale (stratiform) precipitation greater than 0.01 mm/hr. Shown are

the control case with KK2000 (blue), the TAU bin code (orange), the TAU-ML emulated code

(green), the emulator without the mass fixer (ML-NoFixer, red) and CloudSat observations (pur-

ple). CloudSat precipitation is obtained from 2C-Rain-Profile and 2C-Snow-Profile products as

described in the text and frequency calculations follow Stephens et al. (2010).

mm/hr the whole upscaled bin is considered precipitating. This is then aggregated to417

1x1 degree regions. Both day and nighttime retrievals are combined. The method is iden-418

tical to Stephens et al. (2010). Model 3-hourly average precipitation is binned to the same419

resolution, and a threshold of 0.01mm/hr (0.24 mm/day) determines precipitating lo-420

cations to match the CloudSat threshold used. CAM has too frequent total precipita-421

tion over the ocean when compared to observations from CloudSat (Figure 9A). This is422

common with many other models, and with earlier versions of CAM (Stephens et al., 2010).423

In the tropics and sub-tropics, most of the precipitation frequency is convective precip-424

itation, as the average frequency is 0.6 for total precipitation, but only 0.2 for large scale425

precipitation (which includes shallow convection in CAM6). The large-scale precipita-426

tion from the MG microphysics scheme is shown in Figure 9B frequency is low, partic-427

ularly in the sub-tropics and tropics (30◦S–30◦N). The TAU code and the TAU-ML em-428

ulator significantly reduce the frequency of large scale precipitation in the tropics and429

subtropics, reducing it from nearly 0.4 to 0.2, and reducing the bias in total precipita-430

tion frequency, which is largely due to the deep convective scheme which dominates to-431

tal precipitation frequency between 30◦S and 30◦N. The mass fixer (ML-NoFixer) does432

not change these results. There is still too frequent large scale precipitation in the storm433

tracks. We have examined a higher precipitation threshold of 0.05 mm/hr and found that434

there is little difference in total or large scale precipitation frequency between the TAU435

and Control simulations, which both have more similar frequency distributions to Cloud-436

Sat (see Figure S1). Thus the TAU code differences are only for drizzle, but significantly437

reduce the ‘dreary’ state of the model (Stephens et al., 2010) for light rain.438

4.2 Mean Climate439

Next we turn to analysis of the mean climate in the simulations, and compare the440

TAU-Bin code and the emulator with each other and the control model with KK2000.441

Figure 10 provides an overview of the mean state climate, focusing on clouds and radi-442

ation in the simulations. We have added, where available, observations from the NASA443
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Clouds in the Earth Radiant Energy System (CERES) Energy Balance Adjusted Flux444

(EBAF) product (Loeb et al., 2018), version 4.1. We focus on our two hypotheses in the445

questions above. First we explore whether the emulator (TAU-ML) produces the same446

mean climate as the TAU Bin code it is trying to emulate, and second how the TAU Bin447

and/or emulator climate differs from the control climate with KK2000.448

The emulator is trained on instantaneous output from 2 years of data of the TAU449

Bin code. To evaluate the emulator, we run a further 7 years of the TAU Bin code, and450

compare this to 9 years with the emulator. Results indicate that the emulator has l0-451

15% more LWP than the TAU Bin code at most latitudes outside the tropics (Figure 10A).452

This is associated with slightly larger drop sizes (Figure 10D), but the same number con-453

centration (Figure 10E) and cloud fraction (Figure 10C). Thus the change is solely in454

the mass of liquid, not its number. The increased LWP then results in 10% higher cloud455

optical depth (Figure 10F) in the storm tracks, and a corresponding small difference in456

SW Cloud Radiative Effect (CRE, Figure 10G). There is no change in Ice Water Path457

(Figure 10B) or in the LW CRE (Figure 10H). This is consistent with Figure 3 which458

illustrates that most of the atmosphere has a ratio of TAU-ML emulator to TAU Bin code459

qc tendencies of slightly less than 1, resulting in less loss of water and more remaining460

cloud liquid. It is also seen in the vertical structure of process rates over the S. Ocean461

in Figure 4C, showing less qc tendency.462

Figure 10 also compares the emulator code with a simulation of the emulator run463

without the mass fixer for present day climate. These simulations are not bit-for-bit, but464

Figure 10 indicates that their mean climates are very similar: adding the mass fixer does465

not change climate. There do not appear to be appreciable differences in the S. Hemi-466

sphere subtropical regions where the mass fixer is most active. Only a few differences467

appear in cloud optical depth (Figure 10F) at high latitudes, likely from cases with low468

liquid water.469

Next we compare the TAU Bin code (and TAU-ML emulator) results to the con-470

trol climate with KK2000 autoconversion and accretion. The code with KK2000 (Con-471

trol) has much higher LWP in the storm track latitudes of 30–60◦N and S (Figure 10A)472

with the same cloud fraction in the storm tracks (Figure 10C). In the subtropical S. Hemi-473

sphere (30–15◦S), there is similar or less LWP and lower cloud fraction in the control case474

than the TAU cases, and similarly lower cloud fraction in the control case in the N. Hemi-475

sphere subtropics. Effective radius is smaller with the TAU Bin or TAU-ML code (Fig-476

ure 10D), while number concentration is not substantially different between any of the477

cases (Figure 10E). We have added for reference (where available) observations from the478

NASA CERES EBAF product (Loeb et al., 2018), which indicate that the reduction in479

LWP may be too large (though this is uncertain from satellite observations), while the480

changes to sub-tropical cloud fraction may be an improvement. The impact of these mi-481

crophysical changes is a reduction in cloud optical depth in the storm tracks, and increases482

in cloud optical depth in the sub-tropics with the Bin code. This is an improvement in483

the subtropics, and creates similar biases of opposite sign to the control code in the ex-484

tratropics (Figure 10D). The overall radiative impact is mostly on SW CRE (Figure 10G),485

with improvements at high latitudes, and a degradation with too much cloud forcing in486

the subtropics compared to observations. It is interesting that increased optical depth487

(but still lower than CERES) and increased cloud fraction (similar to CERES) at high488

latitudes yield CRE that is too strong (more negative) in the TAU BIN and TAU-ML489

emulator simulations. This likely results from higher cloud frequency (not just fraction)490

in these regions seen in Figure 9 Note that we do not necessarily expect a ‘better climate’491

with the TAU code than the control model, since we have made major changes to the492

microphysics scheme and not made an effort to work to compensating biases in other parts493

of the cloud microphysics, macrophysics, or the turbulence scheme.494
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Figure 10. Zonal mean climatologies from Control (blue solid), TAU bin (red solid), TAU-ML

(green dash), the emulator without the mass fixer (ML-NoFix, orange) and CERES EBAF4.1

satellite observations (purple dash). A) Liquid Water Path (LWP), B) Ice Water Path (IWP),

C) Cloud fraction, D) Cloud Top Effective Radius (Re), E) Cloud Top Droplet number concen-

tration (Nc), F) Cloud optical Depth, G) Shortwave Cloud Radiative Effect (SW CRE), and H)

Longwave Cloud Radiative Effect (LW CRE). Shading shows ± 1 standard deviation of monthly

anomalies for CERES data. –17–
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4.3 Emergent Properties495

The warm rain formation process is critical for the mean state of clouds. It may496

be also critical for the response of clouds to perturbations. A very important global re-497

sponse is the response of cloud to changes in aerosols that nucleate cloud drops, called498

Aerosol Cloud Interactions (ACI). ACI result when changes in aerosols affect Cloud Con-499

densation Nuclei (CCN) and hence cloud drop number. This results in significant radia-500

tive perturbations and adjustments of cloud microphysical processes; see Bellouin et al.501

(2020) for a review. ACI are the largest uncertainty in historical and present anthropogenic502

climate forcing (Boucher et al., 2013). Second, we look at cloud feedbacks, the response503

of cloud radiative effects to surface temperature changes (Gettelman & Sherwood, 2016;504

Stephens, 2005), which are the largest uncertainty in understanding the sensitivity of cli-505

mate to forcing (Boucher et al., 2013).506

Figure 11 illustrates the magnitude of ACI from the different simulations. The unit507

of peta-watts (1 PW=1015 W) per degree of latitude in Figure 11 is essentially area weighted508

around a latitude circle (dividing by m2 deg−1 yields Wm−2). ACI are calculated by run-509

ning another simulation with forcing identical to the baseline cases discussed above, but510

with aerosol emissions set to 1850 values. All other forcings remain at 2000 levels. The511

differences of the two simulation climates are the ACI. The total ACI defined as the change512

in cloud radiative effect for the Control (CAM6) KK2000, TAU bin, and emulated (TAU-513

ML) simulations are -1.85, -1.95 and -2.0 Wm−2, respectively. Differences result from514

slightly higher ACI in the TAU and TAU-ML code in the S. Hemisphere (Figure 11A).515

The change in LWP (Figure 11B) is slightly lower in the N. Hemisphere in the TAU Bin516

and emulator code, while changes in drop number concentration are nearly identical (Fig-517

ure 11C). On the whole, these differences are not significantly different from each other,518

given the variance of annual radiation differences by latitude.519

Finally we examine cloud feedbacks. Feedbacks are estimated as the radiative ker-520

nel adjusted change in cloud radiative effect as defined by Soden et al. (2008), with ker-521

nels from Shell et al. (2008) used as in Gettelman & Sherwood (2016). For this analy-522

sis we use a uniform +4 K perturbation in the sea surface temperature from the control523

case, a standard metric used in many studies following Cess (1987). Figure 12 illustrates524

the results for (A) SW, (B) LW, and (C) net cloud feedback. Feedbacks are compara-525

ble, except over the S. Ocean where the control CAM6 case with KK2000 has much higher526

positive SW feedbacks, resulting in a significantly higher net cloud feedback. The glob-527

ally integrated zonal mean net cloud feedback is 0.81 Wm−2K−1 for CAM6, 0.77 Wm−2K−1
528

for TAU Bin, and 0.70 Wm−2K−1 for TAU ML.529

The bin code and emulator have significantly lower SW cloud feedbacks over the530

S. Ocean. This region was identified by Gettelman et al. (2019) as a region where cloud531

feedbacks increased significantly in CAM6 due to better representation of cloud phase532

as supercooled liquid clouds. This removed a negative cloud phase feedback (Tan et al.,533

2016) and increased cloud feedback and climate sensitivity. The feedback in the emu-534

lator code is reduced because the ice fraction extends lower in the atmosphere over the535

S. Ocean. The lower liquid water path (Figure 10A) with the same ice water path (Fig-536

ure 10B) increases the ice fraction and results in reduced positive cloud feedback. Note537

that the overall radiative effect in the S. Ocean is improved in the TAU code simulations538

(Figure 10G), indicating this change might reduce biases and improve realism. Compar-539

isons between CAM6 and in-situ aircraft observations over the S. Ocean by Gettelman540

et al. (2020) indicates that CAM6 has too little ice, indicating that the increased ice frac-541

tion may be more realistic.542

5 Conclusions543

We return to our hypotheses and note two significant conclusions.544
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Figure 11. A) Zonal mean Aerosol Cloud Interactions (ACI) in PW deg−1, B) Zonal mean

percent change in LWP, C) Zonal mean change in droplet number concentration (Nc), and D)

Global-average ACI (Wm−2 v. percent change in LWP. Simulations shown: CAM6 control (blue

solid), TAU bin code (red solid), and TAU-ML emulator (green dash).

Figure 12. Zonal mean kernel adjusted cloud feedbacks. A) SW, B) LW, and C) Net. Simula-

tions: CAM6 (blue solid), TAU bin (red solid), and TAU ML emulator (Green Dash).
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First, the TAU-ML emulator code is able to reproduce almost all the metrics of the545

TAU bin formulation and recover almost all the computational cost penalty. There are546

some differences in mean climate, mostly in liquid water path. The differences between547

TAU-ML and TAU result from the emulator underestimating the mean process rates (Fig-548

ure 4 and Figure 3), so the LWP is slightly higher in the emulator code. A mass fixer549

was found to be needed to get the code to run stably for perturbed climates. The fixer550

is active in sub-tropical regions with low mean liquid water path. This does not appear551

to impact any of the climate results or emergent properties like cloud feedbacks or aerosol552

cloud interactions. However, the emulator does have excessive precipitation intensity if553

the mass fixer is not applied. We note that mass fixers are currently applied to other pro-554

cess rates in the code as well, since the microphysical process rates are process split (they555

operate on the same state and are then combined). It is further hypothesized (but left556

for future work) that training on a combined data set including perturbed climate sim-557

ulations might reduce or eliminate the need for the fixer. Thus the emulator may be a558

useful option for simulating process rates, with the noted caveats above.559

Second, the use of the TAU bin quasi-stochastic collection process results in a dif-560

ferent climate simulation from the base code with KK2000. The overall climate shows561

more significant biases than the well tuned and adjusted code with KK2000, but there562

are several interesting and important features. First, the onset of precipitation is improved563

significantly, and mostly occurs only when mean drop size is large, in agreement with564

bin microphysics in LES models and observations (Rosenfeld et al., 2012). Second, the565

frequency of occurrence of light large-scale precipitation (drizzle) in the sub-tropics and566

tropics is significantly lower with the TAU code or TAU-ML emulator of the code than567

the control case. This is a substantial improvement and reduces a longstanding and com-568

mon model bias. It is likely coupled to the precipitation onset being limited to large mean569

drop size. Third, the bin code modifies the intensity of precipitation for extreme but low-570

frequency events. The emulator is able to reproduce all of these differences with the con-571

trol simulation. Finally, the mean state in the sub-tropics degrades (with respect to ra-572

diative effects) but it improves over the S. Ocean. This is due mostly to improvements573

with lower LWP, resulting in a different balance of ice and liquid in S. Ocean cloud sys-574

tems.575

There are two important conclusions related to emergent properties. First, the change576

in S. Ocean clouds results in a significant drop in cloud feedback strength, which would577

significantly impact the climate sensitivity. CAM6 has been seen to have little ice when578

compared in detail to in-situ observations of S. Ocean supercooled liquid clouds (Get-579

telman et al., 2020), so this may be an improvement. Further analysis here would be very580

useful and critical for understanding cloud feedbacks.581

Second, the cloud radiative effects of aerosols (ACI) are virtually unchanged in the582

simulations, despite very different warm rain process rates and a very different represen-583

tation of the interaction of drop number with rain formation. Recent work has focused584

on the importance of rain formation and autoconversion and accretion as governing ACI585

(Bellouin et al., 2020; Gettelman, 2015). However, this work shows little sensitivity of586

ACI to the formulation of autoconversion and accretion. CAM6 still sees a large LWP587

response (cloud adjustment) to increased aerosols, despite a very different dependence588

of the warm rain process on drop number. This argues that the cloud adjustments to589

aerosols might be damped by other buffering processes (Stevens & Feingold, 2009), such590

as interactions with turbulence or entrainment. Recently, Karset et al. (2020) linked drop591

number to turbulent entrainment in CAM5 and did not find significant sensitivity of ACI592

to parameterized turbulent entrainment. Further investigation of the interaction of tur-593

bulence and cloud macrophysics with aerosols is warranted, as cloud adjustments to aerosols594

and ACI in CAM6 do not seem sensitive to the microphysical representation of the warm595

rain process. This result should be tested in other modeling systems.596
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Finally, it is important to note there is uncertainty in the bin microphysics calcu-597

lations. Different bin schemes will do different things, depending on the specified collec-598

tion efficiencies, numerics, bin resolution, etc. This needs to be kept in mind when think-599

ing of bin schemes as a “benchmark”.600

In summary, machine learning emulators do appear to provide useful speedups with601

accurate representations of complex microphysical processes that can be used to provide602

insight into important uncertainties in climate models. Methods do require bespoke de-603

velopment of emulators, and also require more inputs that would seem to be required604

to accurately predict and simulate model evolution.605
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