Process-based climate model development harnessing machine
learning: II. model calibration from single column to global

Frédéric Hourdin!, Danny Williamson?, Catherine Rio%, Fleur Couvreux*, Romain
Roehrig®, Najda Villefranque®, Ionela Musat”, Fatoumata Bint Diallo®, Laurent Fairhead?,
and Victoria Volodina!?

LMD

2University of Exeter

3Centre national des recherches météorologiques (CNRM), Université de Toulouse,
Météo-France, CNRS

4Université Toulouse, CNRM, Meteo-France, CNRS

CNRM, Université de Toulouse, Météo-France, CNRS

SCentre National de Recherches Météorologiques

TPSL/UPMC/CNRS

8Laboratoire de Météorologie Dynamique

97.MD /TPSL/CNRS
19The Alan Turing Institute

November 24, 2022

Abstract

We demonstrate a new approach for climate model tuning in a realistic situation. Our approach, described in detail in Part
I, systematically uses a single-column configuration of a global atmospheric model on a series of test cases for which reference
large-eddy-simulations are available. The space of free parameters is sampled running the single-column model from which
metrics are estimated in the full parameter space using emulators. The parameter space is then reduced by retaining only the
values that are consistent with the metrics computed on large eddy simulations within a given tolerance to error. The approach
is applied to the recently designed 6A version of the LMDZ model, itself the result of a long investment in the development
of physics parameterizations and by-hand tuning. The boundary layer is revisited by increasing the vertical resolution and
varying parameters that were kept fixed so far. The approach allows us to automatically reach a tuning as good as that of
the 6A version, after some improvements are done at process scale. This approach helps accelerate the introduction of new
parameterizations, by avoiding a tedious manual tuning process and preventing some of the error compensations that could
occur if calibration was carried out directly with the full atmospheric model. This way of using machine learning techniques
allows us to maintain the physical foundations of the model and to ensure that the improvement of global metrics is obtained

for a reasonable behavior at process level. That is, we get things right for the right reasons.
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Key Points:

« We use an automatic tool to calibrate the parameterizations of a global climate
model.

« We show the benefit for global climate tuning of a preconditioning in single
column mode.

» We show how this approach allows us to revisit a parameterization of boundary
layer convection.
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Abstract

We demonstrate a new approach for climate model tuning in a realistic situation. Our
approach, described in detail in Part I, systematically uses a single-column config-
uration of a global atmospheric model on a series of test cases for which reference
large-eddy-simulations are available. The space of free parameters is sampled running
the single-column model from which metrics are estimated in the full parameter space
using emulators. The parameter space is then reduced by retaining only the values
that are consistent with the metrics computed on large eddy simulations within a given
tolerance to error. The approach is applied to the recently designed 6A version of the
LMDZ model, itself the result of a long investment in the development of physics pa-
rameterizations and by-hand tuning. The boundary layer is revisited by increasing
the vertical resolution and varying parameters that were kept fixed so far. The ap-
proach allows us to automatically reach a tuning as good as that of the 6A version,
after some improvements are done at process scale. This approach helps accelerate
the introduction of new parameterizations, by avoiding a tedious manual tuning pro-
cess and preventing some of the error compensations that could occur if calibration
was carried out directly with the full atmospheric model. This way of using machine
learning techniques allows us to maintain the physical foundations of the model and
to ensure that the improvement of global metrics is obtained for a reasonable behavior
at process level. That is, we get things right for the right reasons.

Plain language summary

In view of the importance of global numerical models for the anticipation of future
climate changes, their improvement is often considered too slow. We present a new
approach that we believe could boost model improvement significantly. This approach
promotes the use of machine learning techniques developed by the ”uncertainty quan-
tification” community for the adjustment of free model parameters, or tuning. These
techniques are applied to physics improvement at process scale, represented through
parameterizations. In this approach, the tuning of the global atmospheric model is
preconditioned by calibration of the model free parameters on series of well docu-
mented cloud scenes for which explicit very high resolution simulations are available.
We demonstrate on a real example how the reduction of the parameter space with this
approach allows us to save a large amount of computer resources and detract from
the long and tedious by-hand phase of model tuning. By automating the part of the
tuning process that can be, the approach enables climate modeler expertise to focus
on understanding and improving the model physics through parameterization.

1 Introduction

Given the high expectation on global circulation models, both for numerical
weather prediction and anticipation of climate change, their improvement is often con-
sidered too slow. Among the main reasons, one finds the poor job done by convective
parameterizations in summarizing convective motions that can not be resolved with
grid meshes larger than 300 m for boundary-layer convection, or 2 km for deep convec-
tion. A parameterization can be seen as a mathematical function P, that expresses the
effect on the model state variables @ of the collective behavior of unresolved processes,
which at the end appears as a source term Sg = P,(x, Ap) in the discretized form of
the fluid dynamic equations. The different parameterizations are often connected to
each other. For instance, a first one computes convection from the vertical profile of
potential temperature and humidity, then a second one deduces the fractional cover
of clouds and cloud water content, which are finally integrated in a radiative calcula-
tion (third parameterization) to provide a vertical heat profile. Each parameterization
depends on a set of free parameters A,, some of which have a physical meaning (maxi-
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mum water content of clouds, fall speed of ice crystals), some others resulting from the
simplifications inherent to any parameterization (representing an ensemble of plumes
by a single plume for example). Convective and cloud parameterizations are often
developed in a single column model (SCM) framework by comparison with large eddy
simulations (LES) of the same atmospheric column, in which convective motions are
explicitly resolved. This SCM/LES comparison is used both to inspire parameteri-
zation development and to choose, calibrate or “tune” the model free parameters X,
at process level. Once integrated in operational models, those parameterizations are
active in each atmospheric column of the model, influencing both the global radiation
budget and the large-scale circulation.

The development of a reference configuration of a climate model, as those in-
volved in the Coupled Model Intercomparison Program (Taylor et al., 2012, CMIP),
requires an intense phase of adjustment including — grid choice, bug corrections, activa-
tion of some parameterizations or code modifications in which the tuning or calibration
of free parameters is key. A survey on climate model tuning revealed rather standard
priorities, which consist of targeting the radiative forcing of the atmospheric circu-
lation, thereby using model free parameters that most affect radiation, i. e. cloud
parameters (Hourdin et al., 2017). The complexity of the tuning process, given the
large number of free parameters, the large number of possible targets, and the lack of
specific research in this area, probably partly explain the slowness of climate model
improvements. Typically, the tuning phase of the IPSL coupled model configuration
for CMIP6 (IPSL-CM6A-LR) took more than two years, with repeated tuning phases
targeting improvement of the radiative forcing of the circulation: global radiation,
decomposed in terms of short-wave (SW) and long-wave (LW), clear-sky and cloud
radiative effect (CRE), and some spatial variations of those fluxes like contrasts be-
tween mid-latitude and tropics, or between convective and subsiding regimes in the
tropics. Such a tuning was done in practice each time a new version of the coupled
model with significant changes was proposed. In total, 15 successive versions were
tuned this way. For each version, systematic sensitivity experiments to 3-10 parame-
ters were done with the stand-alone-atmospheric model forced by imposed sea surface
temperature (SST) on a couple of years, changing the parameters one by one. Then di-
agnostics were computed and, by trial and error, a new radiative tuning was proposed
and tested. Each of the 15 versions of the global model typically needed one to five
iterations of this tedious sensitivity analysis. Among the limitations of the approach,
it can be done only by local perturbation around the previous tuning and it explores
independently the dependency to each individual parameter, hiding any compensating
effects between them. During all of these processes, a series of SCM test cases were
run and compared with LES in order to ensure that the model tuning was not pushed
too far, at the risk of deteriorating the model behaviour at process level.

To help accelerate this phase of model tuning and tackle model development
and tuning together, Hourdin et al. (2017) identified at least three different levels of
calibration in a model development: a first calibration at the level of individual pa-
rameterizations, then a calibration of each component of the Earth system model and
eventually a calibration of the full Earth system model. In line with this proposal, we
advocate in the first part of this paper (referred to as Part I hereafter) that a system-
atic comparison between LES and SCM simulations on a series of benchmark cases,
making use of state-of-the-art machine learning techniques issued from the Uncer-
tainty Quantification community may help accelerate model development and tuning
at process scale. The history matching approach, used in this systematic compari-
son, consists in reducing iteratively the space of acceptable parameters by conserving
parameter vectors for which the SCM results match LES values to a given tolerance
error. The parameter space is explored using an “emulator”, a statistical tool capable
of estimating the value of some SCM metrics (with uncertainty) in the full parameter
space, based on sampling with the true SCM.
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In Part 1, we presented the rationale and technical details of the approach with
a simple illustration. The objective of this second part is to demonstrate how this
framework can be used to accelerate the process of model development, from the
process-based inspiration of new parameterizations to the full 3D GCM tuning. We
revisit more specifically choices made during the development phase of the so called
“thermal plume model” (Hourdin et al., 2002), a parameterization of the convective
boundary-layer transport and associated cumulus clouds (Rio & Hourdin, 2008), based
on a mass flux representation of a mean thermal plume coupled to a bi-modal repre-
sentation of the subgrid scale distribution of the saturation deficit (Jam et al., 2013).
This thermal plume model was developed over a number of years using LES to inspire
new pieces of parameterizations, to assess the proposed formulations and to propose
acceptable values of the free parameters. Successive versions of this thermal plume
model were introduced in the global LMDZ atmospheric model, giving rise in partic-
ular to the recent LMDZ 6A version (Hourdin et al., 2019; Hourdin, Rio, Jam, et al.,
2020; Hourdin, Rio, Grandpeix, et al., 2020) used as the atmospheric component of the
Institut Pierre Simon Laplace Coupled Model, IPSL-CM6A-LR, which participated to
the recent sixth phase of CMIP (CMIP6). With the increasing complexity of this
parameterization suite, it became clear that further sophistication leading to demon-
strable improvement was not possible without somewhat automatic tools to explore
the parametric dependency of the results. In order to prove that a new parameteri-
zation suite P;(x, A1) behaves better than an old version Py(x, Ag), one should show
in principle that there exists at least one vector Ay for which P; gives globally better
results than Py, whatever the value retained for Ag.

In this study we illustrate the deployment of a well-defined calibration strategy
based on two steps. The first step consists of a process-oriented calibration of the free
parameters using SCM/LES comparisons combined with the “High-Tune Explorer”
described in Part I. This SCM calibration is able to reduce the domain of acceptable
values and this information is used in step 2 for the calibration of the global 3D
configuration. A great advantage of history matching indeed is that it can be used
to iteratively reduce the parameter space, taking new constraints into account. This
saves important resources as the SCM/LES comparison is relatively computationally
inexpensive, and does not require supercomputer time. With this new approach, we
revisit here the parameter values involved in the formulations of lateral entrainment
and detrainment that control the mass flux computation (Rio et al., 2010), and hence
the convective transport as well as the bi-Gaussian cloud scheme (Jam et al., 2013).

After a description of the LMDZ model and cloud parameterizations in Section
2, we present a first illustration in Section 3, in which we revisit the calibration of
three of the parameters systematically used for the 3D GCM tuning. They all concern
the representation of boundary layer convection and clouds. We show that using
systematic SCM/LES comparisons on a few contrasted test cases makes it possible to
find a setting of the parameters very close to the one obtained after a long and tedious
phase of manual tuning, demonstrating the capability of the tool in saving time and
resources. In Section 4, we show an example of model retuning after some modifications
are introduced in the model, here the increase of the vertical resolution in the first
kilometers above surface. By doing this, we explore the impact of changing some
key parameters of the mass-flux scheme, which were kept fixed so far, in view of the
difficulty to explore a multi-dimensional space. Section 5 summarizes the main results
and discusses the gain obtained from this revisiting of 15 years of model development.

2 Shallow convection parameterization in LMDZ

The representation of boundary layer convection, shallow cumulus and stratocu-
mulus clouds is unified in the LMDZ model by using a combination of eddy diffusion
and a mass flux scheme to parameterize the boundary layer transport. This approach
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Figure 1. Sketch of the parameterizations and tuning parameters used in the present study.
The sketch on the left hand side presents the view of the boundary layer clouds and transport of
water by boundary layer turbulence and convection, as well as the entrainment and detrainment
at the boundaries of clouds and top of the boundary layer. These processes are represented in a
model layer from the interplay between the thermal plume model (combining vertical diffusion
with a mass flux scheme), a bi-gaussian representation of subrgid scale water distribution and the
so-called “large scale” condensation scheme. The scheme internal variables are shown in red and
the tuning parameters as bold fonts. d: = 0t0; is an increment over one time step of a state vari-
able and §, P the vertical variation of precipitation P over the depth of the layer. The complete

formulas and notations are given in the text.
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is often referred to as an EDMF approach (see e. g. Kohler et al., 2011), for eddy-
diffusivity and mass-flux. In LMDZ, the mass flux scheme is coupled to a bi-Gaussian
representation of the sub-grid scale distribution of the saturation deficit, from which
cloud cover and condensed water are deduced. The mass flux scheme and bi-Gaussian
scheme, the two targeted parameterizations of the parameter exploration presented in
this study, are detailed hereafter. We identify the free parameters, which are used for
the parametric exploration with bold font in the text. A sketch of the main elements
of the parameterizations and associated free parameters is given in Fig. 1.

2.1 The thermal plume model

The “thermal plume model” under consideration in the present study summarizes
the collective behavior of a population of thermal plumes (or cells, or rolls) through a
unique bulk thermal plume. Each atmospheric column is divided into a mean ascending
thermal plume of mass flux f = pawy, (where p is the air density, « is the fractional
cover and wyy, is the vertical velocity of the plume), and a compensating subsidence
in the environment of mass-flux —f. The value of a model state variable ¢ within the
thermal plume vy, is computed using the stationary plume conservation equation:

O fthun
0z

where e and d are the lateral entrainment and detrainment of air toward and away
from the plumes (the quantity is assumed to enter the thermal plume with its large
scale value v). For variables conserved by the convective transport, such as liquid
potential temperature #; or total water ¢;, the source term is set to Sy = 0. The
plume vertical velocity wyy, is computed with the same equation with a source term
that includes buoyancy and a drag term. The fraction of the horizontal surface covered
by plumes at altitude z is then deduced as o = f/(pwyp,).

= e — dbn + pSy

The total boundary layer vertical transport of 1 is

P = [ )~ K. 5,
z
where K, = l,ixS(Ri)VTKE is the eddy diffusivity, /. being a turbulent mixing
length and S(Ri) a stability function that depends upon the local gradient Richardson
number Ri. The turbulent kinetic energy TKE is integrated in time from a local
prognostic equation, following Yamada (1983). The technical implementation details
are given by Vignon et al. (2017). Given this framework, the mass flux part is entirely
defined by the specification of e and d from which f is deduced from the continuity
equation for the plume
of _ d
92 ©
In the original version of the thermal plume model (Hourdin et al., 2002) the
plume is fed laterally by warm air from the surface boundary layer, with e > 0 when
0.6, > 0 in the first unstable layers above the surface. Above this surface layer,
entrainment is null and detrainment is viewed as a shedding due to lateral mixing.
It consists in reducing the width of the thermal plume with height, compared to the
width that would correspond to a conservative thermal plume (0f/9z = 0). Those
formulations were inspired by physical considerations and tested a posteriori on a series
of LES cases of dry convection proposed by Ayotte et al. (1996).

2.2 Entrainment and detrainment derived from LES sampling

The subsequent versions of the entrainment and detrainment formulations were
largely inspired and adjusted in the SCM/LES framework. In order to use LES to
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inspire the development of mass flux convective parameterizations, one has to identify
and sample the thermal plumes in the LES, in a way that matches with the EDMF
framework. The classical approach consists in applying a combination of thresholds on
water vapor or condensed water in clouds, vertical wind or a virtual tracer emitted at
the surface for that specific purpose (Couvreux et al., 2010). Once the plume region is
identified, the plume vertical velocity, fractional cover and mass flux can be computed
as well as the composite value 1, of any conserved quantity v inside the plume.
Knowing f, ¥ and v, one can then invert the conservation equation of the mass flux
(Eq. 3) and ¢ (Eq. 1 with Sy, = 0) to deduce e and d.

Such a sampling was used to estimate the vertical profiles of entrainment and
detrainment in LES for standard cases of continental and marine cumulus (Rio et al.,
2010). The analysis of the results showed that the entrainment was strong in regions
of positive buoyancy, and that detrainment was dominating in regions of negative
buoyancy of the plume. This would be the case for a plume with a value of pa
that would not vary vertically (almost constant fractional cover), which would entrain
air where it accelerates and detrain where it decelerates. From the LES sampling,
it appears that the entrainment and detrainment values lie in between the plume
obtained with the constant fractional cover approximation and a conservative plume
(0f/0z = 0,e = 0,d = 0). A parameter B1, assumed to range between 0 and 1, was
therefore included as a scaling factor of the entrainment and detrainment computed
with the constant fractional cover approximation.

Following a proposition by Simpson and Wiggert (1969), most convective pa-
rameterizations use a momentum equation which assumes that subplume turbulent
fluctuations and nonhydrostatic pressure perturbations reduce buoyancy and act as a
drag term proportional to entrainment (see de Roode et al., 2012, for a discussion of
the validity of this approach for shallow convection). Here, we simply consider turbu-
lence by reducing the buoyancy term and pressure perturbations by adding a constant
drag term. It appears as a source term in Eq. 1 for ¢, = wy, and ¢ = 0. It is specified
as Sy,, = Al B— A2 wfh where B = g(0, 1, — 6,)/60, is the buoyancy (6, being the
virtual potential temperature) that accelerates the plume and the second term a drag
effect, with A1 =2/3 and A2 = 0.002 m~!.

The entrainment rate e = e/f depends on the plume buoyancy and vertical

velocity:
B1 B
= 0,——— | Al— — A2
e o 2 (A 42

where B1 = 0.9, a value consistent with previous studies (Gregory, 2001; Siebert &
Frank, 2003). The plume is mainly entraining in regions of positive buoyancy. It is the
opposite for the detrainment rate § = d/f which is favored in regions where buoyancy
is negative, as suggested by observations (Bretherton & Smolarkiewicz, 1989). A
satisfactory correlation is obtained between LES results and parameterization with
the following definition of d:

0 = max |0., _AL1xBL B 7Aqt/qt by
1+ B1 w? (wen fwo)?

where Agq; is the contrast in humidity between the plume and its environment, with
CQ = 0.012 m~! (the vertical velocity being normalized by wy = 1 m s~!) and
D = 0.5. The first term corresponds to the buoyancy contribution to the detrainment
rate while the second term accounts for the fact that evaporation around the clouds
can reinforce the negative buoyancy of extracted air parcels, a mechanism enhanced
when Ag,; increases.
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2.3 Modification for stratocumulus clouds

A recent modification of the scheme targeted the representation of stratocumulus
clouds (Hourdin et al., 2019). Indeed, the previous version of the mass flux model was
destroying stratocumulus clouds, by overshooting too far above the strong inversion
at the stratocumulus cloud top. Based on a combination of numerical and physical
arguments, this deficiency was overcome by computing the plume buoyancy as the
difference of the virtual potential temperature within the thermals at an altitude z
with the virtual potential temperature in the environment at a higher altitude z + 0z
(rather than at the same level), so that buoyancy reads:

Ov.tn(2) — 0,(z + 02)
0,(z + 02)

With this modification, the detrainment is “aware” of the inversion before reaching it,
and starts to detrain below it.

B’:g

In the current version, 6z = DZ x z, DZ being considered as a new adjustable
parameter. Based on a systematic sensitivity analysis to this single parameter in both
SCM and 3D configurations, we identified a range of acceptable parameter values
between 0.06 and 0.15. The value was finally fixed to 0.07 in the 6A version of LMDZ.
One objective of the present paper is to revisit the value of this parameter whilst
simultaneously adjusting the other parameters. This has not been possible previously,
and can now be done systematically using the High-Tune Explorer described in Part I.

2.4 The cloud scheme for boundary-layer clouds

In order to compute the cloud fraction and in-cloud condensed water, we use a
probability distribution function for the sub-grid scale saturation deficit, s. This distri-
bution F(s) is approximated by a bi-Gaussian distribution. Thanks to a tracer-based
sampling of LES results, Jam et al. (2013) demonstrated that one mode corresponds
to the contribution from the thermal plumes and the second one to contribution from
their environment. Based on these findings, a statistical cloud scheme was derived
using five variables: the plume fraction «, the mean saturation deficits within environ-
ment, Seny, and plumes, sy, (which are directly given by the thermal plume model),
and their associated standard deviations, 05 ¢ny and o 4p,, for which a parameterization
was proposed. Considering that the major contribution to both standard deviations of
s is the exchange of air between the plume and its environment and that the dispersion
of s values is enhanced when the contrast sy, — Sen, increases, standard deviations are
parameterized as follows:

osth =BG2 (a+0.01)"7" (S — Senv) +0 Gy,

and

a2
1_ o (Eth - genv) + b qtcnvv

where b, BG1, BG2, 71 and 7 are free parameters, and the last term, bq, ;;, or bq; ¢y,
is a minimum width of the distribution introduced for a value of o = 0. It was shown
in preliminary tests that the three parameters, b, 7; and 2 do not have a dominant
role and their values were kept fixed in the results presented here.

Os,env = BG1

The values of b = 2 x 1073, BG1 = 0.92, BG2 = 0.09, 7; = 0.4 and v, = 0.6
were chosen using LES results by fitting independently the in-thermal and environment
Gaussian distributions.

The thermal plume model is activated before the cloud scheme. The condensation
is taken into account in the computation of liquid potential temperature (considered
as conserved variable in Eq. 1) and virtual potential temperature involved in the



name min max  ref sampling controls

Al 0.5 1.2 2./3. linear contribution of buoyancy to the plume acceleration

A2 1.5e-3 4.e-3 2.e-3  linear drag term in the plume acceleration

B1 0. 1. 0.95 linear scaling factor for entrainment and detrainment

CcQ 0. 0.02 0.012 linear influence of humidity contrast on detrainment

Dz 0.05 0.2 0.07 linear environmental air altitude shift for buoyancy computation
BG1 0.4 2. 1.1 linear width of the environment subgrid scale water distribution
BG2 0.03 0.2 0.09 linear width of the plume subgrid scale water distribution
EVAP 5e-5 H5e-4  le-4 log reevaporation of rainfall

CLC le-4 le-3  6.5e-4 linear autoconversion of cloud liquid water to rainfall

Table 1. Parameters involved in the iterative refocusing. The minimum and maximum values
explored are given as well as the reference value used in the 6A configuration of LMDZ, and the

information on whether the parameter is explored with a linear or logarithmic sampling.

278 buoyancy computation. Once e, d and f are determined, Eq. 1 and Eq. 2 are applied

279 to the total water and liquid potential temperature to compute tendencies associated
280 with the boundary-layer transport. From the thermal plume model computation, the
281 parameters of the bi-Gaussian sub-grid scale distribution, F(s), for the saturation
282 deficit can be estimated as explained above. From this distribution, the cloud fraction

283 aa = [y F(s)ds and cloud liquid content ¢ = [;* sF(s)ds at the grid scale are
284 finally computed®.

The computation of the conversion from cloud water to rainfall follows Sundqvist
(1978): rainfall starts to precipitate significantly above a critical value CLC, fixed to
0.65 g/kg in the 6A configuration, with a time constant 7 of half an hour. The
associated sink for liquid water ¢; is

dq q —(q/CLC)?
= 4 ai/ ) 9
n_ ap | 0

Following Sundqvist (1988), a fraction of the precipitation is re-evaporated in
the layer below and added to the total water of this layer before the statistical cloud
scheme is applied. The associated reduction of the precipitation flux P with altitude
z is given as

oP
s —EVAP[1 - Qt/qsmf]\/ﬁ (10)
285 where ¢; is the total water mixing ratio, ¢s,+ the water mixing ratio at saturation and
286 EVAP a free parameter.
287 A summary of the parameters finally retained as free parameters in the present
288 study are given in Tab. 1.
289 3 Model setup
200 3.1 The 6A version of LMDZ
201 The parameterizations described here are a crucial piece of the physical pa-
202 rameterizations of the LMDZ atmospheric global model. The recent modification
203 of the detrainment formulation presented above produced a major improvement in
1 Note that the same cloud scheme is applied with a single mode of width Os,env = b [ when the

thermal plume model is not activated (for stratiform clouds for instance) while a different scheme is used

for deep convection. Equations and details on the cloud scheme are given in Hourdin et al. (2013).
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Figure 2. Vertical discretization : standard L79 grid of the 6A version and refined L95 dis-

cretization. The figure shows the layer thickness (x-axis) as a function of altitude (y-axis). The

left panel shows the whole atmospheric column and the right panel is focused on the first three

km above surface.

the 6A version, the atmospheric component of the IPSL-CM6A-LR used for CMIP6.
This version is extensively described by Hourdin et al. (2020, accepted in James,
DOI:10.1029,/2019MS001892). Beyond controlling boundary layer clouds, the thermal
plume model provides a lifting energy and lifting power to a mass flux parameteriza-
tion of deep convection, which itself can be self-maintained through its coupling with a
parameterization of the cold pools created below cumulonimbus by rainfall evaporation
(Grandpeix & Lafore, 2010). Deep convection and cold pools only indirectly affect the
boundary layer convection and shallow cumulus, by modification of their environment.
They are not active at all in the test cases considered in the present study.

As explained in the introduction, the development and tuning of the 6A version
of LMDZ resulted from a long iterative process. The final adjustment of the top-of-
atmosphere (TOA) net radiation was based for a large part on the adjustment of the
conversion rate of cloud liquid water to rainfall CLC. This parameter very efficiently
modifies the net balance because it affects only liquid (thus essentially low) clouds and
has thus a much larger impact on the SW than on the LW radiation at TOA.

Two vertical discretizations are used in the present study. The first one, based on
79 layers (L79) corresponds to the standard vertical grid in the 6A version of LMDZ.
In the first 3 km, the layer thickness is typically Az ~ 0.12z. A 1.95 grid is defined
for the present study to refine the vertical resolution in the first few km above surface.
The layer thickness is typically Az ~ 0.067z. The dependency of layer thickness upon
altitude is given in Fig. 2.

The motivation for using these two vertical grids here is to illustrate the approach
both on a revisit of previous results and on a predicted evolution for the next model
generation. The vertical resolution is key for the representation of boundary layer
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clouds which are often not much thicker than one or a few model layers. It also allows
us to illustrate the significance of the structural error in the simulation of the cloud
altitude and its link with the model vertical resolution.

3.2 SCM/LES test cases and associated metrics

For the SCM calibration, we consider four test cases among the cases listed in
Part I, including one that consists of three sub-cases.

The first case, IHOP /REF, corresponds to an almost cloud-free convective bound-
ary layer observed during the International HoO Project (IHOP) field-experiment.
This case is derived from observations collected on 14 June 2002 over the Southern
Great Plains (Couvreux et al., 2005).

The second case, ARMCU/REF, is derived from observations collected on 21
June 1997 at the Atmospheric Radiation Measurement site in Oklahoma, U.S.A.
(Brown et al., 2002). This idealized case is typical of the diurnal cycle of shallow
convection over land with well developed fair weather cumulus.

The RICO (Rain In Cumulus over the Ocean) experiment focuses on precipita-
tion processes at play in the trade-wind shallow cumulus. During RICO, significant
precipitation was frequently observed, offering a unique opportunity to study the dy-
namics of shallow cumuli and precipitation.

We finally use the composite stratocumulus-to-cumulus transition case discussed
by Sandu and Stevens (2011). This case was built by compositing the large-scale con-
ditions sampled along a set of individual Lagrangian 3-day trajectories that occurred
over the northeastern Pacific during the summer months of 2006 and 2007. The stra-
tocumulus deck presents a pronounced diurnal cycle and begins to break-up during the
second day while the boundary layer deepens. Two variations of this SANDU/REF
case, corresponding to a slower and a faster transition in cloud fraction were derived in
a similar manner by compositing over the trajectories experiencing the fastest and the
slowest decrease in cloud fraction over the first two days respectively (FAST and SLOW
hereafter). The setup of the REF, FAST and SLOW cases and the LES simulations
are described in more detail in Sandu and Stevens (2011).

The ARMCU/REF and RICO/REF cases were used extensively for the inspira-
tion, development and assessment of the thermal plume model and bi-gaussian cloud
scheme (Couvreux et al., 2010; Rio et al., 2010; Jam et al., 2013). The SANDU cases
were at the heart of the work on the modification of the thermal plume model to
represent stratocumulus clouds (Hourdin et al., 2019).

Various metrics were tested and considered during preliminary experiments. Here
we retain metrics directly linked to the mean thermodynamical conditions targeted, as
the mixed layer potential temperature and humidity, indicative of the mixing efficiency
of the EDMF scheme. For all the cloudy cases, we retain either the total cloud cover
(eld,maz, computed as a maximum on the vertical) or the height of clouds. For the
latter, two diagnostics are used: an average height zciqqve = fooo Qegzdz/ fooo Qeadz
and a height that better emphasizes the maximum cloud fraction height, computed as
Zeld,max = fooo zacld4dz/ fooo aegtdz. This choice is rather arbitrary and was shown to
work well in practice. Such integral metrics are less dependent on the model vertical
resolution than maximum cloud height for instance. The metrics are averaged in time
over a few hours in order to smooth out possible numerical oscillations. The choice of
a particular set of metrics is rather arbitrary and thus critically relies on the modeler’s
expertise and objectives. The particular set of metrics retained here is given in Tab. 2.

As will be highlighted by the ensemble of simulations run with the High-Tune
Ezplorer, two aspects are particularly critical and are thus targeted by the retained
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Case IHOP | ARMCU | RICO | SANDU | SANDU | SANDU
subcase REF REF REF | REF SLOW | FAST
| time | 79 | 79 ] 1925 | 50-60 | 50-60 | 50-60 |
| Ga0-coonpa | X | X | X | | | |
| qu,400-600hPa | | X | | | | |
| cadmar | X | X | | | |
| Zedave | x| x| | |
| zadmee | x| x| x| X

Table 2. Metrics retained for the SCM/LES tuning. The time retained for time average is

given in hours from the begining of the simulation.

Mask Variable

Total rad. TOA (rt)

Swup TOA (rsut)
Convective, intermediate, subsiding  Circum Antact. anomaly
ST weak  EEALT subs SEEAN T cicAa T
Y i gt | e Lo T e o' SWup TOA (rsut)
o Y ‘%f () <N LWup TOA (rlut)
SWup TOA (rsut)

Metrics

glob.rt
glob.rsut
circAa.rsut
circAa.rlut
subs.rsut
weak.rsut
conv.rsut
subs.rlut
weak.rlut
conv.rlut
etoa.rsut

target

W m~2
2.5
99.6
24.0
-48.6
84.9
81.8
103.2
274.6
264.3
235.8
11.0

Figure 3. Metrics retained for the GCM tuning consisting in radiative fluxes at top-of-

atmosphere averaged over a mask, shown in red on the left hand side of the figure, or a differ-

ence between a red and blue mask (anomalies). The target and o error retained for the history

matching are shown in the table on the right hand side. The target values are computed from the

EBAF observational dataset.

367 metrics. The first one concerns the RICO case which, depending on the parameter
368 values, can have a maximum cloud fraction at 3 km varying from a few to 100%. This
369 altitude corresponds to a second maximum, while the cloud fraction at cloud base is
370 much less sensitive to the tuning. The second aspect targeted by the metrics is the
a7 development of the boundary layer in the transition cases. It was shown in particular in
372 Hourdin et al. (2019) that this growth is very sensitive to the DZ parameter, introduced
373 on purpose to improve the representation of stratocumulus clouds. In particular, it
374 was more difficult to represent correctly the SANDU/SLOW case. For those cases, the
375 height of the maximum cloud fraction, which is located just below the boundary-layer
376 top, was used.
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3.3 Setup of GCM simulations and associated metrics

For the global simulations, we used stand-alone atmospheric simulations forced
by SST and Sea Ice Cover (SIC) mean seasonal cycle, following the “amip” protocol
(twelve SST and SIC maps, one per month, interpolated in time with splines). Sim-
ulations are run on the standard horizontal grid made up of 144 points in longitude
and 143 in latitude (Low resolution or LR).

The metrics retained for the GCM simulations are typically those which were
prioritized during the effective tuning of the 6A version of IPSL-CM6A-LR. They
consist of radiation at top-of-atmosphere computed in annual mean and averaged over
spatial masks as illustrated in Fig. 3.

The global total radiation (imbalance between SW and LW) is of course a priority
target. Note that the global radiative balance is not constrained by observations. It is
assumed that it should be zero in a climate which would have reached an equilibrium
(or quasi equilibrium). Because the climate is currently warming under the effect of
green house gas increase, it is assumed that there is in fact currently an imbalance
in the global top-of-atmosphere radiation of about 0.5-1 W/m?, which is equal to
the “oceanic heat uptake”, a downward net flux at the atmosphere-ocean interface,
associated with the slow oceanic warming. Those values are, however, not observed;
the typical uncertainty on the global SW and LW top-of-atmosphere fluxes being of
the order of 4 W/m? (Loeb et al., 2009). In fact, rather than tuning the global
radiation to the theoretical value of 0.5-1 W/m?, we rather tuned it to a global
imbalance of about 2.5 W/m?. We know indeed that, for our particular model, an
imbalance of 2.5 W/m? in forced-by-SSTs stand-alone atmospheric simulations leads
to a global mean SST in the coupled model that matches present-day observation. The
inconsistency between the tuning in stand-alone and coupled simulations may be due
in part to some global energy leak in the model (typically of the order of 0.5 W/m?
in the current IPSL-CM model) and changes in the mean climate that may induce
changes in the global balance (like a different location of the mid-latitude jet, which
may modify the latitudinal distribution of the CRE).

In addition to the global radiative balance, we also consider the global SW upward
radiation, assuming that the downward one is well constrained, and that the global
LW outgoing radiation will be constrained automatically by the constraint on the SW
and total radiation.

Additional constraints are considered by defining masks on the top-of-atmosphere
outgoing LW and SW radiation, considering separately convective, subsiding and in-
termediate regimes in the tropics (defined by a threshold on the mean vertical velocity
in ERAI reanalysis) and a contrast in latitude between the roaring forties and tropical
oceans. These last metrics target a classical Circum Antarctic warm bias in coupled
ocean-atmosphere simulations. Similarly, a specific metric is dedicated to the SW con-
trast between Eastern Tropical Oceans and mean tropics: the ETO Anomaly, defined
by Hourdin et al. (2015), in relation with the East Tropical Ocean classical warm
biases.

3.4 Setup for the history matching

The initial (original) input space is progressively reduced to obtain the Not-
Ruled-Out Yet (NROY) space of parameters based on implausibility derived from
Gaussian process emulators fitted to each metric, as detailed in Part I. The implausi-
bility itself (Williamson et al., 2013), I(X), is defined as the absolute difference between
the observed metrics (target) and expectation of the emulator for the same metrics,
divided by the standard deviation of this difference, comprising observational uncer-
tainty, model structural uncertainty and uncertainty associated to the emulator (cf.
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Part I for a complete presentation). A point of the parameter space is kept in the
NROY space when the implausibility is smaller than a threshold or cutoff. In all the
applications presented below, a series of iterations or waves is done, keeping the same
list of metrics at each iteration. The cutoff on implausibility defining the NROY space
is progressively reduced from 3 for the first 4 waves, to 2.5 in the following 3 and fi-
nally 2 for wave number larger or equal to 8. Reducing the implausibility cutoff along
the consecutive waves, accompanying the progressive reduction of the emulator uncer-
tainty, is a normal part of the sequential calibration procedure (see Williamson et al.,
2017, for discussion). After a series of waves based on SCM simulations, additional
waves are optionally completed with full 3D GCM simulations, adding the 3D GCM
metrics to the SCM ones.

For SCM/LES comparisons, the observational error is estimated from the intra-
model spread in an ensemble of LES simulations. This variability is generally much
smaller than the discrepancy (structural error) between LES and SCM simulations.
The discrepancy error is not known, and so we use history matching whilst prescribing
a “tolerance to error” as presented in Part I (and in Williamson et al., 2015, 2017).
This tolerance determines the existence of a non-empty NROY space. As we move
through the waves, tolerance to error can be reduced when we see that the model
is capable of getting to within previous tolerances of target metrics, if there is a
good physical reason for the model being able to reduce target metrics (for example,
there may be inherent limitations with the vertical resolution of the SCM that would
prevent a metric from being as close to a reference LES at some altitude without
compromising the performance elsewhere in the column and hence getting the metric
“right for the wrong reasons”. Our tolerance to error should reflect those cases when
they are understood).

Four numbers are used to characterize the tolerance to error in the SCM exper-
iments presented here. For the potential temperature and specific humidity in the
mixed layer, we directly prescribe the tolerance in terms of an absolute tolerance ¥
and X, and a relative error on the height of clouds I'; = X./z and cloud fraction
Loy = Za.,/0cd- For the height of clouds, the choice of relative rather than abso-
lute error specification is motivated by the fact that the layer thickness depends almost
linearly upon altitude, so that a relative error in terms of altitude is an absolute error
in fraction of layer thickness. The GCM tolerance to error is fixed to the values given
in Fig. 3.

4 Revisiting the tuning of low clouds in LMDZ6A

In this section, we revisit the tuning of the 6A version of LMDZ without modify-
ing the parameters that control detrainment and entrainment, except for the coefficient
DZ, the only one that was used as a free parameter during the tuning phase of this
model configuration. The two other parameters used for this first illustration are the
threshold value for the auto-conversion of in-cloud water into rainfall, CLC, and the
factor put on the re-evaporation of rainfall coming from layers above, EVAP, two
parameters which were extensively used as well during the 3D tuning of this version.
Succinctly, we automatically retune 3 of the model free parameters assuming that all
the others are fixed to the values of the standard LMDZ6A configuration. This exam-
ple is thought as a first proof of concept of our approach, and to illustrate on a simple
case the added value of preconditioning 3D GCM tuning with SCM simulations. It
is also an opportunity to revisit the choice of the DZ parameter which was tuned by
hand, as documentented in Hourdin et al. (2019). It was shown in that study with
both a L79 and L95 vertical grid configurations (the adjustment of the altitudes of
this L95 configuration being slightly more refined in the first kilometers than the one
used here, which is more refined in the upper atmosphere, anticipating a use in the 3D
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Figure 4. Implausibility matrices for wave 1, 5, and 20 of an history matching exploration,

run with the L79 vertical grid and I',=0.2. Explanation of the building of the figures is given in

the text with additional details in Part I.

global model) that there was an optimal value of this parameter, somewhere between
0.05 and 0.15. A value of 0.07 was finally retained in the 6A version.

4.1 1D history matching

For this first example, we use five metrics, the ones shown with bold crosses in
Tab. 2. 20 waves are run iteratively following the protocol described in Section. 3.4.
0.56% of the parameter space is retained at wave 20 and the history matching appears
to converge.

The building of the implausibility matrices shown in Fig. 4 for wave 1, 5 and 20
from left to right is explained in Part I. Each 2D sub-matrix in Fig. 4 is a restriction to
two parameters, the names of which are given in the diagonal of the main matrix. Each
axis of the sub-matrix is divided into 15 subintervals (this number is adjustable within
the tool), so that the matrix is made of 225 pixels. From a random sampling of (here)
108 vectors A, we compute the minimum implausibility and the proportion of points
with implausibility lower than the cutoff within each pixel (and so in the dimensions
behind it). The latter values are displayed in the sub-matrices of the upper right
triangle. The total fraction of the volume of the NROY space relative to the initial
space is the average of the matrix, which should be the same for all the sub-triangles.
A dark grey colour means that there is no way to fit the observations by varying the
third parameter (or N-2 unfixed parameters in a general case) while a value of 100%
means that values of the two parameters in x and y axis can be retained whatever
the values of the third parameter. In the lower-left triangle, the minimum value of
the implausibility is shown. These plots are orientated the same way as those on the
upper triangle, for easier visual comparison, so that the labelling of the axis should be
inverted for this lower left triangle, compared to the names given on the diagonal.

We note that, though we have performed 20 waves, here, the objective is not to
find a single good simulation, which could be done using a Bayesian procedure within
NROY space (Salter & Williamson, 2016), but to identify all good matches in order
to use this subspace for the tuning of the 3D GCM.
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Figure 5. Reduction of the volume fraction of the NROY space (compared to the full initial

hypercube volume, y-axis) remaining after N waves of history matching (x-axis) for the L79 and
L95 vertical grids and with a relative tolerance to error on the cloud height of I';=0.12 and 0.2.

The cutoff for implausibility is progressively reduced from 3 to 2.5 at wave 5 and 2 at wave 8, as
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indicated on the figure.

The values of the three parameters retained for the 6A version of LMDZ6A,
shown as dots in the figure, lie within the final NROY space. This result suggests that
the long and slow expert tuning process of the 6A version was successful, at least for
boundary-layer clouds and regarding the chosen metrics. It gives us confidence that
in this case we did not miss a different tuning which could have significantly improved
the results.

The size and shape of the final NROY space of course depends on the subjective
choice of metrics and associated model tolerance, as well as on the vertical resolution.
In the example shown here, we tested in particular the sensitivity of the NROY space
to the addition of the slow and fast varying transition cases, to the resolution and
to the tolerance error of the metrics associated with the height of clouds. Fig. 5
compares the evolution with wave number of the size of the NROY space relative
to the initial hyper-cube size with two values for the tolerance on the cloud height
metrics, I',=0.12 and 0.2, for vertical resolution L79 and L95. In both cases for L.95
resolution, the initial tuning of the 3 parameters lies in the NROY space. For the
L79 grid, the NROY space becomes empty after 12 waves indicating that it is not
possible to match the metrics with the lower resolution vertical grid for I',=0.12. For
the L79 resolution, the error given by I', = 0.12 corresponds to one layer depth. It is
to say that, for a coarser grid the tolerance to errors has to be larger. Although not
a surprise, this point is quantified here by our approach. Adding the SANDU/SLOW
case to this history matching sequence with the L79 grid results in an empty NROY
before convergence, for both I', = 0.12 and 0.2 (results not shown). This is the reason
why the SANDU/SLOW case was not included in this first sequence.

Note that only the sensitivity of the history matching sequence to the tolerance
to errors on cloud height metrics was tested because of the rather straightforward link
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Figure 6. Zonally average latitudinal variation (left) and latitudinally averaged (between 20S
and 5S) zonal variation (right) of the SW Cloud Radiative Effect (CRE) at TOA for 45 simu-
lations run with the sample of parameters used for wave 1 (grey) and a sampling of the NROY
space remaining at wave 20 of the SCM history matching (red). The blue curves correspond to
year 1 to 10 of a simulation run with the nominal values of the 3 parameters. The EBAF obser-
vations are superimposed in black. The location of continents, oceans and stratocumulus (Stcu)

regions are indicated on the bottom of the right figure.

with vertical resolution. However, the sensitivity to the tolerance to errors for the
other variables would deserve investigation as well.

4.2 3D test of the SCM-based tuning

The reduction of the NROY space based on a series of SCM simulations for four
test cases is a very interesting result in practice, as it may save both time of scientific
experts and computer resources needed for the full 3D global tuning.

In order to illustrate this point further, we run two sets of 45 2-year long ex-
periments with the 3D GCM with the samples of the parameter space used for wave
1 (before any reduction) and for wave 20. The left panel of Fig. 6 shows the mean
latitudinal variations of the TOA SW CRE averaged both zonally and annually. While
the spread across models is of 30 W/m? before NROY selection, it reduces to a few
W /m? at wave number 20. All the simulations using wave 20 parameters are close to
the nominal 6A model configuration (blue) and in reasonable agreement with EBAF
observation (black). This shows that a very similar tuning to the final one would have
been obtained by tuning in 1D only, once the other model parameters are fixed. The
right panel of Fig. 6 shows the longitudinal variation of the same SW CRE in the
southern tropics. This diagnostic underlines the contrast between a weak cooling in
the regions of trade winds cumulus, at around 130W in the Pacific ocean and 40W
over the Atlantic, and strong cooling in the regions of stratocumulus, at 100W over
the Pacific and at Greenwich longitude over the Atlantic. The large range of SW CRE
explored (from -20 to -110 W m~2) in the stratocumulus regions before any parameter
selection (wave 1, grey curves) is consistent with the strong impact of the value of
DZ (Hourdin et al., 2019) on the thickness of the stratocumulus clouds or even its
disappearance. All the simulations using wave 20 parameters (red curves) produce
results consistent with the control simulation (blue).
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Figure 7. Implausibility matrices for wave 1 using only the 3D GCM simulations and metrics
(left), wave 1 using both SCM and GCM metrics (middle) and wave 20 with both SCM and 3D,

i. e. adding 3D GCM metrics after 20 waves run with the SCM only (right).

We present in Fig. 7 the implausibility statistics obtained after considering 3D
simulations using the 3D metrics presented in Fig. 3. The left panel shows the implau-
sibility matrix, which would be obtained with one single wave without preconditioning
by 1D tuning. In this simple case, the selection is already quite efficient. The second
panel shows the combination, on this first wave, of 1D and 3D metrics (using 45 param-
eter vectors used in parallel in 1D and 3D simulations), illustrating the significant gain
of adding 1D metrics in the 3D tuning. However, in this case, the cost is essentially
the same (the 45 GCM simulations). Finally, the last panel shows how adding one
wave with the 45 3D simulations performed on wave 20 of the 1D multi-wave tuning
shown in Fig. 4 reduces the NROY to a small and well defined space which includes
the tuning finally retained for the LMDZ6A version.

5 Improving the representation of boundary-layer convection

In this second example, we illustrate how tuning can be used together with model
development and improvement in a more realistic situation. We now consider revisiting
the representation of boundary-layer convection by both increasing the model vertical
resolution and re-tuning the thermal plume model internal parameters.

As already explained, during the tuning of the 6A version, the parameters that
control the mass flux in the thermal plume model were fixed to values retained during
the course of the development of the parameterization. The sensitivity of the pa-
rameterization behavior to the value of those parameters was partly explored during
this development phase, by comparing SCM and LES results (Rio et al., 2010; Jam
et al., 2013). However, without the tools presented here, it was not possible to fully
explore the parameter space and some arbitrary values were finally retained, which
have not been modified since. Indeed, even in the SCM framework, and even for a
subset of parameterizations, exploring the full parameter space without tools such as
those presented here is not practicable.

Here we explore the sensitivity to parameters Al, A2, B1l, CQ, BG1, BG2
(see Tab. 1). The tuning process is applied by varying these parameters together with
those used in the previous section: DZ, EVAP, and CLC.
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Figure 8. Implausibility matrix for the 9-parameter history match after 30 waves, vertical

grid L95 and with a relative tolerance to error on the cloud height I',=0.12

5.1 SCM history matching with 9 parameters

We first perform a 30-wave SCM history match with the extended set of param-
eters. Note that 20 or 30 waves may sound like a large number, though this has been
done in epidemiological studies (Andrianakis et al., 2017), and is inexpensive using the
SCM. The NROY matrices are shown in Fig. 8 for I',=0.12 and Fig. 9 for I',=0.03.
The decrease of the NROY fraction with increasing wave number is shown in Fig. 10
for three values of ', (0.12, 0.06 and 0.03) and the two vertical grids.

The following lessons can be drawn from this new history matching sequence:

1. The history matching seems to converge and to produce a rather smooth and
consistent picture of the NROY space.

2. Due to the freedom given by the additional parameters, it is now possible to
keep a significant NROY even with I',=0.03 for the L95 resolution. With this
value of I',, the £2% tolerance to error is of 0.12xz, which is about 1.8 time
the layer thickness.

3. For the coarser grid, L79, only the I';=0.12 and I',=0.06 cases are able to
maintain a non zero NROY space after 30 waves.

,197



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

T T 0
1

b
7
I

35 4
Al

0.004

-“

._'._LL'

Ay"

0.003

0.002

0.001

EVAP

|
S L A
. b [ Al

Remaining space;0.000ZO.LZ

-

CLC

0.00C

Figure 9. Same as Fig. 8 but with a relative tolerance error on the cloud height of I",=0.03.

—20—



NROQOY fraction

10°

1071

el

1
r,=0.12, L79

,=0.06, L79
,=0.03, L79
,=0.12, L95
,=0.06, L95

,=0.03, L95

10_2-E
!
1073
11
4 - Z
‘..—"—h
W Tre—ml =\ |3
10—4 _g ué qé e — _'\-—\\D
:3' S S .‘*\’
1 ©) @)
5 10 15 20 25 30

Wave number

Figure 10. Reduction of the NROY volume fraction (compared to the full initial hypercube

volume, y-axis) remaining after N waves of history matching (x-axis) for the the L79 and L95

vertical grid and relative tolerance error on the cloud height I';=0.03, 0.06 and 0.12.The cutoff

for implausibility is progressively reduced from 3 to 2.5 at wave 5 and 2 at wave 8, as indicated

on the figure. For the case with the L95 grid and I';=0.03, two additional waves are added with

3D GCM simulations.

21—




601

602

603

604

607

608

609

610

611

613

614

615

617

618

619

620

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

643

644

645

646

647

648

649

650

651

4. The value retained for CMIP6 of the DZ parameter is now out of the final
NROY space. This is due to the fact that the tolerance has been reduced and
the number of metrics increased. In particular, it is now possible to include the
SANDU/SLOW case, which was too badly represented to be considered in the
previous section.

5. The NROY is also obtained for values of the B1 parameter much smaller than
initially assumed, compensated by a larger value of A1 and of DZ. So, in this
case the tuning retained for CMIP6 was probably sub-optimal. The physical
interpretation of this different tuning will be discussed later on.

6. In the final NROY, the range of some parameters is quite narrow, as that of B1,
DZ or CQ, but others like CLC give room for a further tuning of the radiative
balance in the full 3D global model.

We show in Fig. 11 and Fig. 12, for waves number 1 (grey), 3 (pink), 7 (yellow)
and 30 (green), the envelope of the vertical profiles of potential temperature, specific
humidity and cloud fraction for the 90 SCM simulations run to build the emulator
with the L95 configuration and smallest tolerance to error. For the cumulus cases
(Fig. 11), the history matching converges to a narrow envelope (green) which contains
the nominal 6A configuration (black). The improvement compared to the original
profile is significant for the transition cases (Fig. 12). Allowing the thermal plume
parameters to vary allows the boundary layer to grow higher, in particular for the
SANDU/SLOW case. The red curve on these figures is the best of the simulations run
to build the emulators for the 30 waves, best in the sense that the maximum (across
metrics) value of the ratio of the distance to observations divided by the tolerance to
error is the smallest. This best simulation was obtained as the 76th element of wave
26 (named SCM-26-076 on the graph).

5.2 3D history matching

We present here the results of two subsequent waves of history matching with the
3D GCM, starting from wave 30 of the SCM history matching, with the L.95 vertical
grid and T', = 0.03. For waves 31 and 32, both the previous 12 SCM metrics and
the 11 3D GCM metrics presented in Fig. 3 are used. The implausibility graph of
wave 32 is shown in Fig. 13. The fraction of the NROY space compared to the initial
parameter hyper-cube is reduced from 2 10~ at wave 30 to 4 107> at wave 32. Some
parameters known to control the global radiative balance seem to contribute to this
space reduction as seen for instance by a slight reduction of the NROY space in the
(EVAP,CLC) subspace. As for the previous set of 3D GCM experiments (Fig. 6) we
first illustrate the GCM behavior in terms of mean latitudinal variations of the SW
CRE averaged both zonally and annualy (left panel of Fig. 14), and of longitudinal
variations in the southern tropics (right panel) of the same SW CRE.

The spread across models of wave 31 is not reduced as much as for wave 21 in the
previous experiments where the sensitivity to three parameters only was explored. The
gain compared to no preconditioning by SCM tuning (grey curves in Fig. 6 gives an
underestimation of the dispersion with no preconditioning since only three parameters
were varied) is however significant, as is the reduction in the spread in the latitudinal
variation when going from wave 31 to wave 32.

We show in Fig. 15 the normalized (by the tolerance to error) error for the GCM
metrics for the 90 GCM simulations run for wave 32. The simulations are ranked
according to the maximum value of this normalized error. For most of the simulations,
the global net radiative balance 'glob.rt” dominates the error, which is of course partly
attributable to the fact that we took an arbitrarily small error of 0.2 W/m? for this
particular metrics (targeting a 0.2 K in coupled simulations). After the global radiative
balance, some metrics are particularly difficult to get within the tolerance to errors,

—292—



Altitude (m)

Altitude (m)

Altitude (m)

IHOP/REF: 2002-06-14 13:30

2400 -
2100 1
y/
1800
1500
1200
| FS
— LES ensemble
900 7 —SCM_26-076
BEST
600 ] — SCM
| WAVEL
| WAVE3
300 4 | WAVE?
| WAVE30
0 . .
299 304 309 314
g (K)
2400 1
2100 1
1800
1500
1200 \
900 | \
|
\
600 1 \
\
|
300 ] |
\
N
0 R S e
0.00 0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20
Qv (g/kg) x1072
2400 1
2100 1
1800 "l
|
1500
1200
900
600 |
300

Figure 11.

Qcid

0 T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ARMCU/REF: 1997-06-21 20:30

3200 {
2800
2400
E 20001 /
]
he]
2 1600 { /
= - |FS
< — LES ensemble
12001 m—SCM_26-076
BEST
800 1 —SCM
/ WAVEL
/ WAVE3
400 7 WAVET
WAVE30
0+ . . .
299 304 309 314
6 (K)
3200 ]
2800 1
2400 1
E 20001
@
e
2 1600
=
<
1200 A
800 1
400 1
N

0 T T T T T T T T
0.0 02040608 101214161820

Qv (g/kg) %1072

Altitude (m)

800 1

400 1

0 T T T T T T T T T
0.000.040.080.120.160.200.240.280.320.360.40

Qcid

RICO/REF: 2004-12-27 21:30

3200 4
2800 4
2400 4
= 2000 A
£
2
S 1600 -
=
= w— LES
< 1200 — LES ensemble
— SCM_26-076
BEST
800 = SCM
WAVEL
WAVE3
!
400 WAVE7
WAVE30
0 T T T T
297 302 307 312 317
8 (K)
3200 A
2800
2400 4
g 2000
2
S 1600
=
B
< 12004
800 -
400
0 R N SR
0.0 0.2 040608 101214 1.6 1.8 2.0

Qv (g/kg) %1072

Altitude (m)

1 T T T T T T T T T
.000.050.100.150.200.250.300.350.400.450.50

Qcid

Evolution of envelopes of the vertical profiles of potential temperature (first row),
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simulation obtained with SCM tuning (red, the 76th simulation of wave #26 named SCM-26-076)

and the BEST cases retained after subsequent 3D GCM tuning (gold).
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specific humidity (second row) and cloud fraction (third row) for the three SANDU transition

sub-cases. Same conventions as in Fig. 11.
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such as the LW circum Antarctic anomaly. It is interesting since this metric was
introduced on purpose, targeting classical warm biases in coupled ocean-atmosphere
models.

Five “BEST” simulations were selected from this ranking. By doing so, we go
further than theoretically authorized by the history matching philosophy, i.e. not
going beyond the constraints imposed by the predefined tolerance in order to avoid
overfitting and subsequent compensating errors. It is done here to accelerate the tuning
process and be sure to select simulations with a well balanced global net radiation, in
order to run one of them in coupled atmosphere-ocean mode. The five simulations are
superimposed with gold color in Fig. 11, Fig. 12 and Fig. 14.

The agreement with observations is at least as good for those BEST simulations
as it is for the standard LMDZ6A configuration. In order to characterize further the
behavior of these selected simulations, we show in Fig. 16 for the SW CRE (left) |,
the LW CRE (middle) and the precipitation (right) the mean bias and root-mean-
square error computed on the mean seasonal cycle. The CMIP5 and CMIP6 multi-
model ensembles are displayed (first two rows from bottom) in order to contextualize
those results with respect to the state-of-the-art. The 5A, 5B and 6A versions of the
IPSL model (based on LMDZ for the atmosphere) are identified in blue, violet and
red respectively. A general improvement is visible from CMIP5 to CMIP6, from the
narrowing of the bias distribution and reduction of the mean RMSE. For the IPSL
model, the 6A version behaves much better than the 5A and 5B versions, except for
the rainfall. For rainfall, this has to be related to the fact that we struggled to reduce
the mean rainfall in the 5A and 5B versions to compensate for a tendency of global
models to overestimate the mean rainfall. Because it is not clear whether this mean
bias is outside the observational errors (the observed mean rainfall may be significantly
underestimated), we decided to abandon this target for the 6A version.

For the 6A version, we show as well 10 consecutive years run on climatological
SSTs in order to illustrate the error and dispersion that come form this different
setup (the CMIP diagnostics correspond to the mean seasonal cycle over the period
1979-2005). The mean bias is not significantly affected by the different setup, and
its interannual variability is weak, a very important point for the tuning strategy
adopted here. The root-mean-square error, on the opposite is significantly degraded
when considering 1-year long simulations on climatological SSTs. It is why we decided
to rerun the BEST simulations on amip SSTs as well (upper row in the graphs).
The scores of the SW and LW CRE is very similar as for the standard LMDZ6A
configuration, and even better for the root-mean-square error for rainfall, without
clear explanation for it so far.

Fig. 16 also shows the results of wave 1 and 20 for the first 3-parameter tuning
and wave 31 and 32 for the 9-parameter tuning. The reduction of the dispersion in
the mean bias is clearly visible in this graph. Note that this result is obtained without
further tuning of the parameters involved in the representation of high-level clouds.

5.3 Test in coupled atmosphere-ocean configuration

Finally, the “BEST1” simulation is run in coupled mode, over 50 years, starting
from initial conditions with present day forcing. A trick is used in this simulation
to compensate the global oceanic heat uptake (of about 0.5-1 K in the present-day
warming climate). It consists in increasing of the oceanic albedo by 0.007.

The seasonal cycle of SSTs is almost stabilized at the fifth decade. Fig. 17
shows the mean bias and root-mean-square error of SST computed on a mean sea-
sonal cycle of the BEST simulation (gold), compared to the other CMIP5 (green) and
CMIP6 (black) simulations with IPSL simulations highlighted with different colors.
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Figure 16. Mean bias and root-mean-square error (RMSE) of the SW CRE (left), LW CRE
(middle) and rainfall (right) in LMDZ and CMIP simulations. The RMSE is computed on the
mean seasonal cycle (i. e. from twelve monthly values on each grid cell after interpolation on

a common 2° X 2° longitude latitude grid). On each graph, from bottom to top, we show: the
CMIP5 and CMIP6 multi-model ensembles (amip simulations over the period 1979-2005), 10
individual years with the standard LMDZ6A configuration run on climatological SSTs, the re-
sults of the wave 1 and 20 of the first set of experiments and wave 31 and 32 of the second set
(second year of a 2-year long simulation run on climatological SSTs), the 5 best simulations of
wave 32 run over 10 years with climatological SSTs, and, at the top, the same 5 simulations run
over the 1979-2005 period with annually varying SSTs (amip protocol as for CMIP simulations).
Some simulations are highlighted with a colour code: for CMIP5 simulations, the blue and violet
colours correspond respectively to the 5A and 5B versions of LMDZ (the 5A version was run with
two different resolutions). The red colour is used for the 6A version of the LMDZ model, the
green to the 5 best simulations and the orange to the best one. The vertical lines correspond to a
zero bias (black) and RMSE of the CMIP6 IPSL-6A-LR configuration (red dashed).
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color code for the IPSL CMIP configurations is: 5A (blue), 5B (violet), 6A (red), BEST (gold).

The two gold points correspond to the best tuning (simulation CM62-LR-01 corresponding to
simulation 35 of wave 32) and a second one with the parameter CLC slightly increased (simula-

cycle (12 monthly means) after interpolation on a 120x90 regular longitude-latitude grid. The
tion CM62-LR-02, after a by-hand tuning) to cool the simulations.

diagnostics are shown for tropical latitudes (left, 35S:35N) and for the global ocean (latitudes

653:65N). All the CMIP5 (green) and CMIP6 (black) models available to us are shown. The

Figure 17.
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retuning. The global mean of the bias is removed to highlight the structure of the bias.
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The BEST1 simulation itself is a bit too warm. A second simulation is then run by
just readjusting the CLC parameter by hand, by running one sensitivity experiment
in forced mode to estimate the sensitivity of the global mean radiative balance to
the parameter (without worrying about whether all the parameters are in the NROY
space). For both simulations, the results are quite close to the 6A simulation. The
results are better in the tropics (355:35N) than for the full globe (65S:65N, removing
latitude beyond 65 degrees to avoid questions related to the sea-ice mask). This better
performance when focusing on the tropics is probably due to the fact that the East
Tropical Ocean warm bias is rather reduced in the BEST simulation compared to the
6A version while the circum-Antarctic warm bias is somewhat increased.

6 Discussion

Both in the 3-parameter and 9-parameter history matching, a multi-wave tuning
in SCM configuration is enough to partly constrain the radiative fluxes. It provides an
avenue for process-based improvement of climate models, from SCM to global coupled
model, following a rigorous approach.

6.1 Benefit for 3D GCM tuning

Though the 9-parameter history matching with increased vertical resolution does
not significantly improve the agreement with observations of the top-of-atmosphere
distribution of radiative fluxes in a 3D GCM, it should be kept in mind that we did
not include any parameters affecting the high clouds in the tuning procedure, which of
course would make the retuning easier by benefiting from a reasonable tuning of the
high clouds. It could be, for example, that there are some compensating errors in the
6A configuration between high and low clouds, in mid and high latitudes. Additionally,
the bias in the zonal mean may be partly related to the shifted position of the mid-
latitude jet which is particularly sensitive to the horizontal grid resolution, as seen on
the left hand side of Fig. 6 and Fig. 14, in particular in the southern mid-latitudes. In
addition the control simulation considered here was the product of a long phase of a
careful tuning of the global model, in which the metrics used here were explicitly high
priority targets. Though we can be confident in the processes resulting from our tuning
(for low clouds), additional parameters may need to be exposed to tuning for the full
3D model (or similar strategies for process based tuning with relevant parameters for
other processes) to workaround existing compensating errors and to fully benefit from
our strategy.

Altogether, our results confirm that the proposed strategy is able to provide rea-
sonable tuning of a coupled model, by applying a rather systematic procedure making
use of machine learning techniques and starting from LES/SCM comparisons and with
only 9 parameters. This study shows how an improvement in the parameterization
can be implemented in the full 3D GCM with an automatic tuning procedure, avoid-
ing a long phase of by-hand retuning. The improvement tested here consists in the
increase of the vertical resolution together with allowing us to vary some additional
free parameters. As just shown, it is possible to better reproduce the 1D “transition
cases” with the modified scheme.

6.2 Enlightening the representation of cloud processes

In order to interpret further the modification induced by this new tuning at the
process scale, we show in Fig. 19 the internal variables of the thermal plume model
obtained with the ARM cumulus case at 2 to 3 PM local time and in afternoon and
evening of the third day of the SANDU/REF case. The vertical velocity is globally
overestimated in the cloud for the control simulation, when compared to the plume
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Figure 19. Vertical profiles of the internal variables of the mass flux scheme for the ARM
cumulus simulation averaged between 2 and 3 PM local time and for the SANDU/REF case,
averaged before noon and midnight during the third day of simulation. As in Fig. 11, we show
both the evolution of envelopes of the vertical profiles obtained with the L.95 vertical grid and
I'.=0.03 for successive waves as well as individual curves: LES (blue), LMDZ6A with nominal
values of the parameters (black), the best simulation obtained with SCM tuning (red, the 76th
simulation of wave #26 named SCM-26-076) and the BEST cases retained after subsequent 3D
GCM tuning (gold). For the LES, we consider only one simulation and show for each case two
ways of sampling the LES results. For the ARM case, we use the tracer-based sampling used for
instance by Jam et al. (2013). For the SANDU case, in the absence of tracers in the simulations,
we use the sampling retained by Hourdin et al. (2019). Compared to the standard sampling, the
core sampling imposes that the sampled points show an excess of virtual potential temperature

when compared to the horizontal average, retaining only points with positive buoyancy.
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velocity sampled in LES, and slightly underestimated near the surface. The retuned
version amplifies the overestimation in the cloud. This could be seen as a degrada-
tion of the scheme or question the way thermals are sampled in LES. We could have
selected more active parcels by using a more restrictive sampling threshold as illus-
trated by retaining only points with positive buoyancy (core sampling, blue dots).
In the end, what really matters for the transport is the mass flux. It appears that
the vertical velocity increase is in part compensated by a reduction of the fractional
cover attributed to convective plumes leading to a very similar mass flux, constrained
by the requirement to faithfully represent the clouds, as imposed through the history
matching procedure.

We observe that the procedure tends to favour tuning with stronger velocity,
which can be related to the use of values of coefficient B1 much smaller than one.
This coefficient enters in the definition of both entrainment and detrainment, and
would be 0 for a plume with conserved mass flux, which would just accelerate without
entraining air from the mixed layer (in which case the plume fractional cover decreases
when the plume accelerates), and 1 for a plume that would entrain enough air to keep
its fractional cover constant.

With this stronger vertical velocity, the plumes are able to overshoot a bit higher
above inversion, helping the clouds to develop more efficiently on the vertical, without
significantly affecting the other aspects.

A possible interpretation of the above result, therefore, is that the air parcels
that really contribute to vertical transport and should then be targeted by the pa-
rameterization, are the core of the plumes, which are less subject to entrainment.
This highlights the importance of being able to sample structures responsible for the
vertical transport in LES but also raises the question about the degree to which the
internal variables should be tuned against some equivalent diagnostic in the LES. As
already explained, LES were used to inspire the parameterizations, i. e. to identify
the mathematical functions that relate internal variables to the large scale state vari-
ables, and then to compute the tendencies to be incremented on those state variables.
The representation of this final tendency, and its dependency to input state variables
may be seen as more important targets than the accurate representation of internal
variables, suggesting not to push too far the procedure of fitting the details of those
internal variables. However, a correct profile of vertical velocity or entrainment may be
needed if these variables are used in other parts of the model, e.g. parameterizations
of microphysics. The automatic tools presented here now permit us to address such
questions in more detail.

6.3 Keeping physics at the model heart

Note that having a reasonable representation of mass fluxes at the core of boundary-
layer parameterizations is important to ensure the robustness of the parameterizations
when exploring very different regimes from those which were explored in the SCM/LES
machine learning sequence. It also allows us to transport any sort of tracer with the
mass flux without needing an additional tuning of the tracer tendencies. On the other
hand, a direct application of machine learning to predict the vertical profiles of heat-
ing, moistening and wind acceleration from the model state variables, as proposed by
Krasnopolsky et al. (2013); Brenowitz and Bretherton (2018); Gentine et al. (2018),
would offer no guarantee that the model behavior would be at all physical for these
“out of sample” situations, and would require an independent learning for any new
combination of atmospheric constituents.
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7 Conclusions

This paper presents a first proof of concept of the use of history matching to
go from a process-based parameterization improvement to a new model configuration.
More specifically, it presents a successful exercise of tuning of a global climate model
with an automatic procedure after some improvement was introduced concerning the
representation of boundary layer processes and associated clouds.

It should be noted that the availability of this tool is a necessary condition for
the success of the exercise, but that it does not in any way detract from the importance
of the modelers expertise. It must be underlined indeed that this result was obtained
after significant work was done by the authors in tuning the 6A version of the LMDZ
model by hand. So a good idea of the relevant metrics to be used and associated error
was already there, a key ingredient for the success of the history matching procedure.
We must, therefore, underline the following point: the tool is automatic and objective
in the sense that, once one has specified physically-relevant and useful metrics, their
measurement errors and tolerance to model error, the procedure will locate the con-
forming parameter space automatically. The choice of those metrics and tolerances
is and will remain, however, a subjective expert judgment. The number of uses of
a climate model is almost infinite (let’s just consider so-called impact studies on any
location over the globe), and so is the number of possible metrics. Discussing the
advantages and rationale for the choice of particular sets of metrics and tolerance will
not disappear. However, it is now possible to quantify the impact of such choices and
to do so far more quickly than before.

Another by-product of the present study is to suggest that the standard 6A ver-
sion of the LMDZ model was probably rather well tuned, at least for the parameters
considered here. However, it is possible that the previous tuning was obtained thanks
to compensating errors with high clouds which are not directly affected by the param-
eters selected in the present study. It is possible as well that the fine tuning of the
parameters of the thermal plumes does not matter that much. So at least we obtained
automatically a tuning as good as the previous one, after modification that improved
the agreement at a process level. Possibly as well, the tuning could be even better if we
had enabled retuning with other parameters. Note that the value retained for the DZ
parameter is a bit larger when the 9-parameter tuning is used, probably suggesting a
compensation with more penetrative plumes obtained when reducing the value of B1.

Altogether, this tuning process may seem quite costly. Each SCM simulation used
here lasts between half a day and three days depending on the case (typically 1 second
CPU time on an intel processor). Typically 10 days altogether for one parameter
choice. With 20 waves of 100 simulations, it is like running 1 day of simulation on a
200x100 grid (typically a lower bound of the current CMIP grid size). Even with a
larger number of cases, days and parameter space, this step will remain cheap. The
following 3D waves are much more costly. A lot can be done for radiative effect of
clouds with 1-year long simulations forced by SST, which already means hundreds of
simulations. Note however that those hundreds simulations can be run with a perfect
scalability on large parallel computers. Note also that control coupled atmosphere-
ocean simulations typically last 1000 years to reach a quasi-steady state of the deep
ocean. The tuning of the IPSL-CM6A configurations, including atmospheric tuning
and long-term coupled simulations is equivalent to about 20 000 years run over the
2 years of the model preparation. In order to save computer time, various strategies
are foreseen like using coarser grid for preconditioning the finer grid tuning, using
short-term simulations with nudged winds, etc. The transition from forced-by-SST to
coupled simulations will be an important practical issue as well.

In any case, the preconditioning of 3D GCM tuning by SCM simulations is ex-
tremely efficient and should be generalized. It requires a rigorous definition of the LES
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and SCM setups, to avoid compensating for setup errors during the tuning process,
as well as testing the model in a configuration that creates some unwilled numerical
problems specific to the 1D framework. Extension of the set of LES test cases is an
issue as well. In particular, it would be very important to share well-established and
validated LES configurations with deep convection and high clouds if wanting to ob-
tain for the tuning of convection and high clouds a similar gain in efficiency as the one
obtained here for boundary layer convection and associated clouds.

By carrying out this systematic work and sharing the tools with other teams, and
by promoting this approach of tuning combining series 1D cases with 3D simulations,
we hope to achieve a faster and more efficient improvement of the climate models
involved in the anticipation of climate change. We hope that, relieved of the burden
of manual calibration, model developers will spend far more time proposing new ideas
for physics-based parameterizations and testing them in global models.

Acknowledgments

This work received funding from grant HIGH-TUNE ANR-16-CE01-0010. It was sup-
ported by the DEPHY2 project, funded by the French national program LEFE/INSU.
The 3D simulations were granted access to the HPC resources of IDRIS under the
allocation gencmip6 attributed by GENCI (Grand Equipement National de Calcul
Intensif) and the ressources of TGCC from a Prace allocation to the “QUEST”
project. The data that supports this research and the visualizations are available
at https://doi.org/10.14768,/20190626001.1. Daniel Williamson was funded by NERC
grant: NE/N018486/1 and by the Alan Turing Institute project “Uncertainty Quan-
tification of multi-scale and multiphysics computer models: applications to hazard and
climate models” as part of the grant EP/N510129/1 made to the Alan Turing Institute
by EPSRC.

References

Andrianakis, I., Vernon, 1., McCreesh, N., McKinley, T. J., Oakley, J. E., Nsubuga,
R. N., ... White, R. G. (2017). History matching of a complex epidemiological
model of human immunodeficiency virus transmission by using variance emu-
lation.  Journal of the Royal Statistical Society: Series C (Applied Statistics),
66(4), 717-740. Retrieved from https://rss.onlinelibrary.wiley.com/
doi/abs/10.1111/rssc.12198 doi: 10.1111/rssc.12198

Ayotte, K. W., Sullivan, P. P., Andrén, A., Doney, S. C., Holtslag, A. A., Large,

W. G., ... Wyngaard, J. C. (1996). An evaluation of neutral and convective
planetary boundary-layer parameterizations relative to large eddy simulations.
Boundary-layer Meteorol., 79, 131-175.

Brenowitz, N. D.; & Bretherton, C. S. (2018, June). Prognostic validation of a
neural network unified physics parameterization.  Geophys. Res. Lett., 45(12),
6289-6298. (W0S:000438499100052) doi: 10.1029/2018GL078510

Bretherton, C., & Smolarkiewicz, P. (1989). Gravity waves, compensating subsidence
and detrainment around cumulus clouds. J. Atmos. Sci., 46, 740-759.

Brown, A., Cederwall, R., Chlond, A., Duynkerke, P., Golaz, J.-C., Khairoutdinov,
M., ... Stevens, B. (2002). Large-eddy simulation of the diurnal cycle of shal-
low cumulus convection over land. Q. J. R. Meteorol. Soc., 128, 1075-1093.

Couvreux, F., Guichard, F., Redelsperger, J. L., Kiemle, C., Masson, V., Lafore,

J. P., & Flamant, C.  (2005).  Water-vapour variability within a convective
boundary-layer assessed by large-eddy simulations and THOP_2002 observa-
tions. Q. J. R. Meteorol. Soc., 131, 2665-2693.

Couvreux, F., Hourdin, F., & Rio, C. (2010, March). Resolved Versus Parametrized
Boundary-Layer Plumes. Part I: A Parametrization-Oriented Conditional Sam-
pling in Large-Eddy Simulations. Boundary-layer Meteorol., 134, 441-458. doi:

—35—



901

10.1007/510546-009-9456-5

de Roode, S. R., Siebesma, A. P., Jonker, H. J., & de Voogd, Y. (2012). Parame-
terization of the vertical velocity equation for shallow cumulus clouds. Monthly
Weather Review, 140(8), 2424-2436.

Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G., & Yacalis, G. (2018, May).
Could machine learning break the convection parameterization deadlock?
Geophys. Res. Lett., 45, 5742-5751. doi: 10.1029/2018GL078202

Grandpeix, J., & Lafore, J. (2010, April). A Density Current Parameterization Cou-
pled with Emanuel’s Convection Scheme. Part I: The Models.  Journal of At-
mospheric Sciences, 67, 881-897. doi: 10.1175/2009JAS3044.1

Gregory, D.  (2001). Estimation of entrainment rate in simple models of convective
clouds. @. J. R. Meteorol. Soc., 127, 53-72.

Hourdin, F., Couvreux, F., & Menut, L. (2002). Parameterisation of the dry con-
vective boundary layer based on a mass flux representation of thermals. J. At-
mos. Sci., 59, 1105-1123.

Hourdin, F., Grandpeix, J.-Y., Rio, C., Bony, S., Jam, A., Cheruy, F., ... Roehrig,
R. (2013, May). LMDZ5B: the atmospheric component of the IPSL climate
model with revisited parameterizations for clouds and convection. Clim. Dyn.,
40, 2193-2222. doi: 10.1007/s00382-012-1343-y

Hourdin, F., Giinusid-Bogdan, A., Braconnot, P., Dufresne, J.-L., Traore, A.-K., &
Rio, C. (2015, December).  Air moisture control on ocean surface tempera-
ture, hidden key to the warm bias enigma.  Geophys. Res. Lett., 42, 10. doi:
10.1002/2015GL066764

Hourdin, F., Jam, A., Rio, C., Couvreux, F., Sandu, I., Lefebvre, M.-P., ... Idelkadi,
A. (2019). Unified parameterization of convective boundary layer transport and
clouds with the thermal plume model. Accepted in JAMES.

Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.-C., Balaji, V., Duan, Q., ...
Williamson, D. (2017, March). The Art and Science of Climate Model Tuning.
Bull. Am. Meteorol. Soc., 98, 589-602. doi: 10.1175/BAMS-D-15-00135.1

Hourdin, F., Rio, C., Grandpeix, J.-Y., Madeleine, J.-B., Cheruy, F., Rochetin, N.,
... Ghattas, J.  (2020). LMDZ6A: the atmospheric component of the IPSL
climate model with improved and better tuned physics. James, accepted for
publication.

Hourdin, F., Rio, C., Jam, A., Traore, A. K., & Musat, I. (2020). Convective bound-
ary layer control of the sea surface temperature in the tropics. James, accepted
for publication.

Jam, A., Hourdin, F., Rio, C., & Couvreux, F. (2013, June). Resolved Versus
Parametrized Boundary-Layer Plumes. Part III: Derivation of a Statistical
Scheme for Cumulus Clouds.  Boundary-layer Meteorol., 147, 421-441.  doi:
10.1007/s10546-012-9789-3

Kohler, M., Ahlgrimm, M., & Beljaars, A. (2011, January). Unified treatment of dry
convective and stratocumulus-topped boundary layers in the ECMWEF model.
Q. J. R. Meteorol. Soc., 137, 43-57. doi: 10.1002/qj.713

Krasnopolsky, V. M., Fox-Rabinovitz, M. S., & Belochitski, A. A. (2013, March).
Using ensemble of neural networks to learn stochastic convection parameteriza-
tions for climate and numerical weather prediction models from data simulated
by a cloud resolving model.  Advances in Artifical Neural Systems, 203(3), 13.
doi: 10.1155/2013/485913

Loeb, N. G., Wielicki, B. A., Doelling, D. R., Smith, G. L., Keyes, D. F., Kato,

S., ... Wong, T. (2009, FEB). Toward Optimal Closure of the Earth’s
Top-of-Atmosphere Radiation Budget. J. Climate, 22(3), 748-766. doi:
{10.1175/2008JCLI2637.1}

Rio, C., & Hourdin, F. (2008). A thermal plume model for the convective boundary
layer : Representation of cumulus clouds. J. Atmos. Sci., 65, 407-425.

Rio, C., Hourdin, F., Couvreux, F., & Jam, A. (2010, June). Resolved Versus

—36—



956

957

958

959

960

961

962

963

964

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

984

985

986

987

989

990

991

992

994

995

996

Parametrized Boundary-Layer Plumes. Part II: Continuous Formulations of
Mixing Rates for Mass-Flux Schemes. Boundary-layer Meteorol., 135, 469-483.
doi: 10.1007/s10546-010-9478-z

Salter, J. M., & Williamson, D. (2016, December). A comparison of statistical emu-
lation methodologies for multi-wave calibration of environmental models. Enwvi-
ronmetrics, 27(8), 507-523. (W0S:000392948100005) doi: 10.1002/env.2405

Sandu, I., & Stevens, B. (2011, September). On the Factors Modulating the Stra-
tocumulus to Cumulus Transitions.  J. Atmos. Sci., 68, 1865-1881.  doi: 10
.1175/2011JAS3614.1

Siebert, P., & Frank, A. (2003). Source-receptor matrix calculation with a la-
grangian particle disperion model in backward mode. Atmos. Chem. Phys.
Discuss., 3, 4515-4548.

Simpson, J., & Wiggert, V. (1969). Models of precipitating cumulus towers. Mon.
Wea. Rev, 97(7), 471-489.

Sundqvist, H. (1978, July). A parameterization scheme for non-convective condensa-
tion including prediction of cloud water content. Q. J. R. Meteorol. Soc., 104,
677-690. doi: 10.1002/qj.49710444110

Sundqvist, H.  (1988).  Parameterization of condensation and associated clouds in
models for weather prediction and general circulation simulation. physically-
based modelling and simulation of climate and climatic change.  Kluwer Aca-
demic Publishers, Dordrecht, the Netherlands.

Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012, April). An Overview of CMIP5
and the Experiment Design.  Bull. Am. Meteorol. Soc., 93, 485-498.  doi: 10
.1175/BAMS-D-11-00094.1

Vignon, E., Hourdin, F., Genthon, C., Gallée, H., Bazile, E., Lefebvre, M.-P., ...
Van de Wiel, B. J. H. (2017, July). Antarctic boundary layer parametrization
in a general circulation model: 1-D simulations facing summer observations at
Dome C. J. Geophys. Res., 122, 6818-6843. doi: 10.1002/2017JD026802

Williamson, D., Blaker, A. T., Hampton, C., & Salter, J. (2015, September). Identi-
fying and removing structural biases in climate models with history matching.
Clim. Dyn., 45, 1299-1324. doi: 10.1007/s00382-014-2378-z

Williamson, D., Blaker, A. T., & Sinha, B. (2017, April). Tuning without
over-tuning: parametric uncertainty quantification for the NEMO ocean
model.  Geoscientific Model Development, 10(4), 1789-1816.  doi: 10.5194/
gmd-10-1789-2017

Williamson, D., Goldstein, M., Allison, L., Blaker, A., Challenor, P., Jackson, L.,

& Yamazaki, K. (2013, October). History matching for exploring and reduc-
ing climate model parameter space using observations and a large perturbed
physics ensemble. Clim. Dyn., 41, 1703-1729. doi: 10.1007/s00382-013-1896-4

Yamada, T. (1983). Simulations of nocturnal drainage flows by a ¢! turbulence clo-
sure model. J. Atmos. Sci., 40, 91-106.

—37—



Figure 1.



Thermal plume model Large scale condensation scheme
Computing subgrid water distribution

......... . Computing plume properties
Sketch of - (2.0,,0,W)=Gy,(9,,,,A1,A2,B1,CQ,DZ) omv;g%gwgqm,qm,qt,engztzi)l)
Tl st =g W Asar: At thr At enve
clouds formation and ~""---. Transporting water and temperature "7 saTtnen

Converting total water to cloud

......... (b 060y, )= FenCed, .0, w,6,,0,)
(01199 =F it A, thr A envs Ot Teny) p

= N
y

water vertical transport
€ € ¢ Small scale turbulence f Surface evaporat|on"~~

n

/Q Boundary layer convection f} Entramment/detrammenti i *
Cumulus "':1; Evaporating Precip
e B , ®,P,59,)=F,,.(P.q,EVAP)
\ (‘\"“’) Stratocumulus T At env H
\ S p Converting to Precip
A VN O SERIE
/\ i K p
é Ve ‘ Senv 0 Stn 5= QG |
E/ASCendlng\* A =1 iy, T Faa ) *
H plume 9= q,*q



Figure 2.



IIIIIIIIIIIIIIIIIII

GO L95B

O—8 CMIP6-L79

0

O—8 CMIP6-L79
GO L95B

1
0 0

.1

0

2

1 1
03 04
dZ (km)

0

.5

0

.6

0

N




Figure 3.



Mask Variable Metrics target error
Wm2 Wm?

Total rad. TOA (1) glob.rt 2.5 0.2
otal raqa. I
Swup TOA (rsut) glob.rsut 99.6 5
circAa.rsut 24.0 5
Convective, intermediate, subsiding  Circum Antact. anomaly circAa.rlut -48.6 5
- 5 [ crean S subs.rsut 84.9 5
. [ . / SWi
LWE;’ TTg/f ((rﬁ?)t) weak.rsut 81.8 5
conv.rsut 103.2 5
subs.rlut 274.6 5
weak.rlut 264.3 )
Eastern Tropical Ocean anomaly SWup TOA (rsu) conv.rlut 235.8 5
etoa.rsut 11.0 5




Figure 4.



Wave 1

DZ

EVAP

’ .
e
&

CLC

Remaining space:0.4004352

Wave 5

DZ

EVAP

-
o«
W‘é
-

[

CLC

Remaining space:0.1170464

Wave 20

DZ

EVAP

CLC

Remaining space:0.0045946

o015

010



Figure 5.



0.2,L79
0.12, L79

0.2, L95
0.12 L95

M=

—_- T,
I,
— T,

10
Wave number

G Z=40IND

€=401n)

10° 5

T

9
o
—

uonoel) AOYN

10

7
o
—

20

15



Figure 6.



crest

Zonal mean

|20S:55] longitudinal cross section

—30
—30 41

crest
|
o
o
|

—60 1

—90

CTRL (4 years)
— OBS
CTRL (4 years)
m— OBS
-90 -60 -30 0 30 60 90 —-180 —-150 —-120 -90
Latitude

—90 1

—120 Pacific Atlantic

-60 -30 0

30
Longitude



Figure 7.



3D alone, Wave 1

.

- N

EVAP

CLC

Remaining space:0.0276652

1D+3D, Wave 1

DZ

S

EVAP

Remaining space:0.0037352

1D+3D, Wave 20

EVAP

.

Remaining space:0.000696




Figure 8.



"I

V@
m

-ﬂr rtlﬂa]'.‘“r

3 |@NIN

> onr.. ‘. ] . m g

T = [

it

.
) [

N— ——
) —Mr

[} 4 ©
5 e
S—1 H
" v E »
D . >
(@) - T
o | |

3
(o]
e}
©
o
g ¢
w
o1
N

L] ]
' T t —]MJ:D]
o o o =) ° o : !
o o o o 2 o o o
o o = = 3 3 S S
() o o s I} 8 3 5




Figure 9.



| AR

F e

30 [0 [plo [min|a &

Bo/ob o]

| [ - .

ite] - IIIIIW

| ‘L \j

o7 'ﬁ‘ ,—‘ r\ 0.002

::'é:-wﬁﬂ

: [—— 0.001
: : . EVAP
L) . . * .

0 [F———]

Remaining space:0.0002012 >



Figure 10.



NROY fraction

10° g
1071
1072 |
1073 -

1074 4

(it

T
— [,=0.12, L79
,=0.06, L79
,=0.03, L79

— [,=0.12, L95

,=0.06, L95
,=0.03, L95

O —n

N |~ =
I il ~—— a\E
E TR
@] O S
5 1|0 1|5 2|0 2l5 3|0

Wave number




Figure 11.



Altitude (m)

Altitude (m)

Altitude (m)

IHOP/REF: 2002-06-14 13:30

2400 A
2100 +
1800 1
1500 1

1200 4
LES

LES ensemble
SCM_26-076
BEST

scM

J WAVEL

| WAVE3

3007 | WAVE7
WAVE30

900

600 -

T
314

2400 4

2100 1

1800 1

1500

12001

900

600

300

0 AN
0.000.15 0.30 0.45 0.60 0.750.90 1.05 1.20
Qv (a/kg) %1072

2400 1§
2100
1800 1
1500 *“'
1200 +

900 1§

600

300 1§

o T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Acld

Altitude (m)

Altitude (m)

Altitude (m)

ARMCU/REF: 1997-06-21 20:30

3200 4
2800 4
2400 {
2000 4
1600
LES
1200 — LES ensemble
] m— SCM_26-076
BEST
800 4 —5CM
/ WAVEL
Yy WAVE3
400 7 / WAVE?
/
_ WAVE30
0 T T T
299 304 309 314
8 (K)
3200 1
2800
2400
2000
1600
1200
800 7
400
0 A A s
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Qv (9/kg) x1072
3200
|
400

0 I A A A I I A
0.000.040.080.120.160.200.240.280.320.360.40

Qcld

Altitude (m)

Altitude (m)

Altitude (m)
&
8
e

RICO/REF: 2004-12-27 21:30

3200 4
2800 o
2400 4
2000 4
1600
— LES
1200 - ¥ — LES ensemble
= SCM_26-076
BEST
800 4 — SCM
WAVE1
WAVE3
400 WAVE?7
WAVE30
. T T T T
297 302 307 312 317
6 (K)
3200
2800
2400 1
2000
1600
1200 7
800 +
400
0 TRy
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Qv (g/kg) x107
3200
2800
2400

400

0
0.

L A A A A A A AN AR
000.050.100.150.200.250.300.350.400.450.50

Qeid



Figure 12.



SANDU/SLOW: 2006-07-18 00:00

2400 1
2100 1
1800
E 1500
@
Ef
2 1200
=
< e - LES
900 m— SCM_26-076
BEST
600 1 —SCM
WAVEL
WAVE3
300 1 WAVE7
WAVE30
0 : : : :
295 300 305 310 315
6 (K)

Altitude (m)

2400 1§

2100

1800 1

= =
N o
<} o
=) =3

0 TR
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Qv (g/kg) x107

900

600

300 1

o T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Acld

2400

2100 +

Altitude (m)

Altitude (m)

Altitude (m)

I =
) @
<] s}
=] 5]

L L

2400

2100 -

1800 -

= =
o o
=} =3
=) =3
L L

SANDU/REF: 2006-07-18 00:00

LES
SCM_26-076
BEST

SCM

WAVEL
WAVE3
WAVET
WAVE30

900

T T T
305 310 315

8 (K)

T
300

900 1

600

300 4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
O (g/kg) x1072

2400

2100

1800

o
o
=3
=3

=
o
=}
=)

0 T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Qcid

SANDU/FAST: 2006-07-18 00:00

2400 § /, /
’J‘
/
2100 q y
1800
£ 1500 4
@
o
2 1200
=
< 200 ] LEs
SCM_26-076
BEST
600 ] SCM
WAVEL
WAVE3
300 4 WAVE7
WAVE30
295 300 305 310 315
8 (K)
2400
2100
1800 §
£ 15001
@
©
2 1200
<
900 1
600 1
300 1
0 e T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Qv (g/kq) x1072
2400
2100 Ko ——
1800
— H
£ 1500
o /4
©
2 1200
< -
900
600
—
300

o] T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Qcid



Figure 13.



i SEAR S

W

Wﬂ

7 WT

SEANEE

il

j

W

]

s i ﬁ
Dz
o w wu ﬁ‘ I—‘ I—‘

. 4e-0.

s r— : —

: BG2 ‘K j |l —

5 [ g_

: A S EVAP E; §

. i =
Remaining space:3.94e-05  =*°

3zoc)

22222



Figure 14.



crest

Zonal mean

—30

—60

-90

-90

0
Latitude

— Wave 31
Wave 32

—— CTRL (4 years)
BEST

m— OBS

crest

[205:55] longitudinal cross

section

—90

Wave 32
—— CTRL (4 years)

BEST

- OBS
~120 Pacific
-180 -150 -120

Stcu

-90 —60
Longitude

Stcu
Atlantic
-30 0 30



Figure 15.



Err/std

10

0.1

Simulation ranking

I

S, | * .
= o v * S ] |y
= e ke Sl mem e e WiEST g -
g X = L T " Wpow °F N 7]
Ko U P P s
L. Qo ° b " f. ..j_
E " e I N S
0 20 40 60 80

glob.rt

glob.rsut
etoa.rsut
circAa.rlut
circAa.rsut

conv.rlut
conv.rsut

weak.rlut
weak.rsut
subs.rlut
subs.rsut




Figure 16.



RMSE
BIAS

MSE
IAS

A3

& WD

&+ -

+ »

s -

— -
Hifl e
H -

T
20

SW CRE (W m~2)

LW CRE (W m™2)

T
2

Precip (mm/day)




Figure 17.



655-65N

355-35N

+ ++
+ | &
+ -
+

+
+4+ 04 + + +

+

- _ o
: + -
++ 4t o+ The N
+ e
+ +

THFNISCNOZMOHNCAINS V)

NESMUSS SIS0 NTOSSNESOTEXS EriUrod-INnHra s OUOMMNOSUS O Ta0MONOM-JT e

S35 7075 0MAbZ TP A= TS 0SS0 PV OWsS SIS Anns T L AT A T Q5 S ASmE = = NP0 LSS OGN £ YRS HV0S SN
O S VAl R ey SN ORI A L Sty Suelerr A A= G IS SR S dele S
205 S SRR ONRS  LO LS SOUSHE = ORI SN0 10 DR RS o= AR S 0D LR E2DBVEECH (A0
D@Aa= WSHEISE0W NSO = i WYRS 0Tt FSUIE QY ARSH SZ0FONS T LNY! TuNOE=E coY L ==50% 80,
B9R00 a2ooz0evs0tns (CLi07 020000 Lngzadans s s o AIChSSEE0RET0Rs Fo2 1EUR0 30T 728000
SO¥ss =SI<20 3x 2WO I3EY 4OMRls  WEZTSppss-oosss QOO0 W BuE  LSLogWs Toc = s g
mosfe % U T3 = i g@eT= T §°© z S U= & I03 O va O R a
] [s] g = ] ] g =z = = w €]
® @ o 3 5 o
2 ] ]
) T

1N}

chN

ocm [ ]

+ =+ +

||

NIE

+ + N
+
+ T T+

+
+ -+
+ + L
+ + ¢an.T L.¢nTT

NS NNZ S S S HCONOS M - NUMENE NS OXNHOZA SN .S DVMS S —IoiS = 00X S OINUHENOZMNOZOBTUS NTAMOMWS SMIrcr SO
et e e U o O M A EAD e Y A R W w e A S lw A G Wit = e =Y

= Q= [ : Py 10> ESP0NO preleRAAnd i - a cou 7
B ST R S ol et S et ooy O o)
: Y WSEESH- SSLS0d 0SSHLomNZ TAS cuc ot P L ES NV NOS TSRS oIy ~02® (205 55
R e O o e S e e i i e G e e oE e
als 26 9EE ShU UBZR0NE sasgx 0%On WE R Or 25 SEORTWERLY BIRERASICTSZ SSW S goe
S0 L m) > aa 9 Tz O OT 0 *0 Og 2ZZ § 200y T o z7o =g 2Y;

w5 = =2 w A0 & e} 2 o o < o ==9
G © 2 a = O = = 3 < ©
o B w vl © s
@ T [v] w =
I [}

Ts (K)

Ts (K)



Figure 18.



60°N —

60°S

60°N —

60°S

60°N —

60°S

30°E 90°E 150°E 150°W 90°W 30°W



Figure 19.



AMRCU/REF

e LEosamping 3200 3200 3200
3200 o o LEScore 3200 4
- sCM L
2800 = SCM_26-076 2800 1 2800 w0l ——
BEST 2800 =
WAVEL ) Y
1 2400 '
2400 WAVE3 2400 2400 2400 L /
_ WAVE? _ _ . fo
£ 2000 WAVE30 £ 2000 £ 2000 = £ 2000
= E 2000
Q @ @ Q
El 3 b 3 % E
2 4 £ 1600
2 1600 2 1600 2 1500 S 1600 \ £
2 E E £ X 2
1 < ‘) - X
1200 1200 1200 1200 1 \\\ 1200 \ ¢
800 800 s 800 800 \ 800 | "
400 400 - | a0 400 ] 400 /
0 Frrr 0 = 0 o] 0 e
0.000.030.060.090.120.150. 180.210.240.270.30 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 12.0 0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 12.0 000020, 040,060 0 20. 100. 120, 140,160,120, 20 0.0 0.6 1.2 1.8 2.4 3.0 3.6 42 4.8 5.4 6.0
fkg m™2s71) e(m™) x107 & (m™1) x10° a Wen (M s7)
2250 2250 2250
2250 2250
= ES sampling )
1 ® o LES core 2000 2000 \ 2000
2000 —SCM 2000 4
A m—SCM_26-076 ! 1750
] 1750 4 1750
1750 BEST 1750 4
WAVEL
WAVE3 ]
1500 1500 1500 1500
_ WAVE? ~ ~ 1500 -
WAVE30 = £
£ 12501 £ 1s0] E 1o £ = 1250
P o o = 1250 o
° b1 T o 5
2 ] £ 1000 2 1000 3 2 1000
£ 1000 = =] £ 1000 { =
< < < 2 <
750 \ N 750 7 750 750 R\
500 500 500 1 500
\\ 500 ) /
250 /) 250 250 250 4 250 /
0 0 0 0
G AR MG s A et i A T P e e 0 ——_—— RasAasassesmneaRLe
0.000.030.060.090.120.150.180.210.240.270.30 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 12.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 12.0 000,020, 040.060.080. 100. 120, 140,160 130, 20 0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4 6.0
f(kgm=2s71) ! x10~ &(m1 x10~ a Wi (M s~



	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4
	Figure 5 legend
	Figure 5
	Figure 6 legend
	Figure 6
	Figure 7 legend
	Figure 7
	Figure 8 legend
	Figure 8
	Figure 9 legend
	Figure 9
	Figure 10 legend
	Figure 10
	Figure 11 legend
	Figure 11
	Figure 12 legend
	Figure 12
	Figure 13 legend
	Figure 13
	Figure 14 legend
	Figure 14
	Figure 15 legend
	Figure 15
	Figure 16 legend
	Figure 16
	Figure 17 legend
	Figure 17
	Figure 18 legend
	Figure 18
	Figure 19 legend
	Figure 19

