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Abstract

Synthetic aperture radar (SAR) is an important means of obtaining battlefield information. Correct identification of SAR

images is essential. Hence, we propose a new method of SAR image recognition based on multi-feature fusion. Convolutional

neural networks (CNNs) are based on local pixels and fuse this information at deep layers to obtain deep features. The moment

method focuses on the entire image and obtains global moment features of different orders. We fuse the two feature types and

choose a suitable feature fusion. First, we propose a Q sigmoid function to enhance SAR image contrast, and then we separate

the target area and remove noise interference. Next, we design a convolutional neural network to obtain the deep features of the

target from the separated image. Then, we use four moment methods to produce the moment features of the image and sort

them according to recognition rate. Finally, the above features are fused and sorted according to recognition rate to find the

optimal combination. The recognition rate of our optimal fusion is 98.63%, which is 2.77% higher than is obtained by CNNs

and 6.32% higher than moment methods.
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Abstract 

Synthetic aperture radar (SAR) is an important means of obtaining battlefield information. Correct 

identification of SAR images is essential. Hence, we propose a new method of SAR image 

recognition based on multi-feature fusion. Convolutional neural networks (CNNs) are based on 

local pixels and fuse this information at deep layers to obtain deep features. The moment method 

focuses on the entire image and obtains global moment features of different orders. We fuse the 

two feature types and choose a suitable feature fusion. First, we propose a Q_sigmoid function to 

enhance SAR image contrast, and then we separate the target area and remove noise interference. 

Next, we design a convolutional neural network to obtain the deep features of the target from the 

separated image. Then, we use four moment methods to produce the moment features of the image 

and sort them according to recognition rate. Finally, the above features are fused and sorted 

according to recognition rate to find the optimal combination. The recognition rate of our optimal 

fusion is 98.63%, which is 2.77% higher than is obtained by CNNs and 6.32% higher than moment 

methods. 

1 Introduction 

Synthetic aperture radar (SAR) is an active remote sensor with its own illumination; thus, it does 

not depend on light levels and can be used in all weather and in both day and night conditions 

(Brown, 1967). SAR images differ from optical images in several ways: (1) target size does not 

change with distance between sensor and target; (2) scene information is determined by amplitude 

of radar reflection and scattering; and (3) the image is highly sensitive to changes in target shape 

and attitude (El-Darymli et al., 2016). These characteristics make SAR a reliable instrument for 

collecting information, giving it important applications in both military and civilian fields (Cohen 

et al., 2016; Erten et al., 2016; Ugur et al., 2012). Many studies focus on SAR automatic target 

recognition (ATR) (He et al, 2014; Srinivas et al., 2014; Li et al., 2017), which can be divided 

mainly into feature-based methods and model-based methods (El-Darymli et al., 2016). Model-

based methods focus on model design, but it is difficult to build a general target model for the 

multi-classification task. This limits the recognition rate of SAR images. Feature-based methods 

focus on extraction of target features; highly descriptive features can generate higher recognition 

rates. Thus, to enhance feature description, we explore the SAR image recognition method based 

on feature fusion. 

Some classic feature-based methods, such as linear discriminant analysis (LDA) (Lu et al., 2003), 

principal component analysis (PCA) (Pei et al., 2016), and independent component analysis (ICA) 

(Wang et al., 2008), are sensitive to speckle noise and do not have rotation invariance, making 

these methods unsuitable for SAR image recognition. To overcome these problems, moment-based 

descriptors are applied to SAR image recognition. Raeisi (2018) extracted Zernike moment 

features of SAR images to distinguish oil from similar substances and achieved good results. 

Gishkori (2019) combined pseudo-Zernike moments with sparse representations for SAR target 

recognition. Pouya (2017) used Radial-Chebyshev moments on SAR target classification and 

achieved a 98.69% recognition rate for three target types. These successful applications indicate 

that moment features are suitable for SAR image recognition. Zernike moment (ZM) (Khotanzad 

& Hong, 1990), pseudo-Zernike moment (PZM) (Haddadnia & Faez, 2003), radial harmonic 

Fourier moment (RHFM) (Singh & Ranade, 2013), and Chebyshev-Fourier moment (CFM) (Zhu 

et al., 2016) have scale, translation, and rotation invariance in polar coordinates, making target 

recognition robust. Additionally, these four moment features yield feature extraction with low 
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computational cost and better performance than traditional features in SAR image recognition. 

Therefore, we implement these four moment methods for feature extraction. In addition to the 

moment feature, we implement convolutional neural networks (CNNs) in feature fusion. 

CNNs have achieved impressive results in image recognition (Krizhevsky & Sutskever, 2012), 

Compared with traditional methods, a CNN uses different kernels to convolve images to obtain 

feature maps, and the feature maps go through stacked layers to obtain deep features (Szegedy, 

2015). In contrast to a pre-designed manual feature, the deep feature shows better performance in 

optical image classification, due to the fact that the convolutional neural network is adaptive and 

does not require preset convolution kernels and parameters. This simplifies feature extraction 

without manual intervention and adjustment. Owing to the superiority of deep neural networks, 

several important studies on design of the deep learning architecture in SAR ATR have obtained 

excellent recognition rates (Chen et al., 2016; Ding et al., 2016; Kang et al., 2017). However, the 

deep feature itself does not have rotation, translation, or scale invariance. This invariance often 

requires corresponding transformation on the image dataset. For this reason, we propose 

integration of the moment feature to increase the invariance of the CNN feature. 

By fusing the moment feature and the CNN feature of SAR images, we find the optimal fusion 

and training classifier. First, we preprocess the SAR image to separate the target area. Then, we 

extract 100-dimensional moment features from the processed image. The four types of moment 

feature are PZM, RHFM, ZM, and CFM. We simultaneously build a new CNN to extract 128-

dimensional deep features of the image. The four moment features and deep features are then 

combined in different orders and sorted by their recognition rate. Finally, we select the feature 

combination with the highest recognition rate and evaluate its performance, while simultaneously 

comparing this method with other methods. 

This article proceeds as follows. Section 2 introduces the dataset and the main steps of our 

experiment. Section 3 presents our experimental results, comparing different feature combinations 

and determining the optimal feature fusion. Section 4 evaluates our method’s performance and 

compares it with other SAR ATR methods. Finally, Section 5 sets forth our conclusions. 

2 Materials and Methods 

Figure 1 shows a flowchart of our method. The input image goes through four steps: image 

preprocessing, feature extraction, several types of feature fusion and selection, and classification. 

In the following subsections, we preview the experimental dataset and the four steps. 
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Figure 1. Flowchart of proposed method—Convolutional neural network (CNN), pseudo-Zernike 

moment (PZM), Zernike moment (ZM), radial harmonic Fourier moment (RHFM), Chebyshev-

Fourier moment (CFM), "+" means find the optimal fusion. 

2.1 MSTAR dataset 

The MSTAR dataset is an SAR image set collected by high-precision beam-synthetic aperture 

radar, including a variety of Soviet military vehicles. The dataset is released by the US Defense 

Advanced Research Projects Agency (DARPA) and can be divided into standard operating 

condition (SOC) and extended operating condition (EOC). In this experiment, images under SOC 

are used, including 10 types of ground vehicle. Their collection pitch angles are 17° and 15°. 

Details of the dataset (target type, number of samples, collection pitch angle, picture size) are 

shown in Table 1. There are 2747 images at the 17° pitch angle and 2425 images at the 15° pitch 

angle, for a total of 5172 images. 

Table 1.  

MSTAR dataset for samples at different depression angles 

Vehicle class 17° Depression angle 15° Depression angle Image size 

BMP2 233 195 128@128 

BTR70 233 196 128@128 

T72 232 196 128@128 

BTR60 256 195 128@128 

2S1 299 274 158@158 

BRDM2 298 274 128@129 

D7 299 274 177@178 

T62 299 273 172@173 

ZIL131 299 274 192@193 

ZSU-23-4 299 274 158@158 

2.2 Preprocessing 

SAR images show serious interference from noise in the dataset. Each image includes the target, 

background noise, and target shadow area. Preprocessing is implemented to remove noise and 

shadow, keeping only the target area, called the RoI (region of interest). The characteristics of the 

SAR image indicate that the RoI has high gray levels compared with shadow and noise area. This 

allows division of image preprocessing into the following steps: contrast enhancement, mean 

filtering, morphological operation, threshold processing, and finally, center-cropping. The 

processing steps are shown in Figure 2. 
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Figure 2. Segmentation process of a vehicle 

Existing contrast enhancement methods include the histogram method and the grayscale 

transformation method. Although these methods improve image contrast, noise is also transformed. 

Thus, we propose a new nonlinear grayscale transformation approach in which the mapping 

function is a variant of the sigmoid function. We call this the Q_sigmoid function:  

 
(1) 

 
Figure 3. Q_sigmoid function curves with differing k 

Figure 3 shows a set of curves when Q_sigmoid function parameter  takes different values. The 

horizontal axis represents the gray level of the original image, and the vertical axis is the gray level 

after mapping. It is possible that high gray level will increase through mapping, and low gray level 

will decrease; thus, image contrast could be enhanced. Our procedure sets the parameter . 

Figure 4 shows the results of SAR image contrast enhancement using different methods. 

Histogram equalization (c) brightens the noise, log transformation (d) fails to separate the 

background, while our method (b) highlights the target area (RoI) clearly. 
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a) Original image b) Q_sigmoid 

transformation 

c) Histogram 

equalization 

d) Log 

transformation 

Figure 4. Contrast enhancement via different methods 

After contrast enhancement, most noise is removed through filtering, but some information in the 

RoI area is also removed; it is necessary to correct this later. A morphological operation—

bwmorph (a command in the MATLAB toolbox)—is used for hole filling. Thresholding is then 

performed to obtain the binary map representing the RoI area. Due to shadow and noise, gray 

levels become very low after contrast enhancement; a low threshold should be accepted to retain 

the greatest possible RoI. We find that the proper threshold is in the range [0.5, 2.5]; this should 

be fine-tuned according to SAR working conditions. Finally, the binarized logical map of the RoI 

area is merged with the original image to obtain the segmented target image. It is then center-

cropped to acquire the target image with standard size 64 @ 64. 

2.3 Feature extractuon based on CNN 

In recent years, new networks have been proposed (Gu et al., 2018). Here, we refer to the He 

Kaiming (2016) Resnet network structure to create a CNN for feature extraction. This network 

features faster training and good image recognition performance. The network structure is shown 

in Table 2. a @ b represents the size of the kernel or graph. The parameters in ‘Output’ are 

channel_out and feature map size; channel_out represents the number of convolution kernels or 

the number of feature maps. The stride defaults to 1 if we do not instruct it. Convolution kernel 

and pooling kernel default size is 3 @ 3. 

Image input convolution network size is (1, 64 @ 64). The Pre_layer uses 5 @ 5 convolution 

kernels to obtain 32 feature maps. The size of the feature map is further reduced through 

maxpooling. Resblock is continuously stacked in Layers 1, 2, and 3 to improve network depth, 

which can improve recognition performance. Finally, the convolutional neural network converts 

128 feature maps into a vector in the feature layer through average pooling. The 128-dimensional 

vector is the feature extracted by CNN. 

Table 2.  

CNN structure 

Layer name Structure Output 

Pre-layer 
Conv (32,5@5, stride=2) (32,32@32) 

Max pool (2@2, stride=2) (32,16@16) 

Layer1 
Resblock1 (32,16@16) 

Resblock2 (32,16@16) 

Layer2 
Resblock1 (stride=2) (64,8@8) 

Resblock2 (64,8@8) 
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Layer3 
Resblock1 (stride=2) (128,4@4) 

Resblock2 (128,4@4) 

Feature layer Average pool (2x2) (128@1) 

Resblock refers to the shortcut structure of He. As shown in Figure 5, channel_out represents the 

number of feature maps after convolution; the default stride is 1. The stride of the first convolution 

layer in Figure 5 needs to be adjusted if we note in table 2 “structure” column. A shortcut structure 

can speed up the network without loss of depth. 

 
Figure 5. Structure of a Resblock 

During the CNN training process, we divide the dataset into three parts: 60% of images are used 

as the training set, 20% as the verification set, and the remaining 20% as the test set. Training 

continues until training loss is close to 0. Using CNN features to classify SAR images yields a 

recognition rate as high as 95.86%, and a total of 4963 images are correctly identified. 

2.4 Feature extraction based on moment methods 

For images, pixel coordinates can be regarded as a two-dimensional random variable (X, Y). A 

grayscale image can then be represented by a two-dimensional gray density function, so moments 

can be used to describe the characteristics of gray images (Teague, 1980). We use ZM, PZM, CFM, 

and RHFM to extract image features. The generalized moment function is as follows in Cartesian 

coordinates: 

, (2) 

where  and   are the polynomial basis,   is the digital image,  is order, and  is 

repetition. The four moment methods have different basis functions. Due to the fact that radial 

basis functions are completely orthogonal within the unit circle, we use a moment function in polar 

coordinates as 

. (3) 
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Figure 6. Two mapping relations of an image in a unit circle 

To make the extracted moment features invariant, it is necessary to map the image into the unit 

circle before calculating the moment. There are two ways to do this, as shown in Figure 6: an 

inscribed circle and a circumscribed circle (Cahndan & Sukhjeet, 2013). Generally, we would 

consider the circumscribed circle so that the moment feature will contain all image information. 

However, in this study, the inscribed circle is better, as the image outside the circle contains no 

useful information. For discrete digital images, we map pixels in the inscribed circle to the 

unit circle using the following mapping function: 

. (4) 

For discrete digital images, the moment calculation formula is written as: 

, (5) 

where  is the normalization factor, which equals the number of image pixels mapping in the 

unit circle, and the corresponding continuous case is . 

2.5 Classifier 

Pouya (2017) used SVM (support vector machine) as the classifier when applying moment features 

for SAR image recognition. SVM is suitable for clustering and classification problems because it 

is robust and sparse. However, in the present study, we introduce multilayer perceptron (MLP) 

(Dhlamini & Marwala, 2004) as the classifier, due to its high accuracy and its applicability in 

neural networks. MLP simulates the human brain and consists of multiple interconnected neural 

nodes. As shown in Figure 7, connections between nodes at different layers have different weights. 

Each weight represents the influence of one node on another node. The output of the previous layer 

is stimulated or suppressed with respect to the next layer at different levels. The number of output 

layer nodes is equal to the number of categories, and the number of input layer nodes is equal to 

the dimensions of the feature vector. 



Radio Science 

 

 
Figure 7. Multilayer Perceptron classifier structure 

The weight parameters of the MLP classifier need to be learned from the data, so network training 

requires a larger number of samples. We compare recognition performance using SVM and MLP 

as classifiers. The MLP has three layers, 100 nodes in the input layer (equal to the length of the 

moment feature), 10 nodes in the output layer (equal to the number of categories), and 30 nodes in 

the hidden layer. As shown in Table 3, for the same moment feature, the recognition rate from 

using the MLP classifier is improved by 2%–5% compared with SVM. For this reason, we apply 

a three-layer MLP as the classifier in subsequent feature fusion experiments. 

Table 3.  

Accuracy (%) of each method in the dataset using different classifiers 

Method 
Feature 

dimension 

SVM classifier 

accuracy (%) 

MLP classifier 

accuracy (%) 

Pseudo-Zernike moments 100 88.51 92.56 

Radial harmonic Fourier moments 100 86.17 89.02 

Chebyshev-Fourier moments 100 83.23 88.44 

Zernike moments 100 84.87 86.97 

Convolutional neural network 128 \ 95.86 

3 Experiment and discussion 

In this section, we fuse different moment features (fusion refers to the splicing of feature vectors) 

and train the MLP for classification. We then sort these features according to recognition rate to 

find the optimal fusion. Then, we combine the CNN feature with moment features in different 

orders, and train the MLP classification to get a recognition rate. We then select the combination 

with the highest recognition rate. 

We begin with the fusion of moment features. There are four kinds of moment feature. Moment 

feature PZM is far superior to ZM and is a variant of ZM; therefore, ZM is not considered when 

performing fusion. After fusion, the dimensions of the feature increase, which means that the 

number of hidden layer nodes of the MLP classifier needs to be adjusted. When the input feature 

dimensions are 300, 200, and 100, the corresponding hidden layer nodes are 60, 50, and 30. The 

learning rate is e-3 at the start of training; after 10 epochs it is adjusted to e-4 and training continues 

until the loss approaches 0. This procedure reduces training time without reducing training results. 

Table 4.  
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Accuracy of fusion of different moment features—pseudo-Zernike moment (PZM), 

Zernike moment (ZM), radial harmonic Fourier moment (RHFM), Chebyshev-Fourier 

moment (CFM), "+" means feature fusion. 

Rank Method Number of features Accuracy (%) 

1 PZM+CFM 100+100 93.31 

2 PZM 100 92.56 

3 PZM+RHFM 100+100 90.18 

4 RHFM 100 89.02 

5 RHFM+CFM 100+100 88.90 

6 CFM 100 88.44 

7 ZM 100 86.97 

Moment feature fusion and its recognition rates are shown in Table 4. The performance of the 

single moment feature is PZM > RHFM > CFM for the SAR image recognition task. For the 

combination of moment features, PZM+RHFM does not improve the recognition rate and performs 

worse than the single PZM feature. Fusion feature RHFM + CFM does not perform better than the 

single RHFM feature, so the RHFM and PZM features are not suitable for fusion. Similarly, 

RHFM and CFM are not suitable for fusion Thus, we consider the fusion of PZM and CFM. Our 

experiment shows that the fusion feature PZM + CFM is superior to the PZM feature and shows 

the highest recognition rate. As a result, for SAR image recognition, the best moment feature is 

the PZM feature, and the optimal feature fusion is PZM + CFM. 

Table 5. Accuracy of fusion of CNN features and moment features—Convolutional neural 

network(CNN), pseudo-Zernike moment(PZM),Zernike moment(ZM),radial harmonic Fourier 

moment(RHFM), Chebyshev-Fourier moment(CFM), "+" means feature fusion. 

Rank Method Number of features Accuracy (%) 

9 CNN 128 95.86  

6 CNN+PZM 128+100 98.01 

5 CNN+RHFM 128+100 98.11 

8 CNN+ZM 128+100 96.79 

7 CNN+CFM 128+100 97.29 

2 CNN+PZM+RHFM 128+100+100 98.53  

1 CNN+PZM+CFM 128+100+100 98.63  

3 CNN+RHFM+CFM 128+100+100 98.36 

4 CNN+PZM+RHFM+CFM 128+100+100+100 98.34  

Compared with the moment feature, the deep feature extracted via CNN has a very high 

recognition rate. The attributes of these two kinds of feature differ. The moment feature is a global 

feature, and the CNN feature is a semantic feature which obtains from the local field through 

stacking layers. Table 5 shows the different combinations of the two features. It is possible that 

the fusion of the moment feature and CNN feature improves the recognition rate. The reason for 

this is that the moment feature complements the deep feature, and its invariance improves deep 
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feature distinction. In Section 2, we discussed the fusion of moment features and concluded that 

the single moment feature PZM is best, and that the fusion moment feature PZM + CFM performs 

best. There is little difference when it is fused with the CNN feature. Comparing with single CNN 

feature, when one moment feature is fused, CNN + RHFM performs best and the recognition rate 

increases by 2.25%; With two moment features fused, CNN + PZM + CFM performs best, and the 

recognition rate increases by 2.77%. This result is consistent with the moment feature fusion result 

discussed in Section 2; that is, PZM + CFM is the best fusion moment feature. The final recognition 

rate is 98.63% for the CNN feature fused with moment features. 

In addition, with respect to MLP training time requirements, increasing the feature dimension does 

not greatly increase the training time of the classifier. A well-trained network can complete 

recognition of an input image almost in real time. Further, this experiment was conducted on a 

laptop, with CPU i5-8300H, NVIDIA GeForce GTX 1050Ti GPU, 8G memory. CNN + PZM + 

CFM classifier training time is 30 minutes and CNN classifier training time is 40 minutes. In terms 

of recognition rate improvement, such time requirements are justified. 

4 Performance evaluation and comparison 

We compare our method with recent SAR image recognition research. Table 6 shows recognition 

rates for the following methods: classic template matching methods (Deng et al., 2017); NFM 

method (Cui et al., 2015); methods based on neural networks, i.e., original autoencoder and 

Euclidean distance restricted autoencoder (Deng et al., 2017); sparse representation method, i.e., 

JMSDR (Yu et al., 2019); moment feature fusion method, i.e., moment methods based on Fisher 

score (Pouya et al, 2020); and deep CNN method, i.e., 4-VDCNNs (Pei et al., 2018). Our method 

shows the highest recognition rate. Although the neural network itself has strong recognition 

capabilities, the moment feature’s rotation and translation invariance further enhance 

discrimination of the CNN feature. Thus, the recognition rate is improved. 

Table 6.  

Recognition rate for each method 

Method Accuracy (%) 

Euclidean distance restricted autoencoder 91.29 

Original Auto Encoder 87.04 

NMF  95.16 

Monogenic signal  92.79 

Template matching  87.58 

Moment methods based on Fisher score  92.48 

4-VDCNNs  98.52 

JMSDR  93.18 

Proposed method 98.63 

In addition to comparing the accuracy rate, we also evaluate the stability of our method. The 

important indicators of this evaluation are confusion matrix and true-positive rate (TPR) / 
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sensitivity, true-negative rate (TNR) / specificity, false-negative rate (FNR) / miss rate, and 

accuracy (ACC), defined as follows: 

, 
(6) 

, 
(7) 

, 
(8) 

. 
(9) 

TP, FN, TN, and FP represent true-positive, false-negative, true-negative, and false-positive results, 

respectively. 

The confusion matrix clearly indicates recognition of each type of target and is related to the four 

indicators described above. The diagonal elements of Figure 8 represent the number of correct 

recognitions, or TP. Each column of the matrix represents the predicted class, and each row 

represents the actual class. In addition to the diagonal elements (TP), in the column direction, the 

values represent the number of images that the algorithm misjudges other classes as a predict class 

(FP). In the row direction, the values represent that the actual class is wrongly predicted as other 

predicted classes (FN). The figure shows the relationship between the confusion matrix and TP, 

TN, FP, and FN. The red line divides the confusion matrix into four parts. The sum of values in 

each part of the area is the TP, TN, FP, and FN of one class. 

 

Figure 8. Confusion matrix and TP, TN, FN, FP—true positive (TP), ture negative(TN),false 

negative(FN), false positive(FP). 



Radio Science 

 

We create a confusion matrix of CNN feature recognition, moment feature (PZM + CFM) 

recognition, and CNN + moment feature (CNN + PZM + CFM) recognition. As shown in Figures 

9–11, CNN + PZM + CFM recognition performs best; out of a total of 5172 images, 5101 are 

correctly classified. CNN recognizes 4958 images, and PZM + CFM recognizes only 4870 images. 

In addition, the CNN + moment feature method shows the best performance on each type of target 

classification; only one false occurs on D7, and the highest false recognition occurs on BTR60 out 

of 14 false recognitions. Compared with CNN + PZM + CFM, the CNN feature method recognizes 

three types of targets well, and the PZM + CFM feature fusion has lower recognition rate on each 

category. 

 

Figure 9. Confusion matrix of CNN + PZM + CFM classification 
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Figure https://doi.org/10. Confusion matrix of CNN classification 

 
Figure 11. Confusion matrix of PZM + CFM classification 

Table 7.  
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Evaluation of CNN + PZM + CFM using accuracy, TPR, TNP, and FNR—true positive 

rate(TPR)， true negative rate(TNR), false negative rate(FNR). 

Target 

category 

2S1 BMP2 BRD

M2 

BTR6

0 

BTR70 D7 T62 T72 ZIL13

1 

ZSU 

Accuracy 99.75 99.71 99.69 99.57 99.79 99.96 99.86 99.77 99.27 99.88 

TPR 98.78 97.66 99.13 96.90 97.97 99.82 99.30 98.13 98.78 99.13 

TNR 99.87 99.89 99.76 99.83 99.98 99.98 99.94 99.92 99.33 99.98 

FNR 1.22 2.34 0.87 3.10 2.33 0.17 0.70 1.82 1.22 0.87 

Table 7 shows the accuracy, TPR, TNR, and FNR of each target using the best fusion method. 
Accuracy is above 99% for each type of target, minimum TPR is 96.90%, and TNR is above 99%. 
The maximum FNR of 3.1% indicates that the method has good recognition performance for each 
category. We compare these four indicators on the three methods. For clarity, we take only the 
maximum value, minimum value, and average value for comparison. As shown in Table 8, they 
all have better performance on accuracy, but CNN + PZM + CFM on TPR is better than the other 
two methods and FNR is much smaller. Thus, the CNN + PZM + CFM method not only achieves 
a 98.63% recognition rate, it also has good performance in each category. The classifier’s ability 
is greatly improved using this fused feature. 

 

Table 8. 

Evaluation of three methods using accuracy, TPR, TNR, and FNR—true positive rate(TPR)，

true negative rate(TNR), false negative rate(FNR). 

Method Average Maximum Minimum 

ACC TPR TNR FNR ACC TPR TNR FNR ACC TPR TNR FNR 

CNN 99.18 95.70 99.54 4.29 99.79 99.48 99.98 11.09 98.76 88.91 98.84 0.52 

PZM+CFM 98.66 93.10 99.26 6.90 99.61 97.56 99.87 12.15 98.11 87.85 98.73 2.44 

CNN+PZM+CFM 99.73 98.56 99.85 1.46 99.96 99.82 99.98 3.1 99.27 96.90 99.33 0.17 

5 Conclusions 

This paper proposes a novel approach toward SAR image recognition. Our method is based on 

CNN and moment feature fusion, which can improve the recognition rate by enhancing feature 

description. First, we propose a Q_sigmoid function to improve SAR image contrast. We then 

compare the SVM and MLP classifiers and show that MLP is more suitable for this task. Our 

feature fusion experiment shows that the optimal fusion feature is CNN + PZM + CFM. By fusing 

the deep feature and moment feature, a high recognition rate of 98.63% is achieved. We compare 

our method with several existing methods, and the result shows our method to be superior. Finally, 

our method shows high stability and adaptability. In future work, we will explore the fusion of 

CNN features and moment features, not only stitching together the two features, but merging with 

trade-offs, while determining the appropriate fusion weight of the features. 
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