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Abstract

We present a kernel auto-regressive (KA) method which can be used to represent the daily to multi-day auto-correlation structure

of precipitation time series, using information both in the occurrence and intensity of measured rainfall events. The method

is able to capture a larger fraction of the memory in multiple time series than commonly-used occurrence-based Markov chain

models, even when the intensity distribution is allowed to be conditioned on the Markov state. The KA method is less sensitive

to the spatial scale at which the data is reported, as it is not strictly reliant on patterns of wet and dry days for providing

correlation. Output from the KA model can be used as weather generator model simulations, as empirical representations of

process structure, as representation of weather/climate variability partitioning, or as climatological null models against which

observations can be compared for statistical significance. The KA method demonstrates improvements in each of these over

classic occurrence Markov chain models and daily independent climatology, in both representations of interannual precipitation

variability and in downstream water balance variables. We provide climate null confidence intervals for precipitation trends

(driven largely by autumn increases), and decompose variability into trend, interannual, and weather components (in increasing

order of magnitude) for the Contiguous United States.
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Abstract14

We present a kernel auto-regressive (KA) method which can be used to represent the daily15

to multi-day auto-correlation structure of precipitation time series, using information both16

in the occurrence and intensity of measured rainfall events. The method is able to cap-17

ture a larger fraction of the memory in multiple time series than commonly-used occur-18

rence-based Markov chain models, even when the intensity distribution is allowed to be19

conditioned on the Markov state. The KA method is less sensitive to the spatial scale20

at which the data is reported, as it is not strictly reliant on patterns of wet and dry days21

for providing correlation. Output from the KA model can be used as weather genera-22

tor model simulations, as empirical representations of process structure, as representa-23

tion of weather/climate variability partitioning, or as climatological null models against24

which observations can be compared for statistical significance. The KA method demon-25

strates improvements in each of these over classic occurrence Markov chain models and26

daily independent climatology, in both representations of interannual precipitation vari-27

ability and in downstream water balance variables. We provide climate null confidence28

intervals for precipitation trends (driven largely by autumn increases), and decompose29

variability into trend, interannual, and weather components (in increasing order of mag-30

nitude) for the Contiguous United States.31

Plain Language Summary32

Weather generator models (WGMs) create realistic weather data which can be used33

for statistical climate analyses and determination of probabilities of weather events. Most34

WGMs represent precipitation occurrence (whether it rains) and intensity (how much35

it rains) separately, which can neglect some of the day-to-day interplay in these phenom-36

ena. Here we demonstrate a new WGM which combines occurrence and intensity pro-37

cesses, called a kernel autoregressive (KA) model. Because it combines occurrence and38

intensity, data from the KA method at different spatial scales (weather station, climate39

model) can be compared directly. The KA method also outperforms advanced versions40

of the most common WGMs. This makes the KA model superior for partitioning vari-41

ability due to weather and longer term climate variability (El Niño, climate change, etc.).42

Even though weather fluctuations are large compared to longer climate signals and trends,43

roughly a quarter of the US shows changes in precipitation that are larger than would44

be expected for weather fluctuations.45

1 Introduction46

There is no shortage of existing weather generator models (WGMs) for any num-47

ber of weather variables and for any number of specialty purposes (Wilks & Wilby, 1999;48

Ailliot et al., 2015). Weather generators are used by researchers, practitioners, businesses,49

and agencies for estimating natural resource availability, forecasting hazard risk, under-50

standing fundamental meteorological processes, and driving other complex natural sys-51

tems models. The basic motivations that these models share in common is the desire to52

represent some probabilistic structure of weather variables and a need for simulations53

of weather that meet basic statistical criteria.54

Among the classes of WGMs are those that represent single versus multiple vari-55

ables (e.g., precipitation, temperature, radiation, etc.), those that represent some level56

of physical process detail versus purely statistical methods, and those that assume some57

level of climate process stationarity versus those that represent process variability at cli-58

mate time-scales. The difference in model form is dependent on the use the WGM will59

play: the classic “Richardson-type” WGM for precipitation represents daily rainfall, typ-60

ically fit as twelve distinct parameterizations to represent the seasonal cycle, with a sin-61

gle-lagged Markov-chain representation of occurrence and a parameterized univariate dis-62

tribution for intensity (classically exponential, but more typically gamma) (Richardson,63
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1981; Wilks & Wilby, 1999). This is useful for representing the scale of seasonal vari-64

ability and for driving other physical models that may not require any sort of long-term65

change analysis. A model focused on sub-seasonal-scale extreme events will likely care-66

fully fit more complex distributions to the tails of the distribution and require attention67

to daily-to-monthly-scale auto-correlation of these extremes (Koutsoyiannis, 2004; Min68

et al., 2011), while a WGM used in downscaling output from a global climate model (GCM)69

may focus mainly on a spatial covariance structure, conditioned on the state of multi-70

ple climate indices or a given mean value (Wood et al., 2004).71

In this study, we propose a method for the stochastic simulation of precipitation72

to fit a specific set of criteria:73

1. First, we are interested in a WGM for use as a climatological null model (von Storch74

& Zwiers, 2013) — that is, an entirely probabilistic data model that represents75

processes on weather time-scales as well as possible, using only lagged local pre-76

cipitation as a predictor, while explicitly not representing variability due to pro-77

cesses on climate time-scales. Interannual variability will of course occur in these78

WGM time series, but we will attempt to optimally represent the interannual vari-79

ability due to “weather-scale” processes, processes that would be deemed “stochas-80

tic” and due to “internal” system variability at climate time scales.81

2. Secondly, we are interested in a model that can explicitly be used at multiple spa-82

tial scales. Due to the dependence of occurrence probability on the spatial scale83

of observations, weather generation methods used in earlier studies of weather and84

climate variability (Madden et al., 1999; Katz & Zheng, 1999) are best suited for85

scales at which occurrence probability is far from either zero or unity and are not86

applicable for inter-comparison between different spatial scales. The method pro-87

posed in this paper also provides a foundation through which climate and weather88

variability can be compared among global climate models and gridded observa-89

tional datasets.90

3. Beyond these, the method should be able to serve the purpose of any other weather91

generator model for applications which necessitate the proper representation of92

daily-to-weekly memory or auto-correlation structure.93

The motivation for a “weather-only” representation is to create climatological nulls94

for separating variability on weather and climate time-scales. This is crucial for observationally-95

based (as opposed to model-based) potential predictability studies (Gianotti et al., 2013;96

Short Gianotti et al., 2014; Anderson et al., 2015b, 2015a, 2016). These observationally-97

based approaches are a necessary counterbalance to predictability modeling studies which98

must assume optimal internal representation of weather-scale statistics. Both approaches99

are necessary to bound our estimates of forecast skill for Earth System Processes (National100

Acadamies of Science, Engineering, and Medicine, 2020), to recognize forecast avenues101

of opportunity or diminishing return (Mariotti et al., 2020), and to properly bound the102

ways in which weather-scale vs climate-scale precipitation variability impact downstream103

Earth System Processes (Short Gianotti et al., 2020). The desire for spatial scalability104

is to allow for comparison of weather and climate variability between observed and mod-105

eled data sets.106

In this study, we focus on the model itself, its representation of variability, its scal-107

ing behaviors, and its influence (relative to classic WGMs) on downstream process rep-108

resentation – specifically on surface soil moisture dynamics.109

1.1 Climatological Null Models110

Forecast skill is often measured relative to climatology (e.g., Heidke and Brier Skill111

Scores), and that climatology is typically enumerated as the probability distribution of112

a single variable for a given time period, marginalized over all states of the Earth sys-113
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tem (including climate states, atmospheric states, secular trends, representations of spa-114

tial teleconnections, land surface conditions, etc.). For this model, we wish to explicitly115

acknowledge the daily-scale temporal correlation structure inherent in precipitation data116

by modeling it rather than marginalizing over it. This representation of a climatology117

with serial correlation serves two major purposes.118

First, by representing precipitation as a data generating process which can include119

auto-correlation we create a more stringent baseline for quantifying weather forecast skills120

than daily-independent climatologies. When we test to see if a variable serves as a skill-121

ful predictor for precipitation, we compare the forecasts to climatology because we want122

to determine if that variable contains any useful information not already hidden in the123

precipitation data itself. If lagged precipitation values are more skillful than another pre-124

dictor, those lagged precipitation values should be used in place of (or in conjunction with)125

that predictor. Thus, a weather generator model with appropriate memory structure is126

a stronger reference climatology (null model) for skill score calculations and assessment127

of predictor utility.128

Second, by representing the auto-correlation of daily-scale precipitation, we explic-129

itly start separating stochasticity from processes on weather time-scales and climate time-130

scales. Climate and weather are often difficult to extricate from one another, partially131

due to conflicting definitions. Climate is sometimes defined as “average,” “expected,”132

or “marginal” weather; sometimes as boundary conditions acting upon the atmosphere;133

and sometimes as low-frequency processes (as compared to high-frequency weather). Weather,134

similarly, can refer to the atmospheric state, that atmospheric state with some low-fre-135

quency climate signal removed (i.e., as anomalies from a slowly varying climate signal),136

or broadly anything with persistence shorter than the atmosphere’s chaotic time-scale137

on the order of weeks. By explicitly representing auto-correlation in precipitation data,138

we characterize atmospheric persistence as partially deterministic, in the same sense that139

modelers represent the climate state as partially deterministic by calculating the annual140

seasonal cycle explicitly in weather generator models. Thus, our model is not only a more141

strict climatology for weather forecasts, but also a null model for climate variability in142

that it represents some interannual-scale variability via weather time-scale processes.143

Since the probability of precipitation is highly dependent on the spatial scale at144

which an observation is made, we would expect the performance of occurrence-driven145

data models to diminish as spatial scale increases. Specifically, the class of chain-based146

occurrence models, often used in stochastic climatological simulations, may represent a147

robust climatological null when using station data accumulated over the time-scale of148

the model, but display significant “underdispersion” at longer temporal accumulation149

periods; this underdispersion is expected to become more pronounced at larger spatial150

scales, due to the models’ inability to represent useful predictive auto-correlation in oc-151

currence when it rains nearly every day. Similarly, models which represent auto-corre-152

lation in intensity are of limited utility at small spatial scales.153

2 Methods154

2.1 Overview and Data155

To capture the correlation structure of daily precipitation without decoupling oc-156

currence and intensity processes, we combine an inverse-CDF transformation of each day’s157

data with a generalized non-parametric auto-correlation model using Gaussian kernels.158

The transformation is known as a “rank-based inverse normal” transformation (Akritas,159

1990; Cai et al., 2016), and it allows us to work in an unbounded domain, reducing some160

of the common complications inherent in both bounded and zero-inflated data. It also161

allows us to provide correlation structure between wet and dry days in the same man-162

ner that we represent the correlation structure between serial wet days. The kernel model163

–4–



manuscript submitted to Water Resources Research

is used to represent the joint probability density of m-day series of precipitation values164

without relying on the assumption that the covariance structure is multivariate normal165

(as in the typical AR time-series paradigm), or even that it follows any specific family166

of parametric distributions. By using Gaussian kernels, the kernel model is a specific in-167

stance of the broad class of Gaussian process models, common particularly in machine168

learning applications due to their flexibility and somewhat analytically tractable nature (Rasmussen169

& Williams, 2006).170

We use precipitation data at three scales: station data from the Global Historical171

Climatology Network (Menne et al., 2012), 1/4 degree gridded data from the Climate172

Prediction Center’s (CPC) Unified Gauge-based Analysis of Daily Precipitation over the173

Continental United States (Chen & Xie, 2008), and a 1 degree gridding of the same CPC174

data (U.S. Climate Prediction Center, 2015). In each case the data is from the years 1948–175

2004, inclusive.176

2.2 Fitting177

The model fitting procedure is shown in Figure 1. To preserve the seasonal pat-178

terns of precipitation occurrence, intensity, interannual variability, and short-term cor-179

relation structure, we fit a model to each day of the year for a given location. For any180

given day’s model, we use data drawn from a width-p window around that day (the “pool-181

ing window”; p = 31 days in the subsequent analysis) to improve our estimates of the182

serial correlation (see Figure 1a). For each of the days in the pooling window, using all183

N years of observations, we use that day’s observation and the m− 1 previous obser-184

vations to form a length m vector of serial precipitation. Each of these vectors represents185

a single point in an m-dimensional space to which we will fit a joint probability density186

function (PDF) of precipitation and its lags. The marginal distributions are simply em-187

pirical histograms of daily observed precipitation, and the conditional distribution of the188

mth dimension given the other m − 1 is the probability density for a single day given189

that you have just observed a specific m− 1 days of precipitation.190

The most common means of quantifying the correlation structure of serial data is191

the auto-regressive (AR) model, the simplest member of the ARCH/ARFIMA/ARMAX192

families. The AR(1) model fits a bivariate normal distribution to 2-dimensional vectors193

of observations, usually either maximizing the likelihood of the joint distribution or the194

likelihood of the conditional distribution. Since daily precipitation clearly does not fit195

the assumptions of normality, a typical AR-type model is inappropriate. The multivari-196

ate normal (MVN) distribution of the typical AR model can of course be replaced with197

other multivariate parametric models, or can be represented more empirically using a198

multivariate binned histogram (or probability mass function) to capture exotic distri-199

butions (examples given in Wilks & Wilby, 1999). However, for zero-inflated data (such200

as precipitation from weather stations), the size of the bin has a strong impact on the201

correlation structure of the model. Smaller bins will assign more likelihood weight to oc-202

currence processes, and larger bins will assign relatively larger weight to intensity, and203

any finite bin width is effectively an arbitrary trade-off in the role of occurrence in the204

model.205

Even more problematic than selecting a bin size, is that for any bin size the clima-206

tological occurrence frequency has a very large impact on the joint distribution (and thus207

model parameter likelihoods), making comparisons of parameters or simulations between208

different locations or the same location at different spatial scales (any gridded scale or209

point measurements) impossible. The same issue arises for other parametric distribu-210

tions (such as a multivariate gamma): datasets with more dry days will lead to huge in-211

flation of likelihood weight towards those identically-valued dry days, essentially forc-212

ing a continuous model to emulate a Bernoulli model as best as possible to maximize the213

zero-inflated likelihood.214
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Figure 1. A schematic showing the steps for fitting the kernel-auto-regressive weather gen-

erator and simulating precipitation data. a) N years of daily data form the basis for 365 daily

models. For each day (e.g, the column in red), a pooling window is used to optimize covariance

estimation. b) All m-day serial vectors of observed precipitation from the pooling window are

used to form an m-dimensional (2D shown) empirical distribution of precipitation pt and the pre-

ceeding day’s precipitation pt−1. (c) Each column (day) is rank-transformed so that all marginal

distributions of the joint distribution (d) are exactly Gaussian. (e) A bandwidth, h, is selected

using cross-validation to create a kernel density (f) from the observations. (g) Selecting models

with zero lags (1D) to five lags (6D) using cross-validation for each day yields 365 selected model

dimensions and 365 optimal bandwidths (h), which together comprise the model for the loca-

tion. (i) Simulating one day at a time using the corresponding kernel model and conditioning on

the previous m − 1 days produces ensembles (j) of N -year stochastic precipitation data in the

CDF-transformed domain, which are then back-transformed (k) for analysis.
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To circumvent this inherent dependency of the simplest probability models on oc-215

currence frequency, we transform our data into an unbounded domain and “un-inflate”216

our zero-inflated data. For our (N ·p) by m matrix of observations for a given day (see217

Figure 1a–b, in which m = 2, or a 1-lag model), we transform each of the m columns218

through a rank-based univariate inverse normal CDF Φ−1(·), assigning the smallest ob-219

served value Φ−1(1/(Np+ 1)) and the largest observed value Φ−1(1− 1/(Np+ 1)) so220

that each column of the transformed matrix is exactly normally-distributed (Figure 1c).221

Duplicate values (notably zeros) can be assigned random relative ranks (so as to be asymp-222

totically uncorrelated with each other), and are handled as special cases when calculat-223

ing likelihoods. Zeros, for example, will comprise the left tail of a univariate distribu-224

tion, in randomly-assigned order.225

In the CDF-transformed domain (Figure 1d), each dimension of the data is marginally226

normal, but the joint distribution is not necessarily MVN. To allow for as flexible a rep-227

resentation of the covariance structure as possible, we represent the joint distribution228

between the m days of serial observations using a kernel density. Since all dimensions229

of our data are scaled identically, we use a simple spherical Gaussian kernel, which has230

one scalar parameter — the bandwidth, h; using more complex multivariate kernel band-231

widths would impose unwanted additional covariance structure beyond that directly rep-232

resented by the empirical relationship between precipitation and its lags. We select the233

optimal kernel bandwidth for that day of year and for each number of lags (1 ≤ m ≤234

6 in this analysis) using cross-validation (Figure 1e). We perform a nested grid search235

of possible bandwidths and use a leave-out 20% repeated-random-subsampling cross-val-236

idation scheme. The likelihood to be optimized is that of the validation data using the237

full joint PDF of the training data kernel model. By selecting a bandwidth, we have se-238

lected a probability model for our data (Figure 1f).239

Once we select an optimal bandwidth for each potential number of lags, we then240

pick the optimal number of lags using a second cross-validation step (Figure 1g). The241

entropy of the joint distribution scales with the dimension m, and so the comparison be-242

tween models of differing dimension is scaled by the dimension of the model. Alterna-243

tively, one could compare the univariate conditional likelihood of the last day’s precip-244

itation given m−1 previous days for a more prediction-focused approach to model se-245

lection. The model with the highest mean likelihood across all repeated subsampling cross-246

validations is selected, and the dimension of that model becomes the dimensionality of247

the kernel model for that day of year. The dimension and bandwidth are the two crit-248

ical parameters for each daily model, and the full model for a dataset at any location249

is specified by 365 dimension values and 365 corresponding bandwidth values (Figure 1h).250

When determining bandwidth, likelihoods are calculated as typical for a Gaussian
kernel model. Given N d-dimensional kernel means in the N×d matrix T, a bandwidth
h, and a d-dimensional vector x at which to calculate the density or likelihood, the like-
lihood function is

f(x) =
1

N

N∑
i=1

1√
h(2π)d

exp

[
− 1

2h
(Ti − x)(Ti − x)′

]
(1)

where the summation is over all N kernel means, or equivalently all N rows of T. The
log-likelihood for a set of M observations is then

LL =

M∑
i=1

ln f(xi) (2)

When calculating likelihoods used to determine the appropriate number of lags, since251

all dry day zero-values are equivalent, we force the distance Ti−x to be zero in any di-252

mension where both Ti and x correspond to dry days.253
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Figure 2. Joint probability densities for daily precipitation, pt, and the previous day’s pre-

cipitation, pt−1, for day of year 180 (June 29) at Fairhope, AL using a 31-day pooling window.

The spatial scale of the data increases from left to right: (a) shows the joint density for a single

GHCN station, (b) for the co-located CPC Unified 1/4◦ gridded data, and (c) for the 1◦ CPC

Unified data. Individual two-day observations are represented as “x-es” in Gaussian z-score units,

contours show equal density levels, and vertical/horizontal lines show the cut-off threshold for

precipitation occurrence: points above and right of the lines are wet days, below and left are dry

days, and the dry-dry two-day pairs have no covariance structure. The marginal distributions are,

by design, identically N (µ = 0, σ = 1). As the occurrence probability increases (from left-to-

right), the “wet quadrant” covariance structure becomes the more dominant feature of the joint

density as a whole.

Figure 2 shows the 1-lag (2-dimensional) joint distribution for precipitation at Fairhope,254

AL at three different spatial scales for day of year 180 (June 29). In Figure 2a (station255

data), the majority of observations are dry days (left and/or below the threshold lines),256

which are uncorrelated with each other, but still provide the appropriate covariance be-257

tween occurrence processes and intensity processes. At the 1/4◦-scale (Figure 2b), oc-258

currence frequency is higher than 50%, and the positive correlation structure of wet-day/259

wet-day pairs is more evident. Additionally, since vertical cross-sections give the con-260

ditional distribution of pt given pt−1, we can see that the heaviest wet events (the up-261

per-most points in Figure 2b) tend to occur after other heavy wet days. At the 1◦-scale262

(Figure 2c), dry days are rare and two day dry spells are non-existent in the observa-263

tional data (and highly unlikely in the kernel model, though not impossible). The rel-264

atively symmetric PDF shows that the light-then-heavy pattern is essentially as prob-265

able as the heavy-then-light pattern, and that dry days are likely to be followed by light266

precipitation days.267

2.3 Simulation268

Simulation of precipitation is performed in the CDF-transformed domain, where269

the correlation structure is more simply represented, then transformed back through an270

inverse CDF transformation to the domain of the actual observations. The key step in271

the simulation process is conditioning the model for the given day of the year on the sim-272

ulated values for the previous m−1 days so that the daily correlation structure is main-273

tained.274

The dimensionality of the model changes from day to day, but the maximum num-275

ber of days used in conditioning is one less than the maximum dimensionality of the model276

over all days of the year. To keep track of this, a vector of length max(m)− 1 is used277

as a buffer to store the relevant conditioning data. Since we initially have no data to con-278
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dition with, the buffer is set to a random draw of climatological values for the appropri-279

ate days of the year, and then a one-year burn-in period is used (and later discarded)280

to represent proper correlation statistics.281

For each day of the year, the marginal probability of producing the m−1 values282

in the buffer (marginalizing over the single dimension representing precipitation on the283

current day) is determined for all of the data-point/kernels in the joint PDF. This can284

be done either in the full data/kernel space, or can be thought of as a two-step process:285

(1) first randomly selecting a single data point/kernel and then (2) simulating a random286

point from that kernel’s conditional distribution. With Gaussian kernels, the second of287

these approaches is computationally simpler. If the model is one-dimensional for that288

day (no lags/memory), the marginal probability used to select a single kernel is uniformly289

1/N, where N is the number of data points/kernels. Otherwise, a single data point/kernel290

is selected stochastically with weightings based on the marginal probabilities. Follow-291

ing this, the conditional probability is determined for the previous m−1 days’ rain. Since292

the kernels are Gaussian and spherically symmetric, the conditional PDF is a univari-293

ate normal distribution, the conditional mean is simply the mth (last/current) value of294

the data point used as the multivariate mean, xij , and the (scalar) conditional variance295

is just the bandwidth, hi, squared. Thus, the simulated precipitation (in the CDF-trans-296

formed domain) is just a random draw from N (µ = xij , σ
2 = h2), where i corresponds297

to day of the year, and j corresponds to the jth (last) entry in an m-dimensional vec-298

tor, x, representing the selected observed m-day precipitation data point/kernel.299

Following simulation, the data are transformed back to the observational domain300

by interpolation using the original data and its CDF-transformed values. Before trans-301

formation, the simulated data are re-standardized to ensure proper variance represen-302

tation (see Appendix A for further details). Any values below the no-rain cut-off in the303

original data are converted to zeros, and any values larger than the largest value in the304

observational data set need to be extrapolated. We use the tail of a gamma distribution305

to fit the extrapolated values. The gamma distribution is fit to the wet days for that day306

of year, we align the z-score of the largest observed value in the CDF-transformed ob-307

servational data with the corresponding quantile of the gamma distribution; the extrap-308

olated values are mapped to the appropriate part of the upper tail by normal-to-gamma309

quantile matching.310

Simulations can be run for as many years as necessary to calculate asymptotic statis-311

tics, or can be run in independent ensemble modes (e.g., in multiples of the observational312

record length) for statistical assessment of climatological phenomena.313

3 Results314

The kernel-auto-regressive model (KA) was fit to data at three locations: Fairhope,315

Alabama; Blue Hill, Massachusetts; and Forks, Washington. In each location, separate316

annual models (each comprised of 365 daily models) were fit for each of the three data317

sources (GHCN, CPC-1/4◦, and CPC-1◦). In addition, an advanced chain-based model318

— referred to as the “Occurrence Markov Chain” or OMC model (Short Gianotti, 2016),319

also comprised of 365 daily submodels — and a no-memory, “zero-lag” (ZL) occurrence/320

intensity model were fit to the same datasets for model comparison. The OMC model321

uses a variable order Markov chain to represent the auto-correlation in the occurrence322

process and a flexible five-parameter gamma-gamma mixture model to represent inten-323

sity, also with a 31-day pooling window for parameter estimation. The chain order (num-324

ber of lags) is determined for each day of the year using the corrected Akaike Informa-325

tion Criterion (Hurvich & Tsai, 1989), and the parameters for the intensity model are326

selected for each day of the year by maximum likelihood estimation (see Short Gian-327

otti et al., 2014, for further details). The zero-lag model uses the same distribution fam-328

ily for intensity as the OMC model, but daily occurrence does not depend on the pre-329
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vious days’ precipitation and simply follows the climatological probability of occurrence330

for that day of year (within the 31-day pooling window).331

Each of the three models was used to simulate 1000 57-year ensembles of stochas-332

tic precipitation at each of the three spatial scales at each location. By design, all of the333

models asymptotically reproduce the probability of occurrence, mean intensity, and vari-334

ance of intensity for every day of the year. Each of the models create interannual vari-335

ability stochastically, but none of them represent climate variability processes, and thus336

are likely to be “under-dispersed” in their representation of accumulated totals relative337

to the observations (Katz & Parlange, 1998; Gianotti et al., 2013; Short Gianotti et al.,338

2014; Anderson et al., 2015a, 2015b). Additionally, the kernel-auto-regressive model and339

the OMC model each represent serial correlation (although the OMC only represents cor-340

relation in occurrence), and so precipitation totals accumulated over multi-day-to-multi-341

year periods will likely be more under-dispersed for the zero-lag model than for the KA342

or OMC models. If accumulating precipitation over multiple days (or weeks, months, years,343

etc.) the mean accumulated totals from the simulations match the observations asymp-344

totically for each model. The KA model is able to represent any processes captured in345

the OMC model, but with more flexibility, and the ZL model is explicitly a restricted346

version of the OMC model with no memory, so we would expect the KA model to be most347

able to represent complex variability structure, followed by the OMC model, and then348

the ZL model.349

Figure 3 shows empirical distributions of December–February seasonal precipita-350

tion for the observed data and simulations from the three models for each of the nine351

datasets (three locations times three spatial scales). At the station level (top row), while352

all models capture the observed seasonal means, all models similarly miss some of vari-353

ability characteristics of the observations, presumably because none of them represent354

interannual variability other than through zero-to-six day correlation structure. Any vari-355

ability caused by slower processes (such as climate modes) will not be well represented.356

Notably, for Forks, WA (the wettest location), the OMC model outperforms the zero-357

lag model, and the kernel-auto-regression model outperforms both of the simpler mod-358

els. At the 1/4-degree scale (CPC-1/4◦, second row), the same pattern holds, but with359

more notable performance improvements for the kernel-auto-regressive model. This is360

not surprising, as the increased frequency of occurrence makes the proper modeling of361

the intensity auto-correlation more important for characterizing the patterns of synop-362

tic scale precipitation events. At the largest spatial scale (CPC-1◦, third row), the KA363

model’s performance is enhanced further, while the OMC model is effectively no better364

than the zero-lag model. The existence of auto-correlated memory structure encoded in365

precipitation intensity is evident, particularly for wet locations and at coarse spatial scales.366

To investigate the role of the temporal accumulation scale as well as the spatial scale,367

we can compare the interannual variance of accumulated totals over a range of accumu-368

lation period lengths (effectively comparing the variance of the PDFs in Figure 3 for dif-369

ferent sub-seasonal to annual windows). Figure 4 shows the interannual variance for each370

model/location/spatial-scale as a function of accumulation period, scaled (divided) by371

the period length, and averaged over the annual cycle. In each of the nine plots, the zero-372

lag model (a basic climatological null) shows essentially no response to accumulation pe-373

riod; this is because with no serial correlation, the observations are independent, and so374

the variance of the sum of the precipitation is equal to the sum of the (averaged) daily375

variances, which is constant. These lines lie at the same value as the annual average of376

the 365 daily variances from the observations. In the upper two rows (GHCN and CPC-377

1/4◦), the OMC model represents more interannual variability than the ZL model for378

periods longer than a single day, but at the 1◦-scale (third row), the daily occurrence prob-379

ability is effectively 1, and so there is no useful memory structure in occurrence for im-380

proving the multi-day variability representation. The KA model consistently outperforms381

the OMC and ZL models, but seems to asymptote around 30 days, while the observa-382
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Figure 3. Probability density functions (PDFs) of December–February precipitation totals

at Farihope, Alabama; Blue Hill, Massachusetts; and Forks, Washington: observations and three

models: a zero-lag model with no daily-scale correlation byond climatology (ZL), a Markov chain

based model which represents memory in occurrence processes (OMC), and the kernel auto-re-

gressive model which represents memory in occurrence and intensity (KA). Blue lines correspond

to observations (OBS) from each of the three data sets (GHCN, CPC gridded at 1/4◦, and CPC

gridded at 1◦). All three models underestimate the variability of accumulated precipitation al-

though they each are fit to optimally represent precipitation at the daily scale. At the wettest

location (Forks, WA) and at larger spatial scales (lower two rows) the KA model’s ability to rep-

resent the serial correlation in both intensity and occurrence enhances its ability to represent the

57-year distribution of winter precipitation totals.
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Figure 4. Comparison of different models’ abilities to represent the variability of precipitation

as a function of both spatial scale and temporal scale. As in Figure 3, ZL is a zero-lag model

with no daily-scale correlation beyond climatology, OMC is a Markov chain based model which

represents memory in occurrence processes, and KA is the kernel auto-regressive model which

represents memory in occurrence and intensity. Blue lines correspond to observations (OBS) from

each of the three data sets (GHCN, CPC gridded at 1/4◦, and CPC gridded at 1◦). At larger

spatial scales, the OMC model’s occurrence-based memory structure is no better than the clima-

tological null (ZL model). The KA model, alternatively, seems to represent more of the observed

varaibility at larger spatial scales, suggesting that either short-term “weather-scale” variability

is more dominant at larger spatial scales relative to longer-term “climate-scale” variability, or

that the model fit is more effective at larger spatial scales for a fixed-length data record. Variance

values are scaled by the accumulation period, and averaged across the annual cycle.
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tional data continues to increase in variability. This is not surprising, as the KA model383

does not represent any explicit drivers of variability at those time scales, and we know384

that there are earth system processes that would lead to variability at those scales (rang-385

ing in time scale from the Madden Julian Oscillation to the El Nino Southern Oscilla-386

tion, multidecadal oscillations, and secular trends).387

Comparing different rows, we see that there is less variability in the observations388

at larger spatial accumulation scales (roughly a factor of two difference in Var(OBS) be-389

tween GHCN and CPC-1◦ at all three locations), and that the KA model represents more390

of the observed variability at larger spatial scales than at smaller spatial scales (by com-391

paring the distance between the KA and OBS lines relative to the ZL null).392

3.1 Water Balance Impacts393

To see the impacts of better representation of memory processes in WGMs, we can394

use simulated precipitation time series to drive a water balance model. In this example395

application, we use the method of Akbar et al. (2019), which prescribes evapotranspi-396

ration and drainage losses as a function of surface soil moisture (a “bucket model” for-397

mulation), which in turn is driven by precipitation. Evapotranspiration follows a sigmoidal398

function of surface soil moisture; drainage is represented by a Clapp-Hornberger power399

law relation. Parameters, including the thickness of the surface layer are determined through400

a adjoint approach using surface brightness temperature data from the Soil Moisture Ac-401

tive/Passive (SMAP) satellite mission (Entekhabi et al., 2010; O’Neill et al., 2016). The402

parameter estimation seeks to minimize the combined errors in soil moisture retrievals403

from the brightness temperature data and a precipitation-driven water balance.404

Using our observed and simulated time series of precipitation (CPC1) from each405

of the WGMs at Fairhope, AL, we obtain daily time series of surface soil moisture and406

fluxes from the surface. Figure 5a shows probability densities (PDFs) of mean annual407

volumetric surface soil moisture (unitless) as simulated from precipitation forcings from408

observations, and each of the ZL, OMC, and KA models. Parameters for the model (see409

Akbar et al., Equations 3 and 4) are a = 0.423 mm/day, b = 1.43, c = 81.04 mm/day,410

d = 20.0, dz = 395.9 mm, and porosity = 0.46.411

The different precipitation forcings—despite having identical mean precipitation412

rates—lead to differences in the annual average surface soil moisture of about 3%, with413

the observations and KA model showing slightly lower soil moisture values on average414

than the simpler ZL and OMC precipitation models. This corresponds with higher mod-415

eled evapotranspiration rates for the observations (roughly 1.5% higher for the obser-416

vations and KA model relative to ZL and OMC), but also noticeably different distribu-417

tions of evapotranspiration (Figure 5b). The probability of annual ET being less than418

1250 mm is 12.3% and 11.5% for the observations and KA model respectively, and 5.6%419

and 5.0% for the ZL and OMC models. Similarly, the probability of annual ET exceed-420

ing 1750 mm is 12.3%, 9.6%, 3.8%, and 3.9% for the observations, KA model, OMC model,421

and ZL model, respectively. This suggests that the improvement in representing inter-422

annual precipitation variability in the KA method substantially improves our ability to423

represent interannual variability in downstream processes, such as soil moisture and sur-424

face fluxes, particularly in representing extreme events such as drought or flood condi-425

tions.426

3.2 Confidence intervals for trend estimation427

As a demonstration of the utility of climatological nulls, we look at an example of428

trend detection in the daily precipitation data. Using the full 1/4◦ gridded CPC time429

series for Blue Hill, MA we first calculate a 365-day annual climatology for mean pre-430

cipitation. This climatology is effectively identical for the observations and for simula-431
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Figure 5. Distributions of surface soil moisture and evapotranspiration at Fairhope, AL

driven by observations and weather generator models at coarse spatial scale (CPC1). a) Proba-

bility density functions for mean annual soil moisture as output from a daily-scale surface water

balance model. Despite all models matching the interannual mean and variance for precipita-

tion for each day of the year, the KA model better represents memory processes than the ZL or

OMC models, and thus better incorporates stochastically-driven variability in mean annual soil

mositure and better follows the soil moisture PDF as driven by precipitation observations. b)

Cummulative Density Functions (CDFs) of annual evapotranspiration driven by the surface water

balance model again show a better match between the KA model and observations. The proba-

bility of Annual ET being less than 1250 mm is 12.3% and 11.5% for the observations and KA

model respectively, and 5.6% and 5.0% for the ZL and OMC models. Similarly, the probability of

Annual ET exceeding 1750 mm is 12.3%, 9.6%, 3.8%, and 3.9% for the observations, KA model,

OMC model, and ZL model, respectively.
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tions from each of the three models (ZL, OMC, and KA) by design. By subtracting the432

daily mean values we obtain an anomaly time series for the daily precipitation observa-433

tions. The important differences between these anomaly time series will in the degree434

and quality of nonstationarity – the observations will show complex autocorrelation struc-435

ture (and not simply that represented by a Guassian AR model) pertaining to storm-436

track processes and multi-day land-atmosphere feedbacks. The ZL model will be statis-437

tically stationary; the OMC model will capture the nonstationarity due to occurence trig-438

gering processes, and he kernel autoregressive model will capture both occurrence and439

intensity autocovariance. Similar analysis can be performed on seasonal or annual to-440

tals without removing the daily climatological mean, and often is for the sake of obtain-441

ing more normal residual distributions. The simple least-squares regression line through442

the 57 years of precipitation data has a slope of +21.2 mm/year per decade. t-distribution443

based confidence intervals using standard assumptions of residual normality suggest that444

this is significantly different from zero using α = 0.05 (in either direction). It is clear,445

of course, that when looking at daily precipitation values, the individual observations446

are not normally distributed around the mean trend line, are heavily skewed towards zero-447

values, and are likely not independent samples, suggesting that this may not be a robust448

test of trend significance.449

Alternatively, since the KA, OMC and ZL models have no representation of climate450

variability or trends, we can use simulations from these climatological null models to as-451

sess the significance of the observed trend. For each model, we simulate 1,000 ensem-452

ble members of 57 years of daily data, determine 1,000 corresponding linear trends in453

the anomaly time series, and determine a distribution of possible stochastically-generated454

slope magnitudes. If the observed slope is sufficiently far in the tails (below the 5th or455

above the 95th quantile), then the slope is significant. Using the ZL and OMC models,456

the slope appears to be significant (ZL confidence interval: [-19.2, 19.9] mm/year per decade;457

OMC confidence interval [-20.7, 19.9] mm/year per decade). Using the KA model, the458

trend is not significant ([-22.6 and 21.3] mm/year per decade), suggesting that the cli-459

matological null used to determine significance of trends can have an impact in terms460

of climate signal detection. For an observed trend to be marked as likely due to climate461

change or climate variability, we want to ensure that it is not the product of stochastically-462

probable strings of auto-correlated anomalies. The KA model, by better representing the463

combined memory in short-term precipitation occurrence and intensity provides a more464

appropriate (in this case more stringent) test of expected stochastic trends than advanced465

WGMs using occurrence alone.466

We can then apply this approach to determine the significance of trends across the467

Contiguous United States (ConUS). Figure 6 shows the magnitude of trends in precip-468

itation in aggregated annual and seasonal precipitation. Larger markers show statisti-469

cal significance using the distribution of slopes generated by 1000 “weather only” real-470

izations from the kernel autoregressive model (α = 0.05 increasing or decreasing). Most471

significant trends in annual precipitation are for increases in the eastern ConUS (notably472

not in the Southeast), with relatively few decreases, mostly located in the Cascades. Win-473

ter (DJF) trends appear to follow the El Niño/Southern Oscillation (ENSO) precipita-474

tion pattern, which corresponds to a slight increase in DJF ENSO indices over that pe-475

riod. The autumn (SON) shows the most and strongest significant trends, with wetting476

over much of the area east of the Rockies, particularly along the southern Mississippi drainage.477

3.3 Drivers of interannual variability478

Well-tuned weather generator models can also allow us to partition the sources of479

variability in observed data. We can think of precipitation as having (1) some secular480

trend (as in Figure 6) which contributes to differences year-to-year from the mean, (2)481

interannual variability driven by interannual-to-decadal climate modes (ENSO, etc.), and482

(3) varying because of year-to-year aggregated differences in daily weather phenomena483
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Figure 6. Trends in annual and seasonal precipitation from daily GHCN data (1948–2004).

Larger markers indicate significance at the α = 0.05 level (in either direction) relative to the dis-

tribution of slopes generated by 1000 “weather only” realizations from the kernel autoregressive

model. Ratios show the fraction of stations with significant trends.
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Figure 7. Interannual variance in annual precipitation from daily GHCN data (1948–2004)

[(mm/yr)2]. a) Total interannual variance of annual precipitation. b) Variance of weather-scale

processes from 1000 annually-stationary kernel autoregressive weather generator simulations. c)

Non-trend interannual variability, calculated as the variance of the detrended observations minus

the variance of the detrended weather simulations. Larger markers indicate significantly different

from zero at the α = 0.05 level using the distribution of 1000 weather simulations. d) Interannual

variance due to linear trend in observations. Larger markers denote a significant (α = 0.05) trend

as in Figure 6.

which are not driven by the persistence of climate modes. Figure 7a shows the total in-484

terannual variance of precipitation, which to large degree scales with the mean. Simu-485

lations from the kernel autoregressive model capture much of this variability (Figure 7b,486

typically 50–95%, with larger values in the East). The KA model, however, by design487

does not represent the interannual variability due to trends, nor does it represent inter-488

annual variability from climate modes.489

The trend contribution is calculated from the linear regression as the explained sum490

of squares divided by the number of observations (also equivalent to the total variance491

times the coefficient of determination; Figure 7d, with significance determined as in Fig. 6).492

This contribution is typically small, on the order of 15% of the total variance or less. The493

remaining interannual variability (Figure 7c) is that variance which is neither determined494

by the trend, nor is it able to be captured by the aggregated non-stationary anomalies495

of weather-scale processes as represented in the KA model. To estimate this contribu-496

tion, the observed annual data are detrended, as are each of the 1000 weather-only sim-497

ulations from the KA model. The remaining interannual variance of each simulation is498

subtracted from the remaining interannual variance of the observations, which gives a499

1000-member distribution of unexplained variances for each location. the mean of these500

(always positive) is shown in Figure 7c, and significance is determined by whether zero501

is below the 0.05 quantile. Where significant, this climate variability is typically 30–50%502

of the the total variance. See Supplementary Figure 1 for these data in a normalized “frac-503

tion of variance explained” format.504

To see if certain portions of the year are subject to differing drivers of variability,505

we can perform the same decomposition using seasonal accumulated totals. Figure 8 shows506

the “Total,” “Weather”-scale, “Interannual” (climate mode), and “Trend” components507

of the variance for each of DJF, MAM, JJA, and SON. The “Weather,” “Interannual,”508

and “Trend” components are shown normalized by the total variance to give the frac-509

tion of variance explained. As with the annual totals, weather-scale processes—that is,510

those easily captured by weather generator models with only a few days of memory—511

are the primary source of interannual variability in seasonal precipitation, typically ex-512

plaining more than 50% of the observed variability. Interannual processes, which we hy-513

pothesize can be largely explained by known modes of annual-to-decadal climate vari-514

ability, explain something around 1/3 to 1/2 of interannual variability in large swaths515

of the ConUS, but more in the winter, and less in SON. The trend components explain516

a relatively small portion of the total variability in precipitation over this time period,517
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Figure 8. Interannual variance in seasonal precipitation from daily GHCN data (1948–2004).

“Total” column shows total interannual variance of seasonal precipitation [(mm/yr)2] for winter

(DJF), spring (MAM), summer (JJA), and autumn (SON). “Weather” column shows variance

of weather-scale processes from 1000 annually-stationary kernel autoregressive weather generator

simulations as in Fig. 7b, but normalized by the “Total” column (i.e., fraction of variance ex-

plained by weather-scale phenomena). “Interanual” column shows non-trend interannual variabil-

ity, calculated as the variance of the detrended observations minus the variance of the detrended

weather simulations as in Fig. 7c, but normalized by “Total.” Larger markers indicate signifi-

cantly different from zero at the α = 0.05 level using the distribution of 1000 weather simulations.

“Trend” column shows interannual variance due to linear trend in observations as in Fig. 7d, but

normalized by “Total” (i.e., the R2 metric of the time-series regression). Larger markers denote a

significant (α = 0.05) trend as in Figure 6. See Supplementary Material for un-normalized maps.

nearly always less than 20% (although variations of these magnitudes can of course have518

major impacts on regional water balance).519

4 Discussion and Conclusions520

The kernel-auto-regressive model is better able to capture the variability of accu-521

mulated precipitation than an advanced occurrence-chain-based model (OMC). Even when522

the OMC model was able to separately condition intensity on previous occurrence pat-523

terns to provide additional memory structure, the added benefits were almost never jus-524

tifiable from an information criterion perspective for any day at hundreds of U.S. loca-525

tions (see Short Gianotti et al., 2014). And while most of the memory in station data526

is in the occurrence signal (Short Gianotti et al., 2014), once we look at larger scales lo-527

cal occurrence information is lost, variability is reduced, and methods that represent oc-528

currence and intensity separately will under-represent the daily correlation structure of529

precipitation.530
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Beyond its uses in establishing variances and potential predictability estimates for531

precipitation at varying scales, or as a stochastic weather generator model, the kernel532

auto-regressive model can be used to represent conditional probabilities and empirical533

probability distributions for any regularly-sampled variable — particularly those with534

some degree of auto-correlation or non-stationarity that may be poorly represented by535

a multivariate Gaussian correlation structure. Examples include weather generators for536

meteorologic variables (temperature, wind speed, pressure levels, etc.); conditional dis-537

tributions of one earth system variable on another and/or their lags (evaporation given538

wind speed, convective available potential energy given net surface radiation, etc.); and539

representations of auto-correlation in non-linear biological and ecological processes (veg-540

etation transpiration rates, population dynamics, cellular metabolic processes, etc.). The541

kernel auto-regressive method also provides (1) a means of representing complex auto-542

correlation in advanced modeling situations, e.g., empirical distributions for use in mixed543

process/data models in machine learning (the KA method with Gaussian kernels is a class544

of Gaussian Process Models); (2) a means of assessing the degree of (non-)stationarity545

in time series analysis; and (3) a means of reducing assumptions inherent in common auto-546

regressive models (e.g., providing a means of properly dealing with all members of “Anscombe’s547

Quartet” and similarly devious statistical relationships).548

We demonstrate the use of our improved WGM for better confidence intervals for549

precipitation trends (Fig. 6). These confidence intervals are specifically designed to de-550

fine as significant those trends which are not likely to be due to weather fluctuations. We551

show that although the trend component of precipitation variability is small (Figs. 7–552

8), many regions see significant trends that are detectable beyond the “noise” of stochas-553

tic weather variability, particularly driven by increased autumn rainfall. Interannual vari-554

ability not due to trends (e.g., due to climate variability) is almost uniformly of inter-555

mediate magnitude ( 25%) between the (dominant 70%) weather-driven variability and556

(smaller 5%) trend components.557

This innovation in representation of memory processes in precipitation has impacts558

for stochastic simulation of precipitation (and other variables) that drive land surface559

processes, as shown for soil moisture and evapotranspiration in Figure 5. This is of par-560

ticular relevance for variables such as soil moisture which integrate and smooth precip-561

itation on time-scales on the order of weeks (McColl et al., 2017), thereby enhancing the562

effects of daily-scale correlation structure, as well as downstream variables such as sur-563

face water and energy fluxes and ecological variables.564

Appendix A Variance of a Kernel Density Estimate565

Although using kernel density methods to estimate empirical probability densities566

is fairly common practice, there are important caveats for their use, specifically regard-567

ing variance in this context. Kernel-based probability density functions are essentially568

mixture model distributions, using one mixture for each observed data point, and are569

not appropriate for either maximum-likelihood or method-of-moments fitting techniques570

(both of which will be optimized with a bandwidth of zero, equivalent to bootstrapping).571

Because of this, cross-validation (or some approximation thereof) is typically employed,572

but this does not preserve the variance of the sample to which the kernel density was573

fit, nor is it tied to asymptotic estimators for the variance of the population from which574

the data sample was drawn. While the bias in the variance is typically small, when vari-575

ance is a key feature of your model, this needs to be addressed (and is the reason why576

simulated samples in this paper are re-standardized prior to transformation back to the577

data domain). It is worth noting that when using an axially-symmetric kernel (as is typ-578

ical), the sample mean is always preserved.579
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A1 Kernel Density580

For a set of N observed points, {yi}, the univariate probability density using Gaus-
sian kernels with bandwidth (standard deviation in this case), h, is

fK(x; {yi}, h) =
1

N

N∑
i=1

φ(x; yi, h), (A1)

where φ(x; yi, h) is the normal density function with mean yi and standard deviation h.581

A2 Mean of Kernel Density582

Using E{·} to denote expectation and N to denote the normal (Gaussian) distri-583

bution, the mean of the Gaussian kernel density is584

E{x} =

∫
xfK(x) dx (A2)

=

∫
x

N

N∑
i=1

φ(x; yi, h) dx (A3)

=
1

N

N∑
i=1

∫
xφ(x; yi, h) dx (A4)

=
1

N

N∑
i=1

E{N (yi, h)} (A5)

=
1

N

N∑
i=1

yi (A6)

= yi, (A7)

which is just the sample mean of the points {yi} used to define the kernel densities.585

A3 Variance of Kernel Density586

The variance of the kernel density function is587

Var{x} = E{x2} − (E{x})2 (A8)

=

∫
x2fK(x) dx− (yi)

2
(A9)

=

∫
x2

N

N∑
i=1

φ(x; yi, h) dx− (yi)
2

(A10)

=
1

N

N∑
i=1

∫
x2φ(x; yi, h) dx− (yi)

2
(A11)

But for any individual normal distribution with mean yi and standard deviation
h,

E{(x− yi)2} = E{x2} − (E{x})2 (A12)

Rearranging gives588

E{x2} = E{(x− yi)2}+ (E{x})2 (A13)∫
x2φ(x; yi, h) dx = E{(x− yi)2}+ (E{x})2 (A14)

= h2 + y2i , (A15)
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since for kernel density centered at yi the variance is just h2 and the mean is yi. Sub-589

stituting back into A11,590

Var{x} =
1

N

N∑
i=1

(
h2 + y2i

)
− (yi)

2
(A16)

=
[
y2i − (yi)

2
]

+ h2 (A17)

The term on the left in A17 is just the sample variance, and so the variance of the ker-591

nel density is effectively additively inflated by the squared bandwidth, h2. In this pa-592

per, where N for any given daily model is on the order of (31 days)·(57 years) = 1767 data points,593

and h2 is on the order of 0.1 (in squared z-score units), the bandwidth variance infla-594

tion is larger than the effect of the typical multiplicative “Bessel correction” (i.e., n/(n−595

1)) used for unbiased population variance estimates. If our data did not go through an596

explicitly relative rank-driven CDF transformation (but rather some absolute mapping597

from the data domain to the Gaussian CDF-transformed domain and back), very large598

bandwidth values could lead to biases in the correlation structure of the simulated data.599

The rank-based transformation, however, eliminates this potential problem, but requires600

that any simulated data be re-standardized before back-transformation to explicitly pre-601

serve the proper variance.602

This re-standardization can lead to statistical problems of its own if an insufficient603

number of simulated data points are used. To prevent the daily simulated variances from604

matching the observed sample variance exactly, a large number of simulations can be per-605

formed, re-standardized, and back-transformed. Then a subsample of the simulated data606

can be used for analysis. As an example, in this research, 1000 stochastic recreations of607

the historic record were simulated, and for each day of the year the 57,000 simulated daily608

values match the observed mean and sample variance, but the means and variances of609

each individual 57-year simulation can vary stochastically.610
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156 (1), 101–113. Retrieved from http://www.sfds.asso.fr/journal620

Akbar, R., Short Gianotti, D. J., Salvucci, G. D., & Entekhabi, D. (2019). Mapped621

Hydroclimatology of Evapotranspiration and Drainage Runoff Using SMAP622

Brightness Temperature Observations and Precipitation Information. Water623

Resources Research, 55 , 3391–3413.624

Akritas, M. G. (1990). The Rank Transform Method in Some Two-Factor Designs.625

Journal of the American Statistical Association, 85 (409), 73—-78.626

Anderson, B. T., Gianotti, D., & Salvucci, G. (2015a). Characterizing the Potential627

Predictability of Seasonal, Station-Based Heavy Precipitation Accumulations628

and Extreme Dry Spell Durations*. Journal of Hydrometeorology , 16 (2),629

843–856. doi: 10.1175/jhm-d-14-0111.1630

Anderson, B. T., Gianotti, D. J., Salvucci, G., & Furtado, J. (2016). Domi-631

nant time scales of potentially predictable precipitation variations across632

the continental United States. Journal of Climate, 29 (24), 8881–8897. doi:633

10.1175/JCLI-D-15-0635.1634

–21–



manuscript submitted to Water Resources Research

Anderson, B. T., Gianotti, D. J., & Salvucci, G. D. (2015b). Detectability of his-635

torical trends in station-based precipitation characteristics over the continental636

united states. Journal of Geophysical Research, 120 (10), 4842–4859. doi:637

10.1002/2014JD022960638

Cai, X., Li, H., & Liu, A. (2016). A marginal rank-based inverse normal trans-639

formation approach to comparing multiple clinical trial endpoints. Statistics in640

Medicine, 35 , 3259—-3271.641

Chen, M., & Xie, P. (2008). CPC Unified Gauge-based Analysis of Global Daily Pre-642

cipiation. In Western pacific geophysics meeting (9 july – 1 august). Cairns,643

Australia.644

Entekhabi, D., Njoku, E. G., O’Neill, P. E., Kellogg, K. H., Crow, W. T., Edel-645

stein, W. N., . . . Van Zyl, J. (2010, may). The Soil Moisture Active646

Passive (SMAP) Mission. Proceedings of the IEEE , 98 (5), 704–716. Re-647

trieved from http://ieeexplore.ieee.org/document/5460980/ doi:648

10.1109/JPROC.2010.2043918649

Gianotti, D., Anderson, B., & Salvucci, G. (2013). What do rain gauges tell us650

about the limits of precipitation predictability? Journal of Climate, 26 (15),651

5682—-5688. doi: 10.1175/JCLI-D-12-00718.1652

Hurvich, C. M. ., & Tsai, C.-L. (1989). Regression and Time Series Model Selection653

in Small Samples. Biometrika, 76 (2), 297–307.654

Katz, R. W., & Parlange, M. (1998). Overdispersion phenomenon in stochastic mod-655

eling of precipitation. Journal of Climate, 11 (4), 591—-602.656

Katz, R. W., & Zheng, X. (1999). Mixture model for overdispersion of precipitation.657

Journal of climate, 12 , 2528—-2537.658

Koutsoyiannis, D. (2004). Statistics of extremes and estimation of extreme rainfall:659

I. Theoretical investigation. Hydrological Sciences Journal , 49 (4), 575–590.660

doi: 10.1623/hysj.49.4.575.54430661

Madden, R. A., Shea, D. J., Katz, R. W., & Kidson, J. W. (1999). The poten-662

tial long-range predictability of precipitation over New Zealand. Interna-663

tional Journal of Climatology , 19 (4), 405–421. doi: 10.1002/(SICI)1097664

-0088(19990330)19:4〈405::AID-JOC355〉3.0.CO;2-U665

Mariotti, A., Baggett, C., Barnes, E. A., Becker, E., Butler, A., Collins, D. C., . . .666

Albers, J. (2020, 05). Windows of opportunity for skillful forecasts sub-667

seasonal to seasonal and beyond. Bulletin of the American Meteorological668

Society , 101 (5), E608-E625. Retrieved from https://doi.org/10.1175/669

BAMS-D-18-0326.1 doi: 10.1175/BAMS-D-18-0326.1670

McColl, K. A., Wang, W., Peng, B., Akbar, R., Short Gianotti, D. J., Lu, H.,671

. . . Entekhabi, D. (2017). Global characterization of surface soil mois-672

ture drydowns. Geophysical Research Letters, 44 (8), 3682–3690. doi:673

10.1002/2017GL072819674

Menne, M., Durre, I., Korzeniewski, B., McNeal, S., Thomas, K., Yin, X., . . . Hous-675

ton, T. (2012). Global Historical Climatology Network - Daily (GHCN-Daily),676

Version 3. NOAA National Climate Data Center.677

Min, S. K., Zhang, X., Zwiers, F. W., & Hegerl, G. C. (2011). Human contribution678

to more-intense precipitation extremes. Nature, 470 (7334), 378–381. Retrieved679

from http://dx.doi.org/10.1038/nature09763 doi: 10.1038/nature09763680

National Acadamies of Science, Engineering, and Medicine. (2020). Proceedings of a681

workshop–in brief. The National Acadamies Press.682

O’Neill, P. E., Chan, S., Njoku, E. G., Jackson, T., & Bindlish, R. (2016). SMAP683

enhanced L3 radiometer global daily 9 km EASE-grid soil moisture, version684

1. Boulder, Colorado USA. doi: https://doi.org/https://doi.org/10.5067/685

ZRO7EXJ8O3XI686

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian Processes for Machine687

Learning. Cambridge MA: MIT Press.688

Richardson, C. W. (1981). Dependence Structure of Daily Temperature and Solar689

–22–



manuscript submitted to Water Resources Research

Radiation. Water Resources Research, 17 (1), 182—-190. doi: 10.13031/2013690

.33604691

Short Gianotti, D. J. (2016). Occurrence Markov Chain daily precipitation692

model. Retrieved from https://doi.org/10.5281/zenodo.45435 doi:693

10.5281/zenodo.45435694

Short Gianotti, D. J., Anderson, B. T., & Salvucci, G. D. (2014). The potential695

predictability of precipitation occurrence, intensity, and seasonal totals over696

the continental United States. Journal of Climate, 27 (18), 6904–6918. doi:697

10.1175/JCLI-D-13-00695.1698

Short Gianotti, D. J., Akbar, R., Feldman, A. F., Salvucci, G. D., & Entekhabi,699

D. (2020). Terrestrial evaporation and moisture drainage in a warmer cli-700

mate. Geophysical Research Letters, 47 (5), e2019GL086498. Retrieved701

from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/702

2019GL086498 (e2019GL086498 2019GL086498) doi: 10.1029/2019GL086498703

U.S. Climate Prediction Center. (2015). CPC REGIONAL US Mexico daily gridded704

archive. National Oceanic and Atmospheric Administration (NOAA) National705

Centers for Environmental Prediction.706

von Storch, H., & Zwiers, F. (2013). Testing ensembles of climate change scenarios707

for “statistical significance”. Climatic Change, 117 , 1–9. doi: 10.1007/s10584708

-012-0551-0709

Wilks, D. S., & Wilby, R. L. (1999). The weather generation game: a review of710

stochastic weather models. Progress in Physical Geography1 , 23 (3), 329—-711

357.712

Wood, A. W., Leung, L. R., Sridhar, V., & Lettenmaier, D. P. (2004). Hy-713

drologic implications of dynamical and statistical approaches to down-714

scaling climate model outputs. Climatic Change, 62 (1-3), 189–216. doi:715

10.1023/B:CLIM.0000013685.99609.9e716

–23–



manuscript submitted to Water Resources Research

SUPPLEMENTAL INFORMATION FOR1

Separating weather and climate using a2

spatially-scalable precipitation model with optimized3

subseasonal-to-seasonal statistics4

Daniel J. Short Gianotti1∗, Guido D. Salvucci2, and Bruce T. Anderson2
5

1Parsons Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.6
2Department of Earth and Environment, Boston University, Boston, Massachusetts, USA.7

∗Parsons Laboratory, Massachusetts Institute of Technology, 15 Vassar St., Cambridge, MA 02139, USA

Corresponding author: Daniel J. Short Gianotti, gianotti@mit.edu

–1–



manuscript submitted to Water Resources Research

Figure 1. Normalized interannual variance in annual precipitation from daily GHCN data

(1948–2004) [(mm/yr)2]. Compare with main text Figure 7. a) Total interannual variance of

annual precipitation. b) Fraction of total variance due to weather-scale processes from 1000

annually-stationary kernel autoregressive weather generator simulations. c) Fraction of total

variance due to non-trend interannual variability, calculated as the variance of the detrended

observations minus the variance of the detrended weather simulations, all divided by (a) to give

a variance explained. Larger markers indicate significantly different from zero at the α = 0.05

level using the distribution of 1000 weather simulations. d) Fraction of total interannual variance

due to linear trend in observations. Larger markers denote a significant (α = 0.05) trend as in

Figure 6 in the main text. The large majority of interannual variability is driven by weather-scale

processes in the Eastern ConUS, equally by weather- and climate-scale variability in the Western

ConUS, and to a lesser degree by significant trends across ConUS.
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Figure 2. Interannual variance in seasonal precipitation from daily GHCN data (1948–2004).

“Total” column shows total interannual variance of seasonal precipitation [(mm/yr)2] for winter

(DJF), spring (MAM), summer (JJA), and autumn (SON). “Weather” column shows variance

of weather-scale processes from 1000 annually-stationary kernel autoregressive weather generator

simulations as in Main Text Fig. 7b. “Interanual” column shows non-trend interannual variabil-

ity, calculated as the variance of the detrended observations minus the variance of the detrended

weather simulations as in Main Text Fig. 7c. Larger markers indicate significantly different from

zero at the α = 0.05 level using the distribution of 1000 weather simulations. “Trend” column

shows interannual variance due to linear trend in observations as in Main Text Fig. 7d. Larger

markers denote a significant (α = 0.05) trend as in Main Text Figure 6. See Main Text Figure 8

for normalized maps.
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