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Abstract

We demonstrate a new approach for climate model tuning in a realistic situation. Our approach, described in detail in Part

I, systematically uses a single-column configuration of a global atmospheric model on a series of test cases for which reference

large-eddy-simulations are available. The space of free parameters is sampled running the single-column model from which

metrics are estimated in the full parameter space using emulators. The parameter space is then reduced by retaining only the

values that are consistent with the metrics computed on large eddy simulations within a given tolerance to error. The approach

is applied to the recently designed 6A version of the LMDZ model, itself the result of a long investment in the development

of physics parameterizations and by-hand tuning. The boundary layer is revisited by increasing the vertical resolution and

varying parameters that were kept fixed so far. The approach allows us to automatically reach a tuning as good as that of

the 6A version, after some improvements are done at process scale. This approach helps accelerate the introduction of new

parameterizations, by avoiding a tedious manual tuning process and preventing some of the error compensations that could

occur if calibration was carried out directly with the full atmospheric model. This way of using machine learning techniques

allows us to maintain the physical foundations of the model and to ensure that the improvement of global metrics is obtained

for a reasonable behavior at process level. That is, we get things right for the right reasons.

1



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Process-based climate model development harnessing1

machine learning: II. model calibration from single2

column to global3

Frédéric Hourdin1, Daniel Williamson34, Catherine Rio2, Fleur Couvreux2,4

Romain Roehrig2, Najda Villefranque2, Ionela Musat1, Laurent Fairhead1, F.5

Binta Diallo1, Victoria Volodina4
6

1LMD-IPSL, Sorbonne-Universités, CNRS, 4 pl Jussieu, Paris, 75005, France7
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Abstract18

We demonstrate a new approach for climate model tuning in a realistic situation. Our19

approach, described in detail in Part I, systematically uses a single-column config-20

uration of a global atmospheric model on a series of test cases for which reference21

large-eddy-simulations are available. The space of free parameters is sampled running22

the single-column model from which metrics are estimated in the full parameter space23

using emulators. The parameter space is then reduced by retaining only the values24

that are consistent with the metrics computed on large eddy simulations within a given25

tolerance to error. The approach is applied to the recently designed 6A version of the26

LMDZ model, itself the result of a long investment in the development of physics pa-27

rameterizations and by-hand tuning. The boundary layer is revisited by increasing28

the vertical resolution and varying parameters that were kept fixed so far. The ap-29

proach allows us to automatically reach a tuning as good as that of the 6A version,30

after some improvements are done at process scale. This approach helps accelerate31

the introduction of new parameterizations, by avoiding a tedious manual tuning pro-32

cess and preventing some of the error compensations that could occur if calibration33

was carried out directly with the full atmospheric model. This way of using machine34

learning techniques allows us to maintain the physical foundations of the model and35

to ensure that the improvement of global metrics is obtained for a reasonable behavior36

at process level. That is, we get things right for the right reasons.37

Plain language summary38

In view of the importance of global numerical models for the anticipation of future39

climate changes, their improvement is often considered too slow. We present a new40

approach that we believe could boost model improvement significantly. This approach41

promotes the use of machine learning techniques developed by the ”uncertainty quan-42

tification” community for the adjustment of free model parameters, or tuning. These43

techniques are applied to physics improvement at process scale, represented through44

parameterizations. In this approach, the tuning of the global atmospheric model is45

preconditioned by calibration of the model free parameters on series of well docu-46

mented cloud scenes for which explicit very high resolution simulations are available.47

We demonstrate on a real example how the reduction of the parameter space with this48

approach allows us to save a large amount of computer resources and detract from49

the long and tedious by-hand phase of model tuning. By automating the part of the50

tuning process that can be, the approach enables climate modeler expertise to focus51

on understanding and improving the model physics through parameterization.52

1 Introduction53

Given the high expectation on global circulation models, both for numerical54

weather prediction and anticipation of climate change, their improvement is often con-55

sidered too slow. Among the main reasons, one finds the poor job done by convective56

parameterizations in summarizing convective motions that can not be resolved with57

grid meshes larger than 300 m for boundary-layer convection, or 2 km for deep convec-58

tion. A parameterization can be seen as a mathematical function Pp that expresses the59

effect on the model state variables x of the collective behavior of unresolved processes,60

which at the end appears as a source term Sx = Pp(x,λp) in the discretized form of61

the fluid dynamic equations. The different parameterizations are often connected to62

each other. For instance, a first one computes convection from the vertical profile of63

potential temperature and humidity, then a second one deduces the fractional cover64

of clouds and cloud water content, which are finally integrated in a radiative calcula-65

tion (third parameterization) to provide a vertical heat profile. Each parameterization66

depends on a set of free parameters λp, some of which have a physical meaning (maxi-67
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mum water content of clouds, fall speed of ice crystals), some others resulting from the68

simplifications inherent to any parameterization (representing an ensemble of plumes69

by a single plume for example). Convective and cloud parameterizations are often70

developed in a single column model (SCM) framework by comparison with large eddy71

simulations (LES) of the same atmospheric column, in which convective motions are72

explicitly resolved. This SCM/LES comparison is used both to inspire parameteri-73

zation development and to choose, calibrate or “tune” the model free parameters λp74

at process level. Once integrated in operational models, those parameterizations are75

active in each atmospheric column of the model, influencing both the global radiation76

budget and the large-scale circulation.77

The development of a reference configuration of a climate model, as those in-78

volved in the Coupled Model Intercomparison Program (Taylor et al., 2012, CMIP),79

requires an intense phase of adjustment including – grid choice, bug corrections, activa-80

tion of some parameterizations or code modifications in which the tuning or calibration81

of free parameters is key. A survey on climate model tuning revealed rather standard82

priorities, which consist of targeting the radiative forcing of the atmospheric circu-83

lation, thereby using model free parameters that most affect radiation, i. e. cloud84

parameters (Hourdin et al., 2017). The complexity of the tuning process, given the85

large number of free parameters, the large number of possible targets, and the lack of86

specific research in this area, probably partly explain the slowness of climate model87

improvements. Typically, the tuning phase of the IPSL coupled model configuration88

for CMIP6 (IPSL-CM6A-LR) took more than two years, with repeated tuning phases89

targeting improvement of the radiative forcing of the circulation: global radiation,90

decomposed in terms of short-wave (SW) and long-wave (LW), clear-sky and cloud91

radiative effect (CRE), and some spatial variations of those fluxes like contrasts be-92

tween mid-latitude and tropics, or between convective and subsiding regimes in the93

tropics. Such a tuning was done in practice each time a new version of the coupled94

model with significant changes was proposed. In total, 15 successive versions were95

tuned this way. For each version, systematic sensitivity experiments to 3–10 parame-96

ters were done with the stand-alone-atmospheric model forced by imposed sea surface97

temperature (SST) on a couple of years, changing the parameters one by one. Then di-98

agnostics were computed and, by trial and error, a new radiative tuning was proposed99

and tested. Each of the 15 versions of the global model typically needed one to five100

iterations of this tedious sensitivity analysis. Among the limitations of the approach,101

it can be done only by local perturbation around the previous tuning and it explores102

independently the dependency to each individual parameter, hiding any compensating103

effects between them. During all of these processes, a series of SCM test cases were104

run and compared with LES in order to ensure that the model tuning was not pushed105

too far, at the risk of deteriorating the model behaviour at process level.106

To help accelerate this phase of model tuning and tackle model development107

and tuning together, Hourdin et al. (2017) identified at least three different levels of108

calibration in a model development: a first calibration at the level of individual pa-109

rameterizations, then a calibration of each component of the Earth system model and110

eventually a calibration of the full Earth system model. In line with this proposal, we111

advocate in the first part of this paper (referred to as Part I hereafter) that a system-112

atic comparison between LES and SCM simulations on a series of benchmark cases,113

making use of state-of-the-art machine learning techniques issued from the Uncer-114

tainty Quantification community may help accelerate model development and tuning115

at process scale. The history matching approach, used in this systematic compari-116

son, consists in reducing iteratively the space of acceptable parameters by conserving117

parameter vectors for which the SCM results match LES values to a given tolerance118

error. The parameter space is explored using an “emulator”, a statistical tool capable119

of estimating the value of some SCM metrics (with uncertainty) in the full parameter120

space, based on sampling with the true SCM.121
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In Part 1, we presented the rationale and technical details of the approach with122

a simple illustration. The objective of this second part is to demonstrate how this123

framework can be used to accelerate the process of model development, from the124

process-based inspiration of new parameterizations to the full 3D GCM tuning. We125

revisit more specifically choices made during the development phase of the so called126

“thermal plume model” (Hourdin et al., 2002), a parameterization of the convective127

boundary-layer transport and associated cumulus clouds (Rio & Hourdin, 2008), based128

on a mass flux representation of a mean thermal plume coupled to a bi-modal repre-129

sentation of the subgrid scale distribution of the saturation deficit (Jam et al., 2013).130

This thermal plume model was developed over a number of years using LES to inspire131

new pieces of parameterizations, to assess the proposed formulations and to propose132

acceptable values of the free parameters. Successive versions of this thermal plume133

model were introduced in the global LMDZ atmospheric model, giving rise in partic-134

ular to the recent LMDZ 6A version (Hourdin et al., 2019; Hourdin, Rio, Jam, et al.,135

2020; Hourdin, Rio, Grandpeix, et al., 2020) used as the atmospheric component of the136

Institut Pierre Simon Laplace Coupled Model, IPSL-CM6A-LR, which participated to137

the recent sixth phase of CMIP (CMIP6). With the increasing complexity of this138

parameterization suite, it became clear that further sophistication leading to demon-139

strable improvement was not possible without somewhat automatic tools to explore140

the parametric dependency of the results. In order to prove that a new parameteri-141

zation suite P1(x,λ1) behaves better than an old version P0(x,λ0), one should show142

in principle that there exists at least one vector λ1 for which P1 gives globally better143

results than P0, whatever the value retained for λ0.144

In this study we illustrate the deployment of a well-defined calibration strategy145

based on two steps. The first step consists of a process-oriented calibration of the free146

parameters using SCM/LES comparisons combined with the “High-Tune Explorer”147

described in Part I. This SCM calibration is able to reduce the domain of acceptable148

values and this information is used in step 2 for the calibration of the global 3D149

configuration. A great advantage of history matching indeed is that it can be used150

to iteratively reduce the parameter space, taking new constraints into account. This151

saves important resources as the SCM/LES comparison is relatively computationally152

inexpensive, and does not require supercomputer time. With this new approach, we153

revisit here the parameter values involved in the formulations of lateral entrainment154

and detrainment that control the mass flux computation (Rio et al., 2010), and hence155

the convective transport as well as the bi-Gaussian cloud scheme (Jam et al., 2013).156

After a description of the LMDZ model and cloud parameterizations in Section157

2, we present a first illustration in Section 3, in which we revisit the calibration of158

three of the parameters systematically used for the 3D GCM tuning. They all concern159

the representation of boundary layer convection and clouds. We show that using160

systematic SCM/LES comparisons on a few contrasted test cases makes it possible to161

find a setting of the parameters very close to the one obtained after a long and tedious162

phase of manual tuning, demonstrating the capability of the tool in saving time and163

resources. In Section 4, we show an example of model retuning after some modifications164

are introduced in the model, here the increase of the vertical resolution in the first165

kilometers above surface. By doing this, we explore the impact of changing some166

key parameters of the mass-flux scheme, which were kept fixed so far, in view of the167

difficulty to explore a multi-dimensional space. Section 5 summarizes the main results168

and discusses the gain obtained from this revisiting of 15 years of model development.169

2 Shallow convection parameterization in LMDZ170

The representation of boundary layer convection, shallow cumulus and stratocu-171

mulus clouds is unified in the LMDZ model by using a combination of eddy diffusion172

and a mass flux scheme to parameterize the boundary layer transport. This approach173
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Figure 1. Sketch of the parameterizations and tuning parameters used in the present study.

The sketch on the left hand side presents the view of the boundary layer clouds and transport of

water by boundary layer turbulence and convection, as well as the entrainment and detrainment

at the boundaries of clouds and top of the boundary layer. These processes are represented in a

model layer from the interplay between the thermal plume model (combining vertical diffusion

with a mass flux scheme), a bi-gaussian representation of subrgid scale water distribution and the

so-called “large scale” condensation scheme. The scheme internal variables are shown in red and

the tuning parameters as bold fonts. δt = δt∂t is an increment over one time step of a state vari-

able and δzP the vertical variation of precipitation P over the depth of the layer. The complete

formulas and notations are given in the text.
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is often referred to as an EDMF approach (see e. g. Köhler et al., 2011), for eddy-174

diffusivity and mass-flux. In LMDZ, the mass flux scheme is coupled to a bi-Gaussian175

representation of the sub-grid scale distribution of the saturation deficit, from which176

cloud cover and condensed water are deduced. The mass flux scheme and bi-Gaussian177

scheme, the two targeted parameterizations of the parameter exploration presented in178

this study, are detailed hereafter. We identify the free parameters, which are used for179

the parametric exploration with bold font in the text. A sketch of the main elements180

of the parameterizations and associated free parameters is given in Fig. 1.181

2.1 The thermal plume model182

The “thermal plume model” under consideration in the present study summarizes
the collective behavior of a population of thermal plumes (or cells, or rolls) through a
unique bulk thermal plume. Each atmospheric column is divided into a mean ascending
thermal plume of mass flux f = ραwth (where ρ is the air density, α is the fractional
cover and wth is the vertical velocity of the plume), and a compensating subsidence
in the environment of mass-flux −f . The value of a model state variable ψ within the
thermal plume ψth is computed using the stationary plume conservation equation:

∂fψth
∂z

= eψ − dψth + ρSψ (1)

where e and d are the lateral entrainment and detrainment of air toward and away183

from the plumes (the quantity is assumed to enter the thermal plume with its large184

scale value ψ). For variables conserved by the convective transport, such as liquid185

potential temperature θl or total water qt, the source term is set to Sψ ≡ 0. The186

plume vertical velocity wth is computed with the same equation with a source term187

that includes buoyancy and a drag term. The fraction of the horizontal surface covered188

by plumes at altitude z is then deduced as α = f/(ρwth).189

The total boundary layer vertical transport of ψ is

ρw′ψ′ = f(ψth − ψ)−Kz
∂ψ

∂z
, (2)

where Kz = lmixS(Ri)
√

TKE is the eddy diffusivity, lmix being a turbulent mixing
length and S(Ri) a stability function that depends upon the local gradient Richardson
number Ri. The turbulent kinetic energy TKE is integrated in time from a local
prognostic equation, following Yamada (1983). The technical implementation details
are given by Vignon et al. (2017). Given this framework, the mass flux part is entirely
defined by the specification of e and d from which f is deduced from the continuity
equation for the plume

∂f

∂z
= e− d (3)

In the original version of the thermal plume model (Hourdin et al., 2002) the190

plume is fed laterally by warm air from the surface boundary layer, with e > 0 when191

∂zθv > 0 in the first unstable layers above the surface. Above this surface layer,192

entrainment is null and detrainment is viewed as a shedding due to lateral mixing.193

It consists in reducing the width of the thermal plume with height, compared to the194

width that would correspond to a conservative thermal plume (∂f/∂z = 0). Those195

formulations were inspired by physical considerations and tested a posteriori on a series196

of LES cases of dry convection proposed by Ayotte et al. (1996).197

2.2 Entrainment and detrainment derived from LES sampling198

The subsequent versions of the entrainment and detrainment formulations were199

largely inspired and adjusted in the SCM/LES framework. In order to use LES to200
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inspire the development of mass flux convective parameterizations, one has to identify201

and sample the thermal plumes in the LES, in a way that matches with the EDMF202

framework. The classical approach consists in applying a combination of thresholds on203

water vapor or condensed water in clouds, vertical wind or a virtual tracer emitted at204

the surface for that specific purpose (Couvreux et al., 2010). Once the plume region is205

identified, the plume vertical velocity, fractional cover and mass flux can be computed206

as well as the composite value ψth of any conserved quantity ψ inside the plume.207

Knowing f , ψ and ψth, one can then invert the conservation equation of the mass flux208

(Eq. 3) and ψ (Eq. 1 with Sψ = 0) to deduce e and d.209

Such a sampling was used to estimate the vertical profiles of entrainment and210

detrainment in LES for standard cases of continental and marine cumulus (Rio et al.,211

2010). The analysis of the results showed that the entrainment was strong in regions212

of positive buoyancy, and that detrainment was dominating in regions of negative213

buoyancy of the plume. This would be the case for a plume with a value of ρα214

that would not vary vertically (almost constant fractional cover), which would entrain215

air where it accelerates and detrain where it decelerates. From the LES sampling,216

it appears that the entrainment and detrainment values lie in between the plume217

obtained with the constant fractional cover approximation and a conservative plume218

(∂f/∂z = 0, e = 0, d = 0). A parameter B1, assumed to range between 0 and 1, was219

therefore included as a scaling factor of the entrainment and detrainment computed220

with the constant fractional cover approximation.221

Following a proposition by Simpson and Wiggert (1969), most convective pa-222

rameterizations use a momentum equation which assumes that subplume turbulent223

fluctuations and nonhydrostatic pressure perturbations reduce buoyancy and act as a224

drag term proportional to entrainment (see de Roode et al., 2012, for a discussion of225

the validity of this approach for shallow convection). Here, we simply consider turbu-226

lence by reducing the buoyancy term and pressure perturbations by adding a constant227

drag term. It appears as a source term in Eq. 1 for ψth = wth and ψ = 0. It is specified228

as Swth
= A1 B −A2 w2

th where B = g(θv,th − θv)/θv is the buoyancy (θv being the229

virtual potential temperature) that accelerates the plume and the second term a drag230

effect, with A1 = 2/3 and A2 = 0.002 m−1.231

The entrainment rate ε = e/f depends on the plume buoyancy and vertical
velocity:

ε = max

[
0.,

B1

1 + B1

(
A1

B

w2
th

−A2

)]
(4)

where B1 = 0.9, a value consistent with previous studies (Gregory, 2001; Siebert &232

Frank, 2003). The plume is mainly entraining in regions of positive buoyancy. It is the233

opposite for the detrainment rate δ = d/f which is favored in regions where buoyancy234

is negative, as suggested by observations (Bretherton & Smolarkiewicz, 1989). A235

satisfactory correlation is obtained between LES results and parameterization with236

the following definition of δ:237

δ = max

[
0.,−A1×B1

1 + B1

B

w2
th

+ CQ(
∆qt/qt

(wth/w0)2
)D
]
, (5)

where ∆qt is the contrast in humidity between the plume and its environment, with238

CQ = 0.012 m−1 (the vertical velocity being normalized by w0 = 1 m s−1) and239

D = 0.5. The first term corresponds to the buoyancy contribution to the detrainment240

rate while the second term accounts for the fact that evaporation around the clouds241

can reinforce the negative buoyancy of extracted air parcels, a mechanism enhanced242

when ∆qt increases.243
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2.3 Modification for stratocumulus clouds244

A recent modification of the scheme targeted the representation of stratocumulus
clouds (Hourdin et al., 2019). Indeed, the previous version of the mass flux model was
destroying stratocumulus clouds, by overshooting too far above the strong inversion
at the stratocumulus cloud top. Based on a combination of numerical and physical
arguments, this deficiency was overcome by computing the plume buoyancy as the
difference of the virtual potential temperature within the thermals at an altitude z
with the virtual potential temperature in the environment at a higher altitude z + δz
(rather than at the same level), so that buoyancy reads:

B′ = g
θv,th(z)− θv(z + δz)

θv(z + δz)
. (6)

With this modification, the detrainment is “aware” of the inversion before reaching it,245

and starts to detrain below it.246

In the current version, δz = DZ × z, DZ being considered as a new adjustable247

parameter. Based on a systematic sensitivity analysis to this single parameter in both248

SCM and 3D configurations, we identified a range of acceptable parameter values249

between 0.06 and 0.15. The value was finally fixed to 0.07 in the 6A version of LMDZ.250

One objective of the present paper is to revisit the value of this parameter whilst251

simultaneously adjusting the other parameters. This has not been possible previously,252

and can now be done systematically using the High-Tune Explorer described in Part I.253

2.4 The cloud scheme for boundary-layer clouds254

In order to compute the cloud fraction and in-cloud condensed water, we use a255

probability distribution function for the sub-grid scale saturation deficit, s. This distri-256

bution F (s) is approximated by a bi-Gaussian distribution. Thanks to a tracer-based257

sampling of LES results, Jam et al. (2013) demonstrated that one mode corresponds258

to the contribution from the thermal plumes and the second one to contribution from259

their environment. Based on these findings, a statistical cloud scheme was derived260

using five variables: the plume fraction α, the mean saturation deficits within environ-261

ment, senv, and plumes, sth (which are directly given by the thermal plume model),262

and their associated standard deviations, σs,env and σs,th, for which a parameterization263

was proposed. Considering that the major contribution to both standard deviations of264

s is the exchange of air between the plume and its environment and that the dispersion265

of s values is enhanced when the contrast sth− senv increases, standard deviations are266

parameterized as follows:267

σs,th = BG2 (α+ 0.01)
−γ1 (sth − senv) + b qtth (7)

and

σs,env = BG1
αγ2

1− α
(sth − senv) + b qtenv

, (8)

where b, BG1, BG2, γ1 and γ2 are free parameters, and the last term, bqt,th or bqt,env,268

is a minimum width of the distribution introduced for a value of α ≈ 0. It was shown269

in preliminary tests that the three parameters, b, γ1 and γ2 do not have a dominant270

role and their values were kept fixed in the results presented here.271

The values of b = 2 × 10−3, BG1 = 0.92, BG2 = 0.09, γ1 = 0.4 and γ2 = 0.6272

were chosen using LES results by fitting independently the in-thermal and environment273

Gaussian distributions.274

The thermal plume model is activated before the cloud scheme. The condensation275

is taken into account in the computation of liquid potential temperature (considered276

as conserved variable in Eq. 1) and virtual potential temperature involved in the277
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name min max ref sampling controls
A1 0.5 1.2 2./3. linear contribution of buoyancy to the plume acceleration
A2 1.5e-3 4.e-3 2.e-3 linear drag term in the plume acceleration
B1 0. 1. 0.95 linear scaling factor for entrainment and detrainment
CQ 0. 0.02 0.012 linear influence of humidity contrast on detrainment
DZ 0.05 0.2 0.07 linear environmental air altitude shift for buoyancy computation
BG1 0.4 2. 1.1 linear width of the environment subgrid scale water distribution
BG2 0.03 0.2 0.09 linear width of the plume subgrid scale water distribution
EVAP 5e-5 5e-4 1e-4 log reevaporation of rainfall
CLC 1e-4 1e-3 6.5e-4 linear autoconversion of cloud liquid water to rainfall

Table 1. Parameters involved in the iterative refocusing. The minimum and maximum values

explored are given as well as the reference value used in the 6A configuration of LMDZ, and the

information on whether the parameter is explored with a linear or logarithmic sampling.

buoyancy computation. Once e, d and f are determined, Eq. 1 and Eq. 2 are applied278

to the total water and liquid potential temperature to compute tendencies associated279

with the boundary-layer transport. From the thermal plume model computation, the280

parameters of the bi-Gaussian sub-grid scale distribution, F (s), for the saturation281

deficit can be estimated as explained above. From this distribution, the cloud fraction282

αcld =
∫∞
0
F (s)ds and cloud liquid content ql =

∫∞
0
sF (s)ds at the grid scale are283

finally computed1.284

The computation of the conversion from cloud water to rainfall follows Sundqvist
(1978): rainfall starts to precipitate significantly above a critical value CLC, fixed to
0.65 g/kg in the 6A configuration, with a time constant τ of half an hour. The
associated sink for liquid water ql is

dql
dt

= −ql
τ

[1− e−(ql/CLC)2 ] (9)

Following Sundqvist (1988), a fraction of the precipitation is re-evaporated in
the layer below and added to the total water of this layer before the statistical cloud
scheme is applied. The associated reduction of the precipitation flux P with altitude
z is given as

∂P

∂z
= −EVAP[1− qt/qsat]

√
P (10)

where qt is the total water mixing ratio, qsat the water mixing ratio at saturation and285

EVAP a free parameter.286

A summary of the parameters finally retained as free parameters in the present287

study are given in Tab. 1.288

3 Model setup289

3.1 The 6A version of LMDZ290

The parameterizations described here are a crucial piece of the physical pa-291

rameterizations of the LMDZ atmospheric global model. The recent modification292

of the detrainment formulation presented above produced a major improvement in293

1 Note that the same cloud scheme is applied with a single mode of width σs,env = b qtenv
when the

thermal plume model is not activated (for stratiform clouds for instance) while a different scheme is used

for deep convection. Equations and details on the cloud scheme are given in Hourdin et al. (2013).

–9–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

0 1 2 3 4 5 6 7 8 9 10 11
d Z (km)

0

10

20

30

40

50

60

70

80

Z
 (

k
m

)

CMIP6-L79
L95B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
d Z (km)

0

0.5

1

1.5

2

2.5

3

Z
 (

k
m

)

CMIP6-L79
L95B

Figure 2. Vertical discretization : standard L79 grid of the 6A version and refined L95 dis-

cretization. The figure shows the layer thickness (x-axis) as a function of altitude (y-axis). The

left panel shows the whole atmospheric column and the right panel is focused on the first three

km above surface.

the 6A version, the atmospheric component of the IPSL-CM6A-LR used for CMIP6.294

This version is extensively described by Hourdin et al. (2020, accepted in James,295

DOI:10.1029/2019MS001892). Beyond controlling boundary layer clouds, the thermal296

plume model provides a lifting energy and lifting power to a mass flux parameteriza-297

tion of deep convection, which itself can be self-maintained through its coupling with a298

parameterization of the cold pools created below cumulonimbus by rainfall evaporation299

(Grandpeix & Lafore, 2010). Deep convection and cold pools only indirectly affect the300

boundary layer convection and shallow cumulus, by modification of their environment.301

They are not active at all in the test cases considered in the present study.302

As explained in the introduction, the development and tuning of the 6A version303

of LMDZ resulted from a long iterative process. The final adjustment of the top-of-304

atmosphere (TOA) net radiation was based for a large part on the adjustment of the305

conversion rate of cloud liquid water to rainfall CLC. This parameter very efficiently306

modifies the net balance because it affects only liquid (thus essentially low) clouds and307

has thus a much larger impact on the SW than on the LW radiation at TOA.308

Two vertical discretizations are used in the present study. The first one, based on309

79 layers (L79) corresponds to the standard vertical grid in the 6A version of LMDZ.310

In the first 3 km, the layer thickness is typically ∆z ' 0.12z. A L95 grid is defined311

for the present study to refine the vertical resolution in the first few km above surface.312

The layer thickness is typically ∆z ' 0.067z. The dependency of layer thickness upon313

altitude is given in Fig. 2.314

The motivation for using these two vertical grids here is to illustrate the approach315

both on a revisit of previous results and on a predicted evolution for the next model316

generation. The vertical resolution is key for the representation of boundary layer317
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clouds which are often not much thicker than one or a few model layers. It also allows318

us to illustrate the significance of the structural error in the simulation of the cloud319

altitude and its link with the model vertical resolution.320

3.2 SCM/LES test cases and associated metrics321

For the SCM calibration, we consider four test cases among the cases listed in322

Part I, including one that consists of three sub-cases.323

The first case, IHOP/REF, corresponds to an almost cloud-free convective bound-324

ary layer observed during the International H2O Project (IHOP) field-experiment.325

This case is derived from observations collected on 14 June 2002 over the Southern326

Great Plains (Couvreux et al., 2005).327

The second case, ARMCU/REF, is derived from observations collected on 21328

June 1997 at the Atmospheric Radiation Measurement site in Oklahoma, U.S.A.329

(Brown et al., 2002). This idealized case is typical of the diurnal cycle of shallow330

convection over land with well developed fair weather cumulus.331

The RICO (Rain In Cumulus over the Ocean) experiment focuses on precipita-332

tion processes at play in the trade-wind shallow cumulus. During RICO, significant333

precipitation was frequently observed, offering a unique opportunity to study the dy-334

namics of shallow cumuli and precipitation.335

We finally use the composite stratocumulus-to-cumulus transition case discussed336

by Sandu and Stevens (2011). This case was built by compositing the large-scale con-337

ditions sampled along a set of individual Lagrangian 3-day trajectories that occurred338

over the northeastern Pacific during the summer months of 2006 and 2007. The stra-339

tocumulus deck presents a pronounced diurnal cycle and begins to break-up during the340

second day while the boundary layer deepens. Two variations of this SANDU/REF341

case, corresponding to a slower and a faster transition in cloud fraction were derived in342

a similar manner by compositing over the trajectories experiencing the fastest and the343

slowest decrease in cloud fraction over the first two days respectively (FAST and SLOW344

hereafter). The setup of the REF, FAST and SLOW cases and the LES simulations345

are described in more detail in Sandu and Stevens (2011).346

The ARMCU/REF and RICO/REF cases were used extensively for the inspira-347

tion, development and assessment of the thermal plume model and bi-gaussian cloud348

scheme (Couvreux et al., 2010; Rio et al., 2010; Jam et al., 2013). The SANDU cases349

were at the heart of the work on the modification of the thermal plume model to350

represent stratocumulus clouds (Hourdin et al., 2019).351

Various metrics were tested and considered during preliminary experiments. Here352

we retain metrics directly linked to the mean thermodynamical conditions targeted, as353

the mixed layer potential temperature and humidity, indicative of the mixing efficiency354

of the EDMF scheme. For all the cloudy cases, we retain either the total cloud cover355

(αcld,max, computed as a maximum on the vertical) or the height of clouds. For the356

latter, two diagnostics are used: an average height zcld,ave =
∫∞
0
αcldzdz/

∫∞
0
αclddz357

and a height that better emphasizes the maximum cloud fraction height, computed as358

zcld,max =
∫∞
0
zαcld

4dz/
∫∞
0
αcld

4dz. This choice is rather arbitrary and was shown to359

work well in practice. Such integral metrics are less dependent on the model vertical360

resolution than maximum cloud height for instance. The metrics are averaged in time361

over a few hours in order to smooth out possible numerical oscillations. The choice of362

a particular set of metrics is rather arbitrary and thus critically relies on the modeler’s363

expertise and objectives. The particular set of metrics retained here is given in Tab. 2.364

As will be highlighted by the ensemble of simulations run with the High-Tune365

Explorer, two aspects are particularly critical and are thus targeted by the retained366
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Case IHOP ARMCU RICO SANDU SANDU SANDU
subcase REF REF REF REF SLOW FAST

time 7-9 7-9 19-25 50-60 50-60 50-60

θ400−600hPa X X X

qv,400−600hPa X

αcld,max X X

zcld,ave X X

zcld,max X X X X

Table 2. Metrics retained for the SCM/LES tuning. The time retained for time average is

given in hours from the begining of the simulation.

  

Total rad. TOA (rt)
Swup TOA (rsut)

Glob

Convective,           intermediate,        subsiding Circum Antact. anomaly

Mask Variable Metrics target error
W m−2 W m−2

glob.rt 2.5 0.2
glob.rsut 99.6 5
circAa.rsut 24.0 5
circAa.rlut -48.6 5
subs.rsut 84.9 5
weak.rsut 81.8 5
conv.rsut 103.2 5
subs.rlut 274.6 5
weak.rlut 264.3 5
conv.rlut 235.8 5
etoa.rsut 11.0 5

Figure 3. Metrics retained for the GCM tuning consisting in radiative fluxes at top-of-

atmosphere averaged over a mask, shown in red on the left hand side of the figure, or a differ-

ence between a red and blue mask (anomalies). The target and σ error retained for the history

matching are shown in the table on the right hand side. The target values are computed from the

EBAF observational dataset.

metrics. The first one concerns the RICO case which, depending on the parameter367

values, can have a maximum cloud fraction at 3 km varying from a few to 100%. This368

altitude corresponds to a second maximum, while the cloud fraction at cloud base is369

much less sensitive to the tuning. The second aspect targeted by the metrics is the370

development of the boundary layer in the transition cases. It was shown in particular in371

Hourdin et al. (2019) that this growth is very sensitive to the DZ parameter, introduced372

on purpose to improve the representation of stratocumulus clouds. In particular, it373

was more difficult to represent correctly the SANDU/SLOW case. For those cases, the374

height of the maximum cloud fraction, which is located just below the boundary-layer375

top, was used.376

–12–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

3.3 Setup of GCM simulations and associated metrics377

For the global simulations, we used stand-alone atmospheric simulations forced378

by SST and Sea Ice Cover (SIC) mean seasonal cycle, following the “amip” protocol379

(twelve SST and SIC maps, one per month, interpolated in time with splines). Sim-380

ulations are run on the standard horizontal grid made up of 144 points in longitude381

and 143 in latitude (Low resolution or LR).382

The metrics retained for the GCM simulations are typically those which were383

prioritized during the effective tuning of the 6A version of IPSL-CM6A-LR. They384

consist of radiation at top-of-atmosphere computed in annual mean and averaged over385

spatial masks as illustrated in Fig. 3.386

The global total radiation (imbalance between SW and LW) is of course a priority387

target. Note that the global radiative balance is not constrained by observations. It is388

assumed that it should be zero in a climate which would have reached an equilibrium389

(or quasi equilibrium). Because the climate is currently warming under the effect of390

green house gas increase, it is assumed that there is in fact currently an imbalance391

in the global top-of-atmosphere radiation of about 0.5-1 W/m2, which is equal to392

the “oceanic heat uptake”, a downward net flux at the atmosphere-ocean interface,393

associated with the slow oceanic warming. Those values are, however, not observed;394

the typical uncertainty on the global SW and LW top-of-atmosphere fluxes being of395

the order of 4 W/m2 (Loeb et al., 2009). In fact, rather than tuning the global396

radiation to the theoretical value of 0.5-1 W/m2, we rather tuned it to a global397

imbalance of about 2.5 W/m2. We know indeed that, for our particular model, an398

imbalance of 2.5 W/m2 in forced-by-SSTs stand-alone atmospheric simulations leads399

to a global mean SST in the coupled model that matches present-day observation. The400

inconsistency between the tuning in stand-alone and coupled simulations may be due401

in part to some global energy leak in the model (typically of the order of 0.5 W/m2
402

in the current IPSL-CM model) and changes in the mean climate that may induce403

changes in the global balance (like a different location of the mid-latitude jet, which404

may modify the latitudinal distribution of the CRE).405

In addition to the global radiative balance, we also consider the global SW upward406

radiation, assuming that the downward one is well constrained, and that the global407

LW outgoing radiation will be constrained automatically by the constraint on the SW408

and total radiation.409

Additional constraints are considered by defining masks on the top-of-atmosphere410

outgoing LW and SW radiation, considering separately convective, subsiding and in-411

termediate regimes in the tropics (defined by a threshold on the mean vertical velocity412

in ERAI reanalysis) and a contrast in latitude between the roaring forties and tropical413

oceans. These last metrics target a classical Circum Antarctic warm bias in coupled414

ocean-atmosphere simulations. Similarly, a specific metric is dedicated to the SW con-415

trast between Eastern Tropical Oceans and mean tropics: the ETO Anomaly, defined416

by Hourdin et al. (2015), in relation with the East Tropical Ocean classical warm417

biases.418

3.4 Setup for the history matching419

The initial (original) input space is progressively reduced to obtain the Not-420

Ruled-Out Yet (NROY) space of parameters based on implausibility derived from421

Gaussian process emulators fitted to each metric, as detailed in Part I. The implausi-422

bility itself (Williamson et al., 2013), I(λ), is defined as the absolute difference between423

the observed metrics (target) and expectation of the emulator for the same metrics,424

divided by the standard deviation of this difference, comprising observational uncer-425

tainty, model structural uncertainty and uncertainty associated to the emulator (cf.426
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Part I for a complete presentation). A point of the parameter space is kept in the427

NROY space when the implausibility is smaller than a threshold or cutoff. In all the428

applications presented below, a series of iterations or waves is done, keeping the same429

list of metrics at each iteration. The cutoff on implausibility defining the NROY space430

is progressively reduced from 3 for the first 4 waves, to 2.5 in the following 3 and fi-431

nally 2 for wave number larger or equal to 8. Reducing the implausibility cutoff along432

the consecutive waves, accompanying the progressive reduction of the emulator uncer-433

tainty, is a normal part of the sequential calibration procedure (see Williamson et al.,434

2017, for discussion). After a series of waves based on SCM simulations, additional435

waves are optionally completed with full 3D GCM simulations, adding the 3D GCM436

metrics to the SCM ones.437

For SCM/LES comparisons, the observational error is estimated from the intra-438

model spread in an ensemble of LES simulations. This variability is generally much439

smaller than the discrepancy (structural error) between LES and SCM simulations.440

The discrepancy error is not known, and so we use history matching whilst prescribing441

a “tolerance to error” as presented in Part I (and in Williamson et al., 2015, 2017).442

This tolerance determines the existence of a non-empty NROY space. As we move443

through the waves, tolerance to error can be reduced when we see that the model444

is capable of getting to within previous tolerances of target metrics, if there is a445

good physical reason for the model being able to reduce target metrics (for example,446

there may be inherent limitations with the vertical resolution of the SCM that would447

prevent a metric from being as close to a reference LES at some altitude without448

compromising the performance elsewhere in the column and hence getting the metric449

“right for the wrong reasons”. Our tolerance to error should reflect those cases when450

they are understood).451

Four numbers are used to characterize the tolerance to error in the SCM exper-452

iments presented here. For the potential temperature and specific humidity in the453

mixed layer, we directly prescribe the tolerance in terms of an absolute tolerance ΣT454

and Σq and a relative error on the height of clouds Γz = Σz/z and cloud fraction455

Γαcld
= Σαcld

/αcld. For the height of clouds, the choice of relative rather than abso-456

lute error specification is motivated by the fact that the layer thickness depends almost457

linearly upon altitude, so that a relative error in terms of altitude is an absolute error458

in fraction of layer thickness. The GCM tolerance to error is fixed to the values given459

in Fig. 3.460

4 Revisiting the tuning of low clouds in LMDZ6A461

In this section, we revisit the tuning of the 6A version of LMDZ without modify-462

ing the parameters that control detrainment and entrainment, except for the coefficient463

DZ, the only one that was used as a free parameter during the tuning phase of this464

model configuration. The two other parameters used for this first illustration are the465

threshold value for the auto-conversion of in-cloud water into rainfall, CLC, and the466

factor put on the re-evaporation of rainfall coming from layers above, EVAP, two467

parameters which were extensively used as well during the 3D tuning of this version.468

Succinctly, we automatically retune 3 of the model free parameters assuming that all469

the others are fixed to the values of the standard LMDZ6A configuration. This exam-470

ple is thought as a first proof of concept of our approach, and to illustrate on a simple471

case the added value of preconditioning 3D GCM tuning with SCM simulations. It472

is also an opportunity to revisit the choice of the DZ parameter which was tuned by473

hand, as documentented in Hourdin et al. (2019). It was shown in that study with474

both a L79 and L95 vertical grid configurations (the adjustment of the altitudes of475

this L95 configuration being slightly more refined in the first kilometers than the one476

used here, which is more refined in the upper atmosphere, anticipating a use in the 3D477
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Figure 4. Implausibility matrices for wave 1, 5, and 20 of an history matching exploration,

run with the L79 vertical grid and Γz=0.2. Explanation of the building of the figures is given in

the text with additional details in Part I.

global model) that there was an optimal value of this parameter, somewhere between478

0.05 and 0.15. A value of 0.07 was finally retained in the 6A version.479

4.1 1D history matching480

For this first example, we use five metrics, the ones shown with bold crosses in481

Tab. 2. 20 waves are run iteratively following the protocol described in Section. 3.4.482

0.56% of the parameter space is retained at wave 20 and the history matching appears483

to converge.484

The building of the implausibility matrices shown in Fig. 4 for wave 1, 5 and 20485

from left to right is explained in Part I. Each 2D sub-matrix in Fig. 4 is a restriction to486

two parameters, the names of which are given in the diagonal of the main matrix. Each487

axis of the sub-matrix is divided into 15 subintervals (this number is adjustable within488

the tool), so that the matrix is made of 225 pixels. From a random sampling of (here)489

106 vectors λ, we compute the minimum implausibility and the proportion of points490

with implausibility lower than the cutoff within each pixel (and so in the dimensions491

behind it). The latter values are displayed in the sub-matrices of the upper right492

triangle. The total fraction of the volume of the NROY space relative to the initial493

space is the average of the matrix, which should be the same for all the sub-triangles.494

A dark grey colour means that there is no way to fit the observations by varying the495

third parameter (or N-2 unfixed parameters in a general case) while a value of 100%496

means that values of the two parameters in x and y axis can be retained whatever497

the values of the third parameter. In the lower-left triangle, the minimum value of498

the implausibility is shown. These plots are orientated the same way as those on the499

upper triangle, for easier visual comparison, so that the labelling of the axis should be500

inverted for this lower left triangle, compared to the names given on the diagonal.501

We note that, though we have performed 20 waves, here, the objective is not to502

find a single good simulation, which could be done using a Bayesian procedure within503

NROY space (Salter & Williamson, 2016), but to identify all good matches in order504

to use this subspace for the tuning of the 3D GCM.505
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Figure 5. Reduction of the volume fraction of the NROY space (compared to the full initial

hypercube volume, y-axis) remaining after N waves of history matching (x-axis) for the L79 and

L95 vertical grids and with a relative tolerance to error on the cloud height of Γz=0.12 and 0.2.

The cutoff for implausibility is progressively reduced from 3 to 2.5 at wave 5 and 2 at wave 8, as

indicated on the figure.

The values of the three parameters retained for the 6A version of LMDZ6A,506

shown as dots in the figure, lie within the final NROY space. This result suggests that507

the long and slow expert tuning process of the 6A version was successful, at least for508

boundary-layer clouds and regarding the chosen metrics. It gives us confidence that509

in this case we did not miss a different tuning which could have significantly improved510

the results.511

The size and shape of the final NROY space of course depends on the subjective512

choice of metrics and associated model tolerance, as well as on the vertical resolution.513

In the example shown here, we tested in particular the sensitivity of the NROY space514

to the addition of the slow and fast varying transition cases, to the resolution and515

to the tolerance error of the metrics associated with the height of clouds. Fig. 5516

compares the evolution with wave number of the size of the NROY space relative517

to the initial hyper-cube size with two values for the tolerance on the cloud height518

metrics, Γz=0.12 and 0.2, for vertical resolution L79 and L95. In both cases for L95519

resolution, the initial tuning of the 3 parameters lies in the NROY space. For the520

L79 grid, the NROY space becomes empty after 12 waves indicating that it is not521

possible to match the metrics with the lower resolution vertical grid for Γz=0.12. For522

the L79 resolution, the error given by Γz = 0.12 corresponds to one layer depth. It is523

to say that, for a coarser grid the tolerance to errors has to be larger. Although not524

a surprise, this point is quantified here by our approach. Adding the SANDU/SLOW525

case to this history matching sequence with the L79 grid results in an empty NROY526

before convergence, for both Γz = 0.12 and 0.2 (results not shown). This is the reason527

why the SANDU/SLOW case was not included in this first sequence.528

Note that only the sensitivity of the history matching sequence to the tolerance529

to errors on cloud height metrics was tested because of the rather straightforward link530
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Figure 6. Zonally average latitudinal variation (left) and latitudinally averaged (between 20S

and 5S) zonal variation (right) of the SW Cloud Radiative Effect (CRE) at TOA for 45 simu-

lations run with the sample of parameters used for wave 1 (grey) and a sampling of the NROY

space remaining at wave 20 of the SCM history matching (red). The blue curves correspond to

year 1 to 10 of a simulation run with the nominal values of the 3 parameters. The EBAF obser-

vations are superimposed in black. The location of continents, oceans and stratocumulus (Stcu)

regions are indicated on the bottom of the right figure.

with vertical resolution. However, the sensitivity to the tolerance to errors for the531

other variables would deserve investigation as well.532

4.2 3D test of the SCM-based tuning533

The reduction of the NROY space based on a series of SCM simulations for four534

test cases is a very interesting result in practice, as it may save both time of scientific535

experts and computer resources needed for the full 3D global tuning.536

In order to illustrate this point further, we run two sets of 45 2-year long ex-537

periments with the 3D GCM with the samples of the parameter space used for wave538

1 (before any reduction) and for wave 20. The left panel of Fig. 6 shows the mean539

latitudinal variations of the TOA SW CRE averaged both zonally and annually. While540

the spread across models is of 30 W/m2 before NROY selection, it reduces to a few541

W/m2 at wave number 20. All the simulations using wave 20 parameters are close to542

the nominal 6A model configuration (blue) and in reasonable agreement with EBAF543

observation (black). This shows that a very similar tuning to the final one would have544

been obtained by tuning in 1D only, once the other model parameters are fixed. The545

right panel of Fig. 6 shows the longitudinal variation of the same SW CRE in the546

southern tropics. This diagnostic underlines the contrast between a weak cooling in547

the regions of trade winds cumulus, at around 130W in the Pacific ocean and 40W548

over the Atlantic, and strong cooling in the regions of stratocumulus, at 100W over549

the Pacific and at Greenwich longitude over the Atlantic. The large range of SW CRE550

explored (from -20 to -110 W m−2) in the stratocumulus regions before any parameter551

selection (wave 1, grey curves) is consistent with the strong impact of the value of552

DZ (Hourdin et al., 2019) on the thickness of the stratocumulus clouds or even its553

disappearance. All the simulations using wave 20 parameters (red curves) produce554

results consistent with the control simulation (blue).555
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Figure 7. Implausibility matrices for wave 1 using only the 3D GCM simulations and metrics

(left), wave 1 using both SCM and GCM metrics (middle) and wave 20 with both SCM and 3D,

i. e. adding 3D GCM metrics after 20 waves run with the SCM only (right).

We present in Fig. 7 the implausibility statistics obtained after considering 3D556

simulations using the 3D metrics presented in Fig. 3. The left panel shows the implau-557

sibility matrix, which would be obtained with one single wave without preconditioning558

by 1D tuning. In this simple case, the selection is already quite efficient. The second559

panel shows the combination, on this first wave, of 1D and 3D metrics (using 45 param-560

eter vectors used in parallel in 1D and 3D simulations), illustrating the significant gain561

of adding 1D metrics in the 3D tuning. However, in this case, the cost is essentially562

the same (the 45 GCM simulations). Finally, the last panel shows how adding one563

wave with the 45 3D simulations performed on wave 20 of the 1D multi-wave tuning564

shown in Fig. 4 reduces the NROY to a small and well defined space which includes565

the tuning finally retained for the LMDZ6A version.566

5 Improving the representation of boundary-layer convection567

In this second example, we illustrate how tuning can be used together with model568

development and improvement in a more realistic situation. We now consider revisiting569

the representation of boundary-layer convection by both increasing the model vertical570

resolution and re-tuning the thermal plume model internal parameters.571

As already explained, during the tuning of the 6A version, the parameters that572

control the mass flux in the thermal plume model were fixed to values retained during573

the course of the development of the parameterization. The sensitivity of the pa-574

rameterization behavior to the value of those parameters was partly explored during575

this development phase, by comparing SCM and LES results (Rio et al., 2010; Jam576

et al., 2013). However, without the tools presented here, it was not possible to fully577

explore the parameter space and some arbitrary values were finally retained, which578

have not been modified since. Indeed, even in the SCM framework, and even for a579

subset of parameterizations, exploring the full parameter space without tools such as580

those presented here is not practicable.581

Here we explore the sensitivity to parameters A1, A2, B1, CQ, BG1, BG2582

(see Tab. 1). The tuning process is applied by varying these parameters together with583

those used in the previous section: DZ, EVAP, and CLC.584
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Figure 8. Implausibility matrix for the 9-parameter history match after 30 waves, vertical

grid L95 and with a relative tolerance to error on the cloud height Γz=0.12

5.1 SCM history matching with 9 parameters585

We first perform a 30-wave SCM history match with the extended set of param-586

eters. Note that 20 or 30 waves may sound like a large number, though this has been587

done in epidemiological studies (Andrianakis et al., 2017), and is inexpensive using the588

SCM. The NROY matrices are shown in Fig. 8 for Γz=0.12 and Fig. 9 for Γz=0.03.589

The decrease of the NROY fraction with increasing wave number is shown in Fig. 10590

for three values of Γz (0.12, 0.06 and 0.03) and the two vertical grids.591

The following lessons can be drawn from this new history matching sequence:592

1. The history matching seems to converge and to produce a rather smooth and593

consistent picture of the NROY space.594

2. Due to the freedom given by the additional parameters, it is now possible to595

keep a significant NROY even with Γz=0.03 for the L95 resolution. With this596

value of Γz, the ±2Σ tolerance to error is of 0.12×z, which is about 1.8 time597

the layer thickness.598

3. For the coarser grid, L79, only the Γz=0.12 and Γz=0.06 cases are able to599

maintain a non zero NROY space after 30 waves.600

–19–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

0.000

0.001

0.002

0.003

0.004

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A1

A2

B1

CQ

DZ

BG1

BG2

EVAP

CLC

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

Remaining space:0.0002012

Figure 9. Same as Fig. 8 but with a relative tolerance error on the cloud height of Γz=0.03.
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Figure 10. Reduction of the NROY volume fraction (compared to the full initial hypercube

volume, y-axis) remaining after N waves of history matching (x-axis) for the the L79 and L95

vertical grid and relative tolerance error on the cloud height Γz=0.03, 0.06 and 0.12.The cutoff

for implausibility is progressively reduced from 3 to 2.5 at wave 5 and 2 at wave 8, as indicated

on the figure. For the case with the L95 grid and Γz=0.03, two additional waves are added with

3D GCM simulations.
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4. The value retained for CMIP6 of the DZ parameter is now out of the final601

NROY space. This is due to the fact that the tolerance has been reduced and602

the number of metrics increased. In particular, it is now possible to include the603

SANDU/SLOW case, which was too badly represented to be considered in the604

previous section.605

5. The NROY is also obtained for values of the B1 parameter much smaller than606

initially assumed, compensated by a larger value of A1 and of DZ. So, in this607

case the tuning retained for CMIP6 was probably sub-optimal. The physical608

interpretation of this different tuning will be discussed later on.609

6. In the final NROY, the range of some parameters is quite narrow, as that of B1,610

DZ or CQ, but others like CLC give room for a further tuning of the radiative611

balance in the full 3D global model.612

We show in Fig. 11 and Fig. 12, for waves number 1 (grey), 3 (pink), 7 (yellow)613

and 30 (green), the envelope of the vertical profiles of potential temperature, specific614

humidity and cloud fraction for the 90 SCM simulations run to build the emulator615

with the L95 configuration and smallest tolerance to error. For the cumulus cases616

(Fig. 11), the history matching converges to a narrow envelope (green) which contains617

the nominal 6A configuration (black). The improvement compared to the original618

profile is significant for the transition cases (Fig. 12). Allowing the thermal plume619

parameters to vary allows the boundary layer to grow higher, in particular for the620

SANDU/SLOW case. The red curve on these figures is the best of the simulations run621

to build the emulators for the 30 waves, best in the sense that the maximum (across622

metrics) value of the ratio of the distance to observations divided by the tolerance to623

error is the smallest. This best simulation was obtained as the 76th element of wave624

26 (named SCM-26-076 on the graph).625

5.2 3D history matching626

We present here the results of two subsequent waves of history matching with the627

3D GCM, starting from wave 30 of the SCM history matching, with the L95 vertical628

grid and Γz = 0.03. For waves 31 and 32, both the previous 12 SCM metrics and629

the 11 3D GCM metrics presented in Fig. 3 are used. The implausibility graph of630

wave 32 is shown in Fig. 13. The fraction of the NROY space compared to the initial631

parameter hyper-cube is reduced from 2 10−4 at wave 30 to 4 10−5 at wave 32. Some632

parameters known to control the global radiative balance seem to contribute to this633

space reduction as seen for instance by a slight reduction of the NROY space in the634

(EVAP,CLC) subspace. As for the previous set of 3D GCM experiments (Fig. 6) we635

first illustrate the GCM behavior in terms of mean latitudinal variations of the SW636

CRE averaged both zonally and annualy (left panel of Fig. 14), and of longitudinal637

variations in the southern tropics (right panel) of the same SW CRE.638

The spread across models of wave 31 is not reduced as much as for wave 21 in the639

previous experiments where the sensitivity to three parameters only was explored. The640

gain compared to no preconditioning by SCM tuning (grey curves in Fig. 6 gives an641

underestimation of the dispersion with no preconditioning since only three parameters642

were varied) is however significant, as is the reduction in the spread in the latitudinal643

variation when going from wave 31 to wave 32.644

We show in Fig. 15 the normalized (by the tolerance to error) error for the GCM645

metrics for the 90 GCM simulations run for wave 32. The simulations are ranked646

according to the maximum value of this normalized error. For most of the simulations,647

the global net radiative balance ’glob.rt’ dominates the error, which is of course partly648

attributable to the fact that we took an arbitrarily small error of 0.2 W/m2 for this649

particular metrics (targeting a 0.2 K in coupled simulations). After the global radiative650

balance, some metrics are particularly difficult to get within the tolerance to errors,651
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Figure 11. Evolution of envelopes of the vertical profiles of potential temperature (first row),

specific humidity (second row) and cloud fraction (third row) for the IHOP, ARMCU and RICO

cumulus cases obtained with the L95 vertical grid and Γz=0.03. Individual curves are super-

imposed for: LES (blue), LMDZ6A with nominal values of the parameters (black), the best

simulation obtained with SCM tuning (red, the 76th simulation of wave #26 named SCM-26-076)

and the BEST cases retained after subsequent 3D GCM tuning (gold).
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Figure 12. Evolution of envelopes of the vertical profiles of potential temperature (first row),

specific humidity (second row) and cloud fraction (third row) for the three SANDU transition

sub-cases. Same conventions as in Fig. 11.
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Figure 13. Impausibility matrix for the 9-parameter history match, at wave 32, build by

adding 2 iterations with SCM and GCM metrics after 30 waves of SCM history matching.
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Figure 14. Zonally average latitudinal variation (left) and latitudinally averaged (between

20S and 5S) zonal variation (right) of the SW cloud Radiative Effect (CRE) at TOA for 90 sim-

ulations run with the sample of parameters used for wave 31 (red, i. e. after selection based on

SCM/LES comparisons only) and wave 32 (green). The blue curves correspond to year 1 to 10 of

a simulation run with the nominal values of the 9 parameters. The gold curves correspond to the

5 BEST simulations (see text for details). The EBAF observations are superimposed in black.
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Figure 15. For each 3D GCM metrics, the ratio error/σ is shown, where σ is the tolerance

to error used for history matching. The 90 simulations of wave 32 are ranked according to the

maximum value of error/σ.
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such as the LW circum Antarctic anomaly. It is interesting since this metric was652

introduced on purpose, targeting classical warm biases in coupled ocean-atmosphere653

models.654

Five “BEST” simulations were selected from this ranking. By doing so, we go655

further than theoretically authorized by the history matching philosophy, i.e. not656

going beyond the constraints imposed by the predefined tolerance in order to avoid657

overfitting and subsequent compensating errors. It is done here to accelerate the tuning658

process and be sure to select simulations with a well balanced global net radiation, in659

order to run one of them in coupled atmosphere-ocean mode. The five simulations are660

superimposed with gold color in Fig. 11, Fig. 12 and Fig. 14.661

The agreement with observations is at least as good for those BEST simulations662

as it is for the standard LMDZ6A configuration. In order to characterize further the663

behavior of these selected simulations, we show in Fig. 16 for the SW CRE (left) ,664

the LW CRE (middle) and the precipitation (right) the mean bias and root-mean-665

square error computed on the mean seasonal cycle. The CMIP5 and CMIP6 multi-666

model ensembles are displayed (first two rows from bottom) in order to contextualize667

those results with respect to the state-of-the-art. The 5A, 5B and 6A versions of the668

IPSL model (based on LMDZ for the atmosphere) are identified in blue, violet and669

red respectively. A general improvement is visible from CMIP5 to CMIP6, from the670

narrowing of the bias distribution and reduction of the mean RMSE. For the IPSL671

model, the 6A version behaves much better than the 5A and 5B versions, except for672

the rainfall. For rainfall, this has to be related to the fact that we struggled to reduce673

the mean rainfall in the 5A and 5B versions to compensate for a tendency of global674

models to overestimate the mean rainfall. Because it is not clear whether this mean675

bias is outside the observational errors (the observed mean rainfall may be significantly676

underestimated), we decided to abandon this target for the 6A version.677

For the 6A version, we show as well 10 consecutive years run on climatological678

SSTs in order to illustrate the error and dispersion that come form this different679

setup (the CMIP diagnostics correspond to the mean seasonal cycle over the period680

1979-2005). The mean bias is not significantly affected by the different setup, and681

its interannual variability is weak, a very important point for the tuning strategy682

adopted here. The root-mean-square error, on the opposite is significantly degraded683

when considering 1-year long simulations on climatological SSTs. It is why we decided684

to rerun the BEST simulations on amip SSTs as well (upper row in the graphs).685

The scores of the SW and LW CRE is very similar as for the standard LMDZ6A686

configuration, and even better for the root-mean-square error for rainfall, without687

clear explanation for it so far.688

Fig. 16 also shows the results of wave 1 and 20 for the first 3-parameter tuning689

and wave 31 and 32 for the 9-parameter tuning. The reduction of the dispersion in690

the mean bias is clearly visible in this graph. Note that this result is obtained without691

further tuning of the parameters involved in the representation of high-level clouds.692

5.3 Test in coupled atmosphere-ocean configuration693

Finally, the “BEST1” simulation is run in coupled mode, over 50 years, starting694

from initial conditions with present day forcing. A trick is used in this simulation695

to compensate the global oceanic heat uptake (of about 0.5-1 K in the present-day696

warming climate). It consists in increasing of the oceanic albedo by 0.007.697

The seasonal cycle of SSTs is almost stabilized at the fifth decade. Fig. 17698

shows the mean bias and root-mean-square error of SST computed on a mean sea-699

sonal cycle of the BEST simulation (gold), compared to the other CMIP5 (green) and700

CMIP6 (black) simulations with IPSL simulations highlighted with different colors.701
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Figure 16. Mean bias and root-mean-square error (RMSE) of the SW CRE (left), LW CRE

(middle) and rainfall (right) in LMDZ and CMIP simulations. The RMSE is computed on the

mean seasonal cycle (i. e. from twelve monthly values on each grid cell after interpolation on

a common 2o × 2o longitude latitude grid). On each graph, from bottom to top, we show: the

CMIP5 and CMIP6 multi-model ensembles (amip simulations over the period 1979-2005), 10

individual years with the standard LMDZ6A configuration run on climatological SSTs, the re-

sults of the wave 1 and 20 of the first set of experiments and wave 31 and 32 of the second set

(second year of a 2-year long simulation run on climatological SSTs), the 5 best simulations of

wave 32 run over 10 years with climatological SSTs, and, at the top, the same 5 simulations run

over the 1979-2005 period with annually varying SSTs (amip protocol as for CMIP simulations).

Some simulations are highlighted with a colour code: for CMIP5 simulations, the blue and violet

colours correspond respectively to the 5A and 5B versions of LMDZ (the 5A version was run with

two different resolutions). The red colour is used for the 6A version of the LMDZ model, the

green to the 5 best simulations and the orange to the best one. The vertical lines correspond to a

zero bias (black) and RMSE of the CMIP6 IPSL-6A-LR configuration (red dashed).
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Figure 17. SST mean bias and root-mean-square error computed from the mean seasonal

cycle (12 monthly means) after interpolation on a 120×90 regular longitude-latitude grid. The

diagnostics are shown for tropical latitudes (left, 35S:35N) and for the global ocean (latitudes

65S:65N). All the CMIP5 (green) and CMIP6 (black) models available to us are shown. The

color code for the IPSL CMIP configurations is: 5A (blue), 5B (violet), 6A (red), BEST (gold).

The two gold points correspond to the best tuning (simulation CM62-LR-01 corresponding to

simulation 35 of wave 32) and a second one with the parameter CLC slightly increased (simula-

tion CM62-LR-02, after a by-hand tuning) to cool the simulations.
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5A-MR 5B-LR
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Figure 18. SST (K) mean bias for the CMIP5 and CMIP6 multi-model ensemble, for the

5A-MR, 5B-LR and 6A-LR and for the BEST simulations, without (left) and with (right) final

retuning. The global mean of the bias is removed to highlight the structure of the bias.
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The BEST1 simulation itself is a bit too warm. A second simulation is then run by702

just readjusting the CLC parameter by hand, by running one sensitivity experiment703

in forced mode to estimate the sensitivity of the global mean radiative balance to704

the parameter (without worrying about whether all the parameters are in the NROY705

space). For both simulations, the results are quite close to the 6A simulation. The706

results are better in the tropics (35S:35N) than for the full globe (65S:65N, removing707

latitude beyond 65 degrees to avoid questions related to the sea-ice mask). This better708

performance when focusing on the tropics is probably due to the fact that the East709

Tropical Ocean warm bias is rather reduced in the BEST simulation compared to the710

6A version while the circum-Antarctic warm bias is somewhat increased.711

6 Discussion712

Both in the 3-parameter and 9-parameter history matching, a multi-wave tuning713

in SCM configuration is enough to partly constrain the radiative fluxes. It provides an714

avenue for process-based improvement of climate models, from SCM to global coupled715

model, following a rigorous approach.716

6.1 Benefit for 3D GCM tuning717

Though the 9-parameter history matching with increased vertical resolution does718

not significantly improve the agreement with observations of the top-of-atmosphere719

distribution of radiative fluxes in a 3D GCM, it should be kept in mind that we did720

not include any parameters affecting the high clouds in the tuning procedure, which of721

course would make the retuning easier by benefiting from a reasonable tuning of the722

high clouds. It could be, for example, that there are some compensating errors in the723

6A configuration between high and low clouds, in mid and high latitudes. Additionally,724

the bias in the zonal mean may be partly related to the shifted position of the mid-725

latitude jet which is particularly sensitive to the horizontal grid resolution, as seen on726

the left hand side of Fig. 6 and Fig. 14, in particular in the southern mid-latitudes. In727

addition the control simulation considered here was the product of a long phase of a728

careful tuning of the global model, in which the metrics used here were explicitly high729

priority targets. Though we can be confident in the processes resulting from our tuning730

(for low clouds), additional parameters may need to be exposed to tuning for the full731

3D model (or similar strategies for process based tuning with relevant parameters for732

other processes) to workaround existing compensating errors and to fully benefit from733

our strategy.734

Altogether, our results confirm that the proposed strategy is able to provide rea-735

sonable tuning of a coupled model, by applying a rather systematic procedure making736

use of machine learning techniques and starting from LES/SCM comparisons and with737

only 9 parameters. This study shows how an improvement in the parameterization738

can be implemented in the full 3D GCM with an automatic tuning procedure, avoid-739

ing a long phase of by-hand retuning. The improvement tested here consists in the740

increase of the vertical resolution together with allowing us to vary some additional741

free parameters. As just shown, it is possible to better reproduce the 1D “transition742

cases” with the modified scheme.743

6.2 Enlightening the representation of cloud processes744

In order to interpret further the modification induced by this new tuning at the745

process scale, we show in Fig. 19 the internal variables of the thermal plume model746

obtained with the ARM cumulus case at 2 to 3 PM local time and in afternoon and747

evening of the third day of the SANDU/REF case. The vertical velocity is globally748

overestimated in the cloud for the control simulation, when compared to the plume749
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AMRCU/REF

SANDU/REF

Figure 19. Vertical profiles of the internal variables of the mass flux scheme for the ARM

cumulus simulation averaged between 2 and 3 PM local time and for the SANDU/REF case,

averaged before noon and midnight during the third day of simulation. As in Fig. 11, we show

both the evolution of envelopes of the vertical profiles obtained with the L95 vertical grid and

Γz=0.03 for successive waves as well as individual curves: LES (blue), LMDZ6A with nominal

values of the parameters (black), the best simulation obtained with SCM tuning (red, the 76th

simulation of wave #26 named SCM-26-076) and the BEST cases retained after subsequent 3D

GCM tuning (gold). For the LES, we consider only one simulation and show for each case two

ways of sampling the LES results. For the ARM case, we use the tracer-based sampling used for

instance by Jam et al. (2013). For the SANDU case, in the absence of tracers in the simulations,

we use the sampling retained by Hourdin et al. (2019). Compared to the standard sampling, the

core sampling imposes that the sampled points show an excess of virtual potential temperature

when compared to the horizontal average, retaining only points with positive buoyancy.
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velocity sampled in LES, and slightly underestimated near the surface. The retuned750

version amplifies the overestimation in the cloud. This could be seen as a degrada-751

tion of the scheme or question the way thermals are sampled in LES. We could have752

selected more active parcels by using a more restrictive sampling threshold as illus-753

trated by retaining only points with positive buoyancy (core sampling, blue dots).754

In the end, what really matters for the transport is the mass flux. It appears that755

the vertical velocity increase is in part compensated by a reduction of the fractional756

cover attributed to convective plumes leading to a very similar mass flux, constrained757

by the requirement to faithfully represent the clouds, as imposed through the history758

matching procedure.759

We observe that the procedure tends to favour tuning with stronger velocity,760

which can be related to the use of values of coefficient B1 much smaller than one.761

This coefficient enters in the definition of both entrainment and detrainment, and762

would be 0 for a plume with conserved mass flux, which would just accelerate without763

entraining air from the mixed layer (in which case the plume fractional cover decreases764

when the plume accelerates), and 1 for a plume that would entrain enough air to keep765

its fractional cover constant.766

With this stronger vertical velocity, the plumes are able to overshoot a bit higher767

above inversion, helping the clouds to develop more efficiently on the vertical, without768

significantly affecting the other aspects.769

A possible interpretation of the above result, therefore, is that the air parcels770

that really contribute to vertical transport and should then be targeted by the pa-771

rameterization, are the core of the plumes, which are less subject to entrainment.772

This highlights the importance of being able to sample structures responsible for the773

vertical transport in LES but also raises the question about the degree to which the774

internal variables should be tuned against some equivalent diagnostic in the LES. As775

already explained, LES were used to inspire the parameterizations, i. e. to identify776

the mathematical functions that relate internal variables to the large scale state vari-777

ables, and then to compute the tendencies to be incremented on those state variables.778

The representation of this final tendency, and its dependency to input state variables779

may be seen as more important targets than the accurate representation of internal780

variables, suggesting not to push too far the procedure of fitting the details of those781

internal variables. However, a correct profile of vertical velocity or entrainment may be782

needed if these variables are used in other parts of the model, e.g. parameterizations783

of microphysics. The automatic tools presented here now permit us to address such784

questions in more detail.785

6.3 Keeping physics at the model heart786

Note that having a reasonable representation of mass fluxes at the core of boundary-787

layer parameterizations is important to ensure the robustness of the parameterizations788

when exploring very different regimes from those which were explored in the SCM/LES789

machine learning sequence. It also allows us to transport any sort of tracer with the790

mass flux without needing an additional tuning of the tracer tendencies. On the other791

hand, a direct application of machine learning to predict the vertical profiles of heat-792

ing, moistening and wind acceleration from the model state variables, as proposed by793

Krasnopolsky et al. (2013); Brenowitz and Bretherton (2018); Gentine et al. (2018),794

would offer no guarantee that the model behavior would be at all physical for these795

“out of sample” situations, and would require an independent learning for any new796

combination of atmospheric constituents.797
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7 Conclusions798

This paper presents a first proof of concept of the use of history matching to799

go from a process-based parameterization improvement to a new model configuration.800

More specifically, it presents a successful exercise of tuning of a global climate model801

with an automatic procedure after some improvement was introduced concerning the802

representation of boundary layer processes and associated clouds.803

It should be noted that the availability of this tool is a necessary condition for804

the success of the exercise, but that it does not in any way detract from the importance805

of the modelers expertise. It must be underlined indeed that this result was obtained806

after significant work was done by the authors in tuning the 6A version of the LMDZ807

model by hand. So a good idea of the relevant metrics to be used and associated error808

was already there, a key ingredient for the success of the history matching procedure.809

We must, therefore, underline the following point: the tool is automatic and objective810

in the sense that, once one has specified physically-relevant and useful metrics, their811

measurement errors and tolerance to model error, the procedure will locate the con-812

forming parameter space automatically. The choice of those metrics and tolerances813

is and will remain, however, a subjective expert judgment. The number of uses of814

a climate model is almost infinite (let’s just consider so-called impact studies on any815

location over the globe), and so is the number of possible metrics. Discussing the816

advantages and rationale for the choice of particular sets of metrics and tolerance will817

not disappear. However, it is now possible to quantify the impact of such choices and818

to do so far more quickly than before.819

Another by-product of the present study is to suggest that the standard 6A ver-820

sion of the LMDZ model was probably rather well tuned, at least for the parameters821

considered here. However, it is possible that the previous tuning was obtained thanks822

to compensating errors with high clouds which are not directly affected by the param-823

eters selected in the present study. It is possible as well that the fine tuning of the824

parameters of the thermal plumes does not matter that much. So at least we obtained825

automatically a tuning as good as the previous one, after modification that improved826

the agreement at a process level. Possibly as well, the tuning could be even better if we827

had enabled retuning with other parameters. Note that the value retained for the DZ828

parameter is a bit larger when the 9-parameter tuning is used, probably suggesting a829

compensation with more penetrative plumes obtained when reducing the value of B1.830

Altogether, this tuning process may seem quite costly. Each SCM simulation used831

here lasts between half a day and three days depending on the case (typically 1 second832

CPU time on an intel processor). Typically 10 days altogether for one parameter833

choice. With 20 waves of 100 simulations, it is like running 1 day of simulation on a834

200x100 grid (typically a lower bound of the current CMIP grid size). Even with a835

larger number of cases, days and parameter space, this step will remain cheap. The836

following 3D waves are much more costly. A lot can be done for radiative effect of837

clouds with 1-year long simulations forced by SST, which already means hundreds of838

simulations. Note however that those hundreds simulations can be run with a perfect839

scalability on large parallel computers. Note also that control coupled atmosphere-840

ocean simulations typically last 1000 years to reach a quasi-steady state of the deep841

ocean. The tuning of the IPSL-CM6A configurations, including atmospheric tuning842

and long-term coupled simulations is equivalent to about 20 000 years run over the843

2 years of the model preparation. In order to save computer time, various strategies844

are foreseen like using coarser grid for preconditioning the finer grid tuning, using845

short-term simulations with nudged winds, etc. The transition from forced-by-SST to846

coupled simulations will be an important practical issue as well.847

In any case, the preconditioning of 3D GCM tuning by SCM simulations is ex-848

tremely efficient and should be generalized. It requires a rigorous definition of the LES849
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and SCM setups, to avoid compensating for setup errors during the tuning process,850

as well as testing the model in a configuration that creates some unwilled numerical851

problems specific to the 1D framework. Extension of the set of LES test cases is an852

issue as well. In particular, it would be very important to share well-established and853

validated LES configurations with deep convection and high clouds if wanting to ob-854

tain for the tuning of convection and high clouds a similar gain in efficiency as the one855

obtained here for boundary layer convection and associated clouds.856

By carrying out this systematic work and sharing the tools with other teams, and857

by promoting this approach of tuning combining series 1D cases with 3D simulations,858

we hope to achieve a faster and more efficient improvement of the climate models859

involved in the anticipation of climate change. We hope that, relieved of the burden860

of manual calibration, model developers will spend far more time proposing new ideas861

for physics-based parameterizations and testing them in global models.862
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Zonal mean [20S:5S] longitudinal cross section
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Zonal mean [20S:5S] longitudinal cross section
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